linux/drivers/net/ethernet/intel/i40evf/i40e_txrx.c
<<
>>
Prefs
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29
  30#include "i40evf.h"
  31#include "i40e_trace.h"
  32#include "i40e_prototype.h"
  33
  34static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  35                                u32 td_tag)
  36{
  37        return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  38                           ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  39                           ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  40                           ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  41                           ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  42}
  43
  44#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  45
  46/**
  47 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  48 * @ring:      the ring that owns the buffer
  49 * @tx_buffer: the buffer to free
  50 **/
  51static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  52                                            struct i40e_tx_buffer *tx_buffer)
  53{
  54        if (tx_buffer->skb) {
  55                if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  56                        kfree(tx_buffer->raw_buf);
  57                else
  58                        dev_kfree_skb_any(tx_buffer->skb);
  59                if (dma_unmap_len(tx_buffer, len))
  60                        dma_unmap_single(ring->dev,
  61                                         dma_unmap_addr(tx_buffer, dma),
  62                                         dma_unmap_len(tx_buffer, len),
  63                                         DMA_TO_DEVICE);
  64        } else if (dma_unmap_len(tx_buffer, len)) {
  65                dma_unmap_page(ring->dev,
  66                               dma_unmap_addr(tx_buffer, dma),
  67                               dma_unmap_len(tx_buffer, len),
  68                               DMA_TO_DEVICE);
  69        }
  70
  71        tx_buffer->next_to_watch = NULL;
  72        tx_buffer->skb = NULL;
  73        dma_unmap_len_set(tx_buffer, len, 0);
  74        /* tx_buffer must be completely set up in the transmit path */
  75}
  76
  77/**
  78 * i40evf_clean_tx_ring - Free any empty Tx buffers
  79 * @tx_ring: ring to be cleaned
  80 **/
  81void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  82{
  83        unsigned long bi_size;
  84        u16 i;
  85
  86        /* ring already cleared, nothing to do */
  87        if (!tx_ring->tx_bi)
  88                return;
  89
  90        /* Free all the Tx ring sk_buffs */
  91        for (i = 0; i < tx_ring->count; i++)
  92                i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  93
  94        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  95        memset(tx_ring->tx_bi, 0, bi_size);
  96
  97        /* Zero out the descriptor ring */
  98        memset(tx_ring->desc, 0, tx_ring->size);
  99
 100        tx_ring->next_to_use = 0;
 101        tx_ring->next_to_clean = 0;
 102
 103        if (!tx_ring->netdev)
 104                return;
 105
 106        /* cleanup Tx queue statistics */
 107        netdev_tx_reset_queue(txring_txq(tx_ring));
 108}
 109
 110/**
 111 * i40evf_free_tx_resources - Free Tx resources per queue
 112 * @tx_ring: Tx descriptor ring for a specific queue
 113 *
 114 * Free all transmit software resources
 115 **/
 116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
 117{
 118        i40evf_clean_tx_ring(tx_ring);
 119        kfree(tx_ring->tx_bi);
 120        tx_ring->tx_bi = NULL;
 121
 122        if (tx_ring->desc) {
 123                dma_free_coherent(tx_ring->dev, tx_ring->size,
 124                                  tx_ring->desc, tx_ring->dma);
 125                tx_ring->desc = NULL;
 126        }
 127}
 128
 129/**
 130 * i40evf_get_tx_pending - how many Tx descriptors not processed
 131 * @tx_ring: the ring of descriptors
 132 * @in_sw: is tx_pending being checked in SW or HW
 133 *
 134 * Since there is no access to the ring head register
 135 * in XL710, we need to use our local copies
 136 **/
 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 138{
 139        u32 head, tail;
 140
 141        head = ring->next_to_clean;
 142        tail = readl(ring->tail);
 143
 144        if (head != tail)
 145                return (head < tail) ?
 146                        tail - head : (tail + ring->count - head);
 147
 148        return 0;
 149}
 150
 151#define WB_STRIDE 4
 152
 153/**
 154 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 155 * @vsi: the VSI we care about
 156 * @tx_ring: Tx ring to clean
 157 * @napi_budget: Used to determine if we are in netpoll
 158 *
 159 * Returns true if there's any budget left (e.g. the clean is finished)
 160 **/
 161static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 162                              struct i40e_ring *tx_ring, int napi_budget)
 163{
 164        u16 i = tx_ring->next_to_clean;
 165        struct i40e_tx_buffer *tx_buf;
 166        struct i40e_tx_desc *tx_desc;
 167        unsigned int total_bytes = 0, total_packets = 0;
 168        unsigned int budget = vsi->work_limit;
 169
 170        tx_buf = &tx_ring->tx_bi[i];
 171        tx_desc = I40E_TX_DESC(tx_ring, i);
 172        i -= tx_ring->count;
 173
 174        do {
 175                struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 176
 177                /* if next_to_watch is not set then there is no work pending */
 178                if (!eop_desc)
 179                        break;
 180
 181                /* prevent any other reads prior to eop_desc */
 182                smp_rmb();
 183
 184                i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 185                /* if the descriptor isn't done, no work yet to do */
 186                if (!(eop_desc->cmd_type_offset_bsz &
 187                      cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
 188                        break;
 189
 190                /* clear next_to_watch to prevent false hangs */
 191                tx_buf->next_to_watch = NULL;
 192
 193                /* update the statistics for this packet */
 194                total_bytes += tx_buf->bytecount;
 195                total_packets += tx_buf->gso_segs;
 196
 197                /* free the skb */
 198                napi_consume_skb(tx_buf->skb, napi_budget);
 199
 200                /* unmap skb header data */
 201                dma_unmap_single(tx_ring->dev,
 202                                 dma_unmap_addr(tx_buf, dma),
 203                                 dma_unmap_len(tx_buf, len),
 204                                 DMA_TO_DEVICE);
 205
 206                /* clear tx_buffer data */
 207                tx_buf->skb = NULL;
 208                dma_unmap_len_set(tx_buf, len, 0);
 209
 210                /* unmap remaining buffers */
 211                while (tx_desc != eop_desc) {
 212                        i40e_trace(clean_tx_irq_unmap,
 213                                   tx_ring, tx_desc, tx_buf);
 214
 215                        tx_buf++;
 216                        tx_desc++;
 217                        i++;
 218                        if (unlikely(!i)) {
 219                                i -= tx_ring->count;
 220                                tx_buf = tx_ring->tx_bi;
 221                                tx_desc = I40E_TX_DESC(tx_ring, 0);
 222                        }
 223
 224                        /* unmap any remaining paged data */
 225                        if (dma_unmap_len(tx_buf, len)) {
 226                                dma_unmap_page(tx_ring->dev,
 227                                               dma_unmap_addr(tx_buf, dma),
 228                                               dma_unmap_len(tx_buf, len),
 229                                               DMA_TO_DEVICE);
 230                                dma_unmap_len_set(tx_buf, len, 0);
 231                        }
 232                }
 233
 234                /* move us one more past the eop_desc for start of next pkt */
 235                tx_buf++;
 236                tx_desc++;
 237                i++;
 238                if (unlikely(!i)) {
 239                        i -= tx_ring->count;
 240                        tx_buf = tx_ring->tx_bi;
 241                        tx_desc = I40E_TX_DESC(tx_ring, 0);
 242                }
 243
 244                prefetch(tx_desc);
 245
 246                /* update budget accounting */
 247                budget--;
 248        } while (likely(budget));
 249
 250        i += tx_ring->count;
 251        tx_ring->next_to_clean = i;
 252        u64_stats_update_begin(&tx_ring->syncp);
 253        tx_ring->stats.bytes += total_bytes;
 254        tx_ring->stats.packets += total_packets;
 255        u64_stats_update_end(&tx_ring->syncp);
 256        tx_ring->q_vector->tx.total_bytes += total_bytes;
 257        tx_ring->q_vector->tx.total_packets += total_packets;
 258
 259        if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 260                /* check to see if there are < 4 descriptors
 261                 * waiting to be written back, then kick the hardware to force
 262                 * them to be written back in case we stay in NAPI.
 263                 * In this mode on X722 we do not enable Interrupt.
