linux/drivers/mtd/nand/diskonchip.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/diskonchip.c
   3 *
   4 * (C) 2003 Red Hat, Inc.
   5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
   6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
   7 *
   8 * Author: David Woodhouse <dwmw2@infradead.org>
   9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11 *
  12 * Error correction code lifted from the old docecc code
  13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14 * Copyright (C) 2000 Netgem S.A.
  15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16 *
  17 * Interface to generic NAND code for M-Systems DiskOnChip devices
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/sched.h>
  23#include <linux/delay.h>
  24#include <linux/rslib.h>
  25#include <linux/moduleparam.h>
  26#include <linux/slab.h>
  27#include <linux/io.h>
  28
  29#include <linux/mtd/mtd.h>
  30#include <linux/mtd/rawnand.h>
  31#include <linux/mtd/doc2000.h>
  32#include <linux/mtd/partitions.h>
  33#include <linux/mtd/inftl.h>
  34#include <linux/module.h>
  35
  36/* Where to look for the devices? */
  37#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  38#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  39#endif
  40
  41static unsigned long doc_locations[] __initdata = {
  42#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  43#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  44        0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  45        0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  46        0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  47        0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  48        0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  49#else
  50        0xc8000, 0xca000, 0xcc000, 0xce000,
  51        0xd0000, 0xd2000, 0xd4000, 0xd6000,
  52        0xd8000, 0xda000, 0xdc000, 0xde000,
  53        0xe0000, 0xe2000, 0xe4000, 0xe6000,
  54        0xe8000, 0xea000, 0xec000, 0xee000,
  55#endif
  56#endif
  57        0xffffffff };
  58
  59static struct mtd_info *doclist = NULL;
  60
  61struct doc_priv {
  62        void __iomem *virtadr;
  63        unsigned long physadr;
  64        u_char ChipID;
  65        u_char CDSNControl;
  66        int chips_per_floor;    /* The number of chips detected on each floor */
  67        int curfloor;
  68        int curchip;
  69        int mh0_page;
  70        int mh1_page;
  71        struct mtd_info *nextdoc;
  72
  73        /* Handle the last stage of initialization (BBT scan, partitioning) */
  74        int (*late_init)(struct mtd_info *mtd);
  75};
  76
  77/* This is the ecc value computed by the HW ecc generator upon writing an empty
  78   page, one with all 0xff for data. */
  79static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  80
  81#define INFTL_BBT_RESERVED_BLOCKS 4
  82
  83#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  84#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  85#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  86
  87static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  88                              unsigned int bitmask);
  89static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  90
  91static int debug = 0;
  92module_param(debug, int, 0);
  93
  94static int try_dword = 1;
  95module_param(try_dword, int, 0);
  96
  97static int no_ecc_failures = 0;
  98module_param(no_ecc_failures, int, 0);
  99
 100static int no_autopart = 0;
 101module_param(no_autopart, int, 0);
 102
 103static int show_firmware_partition = 0;
 104module_param(show_firmware_partition, int, 0);
 105
 106#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
 107static int inftl_bbt_write = 1;
 108#else
 109static int inftl_bbt_write = 0;
 110#endif
 111module_param(inftl_bbt_write, int, 0);
 112
 113static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
 114module_param(doc_config_location, ulong, 0);
 115MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
 116
 117/* Sector size for HW ECC */
 118#define SECTOR_SIZE 512
 119/* The sector bytes are packed into NB_DATA 10 bit words */
 120#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
 121/* Number of roots */
 122#define NROOTS 4
 123/* First consective root */
 124#define FCR 510
 125/* Number of symbols */
 126#define NN 1023
 127
 128/* the Reed Solomon control structure */
 129static struct rs_control *rs_decoder;
 130
 131/*
 132 * The HW decoder in the DoC ASIC's provides us a error syndrome,
 133 * which we must convert to a standard syndrome usable by the generic
 134 * Reed-Solomon library code.
 135 *
 136 * Fabrice Bellard figured this out in the old docecc code. I added
 137 * some comments, improved a minor bit and converted it to make use
 138 * of the generic Reed-Solomon library. tglx
 139 */
 140static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
 141{
 142        int i, j, nerr, errpos[8];
 143        uint8_t parity;
 144        uint16_t ds[4], s[5], tmp, errval[8], syn[4];
 145
 146        memset(syn, 0, sizeof(syn));
 147        /* Convert the ecc bytes into words */
 148        ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
 149        ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
 150        ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
 151        ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
 152        parity = ecc[1];
 153
 154        /* Initialize the syndrome buffer */
 155        for (i = 0; i < NROOTS; i++)
 156                s[i] = ds[0];
 157        /*
 158         *  Evaluate
 159         *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
 160         *  where x = alpha^(FCR + i)
 161         */
 162        for (j = 1; j < NROOTS; j++) {
 163                if (ds[j] == 0)
 164                        continue;
 165                tmp = rs->index_of[ds[j]];
 166                for (i = 0; i < NROOTS; i++)
 167                        s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
 168        }
 169
 170        /* Calc syn[i] = s[i] / alpha^(v + i) */
 171        for (i = 0; i < NROOTS; i++) {
 172                if (s[i])
 173                        syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
 174        }
 175        /* Call the decoder library */
 176        nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
 177
 178        /* Incorrectable errors ? */
 179        if (nerr < 0)
 180                return nerr;
 181
 182        /*
 183         * Correct the errors. The bitpositions are a bit of magic,
 184         * but they are given by the design of the de/encoder circuit
 185         * in the DoC ASIC's.
