linux/drivers/mtd/nand/lpc32xx_slc.c
<<
>>
Prefs
   1/*
   2 * NXP LPC32XX NAND SLC driver
   3 *
   4 * Authors:
   5 *    Kevin Wells <kevin.wells@nxp.com>
   6 *    Roland Stigge <stigge@antcom.de>
   7 *
   8 * Copyright © 2011 NXP Semiconductors
   9 * Copyright © 2012 Roland Stigge
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/mtd/mtd.h>
  26#include <linux/mtd/rawnand.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/clk.h>
  29#include <linux/err.h>
  30#include <linux/delay.h>
  31#include <linux/io.h>
  32#include <linux/mm.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/dmaengine.h>
  35#include <linux/mtd/nand_ecc.h>
  36#include <linux/gpio.h>
  37#include <linux/of.h>
  38#include <linux/of_gpio.h>
  39#include <linux/mtd/lpc32xx_slc.h>
  40
  41#define LPC32XX_MODNAME         "lpc32xx-nand"
  42
  43/**********************************************************************
  44* SLC NAND controller register offsets
  45**********************************************************************/
  46
  47#define SLC_DATA(x)             (x + 0x000)
  48#define SLC_ADDR(x)             (x + 0x004)
  49#define SLC_CMD(x)              (x + 0x008)
  50#define SLC_STOP(x)             (x + 0x00C)
  51#define SLC_CTRL(x)             (x + 0x010)
  52#define SLC_CFG(x)              (x + 0x014)
  53#define SLC_STAT(x)             (x + 0x018)
  54#define SLC_INT_STAT(x)         (x + 0x01C)
  55#define SLC_IEN(x)              (x + 0x020)
  56#define SLC_ISR(x)              (x + 0x024)
  57#define SLC_ICR(x)              (x + 0x028)
  58#define SLC_TAC(x)              (x + 0x02C)
  59#define SLC_TC(x)               (x + 0x030)
  60#define SLC_ECC(x)              (x + 0x034)
  61#define SLC_DMA_DATA(x)         (x + 0x038)
  62
  63/**********************************************************************
  64* slc_ctrl register definitions
  65**********************************************************************/
  66#define SLCCTRL_SW_RESET        (1 << 2) /* Reset the NAND controller bit */
  67#define SLCCTRL_ECC_CLEAR       (1 << 1) /* Reset ECC bit */
  68#define SLCCTRL_DMA_START       (1 << 0) /* Start DMA channel bit */
  69
  70/**********************************************************************
  71* slc_cfg register definitions
  72**********************************************************************/
  73#define SLCCFG_CE_LOW           (1 << 5) /* Force CE low bit */
  74#define SLCCFG_DMA_ECC          (1 << 4) /* Enable DMA ECC bit */
  75#define SLCCFG_ECC_EN           (1 << 3) /* ECC enable bit */
  76#define SLCCFG_DMA_BURST        (1 << 2) /* DMA burst bit */
  77#define SLCCFG_DMA_DIR          (1 << 1) /* DMA write(0)/read(1) bit */
  78#define SLCCFG_WIDTH            (1 << 0) /* External device width, 0=8bit */
  79
  80/**********************************************************************
  81* slc_stat register definitions
  82**********************************************************************/
  83#define SLCSTAT_DMA_FIFO        (1 << 2) /* DMA FIFO has data bit */
  84#define SLCSTAT_SLC_FIFO        (1 << 1) /* SLC FIFO has data bit */
  85#define SLCSTAT_NAND_READY      (1 << 0) /* NAND device is ready bit */
  86
  87/**********************************************************************
  88* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
  89**********************************************************************/
  90#define SLCSTAT_INT_TC          (1 << 1) /* Transfer count bit */
  91#define SLCSTAT_INT_RDY_EN      (1 << 0) /* Ready interrupt bit */
  92
  93/**********************************************************************
  94* slc_tac register definitions
  95**********************************************************************/
  96/* Computation of clock cycles on basis of controller and device clock rates */
  97#define SLCTAC_CLOCKS(c, n, s)  (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
  98
  99/* Clock setting for RDY write sample wait time in 2*n clocks */
 100#define SLCTAC_WDR(n)           (((n) & 0xF) << 28)
 101/* Write pulse width in clock cycles, 1 to 16 clocks */
 102#define SLCTAC_WWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 24))
 103/* Write hold time of control and data signals, 1 to 16 clocks */
 104#define SLCTAC_WHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 20))
 105/* Write setup time of control and data signals, 1 to 16 clocks */
