linux/drivers/mtd/nand/mxc_nand.c
<<
>>
Prefs
   1/*
   2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
   3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17 * MA 02110-1301, USA.
  18 */
  19
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/mtd/mtd.h>
  25#include <linux/mtd/rawnand.h>
  26#include <linux/mtd/partitions.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/platform_device.h>
  30#include <linux/clk.h>
  31#include <linux/err.h>
  32#include <linux/io.h>
  33#include <linux/irq.h>
  34#include <linux/completion.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37
  38#include <asm/mach/flash.h>
  39#include <linux/platform_data/mtd-mxc_nand.h>
  40
  41#define DRIVER_NAME "mxc_nand"
  42
  43/* Addresses for NFC registers */
  44#define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
  45#define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
  46#define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
  47#define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
  48#define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
  49#define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
  50#define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
  51#define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
  52#define NFC_V1_V2_WRPROT                (host->regs + 0x12)
  53#define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
  54#define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
  55#define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
  56#define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
  57#define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
  58#define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
  59#define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
  60#define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
  61#define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
  62#define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
  63#define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
  64#define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
  65#define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
  66
  67#define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
  68#define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
  69#define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
  70#define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
  71#define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
  72#define NFC_V1_V2_CONFIG1_RST           (1 << 6)
  73#define NFC_V1_V2_CONFIG1_CE            (1 << 7)
  74#define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
  75#define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
  76#define NFC_V2_CONFIG1_FP_INT           (1 << 11)
  77
  78#define NFC_V1_V2_CONFIG2_INT           (1 << 15)
  79
  80/*
  81 * Operation modes for the NFC. Valid for v1, v2 and v3
  82 * type controllers.
  83 */
  84#define NFC_CMD                         (1 << 0)
  85#define NFC_ADDR                        (1 << 1)
  86#define NFC_INPUT                       (1 << 2)
  87#define NFC_OUTPUT                      (1 << 3)
  88#define NFC_ID                          (1 << 4)
  89#define NFC_STATUS                      (1 << 5)
  90
  91#define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
  92#define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
  93
  94#define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
  95#define NFC_V3_CONFIG1_SP_EN            (1 << 0)
  96#define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
  97
  98#define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
  99
 100#define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
 101
 102#define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
 103#define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
 104#define NFC_V3_WRPROT_LOCK              (1 << 1)
 105#define NFC_V3_WRPROT_UNLOCK            (1 << 2)
 106#define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
 107
 108#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
 109
 110#define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
 111#define NFC_V3_CONFIG2_PS_512                   (0 << 0)
 112#define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
 113#define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
 114#define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
 115#define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
 116#define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
 117#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
 118#define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
 119#define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
 120#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
 121#define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
 122#define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
 123#define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
 124
 125#define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
 126#define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
 127#define NFC_V3_CONFIG3_FW8                      (1 << 3)
 128#define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
 129#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
 130#define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
 131#define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
 132
 133#define NFC_V3_IPC                      (host->regs_ip + 0x2C)
 134#define NFC_V3_IPC_CREQ                 (1 << 0)
 135#define NFC_V3_IPC_INT                  (1 << 31)
 136
 137#define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
 138
 139struct mxc_nand_host;
 140
 141struct mxc_nand_devtype_data {
 142        void (*preset)(struct mtd_info *);
 143        void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
 144        void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
 145        void (*send_page)(struct mtd_info *, unsigned int);
 146        void (*send_read_id)(struct mxc_nand_host *);
 147        uint16_t (*get_dev_status)(struct mxc_nand_host *);
 148        int (*check_int)(struct mxc_nand_host *);
 149        void (*irq_control)(struct mxc_nand_host *, int);
 150        u32 (*get_ecc_status)(struct mxc_nand_host *);
 151        const struct mtd_ooblayout_ops *ooblayout;
 152        void (*select_chip)(struct mtd_info *mtd, int chip);
 153        int (*correct_data)(struct mtd_info *mtd, u_char *dat,
 154                        u_char *read_ecc, u_char *calc_ecc);
 155        int (*setup_data_interface)(struct mtd_info *mtd, int csline,
 156                                    const struct nand_data_interface *conf);
 157
 158        /*
 159         * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
 160         * (CONFIG1:INT_MSK is set). To handle this the driver uses
 161         * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
 162         */
 163        int irqpending_quirk;
 164        int needs_ip;
 165
 166        size_t regs_offset;
 167        size_t spare0_offset;
 168        size_t axi_offset;
 169
 170        int spare_len;
 171        int eccbytes;
 172        int eccsize;
 173        int ppb_shift;
 174};
 175
 176struct mxc_nand_host {
 177        struct nand_chip        nand;
 178        struct device           *dev;
 179
 180        void __iomem            *spare0;
 181        void __iomem            *main_area0;
 182
 183        void __iomem            *base;
 184        void __iomem            *regs;
 185        void __iomem            *regs_axi;
 186        void __iomem            *regs_ip;
 187        int                     status_request;
 188        struct clk              *clk;
 189        int                     clk_act;
 190        int                     irq;
 191        int                     eccsize;
 192        int                     used_oobsize;
 193        int                     active_cs;
 194
 195        struct completion       op_completion;
 196
 197        uint8_t                 *data_buf;
 198        unsigned int            buf_start;
 199
 200        const struct mxc_nand_devtype_data *devtype_data;
 201        struct mxc_nand_platform_data pdata;
 202};
 203
 204static const char * const part_probes[] = {
 205        "cmdlinepart", "RedBoot", "ofpart", NULL };
 206
 207static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 208{
 209        int i;
 210        u32 *t = trg;
 211        const __iomem u32 *s = src;
 212
 213        for (i = 0; i < (size >> 2); i++)
 214                *t++ = __raw_readl(s++);
 215}
 216
 217static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
 218{
 219        int i;
 220        u16 *t = trg;
 221        const __iomem u16 *s = src;
 222
 223        /* We assume that src (IO) is always 32bit aligned */
 224        if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
 225                memcpy32_fromio(trg, src, size);
 226                return;
 227        }
 228
 229        for (i = 0; i < (size >> 1); i++)
 230                *t++ = __raw_readw(s++);
 231}
 232
 233static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
 234{
 235        /* __iowrite32_copy use 32bit size values so divide by 4 */
 236        __iowrite32_copy(trg, src, size / 4);
 237}
 238
 239static void memcpy16_toio(void __iomem *trg, const void *src, int size)
 240{
 241        int i;
 242        __iomem u16 *t = trg;
 243        const u16 *s = src;
 244
 245        /* We assume that trg (IO) is always 32bit aligned */
 246        if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
 247                memcpy32_toio(trg, src, size);
 248                return;
 249        }
 250
 251        for (i = 0; i < (size >> 1); i++)