 186         */
 187        for (i = 0; i < nerr; i++) {
 188                int index, bitpos, pos = 1015 - errpos[i];
 189                uint8_t val;
 190                if (pos >= NB_DATA && pos < 1019)
 191                        continue;
 192                if (pos < NB_DATA) {
 193                        /* extract bit position (MSB first) */
 194                        pos = 10 * (NB_DATA - 1 - pos) - 6;
 195                        /* now correct the following 10 bits. At most two bytes
 196                           can be modified since pos is even */
 197                        index = (pos >> 3) ^ 1;
 198                        bitpos = pos & 7;
 199                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 200                                val = (uint8_t) (errval[i] >> (2 + bitpos));
 201                                parity ^= val;
 202                                if (index < SECTOR_SIZE)
 203                                        data[index] ^= val;
 204                        }
 205                        index = ((pos >> 3) + 1) ^ 1;
 206                        bitpos = (bitpos + 10) & 7;
 207                        if (bitpos == 0)
 208                                bitpos = 8;
 209                        if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
 210                                val = (uint8_t) (errval[i] << (8 - bitpos));
 211                                parity ^= val;
 212                                if (index < SECTOR_SIZE)
 213                                        data[index] ^= val;
 214                        }
 215                }
 216        }
 217        /* If the parity is wrong, no rescue possible */
 218        return parity ? -EBADMSG : nerr;
 219}
 220
 221static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
 222{
 223        volatile char dummy;
 224        int i;
 225
 226        for (i = 0; i < cycles; i++) {
 227                if (DoC_is_Millennium(doc))
 228                        dummy = ReadDOC(doc->virtadr, NOP);
 229                else if (DoC_is_MillenniumPlus(doc))
 230                        dummy = ReadDOC(doc->virtadr, Mplus_NOP);
 231                else
 232                        dummy = ReadDOC(doc->virtadr, DOCStatus);
 233        }
 234
 235}
 236
 237#define CDSN_CTRL_FR_B_MASK     (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
 238
 239/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 240static int _DoC_WaitReady(struct doc_priv *doc)
 241{
 242        void __iomem *docptr = doc->virtadr;
 243        unsigned long timeo = jiffies + (HZ * 10);
 244
 245        if (debug)
 246                printk("_DoC_WaitReady...\n");
 247        /* Out-of-line routine to wait for chip response */
 248        if (DoC_is_MillenniumPlus(doc)) {
 249                while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 250                        if (time_after(jiffies, timeo)) {
 251                                printk("_DoC_WaitReady timed out.\n");
 252                                return -EIO;
 253                        }
 254                        udelay(1);
 255                        cond_resched();
 256                }
 257        } else {
 258                while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 259                        if (time_after(jiffies, timeo)) {
 260                                printk("_DoC_WaitReady timed out.\n");
 261                                return -EIO;
 262                        }
 263                        udelay(1);
 264                        cond_resched();
 265                }
 266        }
 267
 268        return 0;
 269}
 270
 271static inline int DoC_WaitReady(struct doc_priv *doc)
 272{
 273        void __iomem *docptr = doc->virtadr;
 274        int ret = 0;
 275
 276        if (DoC_is_MillenniumPlus(doc)) {
 277                DoC_Delay(doc, 4);
 278
 279                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
 280                        /* Call the out-of-line routine to wait */
 281                        ret = _DoC_WaitReady(doc);
 282        } else {
 283                DoC_Delay(doc, 4);
 284
 285                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 286                        /* Call the out-of-line routine to wait */
 287                        ret = _DoC_WaitReady(doc);
 288                DoC_Delay(doc, 2);
 289        }
 290
 291        if (debug)
 292                printk("DoC_WaitReady OK\n");
 293        return ret;
 294}
 295
 296static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
 297{
 298        struct nand_chip *this = mtd_to_nand(mtd);
 299        struct doc_priv *doc = nand_get_controller_data(this);
 300        void __iomem *docptr = doc->virtadr;
 301
 302        if (debug)
 303                printk("write_byte %02x\n", datum);
 304        WriteDOC(datum, docptr, CDSNSlowIO);
 305        WriteDOC(datum, docptr, 2k_CDSN_IO);
 306}
 307
 308static u_char doc2000_read_byte(struct mtd_info *mtd)
 309{
 310        struct nand_chip *this = mtd_to_nand(mtd);
 311        struct doc_priv *doc = nand_get_controller_data(this);
 312        void __iomem *docptr = doc->virtadr;
 313        u_char ret;
 314
 315        ReadDOC(docptr, CDSNSlowIO);
 316        DoC_Delay(doc, 2);
 317        ret = ReadDOC(docptr, 2k_CDSN_IO);
 318        if (debug)
 319                printk("read_byte returns %02x\n", ret);
 320        return ret;
 321}
 322
 323static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 324{
 325        struct nand_chip *this = mtd_to_nand(mtd);
 326        struct doc_priv *doc = nand_get_controller_data(this);
 327        void __iomem *docptr = doc->virtadr;
 328        int i;
 329        if (debug)
 330                printk("writebuf of %d bytes: ", len);
 331        for (i = 0; i < len; i++) {
 332                WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
 333                if (debug && i < 16)
 334                        printk("%02x ", buf[i]);
 335        }
 336        if (debug)
 337                printk("\n");
 338}
 339
 340static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 341{
 342        struct nand_chip *this = mtd_to_nand(mtd);
 343        struct doc_priv *doc = nand_get_controller_data(this);
 344        void __iomem *docptr = doc->virtadr;
 345        int i;
 346
 347        if (debug)
 348                printk("readbuf of %d bytes: ", len);
 349
 350        for (i = 0; i < len; i++) {
 351                buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
 352        }
 353}
 354
 355static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
 356{
 357        struct nand_chip *this = mtd_to_nand(mtd);
 358        struct doc_priv *doc = nand_get_controller_data(this);
 359        void __iomem *docptr = doc->virtadr;
 360        int i;
 361
 362        if (debug)
 363                printk("readbuf_dword of %d bytes: ", len);
 364
 365        if (unlikely((((unsigned long)buf) | len) & 3)) {
 366                for (i = 0; i < len; i++) {
 367                        *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
 368                }
 369        } else {
 370                for (i = 0; i < len; i += 4) {
 371                        *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
 372                }
 373        }
 374}
 375
 376static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
 377{
 378        struct nand_chip *this = mtd_to_nand(mtd);
 379        struct doc_priv *doc = nand_get_controller_data(this);
 380        uint16_t ret;
 381
 382        doc200x_select_chip(mtd, nr);
 383        doc200x_hwcontrol(mtd, NAND_CMD_READID,
 384                          NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 385        doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 386        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 387
 388        /* We can't use dev_ready here, but at least we wait for the
 389         * command to complete
 390         */
 391        udelay(50);
 392
 393        ret = this->read_byte(mtd) << 8;
 394        ret |= this->read_byte(mtd);
 395
 396        if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
 397                /* First chip probe. See if we get same results by 32-bit access */
 398                union {
 399                        uint32_t dword;
 400                        uint8_t byte[4];
 401                } ident;
 402                void __iomem *docptr = doc->virtadr;
 403
 404                doc200x_hwcontrol(mtd, NAND_CMD_READID,
 405                                  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 406                doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
 407                doc200x_hwcontrol(mtd, NAND_CMD_NONE,
 408                                  NAND_NCE | NAND_CTRL_CHANGE);
 409
 410                udelay(50);
 411
 412                ident.dword = readl(docptr + DoC_2k_CDSN_IO);
 413                if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
 414                        printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
 415                        this->read_buf = &doc2000_readbuf_dword;