 264                 */
 265                unsigned int j = i40evf_get_tx_pending(tx_ring, false);
 266
 267                if (budget &&
 268                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 269                    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 270                    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 271                        tx_ring->arm_wb = true;
 272        }
 273
 274        /* notify netdev of completed buffers */
 275        netdev_tx_completed_queue(txring_txq(tx_ring),
 276                                  total_packets, total_bytes);
 277
 278#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 279        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 280                     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 281                /* Make sure that anybody stopping the queue after this
 282                 * sees the new next_to_clean.
 283                 */
 284                smp_mb();
 285                if (__netif_subqueue_stopped(tx_ring->netdev,
 286                                             tx_ring->queue_index) &&
 287                   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 288                        netif_wake_subqueue(tx_ring->netdev,
 289                                            tx_ring->queue_index);
 290                        ++tx_ring->tx_stats.restart_queue;
 291                }
 292        }
 293
 294        return !!budget;
 295}
 296
 297/**
 298 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 299 * @vsi: the VSI we care about
 300 * @q_vector: the vector on which to enable writeback
 301 *
 302 **/
 303static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 304                                  struct i40e_q_vector *q_vector)
 305{
 306        u16 flags = q_vector->tx.ring[0].flags;
 307        u32 val;
 308
 309        if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 310                return;
 311
 312        if (q_vector->arm_wb_state)
 313                return;
 314
 315        val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 316              I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 317
 318        wr32(&vsi->back->hw,
 319             I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
 320                                  vsi->base_vector - 1), val);
 321        q_vector->arm_wb_state = true;
 322}
 323
 324/**
 325 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
 326 * @vsi: the VSI we care about
 327 * @q_vector: the vector  on which to force writeback
 328 *
 329 **/
 330void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 331{
 332        u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
 333                  I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 334                  I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 335                  I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 336                  /* allow 00 to be written to the index */;
 337
 338        wr32(&vsi->back->hw,
 339             I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
 340             val);
 341}
 342
 343/**
 344 * i40e_set_new_dynamic_itr - Find new ITR level
 345 * @rc: structure containing ring performance data
 346 *
 347 * Returns true if ITR changed, false if not
 348 *
 349 * Stores a new ITR value based on packets and byte counts during
 350 * the last interrupt.  The advantage of per interrupt computation
 351 * is faster updates and more accurate ITR for the current traffic
 352 * pattern.  Constants in this function were computed based on
 353 * theoretical maximum wire speed and thresholds were set based on
 354 * testing data as well as attempting to minimize response time
 355 * while increasing bulk throughput.
 356 **/
 357static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 358{
 359        enum i40e_latency_range new_latency_range = rc->latency_range;
 360        u32 new_itr = rc->itr;
 361        int bytes_per_usec;
 362        unsigned int usecs, estimated_usecs;
 363
 364        if (rc->total_packets == 0 || !rc->itr)
 365                return false;
 366
 367        usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 368        bytes_per_usec = rc->total_bytes / usecs;
 369
 370        /* The calculations in this algorithm depend on interrupts actually
 371         * firing at the ITR rate. This may not happen if the packet rate is
 372         * really low, or if we've been napi polling. Check to make sure
 373         * that's not the case before we continue.
 374         */
 375        estimated_usecs = jiffies_to_usecs(jiffies - rc->last_itr_update);
 376        if (estimated_usecs > usecs) {
 377                new_latency_range = I40E_LOW_LATENCY;
 378                goto reset_latency;
 379        }
 380
 381        /* simple throttlerate management
 382         *   0-10MB/s   lowest (50000 ints/s)
 383         *  10-20MB/s   low    (20000 ints/s)
 384         *  20-1249MB/s bulk   (18000 ints/s)
 385         *
 386         * The math works out because the divisor is in 10^(-6) which
 387         * turns the bytes/us input value into MB/s values, but
 388         * make sure to use usecs, as the register values written
 389         * are in 2 usec increments in the ITR registers, and make sure
 390         * to use the smoothed values that the countdown timer gives us.
 391         */
 392        switch (new_latency_range) {
 393        case I40E_LOWEST_LATENCY:
 394                if (bytes_per_usec > 10)
 395                        new_latency_range = I40E_LOW_LATENCY;
 396                break;
 397        case I40E_LOW_LATENCY:
 398                if (bytes_per_usec > 20)
 399                        new_latency_range = I40E_BULK_LATENCY;
 400                else if (bytes_per_usec <= 10)
 401                        new_latency_range = I40E_LOWEST_LATENCY;
 402                break;
 403        case I40E_BULK_LATENCY:
 404        default:
 405                if (bytes_per_usec <= 20)
 406                        new_latency_range = I40E_LOW_LATENCY;
 407                break;
 408        }
 409
 410reset_latency:
 411        rc->latency_range = new_latency_range;
 412
 413        switch (new_latency_range) {
 414        case I40E_LOWEST_LATENCY:
 415                new_itr = I40E_ITR_50K;
 416                break;
 417        case I40E_LOW_LATENCY:
 418                new_itr = I40E_ITR_20K;
 419                break;
 420        case I40E_BULK_LATENCY:
 421                new_itr = I40E_ITR_18K;
 422                break;
 423        default:
 424                break;
 425        }
 426
 427        rc->total_bytes = 0;
 428        rc->total_packets = 0;
 429        rc->last_itr_update = jiffies;
 430
 431        if (new_itr != rc->itr) {
 432                rc->itr = new_itr;
 433                return true;
 434        }
 435        return false;
 436}
 437
 438/**
 439 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
 440 * @tx_ring: the tx ring to set up
 441 *
 442 * Return 0 on success, negative on error
 443 **/
 444int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
 445{
 446        struct device *dev = tx_ring->dev;
 447        int bi_size;
 448
 449        if (!dev)
 450                return -ENOMEM;
 451
 452        /* warn if we are about to overwrite the pointer */
 453        WARN_ON(tx_ring->tx_bi);
 454        bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 455        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 456        if (!tx_ring->tx_bi)
 457                goto err;
 458
 459        /* round up to nearest 4K */
 460        tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 461        tx_ring->size = ALIGN(tx_ring->size, 4096);
 462        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 463                                           &tx_ring->dma, GFP_KERNEL);
 464        if (!tx_ring->desc) {
 465                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 466                         tx_ring->size);
 467                goto err;
 468        }
 469
 470        tx_ring->next_to_use = 0;
 471        tx_ring->next_to_clean = 0;
 472        return 0;
 473
 474err:
 475        kfree(tx_ring->tx_bi);
 476        tx_ring->tx_bi = NULL;
 477        return -ENOMEM;
 478}
 479
 480/**
 481 * i40evf_clean_rx_ring - Free Rx buffers
 482 * @rx_ring: ring to be cleaned
 483 **/
 484void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
 485{
 486        unsigned long bi_size;
 487        u16 i;
 488
 489        /* ring already cleared, nothing to do */
 490        if (!rx_ring->rx_bi)
 491                return;
 492
 493        if (rx_ring->skb) {
 494                dev_kfree_skb(rx_ring->skb);
 495                rx_ring->skb = NULL;
 496        }
 497
 498        /* Free all the Rx ring sk_buffs */
 499        for (i = 0; i < rx_ring->count; i++) {
 500                struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 501
 502                if (!rx_bi->page)
 503                        continue;
 504
 505                /* Invalidate cache lines that may have been written to by
 506                 * device so that we avoid corrupting memory.