 106#define SLCTAC_WSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 16))
 107/* Clock setting for RDY read sample wait time in 2*n clocks */
 108#define SLCTAC_RDR(n)           (((n) & 0xF) << 12)
 109/* Read pulse width in clock cycles, 1 to 16 clocks */
 110#define SLCTAC_RWIDTH(c, n)     (SLCTAC_CLOCKS(c, n, 8))
 111/* Read hold time of control and data signals, 1 to 16 clocks */
 112#define SLCTAC_RHOLD(c, n)      (SLCTAC_CLOCKS(c, n, 4))
 113/* Read setup time of control and data signals, 1 to 16 clocks */
 114#define SLCTAC_RSETUP(c, n)     (SLCTAC_CLOCKS(c, n, 0))
 115
 116/**********************************************************************
 117* slc_ecc register definitions
 118**********************************************************************/
 119/* ECC line party fetch macro */
 120#define SLCECC_TO_LINEPAR(n)    (((n) >> 6) & 0x7FFF)
 121#define SLCECC_TO_COLPAR(n)     ((n) & 0x3F)
 122
 123/*
 124 * DMA requires storage space for the DMA local buffer and the hardware ECC
 125 * storage area. The DMA local buffer is only used if DMA mapping fails
 126 * during runtime.
 127 */
 128#define LPC32XX_DMA_DATA_SIZE           4096
 129#define LPC32XX_ECC_SAVE_SIZE           ((4096 / 256) * 4)
 130
 131/* Number of bytes used for ECC stored in NAND per 256 bytes */
 132#define LPC32XX_SLC_DEV_ECC_BYTES       3
 133
 134/*
 135 * If the NAND base clock frequency can't be fetched, this frequency will be
 136 * used instead as the base. This rate is used to setup the timing registers
 137 * used for NAND accesses.
 138 */
 139#define LPC32XX_DEF_BUS_RATE            133250000
 140
 141/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
 142#define LPC32XX_DMA_TIMEOUT             100
 143
 144/*
 145 * NAND ECC Layout for small page NAND devices
 146 * Note: For large and huge page devices, the default layouts are used
 147 */
 148static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
 149                                 struct mtd_oob_region *oobregion)
 150{
 151        if (section)
 152                return -ERANGE;
 153
 154        oobregion->length = 6;
 155        oobregion->offset = 10;
 156
 157        return 0;
 158}
 159
 160static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
 161                                  struct mtd_oob_region *oobregion)
 162{
 163        if (section > 1)
 164                return -ERANGE;
 165
 166        if (!section) {
 167                oobregion->offset = 0;
 168                oobregion->length = 4;
 169        } else {
 170                oobregion->offset = 6;
 171                oobregion->length = 4;
 172        }
 173
 174        return 0;
 175}
 176
 177static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
 178        .ecc = lpc32xx_ooblayout_ecc,
 179        .free = lpc32xx_ooblayout_free,
 180};
 181
 182static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
 183static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
 184
 185/*
 186 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
 187 * Note: Large page devices used the default layout
 188 */
 189static struct nand_bbt_descr bbt_smallpage_main_descr = {
 190        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 191                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 192        .offs = 0,
 193        .len = 4,
 194        .veroffs = 6,
 195        .maxblocks = 4,
 196        .pattern = bbt_pattern
 197};
 198
 199static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
 200        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 201                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 202        .offs = 0,
 203        .len = 4,
 204        .veroffs = 6,
 205        .maxblocks = 4,
 206        .pattern = mirror_pattern
 207};
 208
 209/*
 210 * NAND platform configuration structure
 211 */
 212struct lpc32xx_nand_cfg_slc {
 213        uint32_t wdr_clks;
 214        uint32_t wwidth;
 215        uint32_t whold;
 216        uint32_t wsetup;
 217        uint32_t rdr_clks;
 218        uint32_t rwidth;
 219        uint32_t rhold;
 220        uint32_t rsetup;
 221        int wp_gpio;
 222        struct mtd_partition *parts;
 223        unsigned num_parts;
 224};
 225
 226struct lpc32xx_nand_host {
 227        struct nand_chip        nand_chip;
 228        struct lpc32xx_slc_platform_data *pdata;