 252                __raw_writew(*s++, t++);
 253}
 254
 255static int check_int_v3(struct mxc_nand_host *host)
 256{
 257        uint32_t tmp;
 258
 259        tmp = readl(NFC_V3_IPC);
 260        if (!(tmp & NFC_V3_IPC_INT))
 261                return 0;
 262
 263        tmp &= ~NFC_V3_IPC_INT;
 264        writel(tmp, NFC_V3_IPC);
 265
 266        return 1;
 267}
 268
 269static int check_int_v1_v2(struct mxc_nand_host *host)
 270{
 271        uint32_t tmp;
 272
 273        tmp = readw(NFC_V1_V2_CONFIG2);
 274        if (!(tmp & NFC_V1_V2_CONFIG2_INT))
 275                return 0;
 276
 277        if (!host->devtype_data->irqpending_quirk)
 278                writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
 279
 280        return 1;
 281}
 282
 283static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
 284{
 285        uint16_t tmp;
 286
 287        tmp = readw(NFC_V1_V2_CONFIG1);
 288
 289        if (activate)
 290                tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
 291        else
 292                tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
 293
 294        writew(tmp, NFC_V1_V2_CONFIG1);
 295}
 296
 297static void irq_control_v3(struct mxc_nand_host *host, int activate)
 298{
 299        uint32_t tmp;
 300
 301        tmp = readl(NFC_V3_CONFIG2);
 302
 303        if (activate)
 304                tmp &= ~NFC_V3_CONFIG2_INT_MSK;
 305        else
 306                tmp |= NFC_V3_CONFIG2_INT_MSK;
 307
 308        writel(tmp, NFC_V3_CONFIG2);
 309}
 310
 311static void irq_control(struct mxc_nand_host *host, int activate)
 312{
 313        if (host->devtype_data->irqpending_quirk) {
 314                if (activate)
 315                        enable_irq(host->irq);
 316                else
 317                        disable_irq_nosync(host->irq);
 318        } else {
 319                host->devtype_data->irq_control(host, activate);
 320        }
 321}
 322
 323static u32 get_ecc_status_v1(struct mxc_nand_host *host)
 324{
 325        return readw(NFC_V1_V2_ECC_STATUS_RESULT);
 326}
 327
 328static u32 get_ecc_status_v2(struct mxc_nand_host *host)
 329{
 330        return readl(NFC_V1_V2_ECC_STATUS_RESULT);
 331}
 332
 333static u32 get_ecc_status_v3(struct mxc_nand_host *host)
 334{
 335        return readl(NFC_V3_ECC_STATUS_RESULT);
 336}
 337
 338static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
 339{
 340        struct mxc_nand_host *host = dev_id;
 341
 342        if (!host->devtype_data->check_int(host))
 343                return IRQ_NONE;
 344
 345        irq_control(host, 0);
 346
 347        complete(&host->op_completion);
 348
 349        return IRQ_HANDLED;
 350}
 351
 352/* This function polls the NANDFC to wait for the basic operation to
 353 * complete by checking the INT bit of config2 register.
 354 */
 355static int wait_op_done(struct mxc_nand_host *host, int useirq)
 356{
 357        int ret = 0;
 358
 359        /*
 360         * If operation is already complete, don't bother to setup an irq or a
 361         * loop.
 362         */
 363        if (host->devtype_data->check_int(host))
 364                return 0;
 365
 366        if (useirq) {
 367                unsigned long timeout;
 368
 369                reinit_completion(&host->op_completion);
 370
 371                irq_control(host, 1);
 372
 373                timeout = wait_for_completion_timeout(&host->op_completion, HZ);
 374                if (!timeout && !host->devtype_data->check_int(host)) {
 375                        dev_dbg(host->dev, "timeout waiting for irq\n");
 376                        ret = -ETIMEDOUT;
 377                }
 378        } else {
 379                int max_retries = 8000;
 380                int done;
 381
 382                do {
 383                        udelay(1);
 384
 385                        done = host->devtype_data->check_int(host);
 386                        if (done)
 387                                break;
 388
 389                } while (--max_retries);
 390
 391                if (!done) {
 392                        dev_dbg(host->dev, "timeout polling for completion\n");
 393                        ret = -ETIMEDOUT;
 394                }
 395        }
 396
 397        WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
 398
 399        return ret;
 400}
 401
 402static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 403{
 404        /* fill command */
 405        writel(cmd, NFC_V3_FLASH_CMD);
 406
 407        /* send out command */
 408        writel(NFC_CMD, NFC_V3_LAUNCH);
 409
 410        /* Wait for operation to complete */
 411        wait_op_done(host, useirq);
 412}
 413
 414/* This function issues the specified command to the NAND device and
 415 * waits for completion. */
 416static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
 417{
 418        dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
 419
 420        writew(cmd, NFC_V1_V2_FLASH_CMD);
 421        writew(NFC_CMD, NFC_V1_V2_CONFIG2);
 422
 423        if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
 424                int max_retries = 100;
 425                /* Reset completion is indicated by NFC_CONFIG2 */
 426                /* being set to 0 */
 427                while (max_retries-- > 0) {
 428                        if (readw(NFC_V1_V2_CONFIG2) == 0) {
 429                                break;
 430                        }
 431                        udelay(1);
 432                }
 433                if (max_retries < 0)
 434                        dev_dbg(host->dev, "%s: RESET failed\n", __func__);
 435        } else {
 436                /* Wait for operation to complete */
 437                wait_op_done(host, useirq);
 438        }
 439}
 440
 441static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
 442{
 443        /* fill address */
 444        writel(addr, NFC_V3_FLASH_ADDR0);
 445
 446        /* send out address */
 447        writel(NFC_ADDR, NFC_V3_LAUNCH);
 448
 449        wait_op_done(host, 0);
 450}
 451
 452/* This function sends an address (or partial address) to the
 453 * NAND device. The address is used to select the source/destination for
 454 * a NAND command. */
 455static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
 456{
 457        dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
 458
 459        writew(addr, NFC_V1_V2_FLASH_ADDR);
 460        writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
 461
 462        /* Wait for operation to complete */
 463        wait_op_done(host, islast);
 464}
 465
 466static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
 467{
 468        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 469        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 470        uint32_t tmp;
 471
 472        tmp = readl(NFC_V3_CONFIG1);
 473        tmp &= ~(7 << 4);
 474        writel(tmp, NFC_V3_CONFIG1);
 475
 476        /* transfer data from NFC ram to nand */
 477        writel(ops, NFC_V3_LAUNCH);
 478
 479        wait_op_done(host, false);
 480}
 481
 482static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
 483{
 484        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 485        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 486
 487        /* NANDFC buffer 0 is used for page read/write */
 488        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 489
 490        writew(ops, NFC_V1_V2_CONFIG2);
 491
 492        /* Wait for operation to complete */
 493        wait_op_done(host, true);
 494}
 495
 496static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
 497{
 498        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 499        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 500        int bufs, i;
 501
 502        if (mtd->writesize > 512)
 503                bufs = 4;
 504        else
 505                bufs = 1;
 506
 507        for (i = 0; i < bufs; i++) {
 508
 509                /* NANDFC buffer 0 is used for page read/write */
 510                writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
 511
 512                writew(ops, NFC_V1_V2_CONFIG2);
 513
 514                /* Wait for operation to complete */
 515                wait_op_done(host, true);
 516        }
 517}
 518
 519static void send_read_id_v3(struct mxc_nand_host *host)
 520{
 521        /* Read ID into main buffer */
 522        writel(NFC_ID, NFC_V3_LAUNCH);
 523
 524        wait_op_done(host, true);
 525
 526        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 527}
 528
 529/* Request the NANDFC to perform a read of the NAND device ID. */
 530static void send_read_id_v1_v2(struct mxc_nand_host *host)
 531{
 532        /* NANDFC buffer 0 is used for device ID output */
 533        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 534
 535        writew(NFC_ID, NFC_V1_V2_CONFIG2);
 536
 537        /* Wait for operation to complete */
 538        wait_op_done(host, true);
 539
 540        memcpy32_fromio(host->data_buf, host->main_area0, 16);
 541}
 542
 543static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
 544{
 545        writew(NFC_STATUS, NFC_V3_LAUNCH);
 546        wait_op_done(host, true);
 547
 548        return readl(NFC_V3_CONFIG1) >> 16;
 549}
 550
 551/* This function requests the NANDFC to perform a read of the
 552 * NAND device status and returns the current status. */
 553static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
 554{
 555        void __iomem *main_buf = host->main_area0;
 556        uint32_t store;
 557        uint16_t ret;
 558
 559        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 560
 561        /*
 562         * The device status is stored in main_area0. To
 563         * prevent corruption of the buffer save the value
 564         * and restore it afterwards.