 507                 */
 508                dma_sync_single_range_for_cpu(rx_ring->dev,
 509                                              rx_bi->dma,
 510                                              rx_bi->page_offset,
 511                                              rx_ring->rx_buf_len,
 512                                              DMA_FROM_DEVICE);
 513
 514                /* free resources associated with mapping */
 515                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 516                                     i40e_rx_pg_size(rx_ring),
 517                                     DMA_FROM_DEVICE,
 518                                     I40E_RX_DMA_ATTR);
 519
 520                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 521
 522                rx_bi->page = NULL;
 523                rx_bi->page_offset = 0;
 524        }
 525
 526        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 527        memset(rx_ring->rx_bi, 0, bi_size);
 528
 529        /* Zero out the descriptor ring */
 530        memset(rx_ring->desc, 0, rx_ring->size);
 531
 532        rx_ring->next_to_alloc = 0;
 533        rx_ring->next_to_clean = 0;
 534        rx_ring->next_to_use = 0;
 535}
 536
 537/**
 538 * i40evf_free_rx_resources - Free Rx resources
 539 * @rx_ring: ring to clean the resources from
 540 *
 541 * Free all receive software resources
 542 **/
 543void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
 544{
 545        i40evf_clean_rx_ring(rx_ring);
 546        kfree(rx_ring->rx_bi);
 547        rx_ring->rx_bi = NULL;
 548
 549        if (rx_ring->desc) {
 550                dma_free_coherent(rx_ring->dev, rx_ring->size,
 551                                  rx_ring->desc, rx_ring->dma);
 552                rx_ring->desc = NULL;
 553        }
 554}
 555
 556/**
 557 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
 558 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 559 *
 560 * Returns 0 on success, negative on failure
 561 **/
 562int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
 563{
 564        struct device *dev = rx_ring->dev;
 565        int bi_size;
 566
 567        /* warn if we are about to overwrite the pointer */
 568        WARN_ON(rx_ring->rx_bi);
 569        bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 570        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 571        if (!rx_ring->rx_bi)
 572                goto err;
 573
 574        u64_stats_init(&rx_ring->syncp);
 575
 576        /* Round up to nearest 4K */
 577        rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
 578        rx_ring->size = ALIGN(rx_ring->size, 4096);
 579        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 580                                           &rx_ring->dma, GFP_KERNEL);
 581
 582        if (!rx_ring->desc) {
 583                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 584                         rx_ring->size);
 585                goto err;
 586        }
 587
 588        rx_ring->next_to_alloc = 0;
 589        rx_ring->next_to_clean = 0;
 590        rx_ring->next_to_use = 0;
 591
 592        return 0;
 593err:
 594        kfree(rx_ring->rx_bi);
 595        rx_ring->rx_bi = NULL;
 596        return -ENOMEM;
 597}
 598
 599/**
 600 * i40e_release_rx_desc - Store the new tail and head values
 601 * @rx_ring: ring to bump
 602 * @val: new head index
 603 **/
 604static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
 605{
 606        rx_ring->next_to_use = val;
 607
 608        /* update next to alloc since we have filled the ring */
 609        rx_ring->next_to_alloc = val;
 610
 611        /* Force memory writes to complete before letting h/w
 612         * know there are new descriptors to fetch.  (Only
 613         * applicable for weak-ordered memory model archs,
 614         * such as IA-64).
 615         */
 616        wmb();
 617        writel(val, rx_ring->tail);
 618}
 619
 620/**
 621 * i40e_rx_offset - Return expected offset into page to access data
 622 * @rx_ring: Ring we are requesting offset of
 623 *
 624 * Returns the offset value for ring into the data buffer.
 625 */
 626static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
 627{
 628        return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
 629}
 630
 631/**
 632 * i40e_alloc_mapped_page - recycle or make a new page
 633 * @rx_ring: ring to use
 634 * @bi: rx_buffer struct to modify
 635 *
 636 * Returns true if the page was successfully allocated or
 637 * reused.
 638 **/
 639static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
 640                                   struct i40e_rx_buffer *bi)
 641{
 642        struct page *page = bi->page;
 643        dma_addr_t dma;
 644
 645        /* since we are recycling buffers we should seldom need to alloc */
 646        if (likely(page)) {
 647                rx_ring->rx_stats.page_reuse_count++;
 648                return true;
 649        }
 650
 651        /* alloc new page for storage */
 652        page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
 653        if (unlikely(!page)) {
 654                rx_ring->rx_stats.alloc_page_failed++;
 655                return false;
 656        }
 657
 658        /* map page for use */
 659        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 660                                 i40e_rx_pg_size(rx_ring),
 661                                 DMA_FROM_DEVICE,
 662                                 I40E_RX_DMA_ATTR);
 663
 664        /* if mapping failed free memory back to system since
 665         * there isn't much point in holding memory we can't use
 666         */
 667        if (dma_mapping_error(rx_ring->dev, dma)) {
 668                __free_pages(page, i40e_rx_pg_order(rx_ring));
 669                rx_ring->rx_stats.alloc_page_failed++;
 670                return false;
 671        }
 672
 673        bi->dma = dma;
 674        bi->page = page;
 675        bi->page_offset = i40e_rx_offset(rx_ring);
 676
 677        /* initialize pagecnt_bias to 1 representing we fully own page */
 678        bi->pagecnt_bias = 1;
 679
 680        return true;
 681}
 682
 683/**
 684 * i40e_receive_skb - Send a completed packet up the stack
 685 * @rx_ring:  rx ring in play
 686 * @skb: packet to send up
 687 * @vlan_tag: vlan tag for packet
 688 **/
 689static void i40e_receive_skb(struct i40e_ring *rx_ring,
 690                             struct sk_buff *skb, u16 vlan_tag)
 691{
 692        struct i40e_q_vector *q_vector = rx_ring->q_vector;
 693
 694        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 695            (vlan_tag & VLAN_VID_MASK))
 696                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 697
 698        napi_gro_receive(&q_vector->napi, skb);
 699}
 700
 701/**
 702 * i40evf_alloc_rx_buffers - Replace used receive buffers
 703 * @rx_ring: ring to place buffers on
 704 * @cleaned_count: number of buffers to replace
 705 *
 706 * Returns false if all allocations were successful, true if any fail
 707 **/
 708bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
 709{
 710        u16 ntu = rx_ring->next_to_use;
 711        union i40e_rx_desc *rx_desc;
 712        struct i40e_rx_buffer *bi;
 713
 714        /* do nothing if no valid netdev defined */
 715        if (!rx_ring->netdev || !cleaned_count)
 716                return false;
 717
 718        rx_desc = I40E_RX_DESC(rx_ring, ntu);
 719        bi = &rx_ring->rx_bi[ntu];
 720
 721        do {
 722                if (!i40e_alloc_mapped_page(rx_ring, bi))
 723                        goto no_buffers;
 724
 725                /* sync the buffer for use by the device */
 726                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 727                                                 bi->page_offset,
 728                                                 rx_ring->rx_buf_len,
 729                                                 DMA_FROM_DEVICE);
 730
 731                /* Refresh the desc even if buffer_addrs didn't change
 732                 * because each write-back erases this info.
 733                 */
 734                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 735
 736                rx_desc++;
 737                bi++;
 738                ntu++;
 739                if (unlikely(ntu == rx_ring->count)) {
 740                        rx_desc = I40E_RX_DESC(rx_ring, 0);
 741                        bi = rx_ring->rx_bi;
 742                        ntu = 0;
 743                }
 744
 745                /* clear the status bits for the next_to_use descriptor */
 746                rx_desc->wb.qword1.status_error_len = 0;
 747
 748                cleaned_count--;
 749        } while (cleaned_count);
 750
 751        if (rx_ring->next_to_use != ntu)
 752                i40e_release_rx_desc(rx_ring, ntu);
 753
 754        return false;
 755
 756no_buffers:
 757        if (rx_ring->next_to_use != ntu)
 758                i40e_release_rx_desc(rx_ring, ntu);
 759
 760        /* make sure to come back via polling to try again after
 761         * allocation failure
 762         */
 763        return true;
 764}
 765
 766/**
 767 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
 768 * @vsi: the VSI we care about
 769 * @skb: skb currently being received and modified
 770 * @rx_desc: the receive descriptor
 771 **/
 772static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
 773                                    struct sk_buff *skb,
 774                                    union i40e_rx_desc *rx_desc)
 775{
 776        struct i40e_rx_ptype_decoded decoded;
 777        u32 rx_error, rx_status;
 778        bool ipv4, ipv6;
 779        u8 ptype;
 780        u64 qword;
 781
 782        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 783        ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
 784        rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
 785                   I40E_RXD_QW1_ERROR_SHIFT;
 786        rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
 787                    I40E_RXD_QW1_STATUS_SHIFT;
 788        decoded = decode_rx_desc_ptype(ptype);
 789
 790        skb->ip_summed = CHECKSUM_NONE;
 791
 792        skb_checksum_none_assert(skb);
 793
 794        /* Rx csum enabled and ip headers found? */
 795        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 796                return;
 797
 798        /* did the hardware decode the packet and checksum? */
 799        if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
 800                return;
 801
 802        /* both known and outer_ip must be set for the below code to work */
 803        if (!(decoded.known && decoded.outer_ip))
 804                return;
 805
 806        ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
 807               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
 808        ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
 809               (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
 810
 811        if (ipv4 &&
 812            (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
 813                         BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
 814                goto checksum_fail;
 815
 816        /* likely incorrect csum if alternate IP extension headers found */
 817        if (ipv6 &&
 818            rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 819                /* don't increment checksum err here, non-fatal err */
 820                return;
 821
 822        /* there was some L4 error, count error and punt packet to the stack */
 823        if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
 824                goto checksum_fail;
 825
 826        /* handle packets that were not able to be checksummed due
 827         * to arrival speed, in this case the stack can compute
 828         * the csum.
