linux/drivers/mtd/spi-nor/fsl-quadspi.c
<<
>>
Prefs
   1/*
   2 * Freescale QuadSPI driver.
   3 *
   4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/errno.h>
  15#include <linux/platform_device.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/timer.h>
  24#include <linux/jiffies.h>
  25#include <linux/completion.h>
  26#include <linux/mtd/mtd.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/mtd/spi-nor.h>
  29#include <linux/mutex.h>
  30#include <linux/pm_qos.h>
  31#include <linux/sizes.h>
  32
  33/* Controller needs driver to swap endian */
  34#define QUADSPI_QUIRK_SWAP_ENDIAN       (1 << 0)
  35/* Controller needs 4x internal clock */
  36#define QUADSPI_QUIRK_4X_INT_CLK        (1 << 1)
  37/*
  38 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
  39 * trigger data transfer even though extern data will not transferred.
  40 */
  41#define QUADSPI_QUIRK_TKT253890         (1 << 2)
  42/* Controller cannot wake up from wait mode, TKT245618 */
  43#define QUADSPI_QUIRK_TKT245618         (1 << 3)
  44
  45/* The registers */
  46#define QUADSPI_MCR                     0x00
  47#define QUADSPI_MCR_RESERVED_SHIFT      16
  48#define QUADSPI_MCR_RESERVED_MASK       (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  49#define QUADSPI_MCR_MDIS_SHIFT          14
  50#define QUADSPI_MCR_MDIS_MASK           (1 << QUADSPI_MCR_MDIS_SHIFT)
  51#define QUADSPI_MCR_CLR_TXF_SHIFT       11
  52#define QUADSPI_MCR_CLR_TXF_MASK        (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  53#define QUADSPI_MCR_CLR_RXF_SHIFT       10
  54#define QUADSPI_MCR_CLR_RXF_MASK        (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  55#define QUADSPI_MCR_DDR_EN_SHIFT        7
  56#define QUADSPI_MCR_DDR_EN_MASK         (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  57#define QUADSPI_MCR_END_CFG_SHIFT       2
  58#define QUADSPI_MCR_END_CFG_MASK        (3 << QUADSPI_MCR_END_CFG_SHIFT)
  59#define QUADSPI_MCR_SWRSTHD_SHIFT       1
  60#define QUADSPI_MCR_SWRSTHD_MASK        (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  61#define QUADSPI_MCR_SWRSTSD_SHIFT       0
  62#define QUADSPI_MCR_SWRSTSD_MASK        (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  63
  64#define QUADSPI_IPCR                    0x08
  65#define QUADSPI_IPCR_SEQID_SHIFT        24
  66#define QUADSPI_IPCR_SEQID_MASK         (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  67
  68#define QUADSPI_BUF0CR                  0x10
  69#define QUADSPI_BUF1CR                  0x14
  70#define QUADSPI_BUF2CR                  0x18
  71#define QUADSPI_BUFXCR_INVALID_MSTRID   0xe
  72
  73#define QUADSPI_BUF3CR                  0x1c
  74#define QUADSPI_BUF3CR_ALLMST_SHIFT     31
  75#define QUADSPI_BUF3CR_ALLMST_MASK      (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  76#define QUADSPI_BUF3CR_ADATSZ_SHIFT             8
  77#define QUADSPI_BUF3CR_ADATSZ_MASK      (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  78
  79#define QUADSPI_BFGENCR                 0x20
  80#define QUADSPI_BFGENCR_PAR_EN_SHIFT    16
  81#define QUADSPI_BFGENCR_PAR_EN_MASK     (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  82#define QUADSPI_BFGENCR_SEQID_SHIFT     12
  83#define QUADSPI_BFGENCR_SEQID_MASK      (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  84
  85#define QUADSPI_BUF0IND                 0x30
  86#define QUADSPI_BUF1IND                 0x34
  87#define QUADSPI_BUF2IND                 0x38
  88#define QUADSPI_SFAR                    0x100
  89
  90#define QUADSPI_SMPR                    0x108
  91#define QUADSPI_SMPR_DDRSMP_SHIFT       16
  92#define QUADSPI_SMPR_DDRSMP_MASK        (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  93#define QUADSPI_SMPR_FSDLY_SHIFT        6
  94#define QUADSPI_SMPR_FSDLY_MASK         (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  95#define QUADSPI_SMPR_FSPHS_SHIFT        5
  96#define QUADSPI_SMPR_FSPHS_MASK         (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  97#define QUADSPI_SMPR_HSENA_SHIFT        0
  98#define QUADSPI_SMPR_HSENA_MASK         (1 << QUADSPI_SMPR_HSENA_SHIFT)
  99