 565         */
 566        store = readl(main_buf);
 567
 568        writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
 569        wait_op_done(host, true);
 570
 571        ret = readw(main_buf);
 572
 573        writel(store, main_buf);
 574
 575        return ret;
 576}
 577
 578/* This functions is used by upper layer to checks if device is ready */
 579static int mxc_nand_dev_ready(struct mtd_info *mtd)
 580{
 581        /*
 582         * NFC handles R/B internally. Therefore, this function
 583         * always returns status as ready.
 584         */
 585        return 1;
 586}
 587
 588static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
 589{
 590        /*
 591         * If HW ECC is enabled, we turn it on during init. There is
 592         * no need to enable again here.
 593         */
 594}
 595
 596static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
 597                                 u_char *read_ecc, u_char *calc_ecc)
 598{
 599        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 600        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 601
 602        /*
 603         * 1-Bit errors are automatically corrected in HW.  No need for
 604         * additional correction.  2-Bit errors cannot be corrected by
 605         * HW ECC, so we need to return failure
 606         */
 607        uint16_t ecc_status = get_ecc_status_v1(host);
 608
 609        if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
 610                dev_dbg(host->dev, "HWECC uncorrectable 2-bit ECC error\n");
 611                return -EBADMSG;
 612        }
 613
 614        return 0;
 615}
 616
 617static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
 618                                 u_char *read_ecc, u_char *calc_ecc)
 619{
 620        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 621        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 622        u32 ecc_stat, err;
 623        int no_subpages = 1;
 624        int ret = 0;
 625        u8 ecc_bit_mask, err_limit;
 626
 627        ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
 628        err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
 629
 630        no_subpages = mtd->writesize >> 9;
 631
 632        ecc_stat = host->devtype_data->get_ecc_status(host);
 633
 634        do {
 635                err = ecc_stat & ecc_bit_mask;
 636                if (err > err_limit) {
 637                        dev_dbg(host->dev, "UnCorrectable RS-ECC Error\n");
 638                        return -EBADMSG;
 639                } else {
 640                        ret += err;
 641                }
 642                ecc_stat >>= 4;
 643        } while (--no_subpages);
 644
 645        dev_dbg(host->dev, "%d Symbol Correctable RS-ECC Error\n", ret);
 646
 647        return ret;
 648}
 649
 650static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 651                                  u_char *ecc_code)
 652{
 653        return 0;
 654}
 655
 656static u_char mxc_nand_read_byte(struct mtd_info *mtd)
 657{
 658        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 659        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 660        uint8_t ret;
 661
 662        /* Check for status request */
 663        if (host->status_request)
 664                return host->devtype_data->get_dev_status(host) & 0xFF;
 665
 666        if (nand_chip->options & NAND_BUSWIDTH_16) {
 667                /* only take the lower byte of each word */
 668                ret = *(uint16_t *)(host->data_buf + host->buf_start);
 669
 670                host->buf_start += 2;
 671        } else {
 672                ret = *(uint8_t *)(host->data_buf + host->buf_start);
 673                host->buf_start++;
 674        }
 675
 676        dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
 677        return ret;
 678}
 679
 680static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
 681{
 682        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 683        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 684        uint16_t ret;
 685
 686        ret = *(uint16_t *)(host->data_buf + host->buf_start);
 687        host->buf_start += 2;
 688
 689        return ret;
 690}
 691
 692/* Write data of length len to buffer buf. The data to be
 693 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 694 * Operation by the NFC, the data is written to NAND Flash */
 695static void mxc_nand_write_buf(struct mtd_info *mtd,
 696                                const u_char *buf, int len)
 697{
 698        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 699        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 700        u16 col = host->buf_start;
 701        int n = mtd->oobsize + mtd->writesize - col;
 702
 703        n = min(n, len);
 704
 705        memcpy(host->data_buf + col, buf, n);
 706
 707        host->buf_start += n;
 708}
 709
 710/* Read the data buffer from the NAND Flash. To read the data from NAND
 711 * Flash first the data output cycle is initiated by the NFC, which copies
 712 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 713 */
 714static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 715{
 716        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 717        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 718        u16 col = host->buf_start;
 719        int n = mtd->oobsize + mtd->writesize - col;
 720
 721        n = min(n, len);
 722
 723        memcpy(buf, host->data_buf + col, n);
 724
 725        host->buf_start += n;
 726}
 727
 728/* This function is used by upper layer for select and
 729 * deselect of the NAND chip */
 730static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
 731{
 732        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 733        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 734
 735        if (chip == -1) {
 736                /* Disable the NFC clock */
 737                if (host->clk_act) {
 738                        clk_disable_unprepare(host->clk);
 739                        host->clk_act = 0;
 740                }
 741                return;
 742        }
 743
 744        if (!host->clk_act) {
 745                /* Enable the NFC clock */
 746                clk_prepare_enable(host->clk);
 747                host->clk_act = 1;
 748        }
 749}
 750
 751static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
 752{
 753        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 754        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 755
 756        if (chip == -1) {
 757                /* Disable the NFC clock */
 758                if (host->clk_act) {
 759                        clk_disable_unprepare(host->clk);
 760                        host->clk_act = 0;
 761                }
 762                return;
 763        }
 764
 765        if (!host->clk_act) {
 766                /* Enable the NFC clock */
 767                clk_prepare_enable(host->clk);
 768                host->clk_act = 1;
 769        }
 770
 771        host->active_cs = chip;
 772        writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
 773}
 774
 775/*
 776 * The controller splits a page into data chunks of 512 bytes + partial oob.
 777 * There are writesize / 512 such chunks, the size of the partial oob parts is
 778 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
 779 * contains additionally the byte lost by rounding (if any).
 780 * This function handles the needed shuffling between host->data_buf (which
 781 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
 782 * spare) and the NFC buffer.