 829         */
 830        if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
 831                return;
 832
 833        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
 834        switch (decoded.inner_prot) {
 835        case I40E_RX_PTYPE_INNER_PROT_TCP:
 836        case I40E_RX_PTYPE_INNER_PROT_UDP:
 837        case I40E_RX_PTYPE_INNER_PROT_SCTP:
 838                skb->ip_summed = CHECKSUM_UNNECESSARY;
 839                /* fall though */
 840        default:
 841                break;
 842        }
 843
 844        return;
 845
 846checksum_fail:
 847        vsi->back->hw_csum_rx_error++;
 848}
 849
 850/**
 851 * i40e_ptype_to_htype - get a hash type
 852 * @ptype: the ptype value from the descriptor
 853 *
 854 * Returns a hash type to be used by skb_set_hash
 855 **/
 856static inline int i40e_ptype_to_htype(u8 ptype)
 857{
 858        struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
 859
 860        if (!decoded.known)
 861                return PKT_HASH_TYPE_NONE;
 862
 863        if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
 864            decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
 865                return PKT_HASH_TYPE_L4;
 866        else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
 867                 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
 868                return PKT_HASH_TYPE_L3;
 869        else
 870                return PKT_HASH_TYPE_L2;
 871}
 872
 873/**
 874 * i40e_rx_hash - set the hash value in the skb
 875 * @ring: descriptor ring
 876 * @rx_desc: specific descriptor
 877 **/
 878static inline void i40e_rx_hash(struct i40e_ring *ring,
 879                                union i40e_rx_desc *rx_desc,
 880                                struct sk_buff *skb,
 881                                u8 rx_ptype)
 882{
 883        u32 hash;
 884        const __le64 rss_mask =
 885                cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
 886                            I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
 887
 888        if (ring->netdev->features & NETIF_F_RXHASH)
 889                return;
 890
 891        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
 892                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
 893                skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
 894        }
 895}
 896
 897/**
 898 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
 899 * @rx_ring: rx descriptor ring packet is being transacted on
 900 * @rx_desc: pointer to the EOP Rx descriptor
 901 * @skb: pointer to current skb being populated
 902 * @rx_ptype: the packet type decoded by hardware
 903 *
 904 * This function checks the ring, descriptor, and packet information in
 905 * order to populate the hash, checksum, VLAN, protocol, and
 906 * other fields within the skb.
 907 **/
 908static inline
 909void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
 910                               union i40e_rx_desc *rx_desc, struct sk_buff *skb,
 911                               u8 rx_ptype)
 912{
 913        i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
 914
 915        i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
 916
 917        skb_record_rx_queue(skb, rx_ring->queue_index);
 918
 919        /* modifies the skb - consumes the enet header */
 920        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 921}
 922
 923/**
 924 * i40e_cleanup_headers - Correct empty headers
 925 * @rx_ring: rx descriptor ring packet is being transacted on
 926 * @skb: pointer to current skb being fixed
 927 *
 928 * Also address the case where we are pulling data in on pages only
 929 * and as such no data is present in the skb header.
 930 *
 931 * In addition if skb is not at least 60 bytes we need to pad it so that
 932 * it is large enough to qualify as a valid Ethernet frame.
 933 *
 934 * Returns true if an error was encountered and skb was freed.
 935 **/
 936static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
 937{
 938        /* if eth_skb_pad returns an error the skb was freed */
 939        if (eth_skb_pad(skb))
 940                return true;
 941
 942        return false;
 943}
 944
 945/**
 946 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
 947 * @rx_ring: rx descriptor ring to store buffers on
 948 * @old_buff: donor buffer to have page reused
 949 *
 950 * Synchronizes page for reuse by the adapter
 951 **/
 952static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
 953                               struct i40e_rx_buffer *old_buff)
 954{
 955        struct i40e_rx_buffer *new_buff;
 956        u16 nta = rx_ring->next_to_alloc;
 957
 958        new_buff = &rx_ring->rx_bi[nta];
 959
 960        /* update, and store next to alloc */
 961        nta++;
 962        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 963
 964        /* transfer page from old buffer to new buffer */
 965        new_buff->dma           = old_buff->dma;
 966        new_buff->page          = old_buff->page;
 967        new_buff->page_offset   = old_buff->page_offset;
 968        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
 969}
 970
 971/**
 972 * i40e_page_is_reusable - check if any reuse is possible
 973 * @page: page struct to check
 974 *
 975 * A page is not reusable if it was allocated under low memory
 976 * conditions, or it's not in the same NUMA node as this CPU.
 977 */
 978static inline bool i40e_page_is_reusable(struct page *page)
 979{
 980        return (page_to_nid(page) == numa_mem_id()) &&
 981                !page_is_pfmemalloc(page);
 982}
 983
 984/**
 985 * i40e_can_reuse_rx_page - Determine if this page can be reused by
 986 * the adapter for another receive
 987 *
 988 * @rx_buffer: buffer containing the page
 989 *
 990 * If page is reusable, rx_buffer->page_offset is adjusted to point to
 991 * an unused region in the page.
 992 *
 993 * For small pages, @truesize will be a constant value, half the size
 994 * of the memory at page.  We'll attempt to alternate between high and
 995 * low halves of the page, with one half ready for use by the hardware
 996 * and the other half being consumed by the stack.  We use the page
 997 * ref count to determine whether the stack has finished consuming the
 998 * portion of this page that was passed up with a previous packet.  If
 999 * the page ref count is >1, we'll assume the "other" half page is
1000 * still busy, and this page cannot be reused.
1001 *
1002 * For larger pages, @truesize will be the actual space used by the
1003 * received packet (adjusted upward to an even multiple of the cache
1004 * line size).  This will advance through the page by the amount
1005 * actually consumed by the received packets while there is still
1006 * space for a buffer.  Each region of larger pages will be used at
1007 * most once, after which the page will not be reused.
1008 *
1009 * In either case, if the page is reusable its refcount is increased.
1010 **/
1011static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1012{
1013        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1014        struct page *page = rx_buffer->page;
1015
1016        /* Is any reuse possible? */
1017        if (unlikely(!i40e_page_is_reusable(page)))
1018                return false;
1019
1020#if (PAGE_SIZE < 8192)
1021        /* if we are only owner of page we can reuse it */
1022        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1023                return false;
1024#else
1025#define I40E_LAST_OFFSET \
1026        (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1027        if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1028                return false;
1029#endif
1030
1031        /* If we have drained the page fragment pool we need to update
1032         * the pagecnt_bias and page count so that we fully restock the
1033         * number of references the driver holds.
1034         */
1035        if (unlikely(!pagecnt_bias)) {
1036                page_ref_add(page, USHRT_MAX);
1037                rx_buffer->pagecnt_bias = USHRT_MAX;
1038        }
1039
1040        return true;
1041}
1042
1043/**
1044 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1045 * @rx_ring: rx descriptor ring to transact packets on
1046 * @rx_buffer: buffer containing page to add
1047 * @skb: sk_buff to place the data into
1048 * @size: packet length from rx_desc
1049 *
1050 * This function will add the data contained in rx_buffer->page to the skb.
1051 * It will just attach the page as a frag to the skb.
1052 *
1053 * The function will then update the page offset.
1054 **/
1055static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1056                             struct i40e_rx_buffer *rx_buffer,
1057                             struct sk_buff *skb,
1058                             unsigned int size)
1059{
1060#if (PAGE_SIZE < 8192)
1061        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1062#else
1063        unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1064#endif
1065
1066        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1067                        rx_buffer->page_offset, size, truesize);
1068
1069        /* page is being used so we must update the page offset */
1070#if (PAGE_SIZE < 8192)
1071        rx_buffer->page_offset ^= truesize;
1072#else
1073        rx_buffer->page_offset += truesize;
1074#endif
1075}
1076
1077/**
1078 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1079 * @rx_ring: rx descriptor ring to transact packets on
1080 * @size: size of buffer to add to skb
1081 *
1082 * This function will pull an Rx buffer from the ring and synchronize it
1083 * for use by the CPU.