 100#define QUADSPI_RBSR                    0x10c
 101#define QUADSPI_RBSR_RDBFL_SHIFT        8
 102#define QUADSPI_RBSR_RDBFL_MASK         (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
 103
 104#define QUADSPI_RBCT                    0x110
 105#define QUADSPI_RBCT_WMRK_MASK          0x1F
 106#define QUADSPI_RBCT_RXBRD_SHIFT        8
 107#define QUADSPI_RBCT_RXBRD_USEIPS       (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
 108
 109#define QUADSPI_TBSR                    0x150
 110#define QUADSPI_TBDR                    0x154
 111#define QUADSPI_SR                      0x15c
 112#define QUADSPI_SR_IP_ACC_SHIFT         1
 113#define QUADSPI_SR_IP_ACC_MASK          (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
 114#define QUADSPI_SR_AHB_ACC_SHIFT        2
 115#define QUADSPI_SR_AHB_ACC_MASK         (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
 116
 117#define QUADSPI_FR                      0x160
 118#define QUADSPI_FR_TFF_MASK             0x1
 119
 120#define QUADSPI_SFA1AD                  0x180
 121#define QUADSPI_SFA2AD                  0x184
 122#define QUADSPI_SFB1AD                  0x188
 123#define QUADSPI_SFB2AD                  0x18c
 124#define QUADSPI_RBDR                    0x200
 125
 126#define QUADSPI_LUTKEY                  0x300
 127#define QUADSPI_LUTKEY_VALUE            0x5AF05AF0
 128
 129#define QUADSPI_LCKCR                   0x304
 130#define QUADSPI_LCKER_LOCK              0x1
 131#define QUADSPI_LCKER_UNLOCK            0x2
 132
 133#define QUADSPI_RSER                    0x164
 134#define QUADSPI_RSER_TFIE               (0x1 << 0)
 135
 136#define QUADSPI_LUT_BASE                0x310
 137
 138/*
 139 * The definition of the LUT register shows below:
 140 *
 141 *  ---------------------------------------------------
 142 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 143 *  ---------------------------------------------------
 144 */
 145#define OPRND0_SHIFT            0
 146#define PAD0_SHIFT              8
 147#define INSTR0_SHIFT            10
 148#define OPRND1_SHIFT            16
 149
 150/* Instruction set for the LUT register. */
 151#define LUT_STOP                0
 152#define LUT_CMD                 1
 153#define LUT_ADDR                2
 154#define LUT_DUMMY               3
 155#define LUT_MODE                4
 156#define LUT_MODE2               5
 157#define LUT_MODE4               6
 158#define LUT_FSL_READ            7
 159#define LUT_FSL_WRITE           8
 160#define LUT_JMP_ON_CS           9
 161#define LUT_ADDR_DDR            10
 162#define LUT_MODE_DDR            11
 163#define LUT_MODE2_DDR           12
 164#define LUT_MODE4_DDR           13
 165#define LUT_FSL_READ_DDR                14
 166#define LUT_FSL_WRITE_DDR               15
 167#define LUT_DATA_LEARN          16
 168
 169/*
 170 * The PAD definitions for LUT register.
 171 *
 172 * The pad stands for the lines number of IO[0:3].
 173 * For example, the Quad read need four IO lines, so you should
 174 * set LUT_PAD4 which means we use four IO lines.
 175 */
 176#define LUT_PAD1                0
 177#define LUT_PAD2                1
 178#define LUT_PAD4                2
 179
 180/* Oprands for the LUT register. */
 181#define ADDR24BIT               0x18
 182#define ADDR32BIT               0x20
 183
 184/* Macros for constructing the LUT register. */
 185#define LUT0(ins, pad, opr)                                             \
 186                (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
 187                ((LUT_##ins) << INSTR0_SHIFT))
 188
 189#define LUT1(ins, pad, opr)     (LUT0(ins, pad, opr) << OPRND1_SHIFT)
 190
 191/* other macros for LUT register. */
 192#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
 193#define QUADSPI_LUT_NUM         64
 194
 195/* SEQID -- we can have 16 seqids at most. */
 196#define SEQID_READ              0
 197#define SEQID_WREN              1
 198#define SEQID_WRDI              2
 199#define SEQID_RDSR              3
 200#define SEQID_SE                4
 201#define SEQID_CHIP_ERASE        5
 202#define SEQID_PP                6
 203#define SEQID_RDID              7
 204#define SEQID_WRSR              8