 416                }
 417        }
 418
 419        return ret;
 420}
 421
 422static void __init doc2000_count_chips(struct mtd_info *mtd)
 423{
 424        struct nand_chip *this = mtd_to_nand(mtd);
 425        struct doc_priv *doc = nand_get_controller_data(this);
 426        uint16_t mfrid;
 427        int i;
 428
 429        /* Max 4 chips per floor on DiskOnChip 2000 */
 430        doc->chips_per_floor = 4;
 431
 432        /* Find out what the first chip is */
 433        mfrid = doc200x_ident_chip(mtd, 0);
 434
 435        /* Find how many chips in each floor. */
 436        for (i = 1; i < 4; i++) {
 437                if (doc200x_ident_chip(mtd, i) != mfrid)
 438                        break;
 439        }
 440        doc->chips_per_floor = i;
 441        printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
 442}
 443
 444static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
 445{
 446        struct doc_priv *doc = nand_get_controller_data(this);
 447
 448        int status;
 449
 450        DoC_WaitReady(doc);
 451        this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 452        DoC_WaitReady(doc);
 453        status = (int)this->read_byte(mtd);
 454
 455        return status;
 456}
 457
 458static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
 459{
 460        struct nand_chip *this = mtd_to_nand(mtd);
 461        struct doc_priv *doc = nand_get_controller_data(this);
 462        void __iomem *docptr = doc->virtadr;
 463
 464        WriteDOC(datum, docptr, CDSNSlowIO);
 465        WriteDOC(datum, docptr, Mil_CDSN_IO);
 466        WriteDOC(datum, docptr, WritePipeTerm);
 467}
 468
 469static u_char doc2001_read_byte(struct mtd_info *mtd)
 470{
 471        struct nand_chip *this = mtd_to_nand(mtd);
 472        struct doc_priv *doc = nand_get_controller_data(this);
 473        void __iomem *docptr = doc->virtadr;
 474
 475        //ReadDOC(docptr, CDSNSlowIO);
 476        /* 11.4.5 -- delay twice to allow extended length cycle */
 477        DoC_Delay(doc, 2);
 478        ReadDOC(docptr, ReadPipeInit);
 479        //return ReadDOC(docptr, Mil_CDSN_IO);
 480        return ReadDOC(docptr, LastDataRead);
 481}
 482
 483static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 484{
 485        struct nand_chip *this = mtd_to_nand(mtd);
 486        struct doc_priv *doc = nand_get_controller_data(this);
 487        void __iomem *docptr = doc->virtadr;
 488        int i;
 489
 490        for (i = 0; i < len; i++)
 491                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 492        /* Terminate write pipeline */
 493        WriteDOC(0x00, docptr, WritePipeTerm);
 494}
 495
 496static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 497{
 498        struct nand_chip *this = mtd_to_nand(mtd);
 499        struct doc_priv *doc = nand_get_controller_data(this);
 500        void __iomem *docptr = doc->virtadr;
 501        int i;
 502
 503        /* Start read pipeline */
 504        ReadDOC(docptr, ReadPipeInit);
 505
 506        for (i = 0; i < len - 1; i++)
 507                buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
 508
 509        /* Terminate read pipeline */
 510        buf[i] = ReadDOC(docptr, LastDataRead);
 511}
 512
 513static u_char doc2001plus_read_byte(struct mtd_info *mtd)
 514{
 515        struct nand_chip *this = mtd_to_nand(mtd);
 516        struct doc_priv *doc = nand_get_controller_data(this);
 517        void __iomem *docptr = doc->virtadr;
 518        u_char ret;
 519
 520        ReadDOC(docptr, Mplus_ReadPipeInit);
 521        ReadDOC(docptr, Mplus_ReadPipeInit);
 522        ret = ReadDOC(docptr, Mplus_LastDataRead);
 523        if (debug)
 524                printk("read_byte returns %02x\n", ret);
 525        return ret;
 526}
 527
 528static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
 529{
 530        struct nand_chip *this = mtd_to_nand(mtd);
 531        struct doc_priv *doc = nand_get_controller_data(this);
 532        void __iomem *docptr = doc->virtadr;
 533        int i;
 534
 535        if (debug)
 536                printk("writebuf of %d bytes: ", len);
 537        for (i = 0; i < len; i++) {
 538                WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
 539                if (debug && i < 16)
 540                        printk("%02x ", buf[i]);
 541        }
 542        if (debug)
 543                printk("\n");
 544}
 545
 546static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
 547{
 548        struct nand_chip *this = mtd_to_nand(mtd);
 549        struct doc_priv *doc = nand_get_controller_data(this);
 550        void __iomem *docptr = doc->virtadr;
 551        int i;
 552
 553        if (debug)
 554                printk("readbuf of %d bytes: ", len);
 555
 556        /* Start read pipeline */
 557        ReadDOC(docptr, Mplus_ReadPipeInit);
 558        ReadDOC(docptr, Mplus_ReadPipeInit);
 559
 560        for (i = 0; i < len - 2; i++) {
 561                buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
 562                if (debug && i < 16)
 563                        printk("%02x ", buf[i]);
 564        }
 565
 566        /* Terminate read pipeline */
 567        buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
 568        if (debug && i < 16)
 569                printk("%02x ", buf[len - 2]);
 570        buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
 571        if (debug && i < 16)
 572                printk("%02x ", buf[len - 1]);
 573        if (debug)
 574                printk("\n");
 575}
 576
 577static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
 578{
 579        struct nand_chip *this = mtd_to_nand(mtd);
 580        struct doc_priv *doc = nand_get_controller_data(this);
 581        void __iomem *docptr = doc->virtadr;
 582        int floor = 0;
 583
 584        if (debug)
 585                printk("select chip (%d)\n", chip);
 586
 587        if (chip == -1) {
 588                /* Disable flash internally */
 589                WriteDOC(0, docptr, Mplus_FlashSelect);
 590                return;
 591        }
 592
 593        floor = chip / doc->chips_per_floor;
 594        chip -= (floor * doc->chips_per_floor);
 595
 596        /* Assert ChipEnable and deassert WriteProtect */
 597        WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
 598        this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
 599
 600        doc->curchip = chip;
 601        doc->curfloor = floor;
 602}
 603
 604static void doc200x_select_chip(struct mtd_info *mtd, int chip)
 605{
 606        struct nand_chip *this = mtd_to_nand(mtd);
 607        struct doc_priv *doc = nand_get_controller_data(this);
 608        void __iomem *docptr = doc->virtadr;
 609        int floor = 0;
 610
 611        if (debug)
 612                printk("select chip (%d)\n", chip);
 613
 614        if (chip == -1)
 615                return;
 616
 617        floor = chip / doc->chips_per_floor;
 618        chip -= (floor * doc->chips_per_floor);
 619
 620        /* 11.4.4 -- deassert CE before changing chip */
 621        doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 622
 623        WriteDOC(floor, docptr, FloorSelect);
 624        WriteDOC(chip, docptr, CDSNDeviceSelect);
 625
 626        doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 627
 628        doc->curchip = chip;
 629        doc->curfloor = floor;
 630}
 631
 632#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
 633
 634static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
 635                              unsigned int ctrl)
 636{
 637        struct nand_chip *this = mtd_to_nand(mtd);
 638        struct doc_priv *doc = nand_get_controller_data(this);
 639        void __iomem *docptr = doc->virtadr;
 640
 641        if (ctrl & NAND_CTRL_CHANGE) {
 642                doc->CDSNControl &= ~CDSN_CTRL_MSK;
 643                doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
 644                if (debug)
 645                        printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
 646                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 647                /* 11.4.3 -- 4 NOPs after CSDNControl write */
 648                DoC_Delay(doc, 4);
 649        }
 650        if (cmd != NAND_CMD_NONE) {
 651                if (DoC_is_2000(doc))
 652                        doc2000_write_byte(mtd, cmd);
 653                else
 654                        doc2001_write_byte(mtd, cmd);
 655        }
 656}
 657
 658static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
 659{
 660        struct nand_chip *this = mtd_to_nand(mtd);
 661        struct doc_priv *doc = nand_get_controller_data(this);
 662        void __iomem *docptr = doc->virtadr;
 663
 664        /*
 665         * Must terminate write pipeline before sending any commands
 666         * to the device.
 667         */
 668        if (command == NAND_CMD_PAGEPROG) {
 669                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 670                WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
 671        }
 672
 673        /*
 674         * Write out the command to the device.