 783 */
 784static void copy_spare(struct mtd_info *mtd, bool bfrom)
 785{
 786        struct nand_chip *this = mtd_to_nand(mtd);
 787        struct mxc_nand_host *host = nand_get_controller_data(this);
 788        u16 i, oob_chunk_size;
 789        u16 num_chunks = mtd->writesize / 512;
 790
 791        u8 *d = host->data_buf + mtd->writesize;
 792        u8 __iomem *s = host->spare0;
 793        u16 sparebuf_size = host->devtype_data->spare_len;
 794
 795        /* size of oob chunk for all but possibly the last one */
 796        oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
 797
 798        if (bfrom) {
 799                for (i = 0; i < num_chunks - 1; i++)
 800                        memcpy16_fromio(d + i * oob_chunk_size,
 801                                        s + i * sparebuf_size,
 802                                        oob_chunk_size);
 803
 804                /* the last chunk */
 805                memcpy16_fromio(d + i * oob_chunk_size,
 806                                s + i * sparebuf_size,
 807                                host->used_oobsize - i * oob_chunk_size);
 808        } else {
 809                for (i = 0; i < num_chunks - 1; i++)
 810                        memcpy16_toio(&s[i * sparebuf_size],
 811                                      &d[i * oob_chunk_size],
 812                                      oob_chunk_size);
 813
 814                /* the last chunk */
 815                memcpy16_toio(&s[i * sparebuf_size],
 816                              &d[i * oob_chunk_size],
 817                              host->used_oobsize - i * oob_chunk_size);
 818        }
 819}
 820
 821/*
 822 * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
 823 * the upper layers perform a read/write buf operation, the saved column address
 824 * is used to index into the full page. So usually this function is called with
 825 * column == 0 (unless no column cycle is needed indicated by column == -1)
 826 */
 827static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
 828{
 829        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 830        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 831
 832        /* Write out column address, if necessary */
 833        if (column != -1) {
 834                host->devtype_data->send_addr(host, column & 0xff,
 835                                              page_addr == -1);
 836                if (mtd->writesize > 512)
 837                        /* another col addr cycle for 2k page */
 838                        host->devtype_data->send_addr(host,
 839                                                      (column >> 8) & 0xff,
 840                                                      false);
 841        }
 842
 843        /* Write out page address, if necessary */
 844        if (page_addr != -1) {
 845                /* paddr_0 - p_addr_7 */
 846                host->devtype_data->send_addr(host, (page_addr & 0xff), false);
 847
 848                if (mtd->writesize > 512) {
 849                        if (mtd->size >= 0x10000000) {
 850                                /* paddr_8 - paddr_15 */
 851                                host->devtype_data->send_addr(host,
 852                                                (page_addr >> 8) & 0xff,
 853                                                false);
 854                                host->devtype_data->send_addr(host,
 855                                                (page_addr >> 16) & 0xff,
 856                                                true);
 857                        } else
 858                                /* paddr_8 - paddr_15 */
 859                                host->devtype_data->send_addr(host,
 860                                                (page_addr >> 8) & 0xff, true);
 861                } else {
 862                        if (nand_chip->options & NAND_ROW_ADDR_3) {
 863                                /* paddr_8 - paddr_15 */
 864                                host->devtype_data->send_addr(host,
 865                                                (page_addr >> 8) & 0xff,
 866                                                false);
 867                                host->devtype_data->send_addr(host,
 868                                                (page_addr >> 16) & 0xff,
 869                                                true);
 870                        } else
 871                                /* paddr_8 - paddr_15 */
 872                                host->devtype_data->send_addr(host,
 873                                                (page_addr >> 8) & 0xff, true);
 874                }
 875        }
 876}
 877
 878#define MXC_V1_ECCBYTES         5
 879
 880static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
 881                                struct mtd_oob_region *oobregion)
 882{
 883        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 884
 885        if (section >= nand_chip->ecc.steps)
 886                return -ERANGE;
 887
 888        oobregion->offset = (section * 16) + 6;
 889        oobregion->length = MXC_V1_ECCBYTES;
 890
 891        return 0;
 892}
 893
 894static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
 895                                 struct mtd_oob_region *oobregion)
 896{
 897        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 898
 899        if (section > nand_chip->ecc.steps)
 900                return -ERANGE;
 901
 902        if (!section) {
 903                if (mtd->writesize <= 512) {
 904                        oobregion->offset = 0;
 905                        oobregion->length = 5;
 906                } else {
 907                        oobregion->offset = 2;
 908                        oobregion->length = 4;
 909                }
 910        } else {
 911                oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
 912                if (section < nand_chip->ecc.steps)
 913                        oobregion->length = (section * 16) + 6 -
 914                                            oobregion->offset;
 915                else
 916                        oobregion->length = mtd->oobsize - oobregion->offset;
 917        }
 918
 919        return 0;
 920}
 921
 922static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
 923        .ecc = mxc_v1_ooblayout_ecc,
 924        .free = mxc_v1_ooblayout_free,
 925};
 926
 927static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
 928                                struct mtd_oob_region *oobregion)
 929{
 930        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 931        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
 932
 933        if (section >= nand_chip->ecc.steps)
 934                return -ERANGE;
 935
 936        oobregion->offset = (section * stepsize) + 7;
 937        oobregion->length = nand_chip->ecc.bytes;
 938
 939        return 0;
 940}
 941
 942static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
 943                                 struct mtd_oob_region *oobregion)
 944{
 945        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 946        int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
 947
 948        if (section >= nand_chip->ecc.steps)
 949                return -ERANGE;
 950
 951        if (!section) {
 952                if (mtd->writesize <= 512) {
 953                        oobregion->offset = 0;
 954                        oobregion->length = 5;
 955                } else {
 956                        oobregion->offset = 2;
 957                        oobregion->length = 4;
 958                }
 959        } else {
 960                oobregion->offset = section * stepsize;
 961                oobregion->length = 7;
 962        }
 963
 964        return 0;
 965}
 966
 967static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
 968        .ecc = mxc_v2_ooblayout_ecc,
 969        .free = mxc_v2_ooblayout_free,
 970};
 971
 972/*
 973 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
 974 * on how much oob the nand chip has. For 8bit ecc we need at least
 975 * 26 bytes of oob data per 512 byte block.
 976 */
 977static int get_eccsize(struct mtd_info *mtd)
 978{
 979        int oobbytes_per_512 = 0;
 980
 981        oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
 982
 983        if (oobbytes_per_512 < 26)
 984                return 4;
 985        else
 986                return 8;
 987}
 988
 989static void preset_v1(struct mtd_info *mtd)
 990{
 991        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 992        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
 993        uint16_t config1 = 0;
 994
 995        if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
 996                config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
 997
 998        if (!host->devtype_data->irqpending_quirk)
 999                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1000
1001        host->eccsize = 1;
1002
1003        writew(config1, NFC_V1_V2_CONFIG1);
1004        /* preset operation */
1005
1006        /* Unlock the internal RAM Buffer */
1007        writew(0x2, NFC_V1_V2_CONFIG);
1008
1009        /* Blocks to be unlocked */
1010        writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1011        writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1012
1013        /* Unlock Block Command for given address range */
1014        writew(0x4, NFC_V1_V2_WRPROT);
1015}
1016
1017static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
1018                                        const struct nand_data_interface *conf)
1019{
1020        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1021        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1022        int tRC_min_ns, tRC_ps, ret;
1023        unsigned long rate, rate_round;
1024        const struct nand_sdr_timings *timings;
1025        u16 config1;
1026
1027        timings = nand_get_sdr_timings(conf);
1028        if (IS_ERR(timings))
1029                return -ENOTSUPP;
1030
1031        config1 = readw(NFC_V1_V2_CONFIG1);
1032
1033        tRC_min_ns = timings->tRC_min / 1000;
1034        rate = 1000000000 / tRC_min_ns;
1035
1036        /*
1037         * For tRC < 30ns we have to use EDO mode. In this case the controller
1038         * does one access per clock cycle. Otherwise the controller does one
1039         * access in two clock cycles, thus we have to double the rate to the
1040         * controller.