 205#define SEQID_RDCR              9
 206#define SEQID_EN4B              10
 207#define SEQID_BRWR              11
 208
 209#define QUADSPI_MIN_IOMAP SZ_4M
 210
 211enum fsl_qspi_devtype {
 212        FSL_QUADSPI_VYBRID,
 213        FSL_QUADSPI_IMX6SX,
 214        FSL_QUADSPI_IMX7D,
 215        FSL_QUADSPI_IMX6UL,
 216        FSL_QUADSPI_LS1021A,
 217};
 218
 219struct fsl_qspi_devtype_data {
 220        enum fsl_qspi_devtype devtype;
 221        int rxfifo;
 222        int txfifo;
 223        int ahb_buf_size;
 224        int driver_data;
 225};
 226
 227static const struct fsl_qspi_devtype_data vybrid_data = {
 228        .devtype = FSL_QUADSPI_VYBRID,
 229        .rxfifo = 128,
 230        .txfifo = 64,
 231        .ahb_buf_size = 1024,
 232        .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
 233};
 234
 235static const struct fsl_qspi_devtype_data imx6sx_data = {
 236        .devtype = FSL_QUADSPI_IMX6SX,
 237        .rxfifo = 128,
 238        .txfifo = 512,
 239        .ahb_buf_size = 1024,
 240        .driver_data = QUADSPI_QUIRK_4X_INT_CLK
 241                       | QUADSPI_QUIRK_TKT245618,
 242};
 243
 244static const struct fsl_qspi_devtype_data imx7d_data = {
 245        .devtype = FSL_QUADSPI_IMX7D,
 246        .rxfifo = 512,
 247        .txfifo = 512,
 248        .ahb_buf_size = 1024,
 249        .driver_data = QUADSPI_QUIRK_TKT253890
 250                       | QUADSPI_QUIRK_4X_INT_CLK,
 251};
 252
 253static const struct fsl_qspi_devtype_data imx6ul_data = {
 254        .devtype = FSL_QUADSPI_IMX6UL,
 255        .rxfifo = 128,
 256        .txfifo = 512,
 257        .ahb_buf_size = 1024,
 258        .driver_data = QUADSPI_QUIRK_TKT253890
 259                       | QUADSPI_QUIRK_4X_INT_CLK,
 260};
 261
 262static struct fsl_qspi_devtype_data ls1021a_data = {
 263        .devtype = FSL_QUADSPI_LS1021A,
 264        .rxfifo = 128,
 265        .txfifo = 64,
 266        .ahb_buf_size = 1024,
 267        .driver_data = 0,
 268};
 269
 270#define FSL_QSPI_MAX_CHIP       4
 271struct fsl_qspi {
 272        struct spi_nor nor[FSL_QSPI_MAX_CHIP];
 273        void __iomem *iobase;
 274        void __iomem *ahb_addr;
 275        u32 memmap_phy;
 276        u32 memmap_offs;
 277        u32 memmap_len;
 278        struct clk *clk, *clk_en;
 279        struct device *dev;
 280        struct completion c;
 281        const struct fsl_qspi_devtype_data *devtype_data;
 282        u32 nor_size;
 283        u32 nor_num;
 284        u32 clk_rate;
 285        unsigned int chip_base_addr; /* We may support two chips. */
 286        bool has_second_chip;
 287        bool big_endian;
 288        struct mutex lock;
 289        struct pm_qos_request pm_qos_req;
 290};
 291
 292static inline int needs_swap_endian(struct fsl_qspi *q)
 293{
 294        return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
 295}
 296
 297static inline int needs_4x_clock(struct fsl_qspi *q)
 298{
 299        return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
 300}
 301
 302static inline int needs_fill_txfifo(struct fsl_qspi *q)
 303{
 304        return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
 305}
 306
 307static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
 308{
 309        return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
 310}
 311
 312/*
 313 * R/W functions for big- or little-endian registers:
 314 * The qSPI controller's endian is independent of the CPU core's endian.
 315 * So far, although the CPU core is little-endian but the qSPI have two
 316 * versions for big-endian and little-endian.
 317 */
 318static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
 319{
 320        if (q->big_endian)
 321                iowrite32be(val, addr);
 322        else
 323                iowrite32(val, addr);
 324}
 325
 326static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
 327{
 328        if (q->big_endian)
 329                return ioread32be(addr);
 330        else
 331                return ioread32(addr);
 332}
 333
 334/*
 335 * An IC bug makes us to re-arrange the 32-bit data.
 336 * The following chips, such as IMX6SLX, have fixed this bug.