 229        struct clk              *clk;
 230        void __iomem            *io_base;
 231        struct lpc32xx_nand_cfg_slc *ncfg;
 232
 233        struct completion       comp;
 234        struct dma_chan         *dma_chan;
 235        uint32_t                dma_buf_len;
 236        struct dma_slave_config dma_slave_config;
 237        struct scatterlist      sgl;
 238
 239        /*
 240         * DMA and CPU addresses of ECC work area and data buffer
 241         */
 242        uint32_t                *ecc_buf;
 243        uint8_t                 *data_buf;
 244        dma_addr_t              io_base_dma;
 245};
 246
 247static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
 248{
 249        uint32_t clkrate, tmp;
 250
 251        /* Reset SLC controller */
 252        writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
 253        udelay(1000);
 254
 255        /* Basic setup */
 256        writel(0, SLC_CFG(host->io_base));
 257        writel(0, SLC_IEN(host->io_base));
 258        writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
 259                SLC_ICR(host->io_base));
 260
 261        /* Get base clock for SLC block */
 262        clkrate = clk_get_rate(host->clk);
 263        if (clkrate == 0)
 264                clkrate = LPC32XX_DEF_BUS_RATE;
 265
 266        /* Compute clock setup values */
 267        tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
 268                SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
 269                SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
 270                SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
 271                SLCTAC_RDR(host->ncfg->rdr_clks) |
 272                SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
 273                SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
 274                SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
 275        writel(tmp, SLC_TAC(host->io_base));
 276}
 277
 278/*
 279 * Hardware specific access to control lines
 280 */
 281static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
 282        unsigned int ctrl)
 283{
 284        uint32_t tmp;
 285        struct nand_chip *chip = mtd_to_nand(mtd);
 286        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 287
 288        /* Does CE state need to be changed? */
 289        tmp = readl(SLC_CFG(host->io_base));
 290        if (ctrl & NAND_NCE)
 291                tmp |= SLCCFG_CE_LOW;
 292        else
 293                tmp &= ~SLCCFG_CE_LOW;
 294        writel(tmp, SLC_CFG(host->io_base));
 295
 296        if (cmd != NAND_CMD_NONE) {
 297                if (ctrl & NAND_CLE)
 298                        writel(cmd, SLC_CMD(host->io_base));
 299                else
 300                        writel(cmd, SLC_ADDR(host->io_base));
 301        }
 302}
 303
 304/*
 305 * Read the Device Ready pin
 306 */
 307static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
 308{
 309        struct nand_chip *chip = mtd_to_nand(mtd);
 310        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 311        int rdy = 0;
 312
 313        if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
 314                rdy = 1;
 315
 316        return rdy;
 317}
 318
 319/*
 320 * Enable NAND write protect
 321 */
 322static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
 323{
 324        if (gpio_is_valid(host->ncfg->wp_gpio))
 325                gpio_set_value(host->ncfg->wp_gpio, 0);
 326}
 327
 328/*
 329 * Disable NAND write protect
 330 */
 331static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
 332{
 333        if (gpio_is_valid(host->ncfg->wp_gpio))
 334                gpio_set_value(host->ncfg->wp_gpio, 1);
 335}
 336
 337/*
 338 * Prepares SLC for transfers with H/W ECC enabled
 339 */
 340static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
 341{
 342        /* Hardware ECC is enabled automatically in hardware as needed */
 343}
 344
 345/*
 346 * Calculates the ECC for the data
 347 */
 348static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
 349                                      const unsigned char *buf,
 350                                      unsigned char *code)
 351{
 352        /*
 353         * ECC is calculated automatically in hardware during syndrome read
 354         * and write operations, so it doesn't need to be calculated here.