1041         */
1042        if (tRC_min_ns < 30) {
1043                rate_round = clk_round_rate(host->clk, rate);
1044                config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1045                tRC_ps = 1000000000 / (rate_round / 1000);
1046        } else {
1047                rate *= 2;
1048                rate_round = clk_round_rate(host->clk, rate);
1049                config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1050                tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1051        }
1052
1053        /*
1054         * The timing values compared against are from the i.MX25 Automotive
1055         * datasheet, Table 50. NFC Timing Parameters
1056         */
1057        if (timings->tCLS_min > tRC_ps - 1000 ||
1058            timings->tCLH_min > tRC_ps - 2000 ||
1059            timings->tCS_min > tRC_ps - 1000 ||
1060            timings->tCH_min > tRC_ps - 2000 ||
1061            timings->tWP_min > tRC_ps - 1500 ||
1062            timings->tALS_min > tRC_ps ||
1063            timings->tALH_min > tRC_ps - 3000 ||
1064            timings->tDS_min > tRC_ps ||
1065            timings->tDH_min > tRC_ps - 5000 ||
1066            timings->tWC_min > 2 * tRC_ps ||
1067            timings->tWH_min > tRC_ps - 2500 ||
1068            timings->tRR_min > 6 * tRC_ps ||
1069            timings->tRP_min > 3 * tRC_ps / 2 ||
1070            timings->tRC_min > 2 * tRC_ps ||
1071            timings->tREH_min > (tRC_ps / 2) - 2500) {
1072                dev_dbg(host->dev, "Timing out of bounds\n");
1073                return -EINVAL;
1074        }
1075
1076        if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1077                return 0;
1078
1079        ret = clk_set_rate(host->clk, rate);
1080        if (ret)
1081                return ret;
1082
1083        writew(config1, NFC_V1_V2_CONFIG1);
1084
1085        dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1086                config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1087                "normal");
1088
1089        return 0;
1090}
1091
1092static void preset_v2(struct mtd_info *mtd)
1093{
1094        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1095        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1096        uint16_t config1 = 0;
1097
1098        config1 |= NFC_V2_CONFIG1_FP_INT;
1099
1100        if (!host->devtype_data->irqpending_quirk)
1101                config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1102
1103        if (mtd->writesize) {
1104                uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1105
1106                if (nand_chip->ecc.mode == NAND_ECC_HW)
1107                        config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1108
1109                host->eccsize = get_eccsize(mtd);
1110                if (host->eccsize == 4)
1111                        config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1112
1113                config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1114        } else {
1115                host->eccsize = 1;
1116        }
1117
1118        writew(config1, NFC_V1_V2_CONFIG1);
1119        /* preset operation */
1120
1121        /* Unlock the internal RAM Buffer */
1122        writew(0x2, NFC_V1_V2_CONFIG);
1123
1124        /* Blocks to be unlocked */
1125        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1126        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1127        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1128        writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1129        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1130        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1131        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1132        writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1133
1134        /* Unlock Block Command for given address range */
1135        writew(0x4, NFC_V1_V2_WRPROT);
1136}
1137
1138static void preset_v3(struct mtd_info *mtd)
1139{
1140        struct nand_chip *chip = mtd_to_nand(mtd);
1141        struct mxc_nand_host *host = nand_get_controller_data(chip);
1142        uint32_t config2, config3;
1143        int i, addr_phases;
1144
1145        writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1146        writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1147
1148        /* Unlock the internal RAM Buffer */
1149        writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1150                        NFC_V3_WRPROT);
1151
1152        /* Blocks to be unlocked */
1153        for (i = 0; i < NAND_MAX_CHIPS; i++)
1154                writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1155
1156        writel(0, NFC_V3_IPC);
1157
1158        config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1159                NFC_V3_CONFIG2_2CMD_PHASES |
1160                NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1161                NFC_V3_CONFIG2_ST_CMD(0x70) |
1162                NFC_V3_CONFIG2_INT_MSK |
1163                NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1164
1165        addr_phases = fls(chip->pagemask) >> 3;
1166
1167        if (mtd->writesize == 2048) {
1168                config2 |= NFC_V3_CONFIG2_PS_2048;
1169                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1170        } else if (mtd->writesize == 4096) {
1171                config2 |= NFC_V3_CONFIG2_PS_4096;
1172                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1173        } else {
1174                config2 |= NFC_V3_CONFIG2_PS_512;
1175                config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1176        }
1177
1178        if (mtd->writesize) {
1179                if (chip->ecc.mode == NAND_ECC_HW)
1180                        config2 |= NFC_V3_CONFIG2_ECC_EN;
1181
1182                config2 |= NFC_V3_CONFIG2_PPB(
1183                                ffs(mtd->erasesize / mtd->writesize) - 6,
1184                                host->devtype_data->ppb_shift);
1185                host->eccsize = get_eccsize(mtd);
1186                if (host->eccsize == 8)
1187                        config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1188        }
1189
1190        writel(config2, NFC_V3_CONFIG2);
1191
1192        config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1193                        NFC_V3_CONFIG3_NO_SDMA |
1194                        NFC_V3_CONFIG3_RBB_MODE |
1195                        NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1196                        NFC_V3_CONFIG3_ADD_OP(0);
1197
1198        if (!(chip->options & NAND_BUSWIDTH_16))
1199                config3 |= NFC_V3_CONFIG3_FW8;
1200
1201        writel(config3, NFC_V3_CONFIG3);
1202
1203        writel(0, NFC_V3_DELAY_LINE);
1204}
1205
1206/* Used by the upper layer to write command to NAND Flash for
1207 * different operations to be carried out on NAND Flash */
1208static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1209                                int column, int page_addr)
1210{
1211        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1212        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1213
1214        dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1215              command, column, page_addr);
1216
1217        /* Reset command state information */
1218        host->status_request = false;
1219
1220        /* Command pre-processing step */
1221        switch (command) {
1222        case NAND_CMD_RESET:
1223                host->devtype_data->preset(mtd);
1224                host->devtype_data->send_cmd(host, command, false);
1225                break;
1226
1227        case NAND_CMD_STATUS:
1228                host->buf_start = 0;
1229                host->status_request = true;
1230