1084 */
1085static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1086                                                 const unsigned int size)
1087{
1088        struct i40e_rx_buffer *rx_buffer;
1089
1090        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1091        prefetchw(rx_buffer->page);
1092
1093        /* we are reusing so sync this buffer for CPU use */
1094        dma_sync_single_range_for_cpu(rx_ring->dev,
1095                                      rx_buffer->dma,
1096                                      rx_buffer->page_offset,
1097                                      size,
1098                                      DMA_FROM_DEVICE);
1099
1100        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1101        rx_buffer->pagecnt_bias--;
1102
1103        return rx_buffer;
1104}
1105
1106/**
1107 * i40e_construct_skb - Allocate skb and populate it
1108 * @rx_ring: rx descriptor ring to transact packets on
1109 * @rx_buffer: rx buffer to pull data from
1110 * @size: size of buffer to add to skb
1111 *
1112 * This function allocates an skb.  It then populates it with the page
1113 * data from the current receive descriptor, taking care to set up the
1114 * skb correctly.
1115 */
1116static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1117                                          struct i40e_rx_buffer *rx_buffer,
1118                                          unsigned int size)
1119{
1120        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1121#if (PAGE_SIZE < 8192)
1122        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1123#else
1124        unsigned int truesize = SKB_DATA_ALIGN(size);
1125#endif
1126        unsigned int headlen;
1127        struct sk_buff *skb;
1128
1129        /* prefetch first cache line of first page */
1130        prefetch(va);
1131#if L1_CACHE_BYTES < 128
1132        prefetch(va + L1_CACHE_BYTES);
1133#endif
1134
1135        /* allocate a skb to store the frags */
1136        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1137                               I40E_RX_HDR_SIZE,
1138                               GFP_ATOMIC | __GFP_NOWARN);
1139        if (unlikely(!skb))
1140                return NULL;
1141
1142        /* Determine available headroom for copy */
1143        headlen = size;
1144        if (headlen > I40E_RX_HDR_SIZE)
1145                headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1146
1147        /* align pull length to size of long to optimize memcpy performance */
1148        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1149
1150        /* update all of the pointers */
1151        size -= headlen;
1152        if (size) {
1153                skb_add_rx_frag(skb, 0, rx_buffer->page,
1154                                rx_buffer->page_offset + headlen,
1155                                size, truesize);
1156
1157                /* buffer is used by skb, update page_offset */
1158#if (PAGE_SIZE < 8192)
1159                rx_buffer->page_offset ^= truesize;
1160#else
1161                rx_buffer->page_offset += truesize;
1162#endif
1163        } else {
1164                /* buffer is unused, reset bias back to rx_buffer */
1165                rx_buffer->pagecnt_bias++;
1166        }
1167
1168        return skb;
1169}
1170
1171/**
1172 * i40e_build_skb - Build skb around an existing buffer
1173 * @rx_ring: Rx descriptor ring to transact packets on
1174 * @rx_buffer: Rx buffer to pull data from
1175 * @size: size of buffer to add to skb
1176 *
1177 * This function builds an skb around an existing Rx buffer, taking care
1178 * to set up the skb correctly and avoid any memcpy overhead.
1179 */
1180static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1181                                      struct i40e_rx_buffer *rx_buffer,
1182                                      unsigned int size)
1183{
1184        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1185#if (PAGE_SIZE < 8192)
1186        unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1187#else
1188        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1189                                SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1190#endif
1191        struct sk_buff *skb;
1192
1193        /* prefetch first cache line of first page */
1194        prefetch(va);
1195#if L1_CACHE_BYTES < 128
1196        prefetch(va + L1_CACHE_BYTES);
1197#endif
1198        /* build an skb around the page buffer */
1199        skb = build_skb(va - I40E_SKB_PAD, truesize);
1200        if (unlikely(!skb))
1201                return NULL;
1202
1203        /* update pointers within the skb to store the data */
1204        skb_reserve(skb, I40E_SKB_PAD);
1205        __skb_put(skb, size);
1206
1207        /* buffer is used by skb, update page_offset */
1208#if (PAGE_SIZE < 8192)
1209        rx_buffer->page_offset ^= truesize;
1210#else
1211        rx_buffer->page_offset += truesize;
1212#endif
1213
1214        return skb;
1215}
1216
1217/**
1218 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: rx buffer to pull data from
1221 *
1222 * This function will clean up the contents of the rx_buffer.  It will
1223 * either recycle the bufer or unmap it and free the associated resources.
1224 */
1225static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1226                               struct i40e_rx_buffer *rx_buffer)
1227{
1228        if (i40e_can_reuse_rx_page(rx_buffer)) {
1229                /* hand second half of page back to the ring */
1230                i40e_reuse_rx_page(rx_ring, rx_buffer);
1231                rx_ring->rx_stats.page_reuse_count++;
1232        } else {
1233                /* we are not reusing the buffer so unmap it */
1234                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1235                                     i40e_rx_pg_size(rx_ring),
1236                                     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1237                __page_frag_cache_drain(rx_buffer->page,
1238                                        rx_buffer->pagecnt_bias);
1239        }
1240
1241        /* clear contents of buffer_info */
1242        rx_buffer->page = NULL;
1243}
1244
1245/**
1246 * i40e_is_non_eop - process handling of non-EOP buffers
1247 * @rx_ring: Rx ring being processed
1248 * @rx_desc: Rx descriptor for current buffer
1249 * @skb: Current socket buffer containing buffer in progress
1250 *
1251 * This function updates next to clean.  If the buffer is an EOP buffer
1252 * this function exits returning false, otherwise it will place the
1253 * sk_buff in the next buffer to be chained and return true indicating
1254 * that this is in fact a non-EOP buffer.
1255 **/
1256static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1257                            union i40e_rx_desc *rx_desc,
1258                            struct sk_buff *skb)
1259{
1260        u32 ntc = rx_ring->next_to_clean + 1;
1261
1262        /* fetch, update, and store next to clean */
1263        ntc = (ntc < rx_ring->count) ? ntc : 0;
1264        rx_ring->next_to_clean = ntc;
1265
1266        prefetch(I40E_RX_DESC(rx_ring, ntc));
1267
1268        /* if we are the last buffer then there is nothing else to do */
1269#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1270        if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1271                return false;
1272
1273        rx_ring->rx_stats.non_eop_descs++;
1274
1275        return true;
1276}
1277
1278/**
1279 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1280 * @rx_ring: rx descriptor ring to transact packets on
1281 * @budget: Total limit on number of packets to process
1282 *
1283 * This function provides a "bounce buffer" approach to Rx interrupt
1284 * processing.  The advantage to this is that on systems that have
1285 * expensive overhead for IOMMU access this provides a means of avoiding
1286 * it by maintaining the mapping of the page to the system.
1287 *
1288 * Returns amount of work completed
1289 **/
1290static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1291{
1292        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1293        struct sk_buff *skb = rx_ring->skb;
1294        u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1295        bool failure = false;
1296
1297        while (likely(total_rx_packets < (unsigned int)budget)) {
1298                struct i40e_rx_buffer *rx_buffer;
1299                union i40e_rx_desc *rx_desc;
1300                unsigned int size;
1301                u16 vlan_tag;
1302                u8 rx_ptype;
1303                u64 qword;
1304
1305                /* return some buffers to hardware, one at a time is too slow */
1306                if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1307                        failure = failure ||
1308                                  i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1309                        cleaned_count = 0;
1310                }
1311
1312                rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1313
1314                /* status_error_len will always be zero for unused descriptors
1315                 * because it's cleared in cleanup, and overlaps with hdr_addr
1316                 * which is always zero because packet split isn't used, if the
1317                 * hardware wrote DD then the length will be non-zero
1318                 */
1319                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1320
1321                /* This memory barrier is needed to keep us from reading
1322                 * any other fields out of the rx_desc until we have
1323                 * verified the descriptor has been written back.