 675         */
 676        if (command == NAND_CMD_SEQIN) {
 677                int readcmd;
 678
 679                if (column >= mtd->writesize) {
 680                        /* OOB area */
 681                        column -= mtd->writesize;
 682                        readcmd = NAND_CMD_READOOB;
 683                } else if (column < 256) {
 684                        /* First 256 bytes --> READ0 */
 685                        readcmd = NAND_CMD_READ0;
 686                } else {
 687                        column -= 256;
 688                        readcmd = NAND_CMD_READ1;
 689                }
 690                WriteDOC(readcmd, docptr, Mplus_FlashCmd);
 691        }
 692        WriteDOC(command, docptr, Mplus_FlashCmd);
 693        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 694        WriteDOC(0, docptr, Mplus_WritePipeTerm);
 695
 696        if (column != -1 || page_addr != -1) {
 697                /* Serially input address */
 698                if (column != -1) {
 699                        /* Adjust columns for 16 bit buswidth */
 700                        if (this->options & NAND_BUSWIDTH_16 &&
 701                                        !nand_opcode_8bits(command))
 702                                column >>= 1;
 703                        WriteDOC(column, docptr, Mplus_FlashAddress);
 704                }
 705                if (page_addr != -1) {
 706                        WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
 707                        WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
 708                        if (this->options & NAND_ROW_ADDR_3) {
 709                                WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
 710                                printk("high density\n");
 711                        }
 712                }
 713                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 714                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 715                /* deassert ALE */
 716                if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
 717                    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
 718                        WriteDOC(0, docptr, Mplus_FlashControl);
 719        }
 720
 721        /*
 722         * program and erase have their own busy handlers
 723         * status and sequential in needs no delay
 724         */
 725        switch (command) {
 726
 727        case NAND_CMD_PAGEPROG:
 728        case NAND_CMD_ERASE1:
 729        case NAND_CMD_ERASE2:
 730        case NAND_CMD_SEQIN:
 731        case NAND_CMD_STATUS:
 732                return;
 733
 734        case NAND_CMD_RESET:
 735                if (this->dev_ready)
 736                        break;
 737                udelay(this->chip_delay);
 738                WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
 739                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 740                WriteDOC(0, docptr, Mplus_WritePipeTerm);
 741                while (!(this->read_byte(mtd) & 0x40)) ;
 742                return;
 743
 744                /* This applies to read commands */
 745        default:
 746                /*
 747                 * If we don't have access to the busy pin, we apply the given
 748                 * command delay
 749                 */
 750                if (!this->dev_ready) {
 751                        udelay(this->chip_delay);
 752                        return;
 753                }
 754        }
 755
 756        /* Apply this short delay always to ensure that we do wait tWB in
 757         * any case on any machine. */
 758        ndelay(100);
 759        /* wait until command is processed */
 760        while (!this->dev_ready(mtd)) ;
 761}
 762
 763static int doc200x_dev_ready(struct mtd_info *mtd)
 764{
 765        struct nand_chip *this = mtd_to_nand(mtd);
 766        struct doc_priv *doc = nand_get_controller_data(this);
 767        void __iomem *docptr = doc->virtadr;
 768
 769        if (DoC_is_MillenniumPlus(doc)) {
 770                /* 11.4.2 -- must NOP four times before checking FR/B# */
 771                DoC_Delay(doc, 4);
 772                if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
 773                        if (debug)
 774                                printk("not ready\n");
 775                        return 0;
 776                }
 777                if (debug)
 778                        printk("was ready\n");
 779                return 1;
 780        } else {
 781                /* 11.4.2 -- must NOP four times before checking FR/B# */
 782                DoC_Delay(doc, 4);
 783                if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 784                        if (debug)
 785                                printk("not ready\n");
 786                        return 0;
 787                }
 788                /* 11.4.2 -- Must NOP twice if it's ready */
 789                DoC_Delay(doc, 2);
 790                if (debug)
 791                        printk("was ready\n");
 792                return 1;
 793        }
 794}
 795
 796static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
 797{
 798        /* This is our last resort if we couldn't find or create a BBT.  Just
 799           pretend all blocks are good. */
 800        return 0;
 801}
 802
 803static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
 804{
 805        struct nand_chip *this = mtd_to_nand(mtd);
 806        struct doc_priv *doc = nand_get_controller_data(this);
 807        void __iomem *docptr = doc->virtadr;
 808
 809        /* Prime the ECC engine */
 810        switch (mode) {
 811        case NAND_ECC_READ:
 812                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 813                WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 814                break;
 815        case NAND_ECC_WRITE:
 816                WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 817                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 818                break;
 819        }
 820}
 821
 822static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
 823{
 824        struct nand_chip *this = mtd_to_nand(mtd);
 825        struct doc_priv *doc = nand_get_controller_data(this);
 826        void __iomem *docptr = doc->virtadr;
 827
 828        /* Prime the ECC engine */
 829        switch (mode) {
 830        case NAND_ECC_READ:
 831                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 832                WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
 833                break;
 834        case NAND_ECC_WRITE:
 835                WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
 836                WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
 837                break;
 838        }
 839}
 840
 841/* This code is only called on write */
 842static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
 843{
 844        struct nand_chip *this = mtd_to_nand(mtd);
 845        struct doc_priv *doc = nand_get_controller_data(this);
 846        void __iomem *docptr = doc->virtadr;
 847        int i;
 848        int emptymatch = 1;
 849
 850        /* flush the pipeline */
 851        if (DoC_is_2000(doc)) {
 852                WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
 853                WriteDOC(0, docptr, 2k_CDSN_IO);
 854                WriteDOC(0, docptr, 2k_CDSN_IO);
 855                WriteDOC(0, docptr, 2k_CDSN_IO);
 856                WriteDOC(doc->CDSNControl, docptr, CDSNControl);
 857        } else if (DoC_is_MillenniumPlus(doc)) {
 858                WriteDOC(0, docptr, Mplus_NOP);
 859                WriteDOC(0, docptr, Mplus_NOP);
 860                WriteDOC(0, docptr, Mplus_NOP);
 861        } else {
 862                WriteDOC(0, docptr, NOP);
 863                WriteDOC(0, docptr, NOP);
 864                WriteDOC(0, docptr, NOP);
 865        }
 866
 867        for (i = 0; i < 6; i++) {
 868                if (DoC_is_MillenniumPlus(doc))
 869                        ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 870                else
 871                        ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 872                if (ecc_code[i] != empty_write_ecc[i])
 873                        emptymatch = 0;
 874        }
 875        if (DoC_is_MillenniumPlus(doc))
 876                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 877        else
 878                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 879#if 0
 880        /* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
 881        if (emptymatch) {
 882                /* Note: this somewhat expensive test should not be triggered
 883                   often.  It could be optimized away by examining the data in
 884                   the writebuf routine, and remembering the result. */
 885                for (i = 0; i < 512; i++) {
 886                        if (dat[i] == 0xff)
 887                                continue;
 888                        emptymatch = 0;
 889                        break;
 890                }
 891        }
 892        /* If emptymatch still =1, we do have an all-0xff data buffer.