 355         */
 356        return 0;
 357}
 358
 359/*
 360 * Read a single byte from NAND device
 361 */
 362static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
 363{
 364        struct nand_chip *chip = mtd_to_nand(mtd);
 365        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 366
 367        return (uint8_t)readl(SLC_DATA(host->io_base));
 368}
 369
 370/*
 371 * Simple device read without ECC
 372 */
 373static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 374{
 375        struct nand_chip *chip = mtd_to_nand(mtd);
 376        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 377
 378        /* Direct device read with no ECC */
 379        while (len-- > 0)
 380                *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
 381}
 382
 383/*
 384 * Simple device write without ECC
 385 */
 386static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 387{
 388        struct nand_chip *chip = mtd_to_nand(mtd);
 389        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 390
 391        /* Direct device write with no ECC */
 392        while (len-- > 0)
 393                writel((uint32_t)*buf++, SLC_DATA(host->io_base));
 394}
 395
 396/*
 397 * Read the OOB data from the device without ECC using FIFO method
 398 */
 399static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
 400                                          struct nand_chip *chip, int page)
 401{
 402        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
 403        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 404
 405        return 0;
 406}
 407
 408/*
 409 * Write the OOB data to the device without ECC using FIFO method
 410 */
 411static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
 412        struct nand_chip *chip, int page)
 413{
 414        int status;
 415
 416        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
 417        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 418
 419        /* Send command to program the OOB data */
 420        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
 421
 422        status = chip->waitfunc(mtd, chip);
 423
 424        return status & NAND_STATUS_FAIL ? -EIO : 0;
 425}
 426
 427/*
 428 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
 429 */
 430static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
 431{
 432        int i;
 433
 434        for (i = 0; i < (count * 3); i += 3) {
 435                uint32_t ce = ecc[i / 3];
 436                ce = ~(ce << 2) & 0xFFFFFF;
 437                spare[i + 2] = (uint8_t)(ce & 0xFF);
 438                ce >>= 8;
 439                spare[i + 1] = (uint8_t)(ce & 0xFF);
 440                ce >>= 8;
 441                spare[i] = (uint8_t)(ce & 0xFF);
 442        }
 443}
 444
 445static void lpc32xx_dma_complete_func(void *completion)
 446{
 447        complete(completion);
 448}
 449
 450static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
 451                            void *mem, int len, enum dma_transfer_direction dir)
 452{
 453        struct nand_chip *chip = mtd_to_nand(mtd);
 454        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 455        struct dma_async_tx_descriptor *desc;
 456        int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 457        int res;
 458
 459        host->dma_slave_config.direction = dir;
 460        host->dma_slave_config.src_addr = dma;
 461        host->dma_slave_config.dst_addr = dma;
 462        host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 463        host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 464        host->dma_slave_config.src_maxburst = 4;
 465        host->dma_slave_config.dst_maxburst = 4;
 466        /* DMA controller does flow control: */
 467        host->dma_slave_config.device_fc = false;
 468        if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
 469                dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
 470                return -ENXIO;
 471        }
 472
 473        sg_init_one(&host->sgl, mem, len);
 474
 475        res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
 476                         DMA_BIDIRECTIONAL);
 477        if (res != 1) {
 478                dev_err(mtd->dev.parent, "Failed to map sg list\n");
 479                return -ENXIO;
 480        }
 481        desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
 482                                       flags);
 483        if (!desc) {
 484                dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
 485                goto out1;
 486        }
 487
 488        init_completion(&host->comp);
 489        desc->callback = lpc32xx_dma_complete_func;
 490        desc->callback_param = &host->comp;
 491
 492        dmaengine_submit(desc);
 493        dma_async_issue_pending(host->dma_chan);
 494
 495        wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
 496
 497        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 498                     DMA_BIDIRECTIONAL);
 499
 500        return 0;
 501out1:
 502        dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
 503                     DMA_BIDIRECTIONAL);
 504        return -ENXIO;
 505}
 506
 507/*
 508 * DMA read/write transfers with ECC support
 509 */
 510static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