1324                 */
1325                dma_rmb();
1326
1327                size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1328                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1329                if (!size)
1330                        break;
1331
1332                i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1333                rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1334
1335                /* retrieve a buffer from the ring */
1336                if (skb)
1337                        i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1338                else if (ring_uses_build_skb(rx_ring))
1339                        skb = i40e_build_skb(rx_ring, rx_buffer, size);
1340                else
1341                        skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1342
1343                /* exit if we failed to retrieve a buffer */
1344                if (!skb) {
1345                        rx_ring->rx_stats.alloc_buff_failed++;
1346                        rx_buffer->pagecnt_bias++;
1347                        break;
1348                }
1349
1350                i40e_put_rx_buffer(rx_ring, rx_buffer);
1351                cleaned_count++;
1352
1353                if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1354                        continue;
1355
1356                /* ERR_MASK will only have valid bits if EOP set, and
1357                 * what we are doing here is actually checking
1358                 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1359                 * the error field
1360                 */
1361                if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1362                        dev_kfree_skb_any(skb);
1363                        skb = NULL;
1364                        continue;
1365                }
1366
1367                if (i40e_cleanup_headers(rx_ring, skb)) {
1368                        skb = NULL;
1369                        continue;
1370                }
1371
1372                /* probably a little skewed due to removing CRC */
1373                total_rx_bytes += skb->len;
1374
1375                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1376                rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1377                           I40E_RXD_QW1_PTYPE_SHIFT;
1378
1379                /* populate checksum, VLAN, and protocol */
1380                i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1381
1382
1383                vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1384                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1385
1386                i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1387                i40e_receive_skb(rx_ring, skb, vlan_tag);
1388                skb = NULL;
1389
1390                /* update budget accounting */
1391                total_rx_packets++;
1392        }
1393
1394        rx_ring->skb = skb;
1395
1396        u64_stats_update_begin(&rx_ring->syncp);
1397        rx_ring->stats.packets += total_rx_packets;
1398        rx_ring->stats.bytes += total_rx_bytes;
1399        u64_stats_update_end(&rx_ring->syncp);
1400        rx_ring->q_vector->rx.total_packets += total_rx_packets;
1401        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1402
1403        /* guarantee a trip back through this routine if there was a failure */
1404        return failure ? budget : (int)total_rx_packets;
1405}
1406
1407static u32 i40e_buildreg_itr(const int type, const u16 itr)
1408{
1409        u32 val;
1410
1411        val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1412              I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
1413              (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1414              (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1415
1416        return val;
1417}
1418
1419/* a small macro to shorten up some long lines */
1420#define INTREG I40E_VFINT_DYN_CTLN1
1421static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1422{
1423        struct i40evf_adapter *adapter = vsi->back;
1424
1425        return adapter->rx_rings[idx].rx_itr_setting;
1426}
1427
1428static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1429{
1430        struct i40evf_adapter *adapter = vsi->back;
1431
1432        return adapter->tx_rings[idx].tx_itr_setting;
1433}
1434
1435/**
1436 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1437 * @vsi: the VSI we care about
1438 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1439 *
1440 **/
1441static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1442                                          struct i40e_q_vector *q_vector)
1443{
1444        struct i40e_hw *hw = &vsi->back->hw;
1445        bool rx = false, tx = false;
1446        u32 rxval, txval;
1447        int vector;
1448        int idx = q_vector->v_idx;
1449        int rx_itr_setting, tx_itr_setting;
1450
1451        vector = (q_vector->v_idx + vsi->base_vector);
1452
1453        /* avoid dynamic calculation if in countdown mode OR if
1454         * all dynamic is disabled
1455         */
1456        rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1457
1458        rx_itr_setting = get_rx_itr(vsi, idx);
1459        tx_itr_setting = get_tx_itr(vsi, idx);
1460
1461        if (q_vector->itr_countdown > 0 ||
1462            (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1463             !ITR_IS_DYNAMIC(tx_itr_setting))) {
1464                goto enable_int;
1465        }
1466
1467        if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1468                rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1469                rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1470        }
1471
1472        if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1473                tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1474                txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1475        }
1476
1477        if (rx || tx) {
1478                /* get the higher of the two ITR adjustments and
1479                 * use the same value for both ITR registers
1480                 * when in adaptive mode (Rx and/or Tx)
1481                 */
1482                u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1483
1484                q_vector->tx.itr = q_vector->rx.itr = itr;
1485                txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1486                tx = true;
1487                rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1488                rx = true;
1489        }
1490
1491        /* only need to enable the interrupt once, but need
1492         * to possibly update both ITR values
1493         */
1494        if (rx) {
1495                /* set the INTENA_MSK_MASK so that this first write
1496                 * won't actually enable the interrupt, instead just
1497                 * updating the ITR (it's bit 31 PF and VF)
1498                 */
1499                rxval |= BIT(31);
1500                /* don't check _DOWN because interrupt isn't being enabled */
1501                wr32(hw, INTREG(vector - 1), rxval);
1502        }
1503
1504enable_int:
1505        if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1506                wr32(hw, INTREG(vector - 1), txval);
1507
1508        if (q_vector->itr_countdown)
1509                q_vector->itr_countdown--;
1510        else
1511                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1512}
1513
1514/**
1515 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1516 * @napi: napi struct with our devices info in it
1517 * @budget: amount of work driver is allowed to do this pass, in packets
1518 *
1519 * This function will clean all queues associated with a q_vector.
1520 *
1521 * Returns the amount of work done
1522 **/
1523int i40evf_napi_poll(struct napi_struct *napi, int budget)
1524{
1525        struct i40e_q_vector *q_vector =
1526                               container_of(napi, struct i40e_q_vector, napi);
1527        struct i40e_vsi *vsi = q_vector->vsi;
1528        struct i40e_ring *ring;
1529        bool clean_complete = true;
1530        bool arm_wb = false;
1531        int budget_per_ring;
1532        int work_done = 0;
1533
1534        if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1535                napi_complete(napi);
1536                return 0;
1537        }
1538
1539        /* Since the actual Tx work is minimal, we can give the Tx a larger
1540         * budget and be more aggressive about cleaning up the Tx descriptors.
1541         */
1542        i40e_for_each_ring(ring, q_vector->tx) {
1543                if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1544                        clean_complete = false;
1545                        continue;
1546                }
1547                arm_wb |= ring->arm_wb;
1548                ring->arm_wb = false;
1549        }
1550
1551        /* Handle case where we are called by netpoll with a budget of 0 */
1552        if (budget <= 0)
1553                goto tx_only;
1554
1555        /* We attempt to distribute budget to each Rx queue fairly, but don't
1556         * allow the budget to go below 1 because that would exit polling early.
1557         */
1558        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1559
1560        i40e_for_each_ring(ring, q_vector->rx) {
1561                int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1562
1563                work_done += cleaned;
1564                /* if we clean as many as budgeted, we must not be done */
1565                if (cleaned >= budget_per_ring)
1566                        clean_complete = false;
1567        }
1568
1569        /* If work not completed, return budget and polling will return */
1570        if (!clean_complete) {
1571                int cpu_id = smp_processor_id();
1572
1573                /* It is possible that the interrupt affinity has changed but,
1574                 * if the cpu is pegged at 100%, polling will never exit while
1575                 * traffic continues and the interrupt will be stuck on this
1576                 * cpu.  We check to make sure affinity is correct before we
1577                 * continue to poll, otherwise we must stop polling so the
1578                 * interrupt can move to the correct cpu.
1579                 */
1580                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1581                        /* Tell napi that we are done polling */
1582                        napi_complete_done(napi, work_done);
1583
1584                        /* Force an interrupt */
1585                        i40evf_force_wb(vsi, q_vector);
1586
1587                        /* Return budget-1 so that polling stops */
1588                        return budget - 1;
1589                }
1590tx_only:
1591                if (arm_wb) {
1592                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1593                        i40e_enable_wb_on_itr(vsi, q_vector);
1594                }
1595                return budget;
1596        }
1597
1598        if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1599                q_vector->arm_wb_state = false;
1600
1601        /* Work is done so exit the polling mode and re-enable the interrupt */
1602        napi_complete_done(napi, work_done);
1603
1604        i40e_update_enable_itr(vsi, q_vector);
1605
1606        return min(work_done, budget - 1);
1607}
1608
1609/**
1610 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1611 * @skb:     send buffer
1612 * @tx_ring: ring to send buffer on
1613 * @flags:   the tx flags to be set
1614 *
1615 * Checks the skb and set up correspondingly several generic transmit flags
1616 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1617 *
1618 * Returns error code indicate the frame should be dropped upon error and the
1619 * otherwise  returns 0 to indicate the flags has been set properly.