 337 */
 338static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
 339{
 340        return needs_swap_endian(q) ? __swab32(a) : a;
 341}
 342
 343static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
 344{
 345        qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 346        qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
 347}
 348
 349static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
 350{
 351        qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 352        qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
 353}
 354
 355static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
 356{
 357        struct fsl_qspi *q = dev_id;
 358        u32 reg;
 359
 360        /* clear interrupt */
 361        reg = qspi_readl(q, q->iobase + QUADSPI_FR);
 362        qspi_writel(q, reg, q->iobase + QUADSPI_FR);
 363
 364        if (reg & QUADSPI_FR_TFF_MASK)
 365                complete(&q->c);
 366
 367        dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
 368        return IRQ_HANDLED;
 369}
 370
 371static void fsl_qspi_init_lut(struct fsl_qspi *q)
 372{
 373        void __iomem *base = q->iobase;
 374        int rxfifo = q->devtype_data->rxfifo;
 375        u32 lut_base;
 376        int i;
 377
 378        struct spi_nor *nor = &q->nor[0];
 379        u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
 380        u8 read_op = nor->read_opcode;
 381        u8 read_dm = nor->read_dummy;
 382
 383        fsl_qspi_unlock_lut(q);
 384
 385        /* Clear all the LUT table */
 386        for (i = 0; i < QUADSPI_LUT_NUM; i++)
 387                qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
 388
 389        /* Read */
 390        lut_base = SEQID_READ * 4;
 391
 392        qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen),
 393                        base + QUADSPI_LUT(lut_base));
 394        qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) |
 395                    LUT1(FSL_READ, PAD4, rxfifo),
 396                        base + QUADSPI_LUT(lut_base + 1));
 397
 398        /* Write enable */
 399        lut_base = SEQID_WREN * 4;
 400        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
 401                        base + QUADSPI_LUT(lut_base));
 402
 403        /* Page Program */
 404        lut_base = SEQID_PP * 4;
 405
 406        qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) |
 407                    LUT1(ADDR, PAD1, addrlen),
 408                        base + QUADSPI_LUT(lut_base));
 409        qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
 410                        base + QUADSPI_LUT(lut_base + 1));
 411
 412        /* Read Status */
 413        lut_base = SEQID_RDSR * 4;
 414        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
 415                        LUT1(FSL_READ, PAD1, 0x1),
 416                        base + QUADSPI_LUT(lut_base));
 417
 418        /* Erase a sector */
 419        lut_base = SEQID_SE * 4;
 420
 421        qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) |
 422                    LUT1(ADDR, PAD1, addrlen),
 423                        base + QUADSPI_LUT(lut_base));
 424
 425        /* Erase the whole chip */
 426        lut_base = SEQID_CHIP_ERASE * 4;
 427        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
 428                        base + QUADSPI_LUT(lut_base));
 429
 430        /* READ ID */
 431        lut_base = SEQID_RDID * 4;
 432        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
 433                        LUT1(FSL_READ, PAD1, 0x8),
 434                        base + QUADSPI_LUT(lut_base));
 435
 436        /* Write Register */
 437        lut_base = SEQID_WRSR * 4;
 438        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
 439                        LUT1(FSL_WRITE, PAD1, 0x2),
 440                        base + QUADSPI_LUT(lut_base));
 441
 442        /* Read Configuration Register */
 443        lut_base = SEQID_RDCR * 4;
 444        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
 445                        LUT1(FSL_READ, PAD1, 0x1),
 446                        base + QUADSPI_LUT(lut_base));
 447
 448        /* Write disable */
 449        lut_base = SEQID_WRDI * 4;
 450        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
 451                        base + QUADSPI_LUT(lut_base));
 452
 453        /* Enter 4 Byte Mode (Micron) */
 454        lut_base = SEQID_EN4B * 4;
 455        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
 456                        base + QUADSPI_LUT(lut_base));
 457
 458        /* Enter 4 Byte Mode (Spansion) */
 459        lut_base = SEQID_BRWR * 4;
 460        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
 461                        base + QUADSPI_LUT(lut_base));
 462
 463        fsl_qspi_lock_lut(q);
 464}
 465
 466/* Get the SEQID for the command */
 467static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
 468{
 469        switch (cmd) {
 470        case SPINOR_OP_READ_1_1_4:
 471                return SEQID_READ;
 472        case SPINOR_OP_WREN:
 473                return SEQID_WREN;
 474        case SPINOR_OP_WRDI:
 475                return SEQID_WRDI;
 476        case SPINOR_OP_RDSR:
 477                return SEQID_RDSR;
 478        case SPINOR_OP_SE:
 479                return SEQID_SE;
 480        case SPINOR_OP_CHIP_ERASE:
 481                return SEQID_CHIP_ERASE;
 482        case SPINOR_OP_PP:
 483                return SEQID_PP;
 484        case SPINOR_OP_RDID:
 485                return SEQID_RDID;
 486        case SPINOR_OP_WRSR:
 487                return SEQID_WRSR;
 488        case SPINOR_OP_RDCR:
 489                return SEQID_RDCR;
 490        case SPINOR_OP_EN4B:
 491                return SEQID_EN4B;
 492        case SPINOR_OP_BRWR:
 493                return SEQID_BRWR;
 494        default:
 495                if (cmd == q->nor[0].erase_opcode)
 496                        return SEQID_SE;
 497                dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
 498                break;
 499        }
 500        return -EINVAL;
 501}
 502
 503static int
 504fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
 505{
 506        void __iomem *base = q->iobase;
 507        int seqid;
 508        u32 reg, reg2;
 509        int err;