 893           Return all-0xff ecc value instead of the computed one, so
 894           it'll look just like a freshly-erased page. */
 895        if (emptymatch)
 896                memset(ecc_code, 0xff, 6);
 897#endif
 898        return 0;
 899}
 900
 901static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
 902                                u_char *read_ecc, u_char *isnull)
 903{
 904        int i, ret = 0;
 905        struct nand_chip *this = mtd_to_nand(mtd);
 906        struct doc_priv *doc = nand_get_controller_data(this);
 907        void __iomem *docptr = doc->virtadr;
 908        uint8_t calc_ecc[6];
 909        volatile u_char dummy;
 910
 911        /* flush the pipeline */
 912        if (DoC_is_2000(doc)) {
 913                dummy = ReadDOC(docptr, 2k_ECCStatus);
 914                dummy = ReadDOC(docptr, 2k_ECCStatus);
 915                dummy = ReadDOC(docptr, 2k_ECCStatus);
 916        } else if (DoC_is_MillenniumPlus(doc)) {
 917                dummy = ReadDOC(docptr, Mplus_ECCConf);
 918                dummy = ReadDOC(docptr, Mplus_ECCConf);
 919                dummy = ReadDOC(docptr, Mplus_ECCConf);
 920        } else {
 921                dummy = ReadDOC(docptr, ECCConf);
 922                dummy = ReadDOC(docptr, ECCConf);
 923                dummy = ReadDOC(docptr, ECCConf);
 924        }
 925
 926        /* Error occurred ? */
 927        if (dummy & 0x80) {
 928                for (i = 0; i < 6; i++) {
 929                        if (DoC_is_MillenniumPlus(doc))
 930                                calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
 931                        else
 932                                calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
 933                }
 934
 935                ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
 936                if (ret > 0)
 937                        printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
 938        }
 939        if (DoC_is_MillenniumPlus(doc))
 940                WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
 941        else
 942                WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 943        if (no_ecc_failures && mtd_is_eccerr(ret)) {
 944                printk(KERN_ERR "suppressing ECC failure\n");
 945                ret = 0;
 946        }
 947        return ret;
 948}
 949
 950//u_char mydatabuf[528];
 951
 952static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
 953                                 struct mtd_oob_region *oobregion)
 954{
 955        if (section)
 956                return -ERANGE;
 957
 958        oobregion->offset = 0;
 959        oobregion->length = 6;
 960
 961        return 0;
 962}
 963
 964static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
 965                                  struct mtd_oob_region *oobregion)
 966{
 967        if (section > 1)
 968                return -ERANGE;
 969
 970        /*
 971         * The strange out-of-order free bytes definition is a (possibly
 972         * unneeded) attempt to retain compatibility.  It used to read:
 973         *      .oobfree = { {8, 8} }
 974         * Since that leaves two bytes unusable, it was changed.  But the
 975         * following scheme might affect existing jffs2 installs by moving the
 976         * cleanmarker:
 977         *      .oobfree = { {6, 10} }
 978         * jffs2 seems to handle the above gracefully, but the current scheme
 979         * seems safer. The only problem with it is that any code retrieving
 980         * free bytes position must be able to handle out-of-order segments.
 981         */
 982        if (!section) {
 983                oobregion->offset = 8;
 984                oobregion->length = 8;
 985        } else {
 986                oobregion->offset = 6;
 987                oobregion->length = 2;
 988        }
 989
 990        return 0;
 991}
 992
 993static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
 994        .ecc = doc200x_ooblayout_ecc,
 995        .free = doc200x_ooblayout_free,
 996};
 997
 998/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
 999   On successful return, buf will contain a copy of the media header for
1000   further processing.  id is the string to scan for, and will presumably be
1001   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1002   header.  The page #s of the found media headers are placed in mh0_page and
1003   mh1_page in the DOC private structure. */
1004static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1005{
1006        struct nand_chip *this = mtd_to_nand(mtd);
1007        struct doc_priv *doc = nand_get_controller_data(this);
1008        unsigned offs;
1009        int ret;
1010        size_t retlen;
1011
1012        for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1013                ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1014                if (retlen != mtd->writesize)
1015                        continue;
1016                if (ret) {
1017                        printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1018                }
1019                if (memcmp(buf, id, 6))
1020                        continue;
1021                printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1022                if (doc->mh0_page == -1) {
1023                        doc->mh0_page = offs >> this->page_shift;
1024                        if (!findmirror)
1025                                return 1;
1026                        continue;
1027                }
1028                doc->mh1_page = offs >> this->page_shift;
1029                return 2;
1030        }
1031        if (doc->mh0_page == -1) {
1032                printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1033                return 0;
1034        }
1035        /* Only one mediaheader was found.  We want buf to contain a
1036           mediaheader on return, so we'll have to re-read the one we found. */
1037        offs = doc->mh0_page << this->page_shift;
1038        ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1039        if (retlen != mtd->writesize) {
1040                /* Insanity.  Give up. */
1041                printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1042                return 0;
1043        }
1044        return 1;
1045}
1046
1047static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1048{
1049        struct nand_chip *this = mtd_to_nand(mtd);
1050        struct doc_priv *doc = nand_get_controller_data(this);
1051        int ret = 0;
1052        u_char *buf;
1053        struct NFTLMediaHeader *mh;
1054        const unsigned psize = 1 << this->page_shift;
1055        int numparts = 0;
1056        unsigned blocks, maxblocks;
1057        int offs, numheaders;
1058
1059        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1060        if (!buf) {
1061                return 0;
1062        }
1063        if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1064                goto out;
1065        mh = (struct NFTLMediaHeader *)buf;
1066
1067        le16_to_cpus(&mh->NumEraseUnits);
1068        le16_to_cpus(&mh->FirstPhysicalEUN);
1069        le32_to_cpus(&mh->FormattedSize);
1070
1071        printk(KERN_INFO "    DataOrgID        = %s\n"
1072                         "    NumEraseUnits    = %d\n"
1073                         "    FirstPhysicalEUN = %d\n"
1074                         "    FormattedSize    = %d\n"
1075                         "    UnitSizeFactor   = %d\n",
1076                mh->DataOrgID, mh->NumEraseUnits,
1077                mh->FirstPhysicalEUN, mh->FormattedSize,
1078                mh->UnitSizeFactor);
1079
1080        blocks = mtd->size >> this->phys_erase_shift;
1081        maxblocks = min(32768U, mtd->erasesize - psize);
1082
1083        if (mh->UnitSizeFactor == 0x00) {
1084                /* Auto-determine UnitSizeFactor.  The constraints are:
1085                   - There can be at most 32768 virtual blocks.
1086                   - There can be at most (virtual block size - page size)
1087                   virtual blocks (because MediaHeader+BBT must fit in 1).
1088                 */
1089                mh->UnitSizeFactor = 0xff;
1090                while (blocks > maxblocks) {
1091                        blocks >>= 1;
1092                        maxblocks = min(32768U, (maxblocks << 1) + psize);
1093                        mh->UnitSizeFactor--;
1094                }
1095                printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1096        }
1097
1098        /* NOTE: The lines below modify internal variables of the NAND and MTD
1099           layers; variables with have already been configured by nand_scan.