1620 **/
1621static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1622                                               struct i40e_ring *tx_ring,
1623                                               u32 *flags)
1624{
1625        __be16 protocol = skb->protocol;
1626        u32  tx_flags = 0;
1627
1628        if (protocol == htons(ETH_P_8021Q) &&
1629            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1630                /* When HW VLAN acceleration is turned off by the user the
1631                 * stack sets the protocol to 8021q so that the driver
1632                 * can take any steps required to support the SW only
1633                 * VLAN handling.  In our case the driver doesn't need
1634                 * to take any further steps so just set the protocol
1635                 * to the encapsulated ethertype.
1636                 */
1637                skb->protocol = vlan_get_protocol(skb);
1638                goto out;
1639        }
1640
1641        /* if we have a HW VLAN tag being added, default to the HW one */
1642        if (skb_vlan_tag_present(skb)) {
1643                tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1644                tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1645        /* else if it is a SW VLAN, check the next protocol and store the tag */
1646        } else if (protocol == htons(ETH_P_8021Q)) {
1647                struct vlan_hdr *vhdr, _vhdr;
1648
1649                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1650                if (!vhdr)
1651                        return -EINVAL;
1652
1653                protocol = vhdr->h_vlan_encapsulated_proto;
1654                tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1655                tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1656        }
1657
1658out:
1659        *flags = tx_flags;
1660        return 0;
1661}
1662
1663/**
1664 * i40e_tso - set up the tso context descriptor
1665 * @first:    pointer to first Tx buffer for xmit
1666 * @hdr_len:  ptr to the size of the packet header
1667 * @cd_type_cmd_tso_mss: Quad Word 1
1668 *
1669 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1670 **/
1671static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1672                    u64 *cd_type_cmd_tso_mss)
1673{
1674        struct sk_buff *skb = first->skb;
1675        u64 cd_cmd, cd_tso_len, cd_mss;
1676        union {
1677                struct iphdr *v4;
1678                struct ipv6hdr *v6;
1679                unsigned char *hdr;
1680        } ip;
1681        union {
1682                struct tcphdr *tcp;
1683                struct udphdr *udp;
1684                unsigned char *hdr;
1685        } l4;
1686        u32 paylen, l4_offset;
1687        u16 gso_segs, gso_size;
1688        int err;
1689
1690        if (skb->ip_summed != CHECKSUM_PARTIAL)
1691                return 0;
1692
1693        if (!skb_is_gso(skb))
1694                return 0;
1695
1696        err = skb_cow_head(skb, 0);
1697        if (err < 0)
1698                return err;
1699
1700        ip.hdr = skb_network_header(skb);
1701        l4.hdr = skb_transport_header(skb);
1702
1703        /* initialize outer IP header fields */
1704        if (ip.v4->version == 4) {
1705                ip.v4->tot_len = 0;
1706                ip.v4->check = 0;
1707        } else {
1708                ip.v6->payload_len = 0;
1709        }
1710
1711        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1712                                         SKB_GSO_GRE_CSUM |
1713                                         SKB_GSO_IPXIP4 |
1714                                         SKB_GSO_IPXIP6 |
1715                                         SKB_GSO_UDP_TUNNEL |
1716                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
1717                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1718                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1719                        l4.udp->len = 0;
1720
1721                        /* determine offset of outer transport header */
1722                        l4_offset = l4.hdr - skb->data;
1723
1724                        /* remove payload length from outer checksum */
1725                        paylen = skb->len - l4_offset;
1726                        csum_replace_by_diff(&l4.udp->check,
1727                                             (__force __wsum)htonl(paylen));
1728                }
1729
1730                /* reset pointers to inner headers */
1731                ip.hdr = skb_inner_network_header(skb);
1732                l4.hdr = skb_inner_transport_header(skb);
1733
1734                /* initialize inner IP header fields */
1735                if (ip.v4->version == 4) {
1736                        ip.v4->tot_len = 0;
1737                        ip.v4->check = 0;
1738                } else {
1739                        ip.v6->payload_len = 0;
1740                }
1741        }
1742
1743        /* determine offset of inner transport header */
1744        l4_offset = l4.hdr - skb->data;
1745
1746        /* remove payload length from inner checksum */
1747        paylen = skb->len - l4_offset;
1748        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1749
1750        /* compute length of segmentation header */
1751        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1752
1753        /* pull values out of skb_shinfo */
1754        gso_size = skb_shinfo(skb)->gso_size;
1755        gso_segs = skb_shinfo(skb)->gso_segs;
1756
1757        /* update GSO size and bytecount with header size */
1758        first->gso_segs = gso_segs;
1759        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1760
1761        /* find the field values */
1762        cd_cmd = I40E_TX_CTX_DESC_TSO;
1763        cd_tso_len = skb->len - *hdr_len;
1764        cd_mss = gso_size;
1765        *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1766                                (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1767                                (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1768        return 1;
1769}
1770
1771/**
1772 * i40e_tx_enable_csum - Enable Tx checksum offloads
1773 * @skb: send buffer
1774 * @tx_flags: pointer to Tx flags currently set
1775 * @td_cmd: Tx descriptor command bits to set
1776 * @td_offset: Tx descriptor header offsets to set
1777 * @tx_ring: Tx descriptor ring
1778 * @cd_tunneling: ptr to context desc bits
1779 **/
1780static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1781                               u32 *td_cmd, u32 *td_offset,
1782                               struct i40e_ring *tx_ring,
1783                               u32 *cd_tunneling)
1784{
1785        union {
1786                struct iphdr *v4;
1787                struct ipv6hdr *v6;
1788                unsigned char *hdr;
1789        } ip;
1790        union {
1791                struct tcphdr *tcp;
1792                struct udphdr *udp;
1793                unsigned char *hdr;
1794        } l4;
1795        unsigned char *exthdr;
1796        u32 offset, cmd = 0;
1797        __be16 frag_off;
1798        u8 l4_proto = 0;
1799
1800        if (skb->ip_summed != CHECKSUM_PARTIAL)
1801                return 0;
1802
1803        ip.hdr = skb_network_header(skb);
1804        l4.hdr = skb_transport_header(skb);
1805
1806        /* compute outer L2 header size */
1807        offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1808
1809        if (skb->encapsulation) {
1810                u32 tunnel = 0;
1811                /* define outer network header type */
1812                if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1813                        tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1814                                  I40E_TX_CTX_EXT_IP_IPV4 :
1815                                  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1816
1817                        l4_proto = ip.v4->protocol;
1818                } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1819                        tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1820
1821                        exthdr = ip.hdr + sizeof(*ip.v6);
1822                        l4_proto = ip.v6->nexthdr;
1823                        if (l4.hdr != exthdr)
1824                                ipv6_skip_exthdr(skb, exthdr - skb->data,
1825                                                 &l4_proto, &frag_off);
1826                }
1827
1828                /* define outer transport */
1829                switch (l4_proto) {
1830                case IPPROTO_UDP:
1831                        tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1832                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1833                        break;
1834                case IPPROTO_GRE:
1835                        tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1836                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1837                        break;
1838                case IPPROTO_IPIP:
1839                case IPPROTO_IPV6:
1840                        *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1841                        l4.hdr = skb_inner_network_header(skb);
1842                        break;
1843                default:
1844                        if (*tx_flags & I40E_TX_FLAGS_TSO)
1845                                return -1;
1846
1847                        skb_checksum_help(skb);
1848                        return 0;
1849                }
1850
1851                /* compute outer L3 header size */
1852                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1853                          I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1854
1855                /* switch IP header pointer from outer to inner header */
1856                ip.hdr = skb_inner_network_header(skb);
1857
1858                /* compute tunnel header size */
1859                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1860                          I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1861
1862                /* indicate if we need to offload outer UDP header */
1863                if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1864                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1865                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1866                        tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1867
1868                /* record tunnel offload values */
1869                *cd_tunneling |= tunnel;
1870
1871                /* switch L4 header pointer from outer to inner */
1872                l4.hdr = skb_inner_transport_header(skb);
1873                l4_proto = 0;
1874
1875                /* reset type as we transition from outer to inner headers */
1876                *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1877                if (ip.v4->version == 4)
1878                        *tx_flags |= I40E_TX_FLAGS_IPV4;
1879                if (ip.v6->version == 6)
1880                        *tx_flags |= I40E_TX_FLAGS_IPV6;
1881        }
1882
1883        /* Enable IP checksum offloads */
1884        if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1885                l4_proto = ip.v4->protocol;
1886                /* the stack computes the IP header already, the only time we
1887                 * need the hardware to recompute it is in the case of TSO.