 510
 511        init_completion(&q->c);
 512        dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
 513                        q->chip_base_addr, addr, len, cmd);
 514
 515        /* save the reg */
 516        reg = qspi_readl(q, base + QUADSPI_MCR);
 517
 518        qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
 519                        base + QUADSPI_SFAR);
 520        qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
 521                        base + QUADSPI_RBCT);
 522        qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
 523
 524        do {
 525                reg2 = qspi_readl(q, base + QUADSPI_SR);
 526                if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
 527                        udelay(1);
 528                        dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
 529                        continue;
 530                }
 531                break;
 532        } while (1);
 533
 534        /* trigger the LUT now */
 535        seqid = fsl_qspi_get_seqid(q, cmd);
 536        qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
 537                        base + QUADSPI_IPCR);
 538
 539        /* Wait for the interrupt. */
 540        if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
 541                dev_err(q->dev,
 542                        "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
 543                        cmd, addr, qspi_readl(q, base + QUADSPI_FR),
 544                        qspi_readl(q, base + QUADSPI_SR));
 545                err = -ETIMEDOUT;
 546        } else {
 547                err = 0;
 548        }
 549
 550        /* restore the MCR */
 551        qspi_writel(q, reg, base + QUADSPI_MCR);
 552
 553        return err;
 554}
 555
 556/* Read out the data from the QUADSPI_RBDR buffer registers. */
 557static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
 558{
 559        u32 tmp;
 560        int i = 0;
 561
 562        while (len > 0) {
 563                tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
 564                tmp = fsl_qspi_endian_xchg(q, tmp);
 565                dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
 566                                q->chip_base_addr, tmp);
 567
 568                if (len >= 4) {
 569                        *((u32 *)rxbuf) = tmp;
 570                        rxbuf += 4;
 571                } else {
 572                        memcpy(rxbuf, &tmp, len);
 573                        break;
 574                }
 575
 576                len -= 4;
 577                i++;
 578        }
 579}
 580
 581/*
 582 * If we have changed the content of the flash by writing or erasing,
 583 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 584 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 585 * domain at the same time.
 586 */
 587static inline void fsl_qspi_invalid(struct fsl_qspi *q)
 588{
 589        u32 reg;
 590
 591        reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
 592        reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
 593        qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 594
 595        /*
 596         * The minimum delay : 1 AHB + 2 SFCK clocks.
 597         * Delay 1 us is enough.
 598         */
 599        udelay(1);
 600
 601        reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
 602        qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 603}
 604
 605static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
 606                                u8 opcode, unsigned int to, u32 *txbuf,
 607                                unsigned count)
 608{
 609        int ret, i, j;
 610        u32 tmp;
 611
 612        dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
 613                q->chip_base_addr, to, count);
 614
 615        /* clear the TX FIFO. */
 616        tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
 617        qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
 618
 619        /* fill the TX data to the FIFO */
 620        for (j = 0, i = ((count + 3) / 4); j < i; j++) {
 621                tmp = fsl_qspi_endian_xchg(q, *txbuf);
 622                qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
 623                txbuf++;
 624        }
 625
 626        /* fill the TXFIFO upto 16 bytes for i.MX7d */
 627        if (needs_fill_txfifo(q))
 628                for (; i < 4; i++)
 629                        qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
 630
 631        /* Trigger it */
 632        ret = fsl_qspi_runcmd(q, opcode, to, count);
 633
 634        if (ret == 0)
 635                return count;
 636
 637        return ret;
 638}
 639
 640static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
 641{
 642        int nor_size = q->nor_size;
 643        void __iomem *base = q->iobase;
 644
 645        qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
 646        qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
 647        qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
 648        qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
 649}
 650
 651/*
 652 * There are two different ways to read out the data from the flash:
 653 *  the "IP Command Read" and the "AHB Command Read".
 654 *
 655 * The IC guy suggests we use the "AHB Command Read" which is faster
 656 * then the "IP Command Read". (What's more is that there is a bug in
 657 * the "IP Command Read" in the Vybrid.)
 658 *
 659 * After we set up the registers for the "AHB Command Read", we can use
 660 * the memcpy to read the data directly. A "missed" access to the buffer
 661 * causes the controller to clear the buffer, and use the sequence pointed
 662 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 663 */
 664static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
 665{
 666        void __iomem *base = q->iobase;
 667        int seqid;
 668
 669        /* AHB configuration for access buffer 0/1/2 .*/
 670        qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
 671        qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
 672        qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
 673        /*
 674         * Set ADATSZ with the maximum AHB buffer size to improve the
 675         * read performance.