1231                host->devtype_data->send_cmd(host, command, true);
1232                WARN_ONCE(column != -1 || page_addr != -1,
1233                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1234                          command, column, page_addr);
1235                mxc_do_addr_cycle(mtd, column, page_addr);
1236                break;
1237
1238        case NAND_CMD_READ0:
1239        case NAND_CMD_READOOB:
1240                if (command == NAND_CMD_READ0)
1241                        host->buf_start = column;
1242                else
1243                        host->buf_start = column + mtd->writesize;
1244
1245                command = NAND_CMD_READ0; /* only READ0 is valid */
1246
1247                host->devtype_data->send_cmd(host, command, false);
1248                WARN_ONCE(column < 0,
1249                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1250                          command, column, page_addr);
1251                mxc_do_addr_cycle(mtd, 0, page_addr);
1252
1253                if (mtd->writesize > 512)
1254                        host->devtype_data->send_cmd(host,
1255                                        NAND_CMD_READSTART, true);
1256
1257                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1258
1259                memcpy32_fromio(host->data_buf, host->main_area0,
1260                                mtd->writesize);
1261                copy_spare(mtd, true);
1262                break;
1263
1264        case NAND_CMD_SEQIN:
1265                if (column >= mtd->writesize)
1266                        /* call ourself to read a page */
1267                        mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1268
1269                host->buf_start = column;
1270
1271                host->devtype_data->send_cmd(host, command, false);
1272                WARN_ONCE(column < -1,
1273                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1274                          command, column, page_addr);
1275                mxc_do_addr_cycle(mtd, 0, page_addr);
1276                break;
1277
1278        case NAND_CMD_PAGEPROG:
1279                memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1280                copy_spare(mtd, false);
1281                host->devtype_data->send_page(mtd, NFC_INPUT);
1282                host->devtype_data->send_cmd(host, command, true);
1283                WARN_ONCE(column != -1 || page_addr != -1,
1284                          "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1285                          command, column, page_addr);
1286                mxc_do_addr_cycle(mtd, column, page_addr);
1287                break;
1288
1289        case NAND_CMD_READID:
1290                host->devtype_data->send_cmd(host, command, true);
1291                mxc_do_addr_cycle(mtd, column, page_addr);
1292                host->devtype_data->send_read_id(host);
1293                host->buf_start = 0;
1294                break;
1295
1296        case NAND_CMD_ERASE1:
1297        case NAND_CMD_ERASE2:
1298                host->devtype_data->send_cmd(host, command, false);
1299                WARN_ONCE(column != -1,
1300                          "Unexpected column value (cmd=%u, col=%d)\n",
1301                          command, column);
1302                mxc_do_addr_cycle(mtd, column, page_addr);
1303
1304                break;
1305        case NAND_CMD_PARAM:
1306                host->devtype_data->send_cmd(host, command, false);
1307                mxc_do_addr_cycle(mtd, column, page_addr);
1308                host->devtype_data->send_page(mtd, NFC_OUTPUT);
1309                memcpy32_fromio(host->data_buf, host->main_area0, 512);
1310                host->buf_start = 0;
1311                break;
1312        default:
1313                WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1314                          command);
1315                break;
1316        }
1317}
1318
1319static int mxc_nand_onfi_set_features(struct mtd_info *mtd,
1320                                      struct nand_chip *chip, int addr,
1321                                      u8 *subfeature_param)
1322{
1323        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1324        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1325        int i;
1326
1327        if (!chip->onfi_version ||
1328            !(le16_to_cpu(chip->onfi_params.opt_cmd)
1329              & ONFI_OPT_CMD_SET_GET_FEATURES))
1330                return -EINVAL;
1331
1332        host->buf_start = 0;
1333
1334        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1335                chip->write_byte(mtd, subfeature_param[i]);
1336
1337        memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1338        host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1339        mxc_do_addr_cycle(mtd, addr, -1);
1340        host->devtype_data->send_page(mtd, NFC_INPUT);
1341
1342        return 0;
1343}
1344
1345static int mxc_nand_onfi_get_features(struct mtd_info *mtd,
1346                                      struct nand_chip *chip, int addr,
1347                                      u8 *subfeature_param)
1348{
1349        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1350        struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1351        int i;
1352
1353        if (!chip->onfi_version ||
1354            !(le16_to_cpu(chip->onfi_params.opt_cmd)
1355              & ONFI_OPT_CMD_SET_GET_FEATURES))
1356                return -EINVAL;
1357
1358        host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1359        mxc_do_addr_cycle(mtd, addr, -1);
1360        host->devtype_data->send_page(mtd, NFC_OUTPUT);
1361        memcpy32_fromio(host->data_buf, host->main_area0, 512);
1362        host->buf_start = 0;
1363
1364        for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1365                *subfeature_param++ = chip->read_byte(mtd);
1366
1367        return 0;
1368}
1369
1370/*
1371 * The generic flash bbt decriptors overlap with our ecc
1372 * hardware, so define some i.MX specific ones.
1373 */
1374static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1375static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1376
1377static struct nand_bbt_descr bbt_main_descr = {
1378        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1379            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1380        .offs = 0,
1381        .len = 4,
1382        .veroffs = 4,
1383        .maxblocks = 4,
1384        .pattern = bbt_pattern,
1385};
1386
1387static struct nand_bbt_descr bbt_mirror_descr = {
1388        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1389            | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1390        .offs = 0,
1391        .len = 4,
1392        .veroffs = 4,
1393        .maxblocks = 4,
1394        .pattern = mirror_pattern,
1395};
1396
1397/* v1 + irqpending_quirk: i.MX21 */
1398static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1399        .preset = preset_v1,
1400        .send_cmd = send_cmd_v1_v2,
1401        .send_addr = send_addr_v1_v2,
1402        .send_page = send_page_v1,
1403        .send_read_id = send_read_id_v1_v2,
1404        .get_dev_status = get_dev_status_v1_v2,
1405        .check_int = check_int_v1_v2,
1406        .irq_control = irq_control_v1_v2,
1407        .get_ecc_status = get_ecc_status_v1,
1408        .ooblayout = &mxc_v1_ooblayout_ops,
1409        .select_chip = mxc_nand_select_chip_v1_v3,
1410        .correct_data = mxc_nand_correct_data_v1,
1411        .irqpending_quirk = 1,
1412        .needs_ip = 0,
1413        .regs_offset = 0xe00,
1414        .spare0_offset = 0x800,
1415        .spare_len = 16,
1416        .eccbytes = 3,
1417        .eccsize = 1,
1418};
1419