1100           Unfortunately, we didn't know before this point what these values
1101           should be.  Thus, this code is somewhat dependent on the exact
1102           implementation of the NAND layer.  */
1103        if (mh->UnitSizeFactor != 0xff) {
1104                this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1105                mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1106                printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1107                blocks = mtd->size >> this->bbt_erase_shift;
1108                maxblocks = min(32768U, mtd->erasesize - psize);
1109        }
1110
1111        if (blocks > maxblocks) {
1112                printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1113                goto out;
1114        }
1115
1116        /* Skip past the media headers. */
1117        offs = max(doc->mh0_page, doc->mh1_page);
1118        offs <<= this->page_shift;
1119        offs += mtd->erasesize;
1120
1121        if (show_firmware_partition == 1) {
1122                parts[0].name = " DiskOnChip Firmware / Media Header partition";
1123                parts[0].offset = 0;
1124                parts[0].size = offs;
1125                numparts = 1;
1126        }
1127
1128        parts[numparts].name = " DiskOnChip BDTL partition";
1129        parts[numparts].offset = offs;
1130        parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1131
1132        offs += parts[numparts].size;
1133        numparts++;
1134
1135        if (offs < mtd->size) {
1136                parts[numparts].name = " DiskOnChip Remainder partition";
1137                parts[numparts].offset = offs;
1138                parts[numparts].size = mtd->size - offs;
1139                numparts++;
1140        }
1141
1142        ret = numparts;
1143 out:
1144        kfree(buf);
1145        return ret;
1146}
1147
1148/* This is a stripped-down copy of the code in inftlmount.c */
1149static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1150{
1151        struct nand_chip *this = mtd_to_nand(mtd);
1152        struct doc_priv *doc = nand_get_controller_data(this);
1153        int ret = 0;
1154        u_char *buf;
1155        struct INFTLMediaHeader *mh;
1156        struct INFTLPartition *ip;
1157        int numparts = 0;
1158        int blocks;
1159        int vshift, lastvunit = 0;
1160        int i;
1161        int end = mtd->size;
1162
1163        if (inftl_bbt_write)
1164                end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1165
1166        buf = kmalloc(mtd->writesize, GFP_KERNEL);
1167        if (!buf) {
1168                return 0;
1169        }
1170
1171        if (!find_media_headers(mtd, buf, "BNAND", 0))
1172                goto out;
1173        doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1174        mh = (struct INFTLMediaHeader *)buf;
1175
1176        le32_to_cpus(&mh->NoOfBootImageBlocks);
1177        le32_to_cpus(&mh->NoOfBinaryPartitions);
1178        le32_to_cpus(&mh->NoOfBDTLPartitions);
1179        le32_to_cpus(&mh->BlockMultiplierBits);
1180        le32_to_cpus(&mh->FormatFlags);
1181        le32_to_cpus(&mh->PercentUsed);
1182
1183        printk(KERN_INFO "    bootRecordID          = %s\n"
1184                         "    NoOfBootImageBlocks   = %d\n"
1185                         "    NoOfBinaryPartitions  = %d\n"
1186                         "    NoOfBDTLPartitions    = %d\n"
1187                         "    BlockMultiplerBits    = %d\n"
1188                         "    FormatFlgs            = %d\n"
1189                         "    OsakVersion           = %d.%d.%d.%d\n"
1190                         "    PercentUsed           = %d\n",
1191                mh->bootRecordID, mh->NoOfBootImageBlocks,
1192                mh->NoOfBinaryPartitions,
1193                mh->NoOfBDTLPartitions,
1194                mh->BlockMultiplierBits, mh->FormatFlags,
1195                ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1196                ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1197                ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1198                ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1199                mh->PercentUsed);
1200
1201        vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1202
1203        blocks = mtd->size >> vshift;
1204        if (blocks > 32768) {
1205                printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1206                goto out;
1207        }
1208
1209        blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1210        if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1211                printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1212                goto out;
1213        }
1214
1215        /* Scan the partitions */
1216        for (i = 0; (i < 4); i++) {
1217                ip = &(mh->Partitions[i]);
1218                le32_to_cpus(&ip->virtualUnits);
1219                le32_to_cpus(&ip->firstUnit);
1220                le32_to_cpus(&ip->lastUnit);
1221                le32_to_cpus(&ip->flags);
1222                le32_to_cpus(&ip->spareUnits);
1223                le32_to_cpus(&ip->Reserved0);
1224
1225                printk(KERN_INFO        "    PARTITION[%d] ->\n"
1226                        "        virtualUnits    = %d\n"
1227                        "        firstUnit       = %d\n"
1228                        "        lastUnit        = %d\n"
1229                        "        flags           = 0x%x\n"
1230                        "        spareUnits      = %d\n",
1231                        i, ip->virtualUnits, ip->firstUnit,
1232                        ip->lastUnit, ip->flags,
1233                        ip->spareUnits);
1234
1235                if ((show_firmware_partition == 1) &&
1236                    (i == 0) && (ip->firstUnit > 0)) {
1237                        parts[0].name = " DiskOnChip IPL / Media Header partition";
1238                        parts[0].offset = 0;
1239                        parts[0].size = mtd->erasesize * ip->firstUnit;
1240                        numparts = 1;
1241                }
1242
1243                if (ip->flags & INFTL_BINARY)
1244                        parts[numparts].name = " DiskOnChip BDK partition";
1245                else
1246                        parts[numparts].name = " DiskOnChip BDTL partition";
1247                parts[numparts].offset = ip->firstUnit << vshift;
1248                parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1249                numparts++;
1250                if (ip->lastUnit > lastvunit)
1251                        lastvunit = ip->lastUnit;
1252                if (ip->flags & INFTL_LAST)
1253                        break;
1254        }
1255        lastvunit++;
1256        if ((lastvunit << vshift) < end) {
1257                parts[numparts].name = " DiskOnChip Remainder partition";
1258                parts[numparts].offset = lastvunit << vshift;
1259                parts[numparts].size = end - parts[numparts].offset;
1260                numparts++;
1261        }
1262        ret = numparts;
1263 out:
1264        kfree(buf);
1265        return ret;
1266}
1267
1268static int __init nftl_scan_bbt(struct mtd_info *mtd)
1269{
1270        int ret, numparts;
1271        struct nand_chip *this = mtd_to_nand(mtd);
1272        struct doc_priv *doc = nand_get_controller_data(this);
1273        struct mtd_partition parts[2];
1274
1275        memset((char *)parts, 0, sizeof(parts));