 676         */
 677        qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
 678                        ((q->devtype_data->ahb_buf_size / 8)
 679                        << QUADSPI_BUF3CR_ADATSZ_SHIFT),
 680                        base + QUADSPI_BUF3CR);
 681
 682        /* We only use the buffer3 */
 683        qspi_writel(q, 0, base + QUADSPI_BUF0IND);
 684        qspi_writel(q, 0, base + QUADSPI_BUF1IND);
 685        qspi_writel(q, 0, base + QUADSPI_BUF2IND);
 686
 687        /* Set the default lut sequence for AHB Read. */
 688        seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
 689        qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
 690                q->iobase + QUADSPI_BFGENCR);
 691}
 692
 693/* This function was used to prepare and enable QSPI clock */
 694static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
 695{
 696        int ret;
 697
 698        ret = clk_prepare_enable(q->clk_en);
 699        if (ret)
 700                return ret;
 701
 702        ret = clk_prepare_enable(q->clk);
 703        if (ret) {
 704                clk_disable_unprepare(q->clk_en);
 705                return ret;
 706        }
 707
 708        if (needs_wakeup_wait_mode(q))
 709                pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
 710
 711        return 0;
 712}
 713
 714/* This function was used to disable and unprepare QSPI clock */
 715static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
 716{
 717        if (needs_wakeup_wait_mode(q))
 718                pm_qos_remove_request(&q->pm_qos_req);
 719
 720        clk_disable_unprepare(q->clk);
 721        clk_disable_unprepare(q->clk_en);
 722
 723}
 724
 725/* We use this function to do some basic init for spi_nor_scan(). */
 726static int fsl_qspi_nor_setup(struct fsl_qspi *q)
 727{
 728        void __iomem *base = q->iobase;
 729        u32 reg;
 730        int ret;
 731
 732        /* disable and unprepare clock to avoid glitch pass to controller */
 733        fsl_qspi_clk_disable_unprep(q);
 734
 735        /* the default frequency, we will change it in the future. */
 736        ret = clk_set_rate(q->clk, 66000000);
 737        if (ret)
 738                return ret;
 739
 740        ret = fsl_qspi_clk_prep_enable(q);
 741        if (ret)
 742                return ret;
 743
 744        /* Reset the module */
 745        qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
 746                base + QUADSPI_MCR);
 747        udelay(1);
 748
 749        /* Init the LUT table. */
 750        fsl_qspi_init_lut(q);
 751
 752        /* Disable the module */
 753        qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
 754                        base + QUADSPI_MCR);
 755
 756        reg = qspi_readl(q, base + QUADSPI_SMPR);
 757        qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
 758                        | QUADSPI_SMPR_FSPHS_MASK
 759                        | QUADSPI_SMPR_HSENA_MASK
 760                        | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
 761
 762        /* Enable the module */
 763        qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
 764                        base + QUADSPI_MCR);
 765
 766        /* clear all interrupt status */
 767        qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
 768
 769        /* enable the interrupt */
 770        qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
 771
 772        return 0;
 773}
 774
 775static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
 776{
 777        unsigned long rate = q->clk_rate;
 778        int ret;
 779
 780        if (needs_4x_clock(q))
 781                rate *= 4;
 782
 783        /* disable and unprepare clock to avoid glitch pass to controller */
 784        fsl_qspi_clk_disable_unprep(q);
 785
 786        ret = clk_set_rate(q->clk, rate);
 787        if (ret)
 788                return ret;
 789
 790        ret = fsl_qspi_clk_prep_enable(q);
 791        if (ret)
 792                return ret;
 793
 794        /* Init the LUT table again. */
 795        fsl_qspi_init_lut(q);
 796
 797        /* Init for AHB read */
 798        fsl_qspi_init_abh_read(q);
 799
 800        return 0;
 801}
 802
 803static const struct of_device_id fsl_qspi_dt_ids[] = {
 804        { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
 805        { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
 806        { .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
 807        { .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
 808        { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
 809        { /* sentinel */ }
 810};
 811MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
 812
 813static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
 814{
 815        q->chip_base_addr = q->nor_size * (nor - q->nor);
 816}
 817
 818static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 819{
 820        int ret;
 821        struct fsl_qspi *q = nor->priv;
 822
 823        ret = fsl_qspi_runcmd(q, opcode, 0, len);
 824        if (ret)
 825                return ret;
 826
 827        fsl_qspi_read_data(q, len, buf);
 828        return 0;
 829}
 830
 831static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 832{
 833        struct fsl_qspi *q = nor->priv;
 834        int ret;
 835
 836        if (!buf) {
 837                ret = fsl_qspi_runcmd(q, opcode, 0, 1);
 838                if (ret)
 839                        return ret;
 840
 841                if (opcode == SPINOR_OP_CHIP_ERASE)
 842                        fsl_qspi_invalid(q);
 843
 844        } else if (len > 0) {
 845                ret = fsl_qspi_nor_write(q, nor, opcode, 0,
 846                                        (u32 *)buf, len);
 847                if (ret > 0)
 848                        return 0;
 849        } else {