1420/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1421static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1422        .preset = preset_v1,
1423        .send_cmd = send_cmd_v1_v2,
1424        .send_addr = send_addr_v1_v2,
1425        .send_page = send_page_v1,
1426        .send_read_id = send_read_id_v1_v2,
1427        .get_dev_status = get_dev_status_v1_v2,
1428        .check_int = check_int_v1_v2,
1429        .irq_control = irq_control_v1_v2,
1430        .get_ecc_status = get_ecc_status_v1,
1431        .ooblayout = &mxc_v1_ooblayout_ops,
1432        .select_chip = mxc_nand_select_chip_v1_v3,
1433        .correct_data = mxc_nand_correct_data_v1,
1434        .irqpending_quirk = 0,
1435        .needs_ip = 0,
1436        .regs_offset = 0xe00,
1437        .spare0_offset = 0x800,
1438        .axi_offset = 0,
1439        .spare_len = 16,
1440        .eccbytes = 3,
1441        .eccsize = 1,
1442};
1443
1444/* v21: i.MX25, i.MX35 */
1445static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1446        .preset = preset_v2,
1447        .send_cmd = send_cmd_v1_v2,
1448        .send_addr = send_addr_v1_v2,
1449        .send_page = send_page_v2,
1450        .send_read_id = send_read_id_v1_v2,
1451        .get_dev_status = get_dev_status_v1_v2,
1452        .check_int = check_int_v1_v2,
1453        .irq_control = irq_control_v1_v2,
1454        .get_ecc_status = get_ecc_status_v2,
1455        .ooblayout = &mxc_v2_ooblayout_ops,
1456        .select_chip = mxc_nand_select_chip_v2,
1457        .correct_data = mxc_nand_correct_data_v2_v3,
1458        .setup_data_interface = mxc_nand_v2_setup_data_interface,
1459        .irqpending_quirk = 0,
1460        .needs_ip = 0,
1461        .regs_offset = 0x1e00,
1462        .spare0_offset = 0x1000,
1463        .axi_offset = 0,
1464        .spare_len = 64,
1465        .eccbytes = 9,
1466        .eccsize = 0,
1467};
1468
1469/* v3.2a: i.MX51 */
1470static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1471        .preset = preset_v3,
1472        .send_cmd = send_cmd_v3,
1473        .send_addr = send_addr_v3,
1474        .send_page = send_page_v3,
1475        .send_read_id = send_read_id_v3,
1476        .get_dev_status = get_dev_status_v3,
1477        .check_int = check_int_v3,
1478        .irq_control = irq_control_v3,
1479        .get_ecc_status = get_ecc_status_v3,
1480        .ooblayout = &mxc_v2_ooblayout_ops,
1481        .select_chip = mxc_nand_select_chip_v1_v3,
1482        .correct_data = mxc_nand_correct_data_v2_v3,
1483        .irqpending_quirk = 0,
1484        .needs_ip = 1,
1485        .regs_offset = 0,
1486        .spare0_offset = 0x1000,
1487        .axi_offset = 0x1e00,
1488        .spare_len = 64,
1489        .eccbytes = 0,
1490        .eccsize = 0,
1491        .ppb_shift = 7,
1492};
1493
1494/* v3.2b: i.MX53 */
1495static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1496        .preset = preset_v3,
1497        .send_cmd = send_cmd_v3,
1498        .send_addr = send_addr_v3,
1499        .send_page = send_page_v3,
1500        .send_read_id = send_read_id_v3,
1501        .get_dev_status = get_dev_status_v3,
1502        .check_int = check_int_v3,
1503        .irq_control = irq_control_v3,
1504        .get_ecc_status = get_ecc_status_v3,
1505        .ooblayout = &mxc_v2_ooblayout_ops,
1506        .select_chip = mxc_nand_select_chip_v1_v3,
1507        .correct_data = mxc_nand_correct_data_v2_v3,
1508        .irqpending_quirk = 0,
1509        .needs_ip = 1,
1510        .regs_offset = 0,
1511        .spare0_offset = 0x1000,
1512        .axi_offset = 0x1e00,
1513        .spare_len = 64,
1514        .eccbytes = 0,
1515        .eccsize = 0,
1516        .ppb_shift = 8,
1517};
1518
1519static inline int is_imx21_nfc(struct mxc_nand_host *host)
1520{
1521        return host->devtype_data == &imx21_nand_devtype_data;
1522}
1523
1524static inline int is_imx27_nfc(struct mxc_nand_host *host)
1525{
1526        return host->devtype_data == &imx27_nand_devtype_data;
1527}
1528
1529static inline int is_imx25_nfc(struct mxc_nand_host *host)
1530{
1531        return host->devtype_data == &imx25_nand_devtype_data;
1532}
1533
1534static inline int is_imx51_nfc(struct mxc_nand_host *host)
1535{
1536        return host->devtype_data == &imx51_nand_devtype_data;
1537}
1538
1539static inline int is_imx53_nfc(struct mxc_nand_host *host)
1540{
1541        return host->devtype_data == &imx53_nand_devtype_data;
1542}
1543
1544static const struct platform_device_id mxcnd_devtype[] = {
1545        {
1546                .name = "imx21-nand",
1547                .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1548        }, {
1549                .name = "imx27-nand",
1550                .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1551        }, {
1552                .name = "imx25-nand",
1553                .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1554        }, {
1555                .name = "imx51-nand",
1556                .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1557        }, {
1558                .name = "imx53-nand",
1559                .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1560        }, {
1561                /* sentinel */
1562        }
1563};
1564MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1565
1566#ifdef CONFIG_OF
1567static const struct of_device_id mxcnd_dt_ids[] = {
1568        {
1569                .compatible = "fsl,imx21-nand",
1570                .data = &imx21_nand_devtype_data,
1571        }, {
1572                .compatible = "fsl,imx27-nand",
1573                .data = &imx27_nand_devtype_data,
1574        }, {
1575                .compatible = "fsl,imx25-nand",
1576                .data = &imx25_nand_devtype_data,
1577        }, {
1578                .compatible = "fsl,imx51-nand",
1579                .data = &imx51_nand_devtype_data,
1580        }, {
1581                .compatible = "fsl,imx53-nand",
1582                .data = &imx53_nand_devtype_data,
1583        },
1584        { /* sentinel */ }
1585};
1586MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1587
1588static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1589{
1590        struct device_node *np = host->dev->of_node;
1591        const struct of_device_id *of_id =
1592                of_match_device(mxcnd_dt_ids, host->dev);
1593
1594        if (!np)
1595                return 1;
1596
1597        host->devtype_data = of_id->data;
1598
1599        return 0;
1600}
1601#else
1602static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1603{
1604        return 1;
1605}
1606#endif
1607
1608static int mxcnd_probe(struct platform_device *pdev)
1609{
1610        struct nand_chip *this;
1611        struct mtd_info *mtd;
1612        struct mxc_nand_host *host;
1613        struct resource *res;
1614        int err = 0;
1615
1616        /* Allocate memory for MTD device structure and private data */
1617        host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1618                        GFP_KERNEL);
1619        if (!host)
1620                return -ENOMEM;
1621
1622        /* allocate a temporary buffer for the nand_scan_ident() */
1623        host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1624        if (!host->data_buf)
1625                return -ENOMEM;
1626
1627        host->dev = &pdev->dev;
1628        /* structures must be linked */
1629        this = &host->nand;
1630        mtd = nand_to_mtd(this);
1631        mtd->dev.parent = &pdev->dev;
1632        mtd->name = DRIVER_NAME;
1633
1634        /* 50 us command delay time */
1635        this->chip_delay = 5;
1636
1637        nand_set_controller_data(this, host);
1638        nand_set_flash_node(this, pdev->dev.of_node),
1639        this->dev_ready = mxc_nand_dev_ready;
1640        this->cmdfunc = mxc_nand_command;
1641        this->read_byte = mxc_nand_read_byte;
1642        this->read_word = mxc_nand_read_word;