1276        /* On NFTL, we have to find the media headers before we can read the
1277           BBTs, since they're stored in the media header eraseblocks. */
1278        numparts = nftl_partscan(mtd, parts);
1279        if (!numparts)
1280                return -EIO;
1281        this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1282                                NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1283                                NAND_BBT_VERSION;
1284        this->bbt_td->veroffs = 7;
1285        this->bbt_td->pages[0] = doc->mh0_page + 1;
1286        if (doc->mh1_page != -1) {
1287                this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1288                                        NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1289                                        NAND_BBT_VERSION;
1290                this->bbt_md->veroffs = 7;
1291                this->bbt_md->pages[0] = doc->mh1_page + 1;
1292        } else {
1293                this->bbt_md = NULL;
1294        }
1295
1296        ret = this->scan_bbt(mtd);
1297        if (ret)
1298                return ret;
1299
1300        return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1301}
1302
1303static int __init inftl_scan_bbt(struct mtd_info *mtd)
1304{
1305        int ret, numparts;
1306        struct nand_chip *this = mtd_to_nand(mtd);
1307        struct doc_priv *doc = nand_get_controller_data(this);
1308        struct mtd_partition parts[5];
1309
1310        if (this->numchips > doc->chips_per_floor) {
1311                printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1312                return -EIO;
1313        }
1314
1315        if (DoC_is_MillenniumPlus(doc)) {
1316                this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1317                if (inftl_bbt_write)
1318                        this->bbt_td->options |= NAND_BBT_WRITE;
1319                this->bbt_td->pages[0] = 2;
1320                this->bbt_md = NULL;
1321        } else {
1322                this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1323                if (inftl_bbt_write)
1324                        this->bbt_td->options |= NAND_BBT_WRITE;
1325                this->bbt_td->offs = 8;
1326                this->bbt_td->len = 8;
1327                this->bbt_td->veroffs = 7;
1328                this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1329                this->bbt_td->reserved_block_code = 0x01;
1330                this->bbt_td->pattern = "MSYS_BBT";
1331
1332                this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1333                if (inftl_bbt_write)
1334                        this->bbt_md->options |= NAND_BBT_WRITE;
1335                this->bbt_md->offs = 8;
1336                this->bbt_md->len = 8;
1337                this->bbt_md->veroffs = 7;
1338                this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1339                this->bbt_md->reserved_block_code = 0x01;
1340                this->bbt_md->pattern = "TBB_SYSM";
1341        }
1342
1343        ret = this->scan_bbt(mtd);
1344        if (ret)
1345                return ret;
1346
1347        memset((char *)parts, 0, sizeof(parts));
1348        numparts = inftl_partscan(mtd, parts);
1349        /* At least for now, require the INFTL Media Header.  We could probably
1350           do without it for non-INFTL use, since all it gives us is
1351           autopartitioning, but I want to give it more thought. */
1352        if (!numparts)
1353                return -EIO;
1354        return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1355}
1356
1357static inline int __init doc2000_init(struct mtd_info *mtd)
1358{
1359        struct nand_chip *this = mtd_to_nand(mtd);
1360        struct doc_priv *doc = nand_get_controller_data(this);
1361
1362        this->read_byte = doc2000_read_byte;
1363        this->write_buf = doc2000_writebuf;
1364        this->read_buf = doc2000_readbuf;
1365        doc->late_init = nftl_scan_bbt;
1366
1367        doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1368        doc2000_count_chips(mtd);
1369        mtd->name = "DiskOnChip 2000 (NFTL Model)";
1370        return (4 * doc->chips_per_floor);
1371}
1372
1373static inline int __init doc2001_init(struct mtd_info *mtd)
1374{
1375        struct nand_chip *this = mtd_to_nand(mtd);
1376        struct doc_priv *doc = nand_get_controller_data(this);
1377
1378        this->read_byte = doc2001_read_byte;
1379        this->write_buf = doc2001_writebuf;
1380        this->read_buf = doc2001_readbuf;
1381
1382        ReadDOC(doc->virtadr, ChipID);
1383        ReadDOC(doc->virtadr, ChipID);
1384        ReadDOC(doc->virtadr, ChipID);
1385        if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1386                /* It's not a Millennium; it's one of the newer
1387                   DiskOnChip 2000 units with a similar ASIC.
1388                   Treat it like a Millennium, except that it
1389                   can have multiple chips. */
1390                doc2000_count_chips(mtd);
1391                mtd->name = "DiskOnChip 2000 (INFTL Model)";
1392                doc->late_init = inftl_scan_bbt;
1393                return (4 * doc->chips_per_floor);
1394        } else {
1395                /* Bog-standard Millennium */
1396                doc->chips_per_floor = 1;
1397                mtd->name = "DiskOnChip Millennium";
1398                doc->late_init = nftl_scan_bbt;
1399                return 1;
1400        }
1401}
1402
1403static inline int __init doc2001plus_init(struct mtd_info *mtd)
1404{
1405        struct nand_chip *this = mtd_to_nand(mtd);
1406        struct doc_priv *doc = nand_get_controller_data(this);
1407
1408        this->read_byte = doc2001plus_read_byte;
1409        this->write_buf = doc2001plus_writebuf;
1410        this->read_buf = doc2001plus_readbuf;
1411        doc->late_init = inftl_scan_bbt;
1412        this->cmd_ctrl = NULL;
1413        this->select_chip = doc2001plus_select_chip;
1414        this->cmdfunc = doc2001plus_command;
1415        this->ecc.hwctl = doc2001plus_enable_hwecc;
1416
1417        doc->chips_per_floor = 1;
1418        mtd->name = "DiskOnChip Millennium Plus";
1419
1420        return 1;
1421}
1422
1423static int __init doc_probe(unsigned long physadr)
1424{
1425        unsigned char ChipID;
1426        struct mtd_info *mtd;
1427        struct nand_chip *nand;
1428        struct doc_priv *doc;
1429        void __iomem *virtadr;
1430        unsigned char save_control;
1431        unsigned char tmp, tmpb, tmpc;
1432        int reg, len, numchips;
1433        int ret = 0;
1434
1435        if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1436                return -EBUSY;
1437        virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1438        if (!virtadr) {
1439                printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1440                ret = -EIO;
1441                goto error_ioremap;
1442        }
1443
1444        /* It's not possible to cleanly detect the DiskOnChip - the
1445         * bootup procedure will put the device into reset mode, and
1446         * it's not possible to talk to it without actually writing
1447         * to the DOCControl register. So we store the current contents
1448         * of the DOCControl register's location, in case we later decide
1449         * that it's not a DiskOnChip, and want to put it back how we
1450         * found it.