 850                dev_err(q->dev, "invalid cmd %d\n", opcode);
 851                ret = -EINVAL;
 852        }
 853
 854        return ret;
 855}
 856
 857static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
 858                              size_t len, const u_char *buf)
 859{
 860        struct fsl_qspi *q = nor->priv;
 861        ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
 862                                         (u32 *)buf, len);
 863
 864        /* invalid the data in the AHB buffer. */
 865        fsl_qspi_invalid(q);
 866        return ret;
 867}
 868
 869static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
 870                             size_t len, u_char *buf)
 871{
 872        struct fsl_qspi *q = nor->priv;
 873        u8 cmd = nor->read_opcode;
 874
 875        /* if necessary,ioremap buffer before AHB read, */
 876        if (!q->ahb_addr) {
 877                q->memmap_offs = q->chip_base_addr + from;
 878                q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
 879
 880                q->ahb_addr = ioremap_nocache(
 881                                q->memmap_phy + q->memmap_offs,
 882                                q->memmap_len);
 883                if (!q->ahb_addr) {
 884                        dev_err(q->dev, "ioremap failed\n");
 885                        return -ENOMEM;
 886                }
 887        /* ioremap if the data requested is out of range */
 888        } else if (q->chip_base_addr + from < q->memmap_offs
 889                        || q->chip_base_addr + from + len >
 890                        q->memmap_offs + q->memmap_len) {
 891                iounmap(q->ahb_addr);
 892
 893                q->memmap_offs = q->chip_base_addr + from;
 894                q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
 895                q->ahb_addr = ioremap_nocache(
 896                                q->memmap_phy + q->memmap_offs,
 897                                q->memmap_len);
 898                if (!q->ahb_addr) {
 899                        dev_err(q->dev, "ioremap failed\n");
 900                        return -ENOMEM;
 901                }
 902        }
 903
 904        dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
 905                cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
 906                len);
 907
 908        /* Read out the data directly from the AHB buffer.*/
 909        memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
 910                len);
 911
 912        return len;
 913}
 914
 915static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
 916{
 917        struct fsl_qspi *q = nor->priv;
 918        int ret;
 919
 920        dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
 921                nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
 922
 923        ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
 924        if (ret)
 925                return ret;
 926
 927        fsl_qspi_invalid(q);
 928        return 0;
 929}
 930
 931static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
 932{
 933        struct fsl_qspi *q = nor->priv;
 934        int ret;
 935
 936        mutex_lock(&q->lock);
 937
 938        ret = fsl_qspi_clk_prep_enable(q);
 939        if (ret)
 940                goto err_mutex;
 941
 942        fsl_qspi_set_base_addr(q, nor);
 943        return 0;
 944
 945err_mutex:
 946        mutex_unlock(&q->lock);
 947        return ret;
 948}
 949
 950static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
 951{
 952        struct fsl_qspi *q = nor->priv;
 953
 954        fsl_qspi_clk_disable_unprep(q);
 955        mutex_unlock(&q->lock);
 956}
 957
 958static int fsl_qspi_probe(struct platform_device *pdev)
 959{
 960        const struct spi_nor_hwcaps hwcaps = {
 961                .mask = SNOR_HWCAPS_READ_1_1_4 |
 962                        SNOR_HWCAPS_PP,
 963        };
 964        struct device_node *np = pdev->dev.of_node;
 965        struct device *dev = &pdev->dev;
 966        struct fsl_qspi *q;
 967        struct resource *res;
 968        struct spi_nor *nor;
 969        struct mtd_info *mtd;
 970        int ret, i = 0;
 971
 972        q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
 973        if (!q)
 974                return -ENOMEM;
 975
 976        q->nor_num = of_get_child_count(dev->of_node);
 977        if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
 978                return -ENODEV;
 979
 980        q->dev = dev;
 981        q->devtype_data = of_device_get_match_data(dev);
 982        if (!q->devtype_data)
 983                return -ENODEV;
 984        platform_set_drvdata(pdev, q);
 985
 986        /* find the resources */
 987        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
 988        q->iobase = devm_ioremap_resource(dev, res);
 989        if (IS_ERR(q->iobase))
 990                return PTR_ERR(q->iobase);
 991
 992        q->big_endian = of_property_read_bool(np, "big-endian");
 993        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 994                                        "QuadSPI-memory");
 995        if (!devm_request_mem_region(dev, res->start, resource_size(res),
 996                                     res->name)) {
 997                dev_err(dev, "can't request region for resource %pR\n", res);
 998                return -EBUSY;
 999        }
1000
1001        q->memmap_phy = res->start;
1002
1003        /* find the clocks */
1004        q->clk_en = devm_clk_get(dev, "qspi_en");
1005        if (IS_ERR(q->clk_en))
1006                return PTR_ERR(q->clk_en);
1007
1008        q->clk = devm_clk_get(dev, "qspi");
1009        if (IS_ERR(q->clk))
1010                return PTR_ERR(q->clk);
1011
1012        ret = fsl_qspi_clk_prep_enable(q);
1013        if (ret) {
1014                dev_err(dev, "can not enable the clock\n");