 511                        int read)
 512{
 513        struct nand_chip *chip = mtd_to_nand(mtd);
 514        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 515        int i, status = 0;
 516        unsigned long timeout;
 517        int res;
 518        enum dma_transfer_direction dir =
 519                read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
 520        uint8_t *dma_buf;
 521        bool dma_mapped;
 522
 523        if ((void *)buf <= high_memory) {
 524                dma_buf = buf;
 525                dma_mapped = true;
 526        } else {
 527                dma_buf = host->data_buf;
 528                dma_mapped = false;
 529                if (!read)
 530                        memcpy(host->data_buf, buf, mtd->writesize);
 531        }
 532
 533        if (read) {
 534                writel(readl(SLC_CFG(host->io_base)) |
 535                       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 536                       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
 537        } else {
 538                writel((readl(SLC_CFG(host->io_base)) |
 539                        SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
 540                       ~SLCCFG_DMA_DIR,
 541                        SLC_CFG(host->io_base));
 542        }
 543
 544        /* Clear initial ECC */
 545        writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
 546
 547        /* Transfer size is data area only */
 548        writel(mtd->writesize, SLC_TC(host->io_base));
 549
 550        /* Start transfer in the NAND controller */
 551        writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
 552               SLC_CTRL(host->io_base));
 553
 554        for (i = 0; i < chip->ecc.steps; i++) {
 555                /* Data */
 556                res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
 557                                       dma_buf + i * chip->ecc.size,
 558                                       mtd->writesize / chip->ecc.steps, dir);
 559                if (res)
 560                        return res;
 561
 562                /* Always _read_ ECC */
 563                if (i == chip->ecc.steps - 1)
 564                        break;
 565                if (!read) /* ECC availability delayed on write */
 566                        udelay(10);
 567                res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
 568                                       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
 569                if (res)
 570                        return res;
 571        }
 572
 573        /*
 574         * According to NXP, the DMA can be finished here, but the NAND
 575         * controller may still have buffered data. After porting to using the
 576         * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
 577         * appears to be always true, according to tests. Keeping the check for
 578         * safety reasons for now.
 579         */
 580        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
 581                dev_warn(mtd->dev.parent, "FIFO not empty!\n");
 582                timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
 583                while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
 584                       time_before(jiffies, timeout))
 585                        cpu_relax();
 586                if (!time_before(jiffies, timeout)) {
 587                        dev_err(mtd->dev.parent, "FIFO held data too long\n");
 588                        status = -EIO;
 589                }
 590        }
 591
 592        /* Read last calculated ECC value */
 593        if (!read)
 594                udelay(10);
 595        host->ecc_buf[chip->ecc.steps - 1] =
 596                readl(SLC_ECC(host->io_base));
 597
 598        /* Flush DMA */
 599        dmaengine_terminate_all(host->dma_chan);
 600
 601        if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
 602            readl(SLC_TC(host->io_base))) {
 603                /* Something is left in the FIFO, something is wrong */
 604                dev_err(mtd->dev.parent, "DMA FIFO failure\n");
 605                status = -EIO;
 606        }
 607
 608        /* Stop DMA & HW ECC */
 609        writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
 610               SLC_CTRL(host->io_base));
 611        writel(readl(SLC_CFG(host->io_base)) &
 612               ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
 613                 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
 614
 615        if (!dma_mapped && read)
 616                memcpy(buf, host->data_buf, mtd->writesize);
 617
 618        return status;
 619}
 620
 621/*
 622 * Read the data and OOB data from the device, use ECC correction with the
 623 * data, disable ECC for the OOB data
 624 */
 625static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
 626                                           struct nand_chip *chip, uint8_t *buf,
 627                                           int oob_required, int page)
 628{
 629        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 630        struct mtd_oob_region oobregion = { };
 631        int stat, i, status, error;
 632        uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
 633
 634        /* Issue read command */