1451         */
1452        save_control = ReadDOC(virtadr, DOCControl);
1453
1454        /* Reset the DiskOnChip ASIC */
1455        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1456        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1457
1458        /* Enable the DiskOnChip ASIC */
1459        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1460        WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1461
1462        ChipID = ReadDOC(virtadr, ChipID);
1463
1464        switch (ChipID) {
1465        case DOC_ChipID_Doc2k:
1466                reg = DoC_2k_ECCStatus;
1467                break;
1468        case DOC_ChipID_DocMil:
1469                reg = DoC_ECCConf;
1470                break;
1471        case DOC_ChipID_DocMilPlus16:
1472        case DOC_ChipID_DocMilPlus32:
1473        case 0:
1474                /* Possible Millennium Plus, need to do more checks */
1475                /* Possibly release from power down mode */
1476                for (tmp = 0; (tmp < 4); tmp++)
1477                        ReadDOC(virtadr, Mplus_Power);
1478
1479                /* Reset the Millennium Plus ASIC */
1480                tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1481                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1482                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1483
1484                mdelay(1);
1485                /* Enable the Millennium Plus ASIC */
1486                tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1487                WriteDOC(tmp, virtadr, Mplus_DOCControl);
1488                WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1489                mdelay(1);
1490
1491                ChipID = ReadDOC(virtadr, ChipID);
1492
1493                switch (ChipID) {
1494                case DOC_ChipID_DocMilPlus16:
1495                        reg = DoC_Mplus_Toggle;
1496                        break;
1497                case DOC_ChipID_DocMilPlus32:
1498                        printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1499                default:
1500                        ret = -ENODEV;
1501                        goto notfound;
1502                }
1503                break;
1504
1505        default:
1506                ret = -ENODEV;
1507                goto notfound;
1508        }
1509        /* Check the TOGGLE bit in the ECC register */
1510        tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1511        tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1512        tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1513        if ((tmp == tmpb) || (tmp != tmpc)) {
1514                printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1515                ret = -ENODEV;
1516                goto notfound;
1517        }
1518
1519        for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1520                unsigned char oldval;
1521                unsigned char newval;
1522                nand = mtd_to_nand(mtd);
1523                doc = nand_get_controller_data(nand);
1524                /* Use the alias resolution register to determine if this is
1525                   in fact the same DOC aliased to a new address.  If writes
1526                   to one chip's alias resolution register change the value on
1527                   the other chip, they're the same chip. */
1528                if (ChipID == DOC_ChipID_DocMilPlus16) {
1529                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1530                        newval = ReadDOC(virtadr, Mplus_AliasResolution);
1531                } else {
1532                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1533                        newval = ReadDOC(virtadr, AliasResolution);
1534                }
1535                if (oldval != newval)
1536                        continue;
1537                if (ChipID == DOC_ChipID_DocMilPlus16) {
1538                        WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1539                        oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1540                        WriteDOC(newval, virtadr, Mplus_AliasResolution);       // restore it
1541                } else {
1542                        WriteDOC(~newval, virtadr, AliasResolution);
1543                        oldval = ReadDOC(doc->virtadr, AliasResolution);
1544                        WriteDOC(newval, virtadr, AliasResolution);     // restore it
1545                }
1546                newval = ~newval;
1547                if (oldval == newval) {
1548                        printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1549                        goto notfound;
1550                }
1551        }
1552
1553        printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1554
1555        len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1556              (2 * sizeof(struct nand_bbt_descr));
1557        nand = kzalloc(len, GFP_KERNEL);
1558        if (!nand) {
1559                ret = -ENOMEM;
1560                goto fail;
1561        }
1562
1563        mtd                     = nand_to_mtd(nand);
1564        doc                     = (struct doc_priv *) (nand + 1);
1565        nand->bbt_td            = (struct nand_bbt_descr *) (doc + 1);
1566        nand->bbt_md            = nand->bbt_td + 1;
1567
1568        mtd->owner              = THIS_MODULE;
1569        mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1570
1571        nand_set_controller_data(nand, doc);
1572        nand->select_chip       = doc200x_select_chip;
1573        nand->cmd_ctrl          = doc200x_hwcontrol;
1574        nand->dev_ready         = doc200x_dev_ready;
1575        nand->waitfunc          = doc200x_wait;
1576        nand->block_bad         = doc200x_block_bad;
1577        nand->ecc.hwctl         = doc200x_enable_hwecc;
1578        nand->ecc.calculate     = doc200x_calculate_ecc;
1579        nand->ecc.correct       = doc200x_correct_data;
1580
1581        nand->ecc.mode          = NAND_ECC_HW_SYNDROME;
1582        nand->ecc.size          = 512;
1583        nand->ecc.bytes         = 6;
1584        nand->ecc.strength      = 2;
1585        nand->ecc.options       = NAND_ECC_GENERIC_ERASED_CHECK;
1586        nand->bbt_options       = NAND_BBT_USE_FLASH;
1587        /* Skip the automatic BBT scan so we can run it manually */
1588        nand->options           |= NAND_SKIP_BBTSCAN;
1589
1590        doc->physadr            = physadr;
1591        doc->virtadr            = virtadr;
1592        doc->ChipID             = ChipID;
1593        doc->curfloor           = -1;
1594        doc->curchip            = -1;
1595        doc->mh0_page           = -1;
1596        doc->mh1_page           = -1;
1597        doc->nextdoc            = doclist;
1598
1599        if (ChipID == DOC_ChipID_Doc2k)
1600                numchips = doc2000_init(mtd);
1601        else if (ChipID == DOC_ChipID_DocMilPlus16)
1602                numchips = doc2001plus_init(mtd);
1603        else
1604                numchips = doc2001_init(mtd);
1605
1606        if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1607                /* DBB note: i believe nand_release is necessary here, as
1608                   buffers may have been allocated in nand_base.  Check with
1609                   Thomas. FIX ME! */
1610                /* nand_release will call mtd_device_unregister, but we
1611                   haven't yet added it.  This is handled without incident by
1612                   mtd_device_unregister, as far as I can tell. */
1613                nand_release(mtd);
1614                kfree(nand);
1615                goto fail;
1616        }
1617
1618        /* Success! */
1619        doclist = mtd;
1620        return 0;
1621
1622 notfound:
1623        /* Put back the contents of the DOCControl register, in case it's not
1624           actually a DiskOnChip.  */
1625        WriteDOC(save_control, virtadr, DOCControl);
1626 fail:
1627        iounmap(virtadr);
1628
1629error_ioremap:
1630        release_mem_region(physadr, DOC_IOREMAP_LEN);
1631
1632        return ret;
1633}
1634
1635static void release_nanddoc(void)
1636{
1637        struct mtd_info *mtd, *nextmtd;
1638        struct nand_chip *nand;
1639        struct doc_priv *doc;
1640
1641        for (mtd = doclist; mtd; mtd = nextmtd) {
1642                nand = mtd_to_nand(mtd);
1643                doc = nand_get_controller_data(nand);
1644
1645                nextmtd = doc->nextdoc;
1646                nand_release(mtd);
1647                iounmap(doc->virtadr);
1648                release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1649                kfree(nand);
1650        }
1651}
1652
1653static int __init init_nanddoc(void)
1654{
1655        int i, ret = 0;
1656
1657        /* We could create the decoder on demand, if memory is a concern.
1658         * This way we have it handy, if an error happens
1659         *
1660         * Symbolsize is 10 (bits)
1661         * Primitve polynomial is x^10+x^3+1
1662         * first consecutive root is 510
1663         * primitve element to generate roots = 1
1664         * generator polinomial degree = 4
1665         */
1666        rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1667        if (!rs_decoder) {
1668                printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1669                return -ENOMEM;
1670        }
1671
1672        if (doc_config_location) {
1673                printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1674                ret = doc_probe(doc_config_location);
1675                if (ret < 0)
1676                        goto outerr;
1677        } else {
1678                for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1679                        doc_probe(doc_locations[i]);
1680                }
1681        }
1682        /* No banner message any more. Print a message if no DiskOnChip
1683           found, so the user knows we at least tried. */
1684        if (!doclist) {
1685                printk(KERN_INFO "No valid DiskOnChip devices found\n");
1686                ret = -ENODEV;
1687                goto outerr;
1688        }
1689        return 0;
1690 outerr:
1691        free_rs(rs_decoder);
1692        return ret;
1693}
1694
1695static void __exit cleanup_nanddoc(void)
1696{
1697        /* Cleanup the nand/DoC resources */
1698        release_nanddoc();
1699
1700        /* Free the reed solomon resources */
1701        if (rs_decoder) {
1702                free_rs(rs_decoder);
1703        }
1704}
1705
1706module_init(init_nanddoc);
1707module_exit(cleanup_nanddoc);
1708
1709MODULE_LICENSE("GPL");
1710MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1711MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1712