1015                goto clk_failed;
1016        }
1017
1018        /* find the irq */
1019        ret = platform_get_irq(pdev, 0);
1020        if (ret < 0) {
1021                dev_err(dev, "failed to get the irq: %d\n", ret);
1022                goto irq_failed;
1023        }
1024
1025        ret = devm_request_irq(dev, ret,
1026                        fsl_qspi_irq_handler, 0, pdev->name, q);
1027        if (ret) {
1028                dev_err(dev, "failed to request irq: %d\n", ret);
1029                goto irq_failed;
1030        }
1031
1032        ret = fsl_qspi_nor_setup(q);
1033        if (ret)
1034                goto irq_failed;
1035
1036        if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1037                q->has_second_chip = true;
1038
1039        mutex_init(&q->lock);
1040
1041        /* iterate the subnodes. */
1042        for_each_available_child_of_node(dev->of_node, np) {
1043                /* skip the holes */
1044                if (!q->has_second_chip)
1045                        i *= 2;
1046
1047                nor = &q->nor[i];
1048                mtd = &nor->mtd;
1049
1050                nor->dev = dev;
1051                spi_nor_set_flash_node(nor, np);
1052                nor->priv = q;
1053
1054                /* fill the hooks */
1055                nor->read_reg = fsl_qspi_read_reg;
1056                nor->write_reg = fsl_qspi_write_reg;
1057                nor->read = fsl_qspi_read;
1058                nor->write = fsl_qspi_write;
1059                nor->erase = fsl_qspi_erase;
1060
1061                nor->prepare = fsl_qspi_prep;
1062                nor->unprepare = fsl_qspi_unprep;
1063
1064                ret = of_property_read_u32(np, "spi-max-frequency",
1065                                &q->clk_rate);
1066                if (ret < 0)
1067                        goto mutex_failed;
1068
1069                /* set the chip address for READID */
1070                fsl_qspi_set_base_addr(q, nor);
1071
1072                ret = spi_nor_scan(nor, NULL, &hwcaps);
1073                if (ret)
1074                        goto mutex_failed;
1075
1076                ret = mtd_device_register(mtd, NULL, 0);
1077                if (ret)
1078                        goto mutex_failed;
1079
1080                /* Set the correct NOR size now. */
1081                if (q->nor_size == 0) {
1082                        q->nor_size = mtd->size;
1083
1084                        /* Map the SPI NOR to accessiable address */
1085                        fsl_qspi_set_map_addr(q);
1086                }
1087
1088                /*
1089                 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1090                 * may writes 265 bytes per time. The write is working in the
1091                 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1092                 * size.
1093                 *
1094                 * So shrink the spi_nor->page_size if it is larger then the
1095                 * TX FIFO.
1096                 */
1097                if (nor->page_size > q->devtype_data->txfifo)
1098                        nor->page_size = q->devtype_data->txfifo;
1099
1100                i++;
1101        }
1102
1103        /* finish the rest init. */
1104        ret = fsl_qspi_nor_setup_last(q);
1105        if (ret)
1106                goto last_init_failed;
1107
1108        fsl_qspi_clk_disable_unprep(q);
1109        return 0;
1110
1111last_init_failed:
1112        for (i = 0; i < q->nor_num; i++) {
1113                /* skip the holes */
1114                if (!q->has_second_chip)
1115                        i *= 2;
1116                mtd_device_unregister(&q->nor[i].mtd);
1117        }
1118mutex_failed:
1119        mutex_destroy(&q->lock);
1120irq_failed:
1121        fsl_qspi_clk_disable_unprep(q);
1122clk_failed:
1123        dev_err(dev, "Freescale QuadSPI probe failed\n");
1124        return ret;
1125}
1126
1127static int fsl_qspi_remove(struct platform_device *pdev)
1128{
1129        struct fsl_qspi *q = platform_get_drvdata(pdev);
1130        int i;
1131
1132        for (i = 0; i < q->nor_num; i++) {
1133                /* skip the holes */
1134                if (!q->has_second_chip)
1135                        i *= 2;
1136                mtd_device_unregister(&q->nor[i].mtd);
1137        }
1138
1139        /* disable the hardware */
1140        qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
1141        qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1142
1143        mutex_destroy(&q->lock);
1144
1145        if (q->ahb_addr)
1146                iounmap(q->ahb_addr);
1147
1148        return 0;
1149}
1150
1151static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
1152{
1153        return 0;
1154}
1155
1156static int fsl_qspi_resume(struct platform_device *pdev)
1157{
1158        int ret;
1159        struct fsl_qspi *q = platform_get_drvdata(pdev);
1160
1161        ret = fsl_qspi_clk_prep_enable(q);
1162        if (ret)
1163                return ret;
1164
1165        fsl_qspi_nor_setup(q);
1166        fsl_qspi_set_map_addr(q);
1167        fsl_qspi_nor_setup_last(q);
1168
1169        fsl_qspi_clk_disable_unprep(q);
1170
1171        return 0;
1172}
1173
1174static struct platform_driver fsl_qspi_driver = {
1175        .driver = {
1176                .name   = "fsl-quadspi",
1177                .bus    = &platform_bus_type,
1178                .of_match_table = fsl_qspi_dt_ids,
1179        },
1180        .probe          = fsl_qspi_probe,
1181        .remove         = fsl_qspi_remove,
1182        .suspend        = fsl_qspi_suspend,
1183        .resume         = fsl_qspi_resume,
1184};
1185module_platform_driver(fsl_qspi_driver);
1186
1187MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1188MODULE_AUTHOR("Freescale Semiconductor Inc.");
1189MODULE_LICENSE("GPL v2");
1190