 635        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 636
 637        /* Read data and oob, calculate ECC */
 638        status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
 639
 640        /* Get OOB data */
 641        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 642
 643        /* Convert to stored ECC format */
 644        lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
 645
 646        /* Pointer to ECC data retrieved from NAND spare area */
 647        error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 648        if (error)
 649                return error;
 650
 651        oobecc = chip->oob_poi + oobregion.offset;
 652
 653        for (i = 0; i < chip->ecc.steps; i++) {
 654                stat = chip->ecc.correct(mtd, buf, oobecc,
 655                                         &tmpecc[i * chip->ecc.bytes]);
 656                if (stat < 0)
 657                        mtd->ecc_stats.failed++;
 658                else
 659                        mtd->ecc_stats.corrected += stat;
 660
 661                buf += chip->ecc.size;
 662                oobecc += chip->ecc.bytes;
 663        }
 664
 665        return status;
 666}
 667
 668/*
 669 * Read the data and OOB data from the device, no ECC correction with the
 670 * data or OOB data
 671 */
 672static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
 673                                               struct nand_chip *chip,
 674                                               uint8_t *buf, int oob_required,
 675                                               int page)
 676{
 677        /* Issue read command */
 678        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
 679
 680        /* Raw reads can just use the FIFO interface */
 681        chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 682        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
 683
 684        return 0;
 685}
 686
 687/*
 688 * Write the data and OOB data to the device, use ECC with the data,
 689 * disable ECC for the OOB data
 690 */
 691static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
 692                                            struct nand_chip *chip,
 693                                            const uint8_t *buf,
 694                                            int oob_required, int page)
 695{
 696        struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
 697        struct mtd_oob_region oobregion = { };
 698        uint8_t *pb;
 699        int error;
 700
 701        /* Write data, calculate ECC on outbound data */
 702        error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
 703        if (error)
 704                return error;
 705
 706        /*
 707         * The calculated ECC needs some manual work done to it before
 708         * committing it to NAND. Process the calculated ECC and place
 709         * the resultant values directly into the OOB buffer. */
 710        error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
 711        if (error)
 712                return error;
 713
 714        pb = chip->oob_poi + oobregion.offset;
 715        lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
 716
 717        /* Write ECC data to device */
 718        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 719        return 0;
 720}
 721
 722/*
 723 * Write the data and OOB data to the device, no ECC correction with the
 724 * data or OOB data
 725 */
 726static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
 727                                                struct nand_chip *chip,
 728                                                const uint8_t *buf,
 729                                                int oob_required, int page)
 730{
 731        /* Raw writes can just use the FIFO interface */
 732        chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
 733        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 734        return 0;
 735}
 736
 737static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
 738{
 739        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 740        dma_cap_mask_t mask;
 741
 742        if (!host->pdata || !host->pdata->dma_filter) {
 743                dev_err(mtd->dev.parent, "no DMA platform data\n");
 744                return -ENOENT;
 745        }
 746
 747        dma_cap_zero(mask);
 748        dma_cap_set(DMA_SLAVE, mask);
 749        host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
 750                                             "nand-slc");
 751        if (!host->dma_chan) {
 752                dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
 753                return -EBUSY;
 754        }
 755
 756        return 0;
 757}
 758
 759static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
 760{
 761        struct lpc32xx_nand_cfg_slc *ncfg;
 762        struct device_node *np = dev->of_node;
 763
 764        ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
 765        if (!ncfg)
 766                return NULL;
 767
 768        of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
 769        of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
 770        of_property_read_u32(np, "nxp,whold", &ncfg->whold);
 771        of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
 772        of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