1643        this->write_buf = mxc_nand_write_buf;
1644        this->read_buf = mxc_nand_read_buf;
1645        this->onfi_set_features = mxc_nand_onfi_set_features;
1646        this->onfi_get_features = mxc_nand_onfi_get_features;
1647
1648        host->clk = devm_clk_get(&pdev->dev, NULL);
1649        if (IS_ERR(host->clk))
1650                return PTR_ERR(host->clk);
1651
1652        err = mxcnd_probe_dt(host);
1653        if (err > 0) {
1654                struct mxc_nand_platform_data *pdata =
1655                                        dev_get_platdata(&pdev->dev);
1656                if (pdata) {
1657                        host->pdata = *pdata;
1658                        host->devtype_data = (struct mxc_nand_devtype_data *)
1659                                                pdev->id_entry->driver_data;
1660                } else {
1661                        err = -ENODEV;
1662                }
1663        }
1664        if (err < 0)
1665                return err;
1666
1667        this->setup_data_interface = host->devtype_data->setup_data_interface;
1668
1669        if (host->devtype_data->needs_ip) {
1670                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1671                host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1672                if (IS_ERR(host->regs_ip))
1673                        return PTR_ERR(host->regs_ip);
1674
1675                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1676        } else {
1677                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1678        }
1679
1680        host->base = devm_ioremap_resource(&pdev->dev, res);
1681        if (IS_ERR(host->base))
1682                return PTR_ERR(host->base);
1683
1684        host->main_area0 = host->base;
1685
1686        if (host->devtype_data->regs_offset)
1687                host->regs = host->base + host->devtype_data->regs_offset;
1688        host->spare0 = host->base + host->devtype_data->spare0_offset;
1689        if (host->devtype_data->axi_offset)
1690                host->regs_axi = host->base + host->devtype_data->axi_offset;
1691
1692        this->ecc.bytes = host->devtype_data->eccbytes;
1693        host->eccsize = host->devtype_data->eccsize;
1694
1695        this->select_chip = host->devtype_data->select_chip;
1696        this->ecc.size = 512;
1697        mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1698
1699        if (host->pdata.hw_ecc) {
1700                this->ecc.mode = NAND_ECC_HW;
1701        } else {
1702                this->ecc.mode = NAND_ECC_SOFT;
1703                this->ecc.algo = NAND_ECC_HAMMING;
1704        }
1705
1706        /* NAND bus width determines access functions used by upper layer */
1707        if (host->pdata.width == 2)
1708                this->options |= NAND_BUSWIDTH_16;
1709
1710        /* update flash based bbt */
1711        if (host->pdata.flash_bbt)
1712                this->bbt_options |= NAND_BBT_USE_FLASH;
1713
1714        init_completion(&host->op_completion);
1715
1716        host->irq = platform_get_irq(pdev, 0);
1717        if (host->irq < 0)
1718                return host->irq;
1719
1720        /*
1721         * Use host->devtype_data->irq_control() here instead of irq_control()
1722         * because we must not disable_irq_nosync without having requested the
1723         * irq.
1724         */
1725        host->devtype_data->irq_control(host, 0);
1726
1727        err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1728                        0, DRIVER_NAME, host);
1729        if (err)
1730                return err;
1731
1732        err = clk_prepare_enable(host->clk);
1733        if (err)
1734                return err;
1735        host->clk_act = 1;
1736
1737        /*
1738         * Now that we "own" the interrupt make sure the interrupt mask bit is
1739         * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1740         * on this machine.
1741         */
1742        if (host->devtype_data->irqpending_quirk) {
1743                disable_irq_nosync(host->irq);
1744                host->devtype_data->irq_control(host, 1);
1745        }
1746
1747        /* first scan to find the device and get the page size */
1748        err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL);
1749        if (err)
1750                goto escan;
1751
1752        switch (this->ecc.mode) {
1753        case NAND_ECC_HW:
1754                this->ecc.calculate = mxc_nand_calculate_ecc;
1755                this->ecc.hwctl = mxc_nand_enable_hwecc;
1756                this->ecc.correct = host->devtype_data->correct_data;
1757                break;
1758
1759        case NAND_ECC_SOFT:
1760                break;
1761
1762        default:
1763                err = -EINVAL;
1764                goto escan;
1765        }
1766
1767        if (this->bbt_options & NAND_BBT_USE_FLASH) {
1768                this->bbt_td = &bbt_main_descr;
1769                this->bbt_md = &bbt_mirror_descr;
1770        }
1771
1772        /* allocate the right size buffer now */
1773        devm_kfree(&pdev->dev, (void *)host->data_buf);
1774        host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1775                                        GFP_KERNEL);
1776        if (!host->data_buf) {
1777                err = -ENOMEM;
1778                goto escan;
1779        }
1780
1781        /* Call preset again, with correct writesize this time */
1782        host->devtype_data->preset(mtd);
1783
1784        if (!this->ecc.bytes) {
1785                if (host->eccsize == 8)
1786                        this->ecc.bytes = 18;
1787                else if (host->eccsize == 4)
1788                        this->ecc.bytes = 9;
1789        }
1790
1791        /*
1792         * Experimentation shows that i.MX NFC can only handle up to 218 oob
1793         * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1794         * into copying invalid data to/from the spare IO buffer, as this
1795         * might cause ECC data corruption when doing sub-page write to a
1796         * partially written page.
1797         */
1798        host->used_oobsize = min(mtd->oobsize, 218U);
1799
1800        if (this->ecc.mode == NAND_ECC_HW) {
1801                if (is_imx21_nfc(host) || is_imx27_nfc(host))
1802                        this->ecc.strength = 1;
1803                else
1804                        this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1805        }
1806
1807        /* second phase scan */
1808        err = nand_scan_tail(mtd);
1809        if (err)
1810                goto escan;
1811
1812        /* Register the partitions */
1813        mtd_device_parse_register(mtd, part_probes,
1814                        NULL,
1815                        host->pdata.parts,
1816                        host->pdata.nr_parts);
1817
1818        platform_set_drvdata(pdev, host);
1819
1820        return 0;
1821
1822escan:
1823        if (host->clk_act)
1824                clk_disable_unprepare(host->clk);
1825
1826        return err;
1827}
1828
1829static int mxcnd_remove(struct platform_device *pdev)
1830{
1831        struct mxc_nand_host *host = platform_get_drvdata(pdev);
1832
1833        nand_release(nand_to_mtd(&host->nand));
1834        if (host->clk_act)
1835                clk_disable_unprepare(host->clk);
1836
1837        return 0;
1838}
1839
1840static struct platform_driver mxcnd_driver = {
1841        .driver = {
1842                   .name = DRIVER_NAME,
1843                   .of_match_table = of_match_ptr(mxcnd_dt_ids),
1844        },
1845        .id_table = mxcnd_devtype,
1846        .probe = mxcnd_probe,
1847        .remove = mxcnd_remove,
1848};
1849module_platform_driver(mxcnd_driver);
1850
1851MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1852MODULE_DESCRIPTION("MXC NAND MTD driver");
1853MODULE_LICENSE("GPL");
1854