 773        of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
 774        of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
 775        of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
 776
 777        if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
 778            !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
 779            !ncfg->rhold || !ncfg->rsetup) {
 780                dev_err(dev, "chip parameters not specified correctly\n");
 781                return NULL;
 782        }
 783
 784        ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
 785
 786        return ncfg;
 787}
 788
 789/*
 790 * Probe for NAND controller
 791 */
 792static int lpc32xx_nand_probe(struct platform_device *pdev)
 793{
 794        struct lpc32xx_nand_host *host;
 795        struct mtd_info *mtd;
 796        struct nand_chip *chip;
 797        struct resource *rc;
 798        int res;
 799
 800        /* Allocate memory for the device structure (and zero it) */
 801        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 802        if (!host)
 803                return -ENOMEM;
 804
 805        rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 806        host->io_base = devm_ioremap_resource(&pdev->dev, rc);
 807        if (IS_ERR(host->io_base))
 808                return PTR_ERR(host->io_base);
 809
 810        host->io_base_dma = rc->start;
 811        if (pdev->dev.of_node)
 812                host->ncfg = lpc32xx_parse_dt(&pdev->dev);
 813        if (!host->ncfg) {
 814                dev_err(&pdev->dev,
 815                        "Missing or bad NAND config from device tree\n");
 816                return -ENOENT;
 817        }
 818        if (host->ncfg->wp_gpio == -EPROBE_DEFER)
 819                return -EPROBE_DEFER;
 820        if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
 821                        host->ncfg->wp_gpio, "NAND WP")) {
 822                dev_err(&pdev->dev, "GPIO not available\n");
 823                return -EBUSY;
 824        }
 825        lpc32xx_wp_disable(host);
 826
 827        host->pdata = dev_get_platdata(&pdev->dev);
 828
 829        chip = &host->nand_chip;
 830        mtd = nand_to_mtd(chip);
 831        nand_set_controller_data(chip, host);
 832        nand_set_flash_node(chip, pdev->dev.of_node);
 833        mtd->owner = THIS_MODULE;
 834        mtd->dev.parent = &pdev->dev;
 835
 836        /* Get NAND clock */
 837        host->clk = devm_clk_get(&pdev->dev, NULL);
 838        if (IS_ERR(host->clk)) {
 839                dev_err(&pdev->dev, "Clock failure\n");
 840                res = -ENOENT;
 841                goto err_exit1;
 842        }
 843        res = clk_prepare_enable(host->clk);
 844        if (res)
 845                goto err_exit1;
 846
 847        /* Set NAND IO addresses and command/ready functions */
 848        chip->IO_ADDR_R = SLC_DATA(host->io_base);
 849        chip->IO_ADDR_W = SLC_DATA(host->io_base);
 850        chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
 851        chip->dev_ready = lpc32xx_nand_device_ready;
 852        chip->chip_delay = 20; /* 20us command delay time */
 853
 854        /* Init NAND controller */
 855        lpc32xx_nand_setup(host);
 856
 857        platform_set_drvdata(pdev, host);
 858
 859        /* NAND callbacks for LPC32xx SLC hardware */
 860        chip->ecc.mode = NAND_ECC_HW_SYNDROME;
 861        chip->read_byte = lpc32xx_nand_read_byte;
 862        chip->read_buf = lpc32xx_nand_read_buf;
 863        chip->write_buf = lpc32xx_nand_write_buf;
 864        chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
 865        chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
 866        chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
 867        chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
 868        chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
 869        chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
 870        chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
 871        chip->ecc.correct = nand_correct_data;
 872        chip->ecc.strength = 1;
 873        chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
 874
 875        /*
 876         * Allocate a large enough buffer for a single huge page plus
 877         * extra space for the spare area and ECC storage area
 878         */
 879        host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
 880        host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
 881                                      GFP_KERNEL);
 882        if (host->data_buf == NULL) {
 883                res = -ENOMEM;
 884                goto err_exit2;
 885        }
 886
 887        res = lpc32xx_nand_dma_setup(host);
 888        if (res) {
 889                res = -EIO;
 890                goto err_exit2;
 891        }
 892
 893        /* Find NAND device */
 894        res = nand_scan_ident(mtd, 1, NULL);
 895        if (res)
 896                goto err_exit3;
 897
 898        /* OOB and ECC CPU and DMA work areas */
 899        host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
 900
 901        /*
 902         * Small page FLASH has a unique OOB layout, but large and huge
 903         * page FLASH use the standard layout. Small page FLASH uses a
 904         * custom BBT marker layout.
 905         */
 906        if (mtd->writesize <= 512)
 907                mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
 908
 909        /* These sizes remain the same regardless of page size */
 910        chip->ecc.size = 256;
 911        chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
 912        chip->ecc.prepad = chip->ecc.postpad = 0;
 913
 914        /*
 915         * Use a custom BBT marker setup for small page FLASH that
 916         * won't interfere with the ECC layout. Large and huge page
 917         * FLASH use the standard layout.
 918         */
 919        if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
 920            mtd->writesize <= 512) {
 921                chip->bbt_td = &bbt_smallpage_main_descr;
 922                chip->bbt_md = &bbt_smallpage_mirror_descr;
 923        }
 924
 925        /*
 926         * Fills out all the uninitialized function pointers with the defaults
 927         */
 928        res = nand_scan_tail(mtd);
 929        if (res)
 930                goto err_exit3;
 931
 932        mtd->name = "nxp_lpc3220_slc";
 933        res = mtd_device_register(mtd, host->ncfg->parts,
 934                                  host->ncfg->num_parts);
 935        if (!res)
 936                return res;
 937
 938        nand_release(mtd);
 939
 940err_exit3:
 941        dma_release_channel(host->dma_chan);
 942err_exit2:
 943        clk_disable_unprepare(host->clk);
 944err_exit1:
 945        lpc32xx_wp_enable(host);
 946
 947        return res;
 948}
 949
 950/*
 951 * Remove NAND device.
 952 */
 953static int lpc32xx_nand_remove(struct platform_device *pdev)
 954{
 955        uint32_t tmp;
 956        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 957        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 958
 959        nand_release(mtd);
 960        dma_release_channel(host->dma_chan);
 961
 962        /* Force CE high */
 963        tmp = readl(SLC_CTRL(host->io_base));
 964        tmp &= ~SLCCFG_CE_LOW;
 965        writel(tmp, SLC_CTRL(host->io_base));
 966
 967        clk_disable_unprepare(host->clk);
 968        lpc32xx_wp_enable(host);
 969
 970        return 0;
 971}
 972
 973#ifdef CONFIG_PM
 974static int lpc32xx_nand_resume(struct platform_device *pdev)
 975{
 976        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 977        int ret;
 978
 979        /* Re-enable NAND clock */
 980        ret = clk_prepare_enable(host->clk);
 981        if (ret)
 982                return ret;
 983
 984        /* Fresh init of NAND controller */
 985        lpc32xx_nand_setup(host);
 986
 987        /* Disable write protect */
 988        lpc32xx_wp_disable(host);
 989
 990        return 0;
 991}
 992
 993static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
 994{
 995        uint32_t tmp;
 996        struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
 997
 998        /* Force CE high */
 999        tmp = readl(SLC_CTRL(host->io_base));
1000        tmp &= ~SLCCFG_CE_LOW;
1001        writel(tmp, SLC_CTRL(host->io_base));
1002
1003        /* Enable write protect for safety */
1004        lpc32xx_wp_enable(host);
1005
1006        /* Disable clock */
1007        clk_disable_unprepare(host->clk);
1008
1009        return 0;
1010}
1011
1012#else
1013#define lpc32xx_nand_resume NULL
1014#define lpc32xx_nand_suspend NULL
1015#endif
1016
1017static const struct of_device_id lpc32xx_nand_match[] = {
1018        { .compatible = "nxp,lpc3220-slc" },
1019        { /* sentinel */ },
1020};
1021MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
1022
1023static struct platform_driver lpc32xx_nand_driver = {
1024        .probe          = lpc32xx_nand_probe,
1025        .remove         = lpc32xx_nand_remove,
1026        .resume         = lpc32xx_nand_resume,
1027        .suspend        = lpc32xx_nand_suspend,
1028        .driver         = {
1029                .name   = LPC32XX_MODNAME,
1030                .of_match_table = lpc32xx_nand_match,
1031        },
1032};
1033
1034module_platform_driver(lpc32xx_nand_driver);
1035
1036MODULE_LICENSE("GPL");
1037MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1038MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1039MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
1040