1888                 */
1889                cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1890                       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1891                       I40E_TX_DESC_CMD_IIPT_IPV4;
1892        } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1893                cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1894
1895                exthdr = ip.hdr + sizeof(*ip.v6);
1896                l4_proto = ip.v6->nexthdr;
1897                if (l4.hdr != exthdr)
1898                        ipv6_skip_exthdr(skb, exthdr - skb->data,
1899                                         &l4_proto, &frag_off);
1900        }
1901
1902        /* compute inner L3 header size */
1903        offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1904
1905        /* Enable L4 checksum offloads */
1906        switch (l4_proto) {
1907        case IPPROTO_TCP:
1908                /* enable checksum offloads */
1909                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1910                offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1911                break;
1912        case IPPROTO_SCTP:
1913                /* enable SCTP checksum offload */
1914                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1915                offset |= (sizeof(struct sctphdr) >> 2) <<
1916                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1917                break;
1918        case IPPROTO_UDP:
1919                /* enable UDP checksum offload */
1920                cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1921                offset |= (sizeof(struct udphdr) >> 2) <<
1922                          I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1923                break;
1924        default:
1925                if (*tx_flags & I40E_TX_FLAGS_TSO)
1926                        return -1;
1927                skb_checksum_help(skb);
1928                return 0;
1929        }
1930
1931        *td_cmd |= cmd;
1932        *td_offset |= offset;
1933
1934        return 1;
1935}
1936
1937/**
1938 * i40e_create_tx_ctx Build the Tx context descriptor
1939 * @tx_ring:  ring to create the descriptor on
1940 * @cd_type_cmd_tso_mss: Quad Word 1
1941 * @cd_tunneling: Quad Word 0 - bits 0-31
1942 * @cd_l2tag2: Quad Word 0 - bits 32-63
1943 **/
1944static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1945                               const u64 cd_type_cmd_tso_mss,
1946                               const u32 cd_tunneling, const u32 cd_l2tag2)
1947{
1948        struct i40e_tx_context_desc *context_desc;
1949        int i = tx_ring->next_to_use;
1950
1951        if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1952            !cd_tunneling && !cd_l2tag2)
1953                return;
1954
1955        /* grab the next descriptor */
1956        context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1957
1958        i++;
1959        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1960
1961        /* cpu_to_le32 and assign to struct fields */
1962        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1963        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1964        context_desc->rsvd = cpu_to_le16(0);
1965        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1966}
1967
1968/**
1969 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1970 * @skb:      send buffer
1971 *
1972 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1973 * and so we need to figure out the cases where we need to linearize the skb.
1974 *
1975 * For TSO we need to count the TSO header and segment payload separately.
1976 * As such we need to check cases where we have 7 fragments or more as we
1977 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1978 * the segment payload in the first descriptor, and another 7 for the
1979 * fragments.
1980 **/
1981bool __i40evf_chk_linearize(struct sk_buff *skb)
1982{
1983        const struct skb_frag_struct *frag, *stale;
1984        int nr_frags, sum;
1985
1986        /* no need to check if number of frags is less than 7 */
1987        nr_frags = skb_shinfo(skb)->nr_frags;
1988        if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1989                return false;
1990
1991        /* We need to walk through the list and validate that each group
1992         * of 6 fragments totals at least gso_size.
1993         */
1994        nr_frags -= I40E_MAX_BUFFER_TXD - 2;
1995        frag = &skb_shinfo(skb)->frags[0];
1996
1997        /* Initialize size to the negative value of gso_size minus 1.  We
1998         * use this as the worst case scenerio in which the frag ahead
1999         * of us only provides one byte which is why we are limited to 6
2000         * descriptors for a single transmit as the header and previous
2001         * fragment are already consuming 2 descriptors.
2002         */
2003        sum = 1 - skb_shinfo(skb)->gso_size;
2004
2005        /* Add size of frags 0 through 4 to create our initial sum */
2006        sum += skb_frag_size(frag++);
2007        sum += skb_frag_size(frag++);
2008        sum += skb_frag_size(frag++);
2009        sum += skb_frag_size(frag++);
2010        sum += skb_frag_size(frag++);
2011
2012        /* Walk through fragments adding latest fragment, testing it, and
2013         * then removing stale fragments from the sum.
2014         */
2015        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2016                int stale_size = skb_frag_size(stale);
2017
2018                sum += skb_frag_size(frag++);
2019
2020                /* The stale fragment may present us with a smaller
2021                 * descriptor than the actual fragment size. To account
2022                 * for that we need to remove all the data on the front and
2023                 * figure out what the remainder would be in the last
2024                 * descriptor associated with the fragment.
2025                 */
2026                if (stale_size > I40E_MAX_DATA_PER_TXD) {
2027                        int align_pad = -(stale->page_offset) &
2028                                        (I40E_MAX_READ_REQ_SIZE - 1);
2029
2030                        sum -= align_pad;
2031                        stale_size -= align_pad;
2032
2033                        do {
2034                                sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
2035                                stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
2036                        } while (stale_size > I40E_MAX_DATA_PER_TXD);
2037                }
2038
2039                /* if sum is negative we failed to make sufficient progress */
2040                if (sum < 0)
2041                        return true;
2042
2043                if (!nr_frags--)
2044                        break;
2045
2046                sum -= stale_size;
2047        }
2048
2049        return false;
2050}
2051
2052/**
2053 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2054 * @tx_ring: the ring to be checked
2055 * @size:    the size buffer we want to assure is available
2056 *
2057 * Returns -EBUSY if a stop is needed, else 0
2058 **/
2059int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2060{
2061        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2062        /* Memory barrier before checking head and tail */
2063        smp_mb();
2064
2065        /* Check again in a case another CPU has just made room available. */
2066        if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2067                return -EBUSY;
2068
2069        /* A reprieve! - use start_queue because it doesn't call schedule */
2070        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2071        ++tx_ring->tx_stats.restart_queue;
2072        return 0;
2073}
2074
2075/**
2076 * i40evf_tx_map - Build the Tx descriptor
2077 * @tx_ring:  ring to send buffer on
2078 * @skb:      send buffer
2079 * @first:    first buffer info buffer to use
2080 * @tx_flags: collected send information
2081 * @hdr_len:  size of the packet header
2082 * @td_cmd:   the command field in the descriptor
2083 * @td_offset: offset for checksum or crc
2084 **/
2085static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2086                                 struct i40e_tx_buffer *first, u32 tx_flags,
2087                                 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2088{
2089        unsigned int data_len = skb->data_len;
2090        unsigned int size = skb_headlen(skb);
2091        struct skb_frag_struct *frag;
2092        struct i40e_tx_buffer *tx_bi;
2093        struct i40e_tx_desc *tx_desc;
2094        u16 i = tx_ring->next_to_use;
2095        u32 td_tag = 0;
2096        dma_addr_t dma;
2097
2098        if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2099                td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2100                td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2101                         I40E_TX_FLAGS_VLAN_SHIFT;
2102        }
2103
2104        first->tx_flags = tx_flags;
2105
2106        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2107
2108        tx_desc = I40E_TX_DESC(tx_ring, i);
2109        tx_bi = first;
2110
2111        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2112                unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2113
2114                if (dma_mapping_error(tx_ring->dev, dma))
2115                        goto dma_error;
2116
2117                /* record length, and DMA address */
2118                dma_unmap_len_set(tx_bi, len, size);
2119                dma_unmap_addr_set(tx_bi, dma, dma);
2120
2121                /* align size to end of page */
2122                max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2123                tx_desc->buffer_addr = cpu_to_le64(dma);
2124
2125                while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2126                        tx_desc->cmd_type_offset_bsz =
2127                                build_ctob(td_cmd, td_offset,
2128                                           max_data, td_tag);
2129
2130                        tx_desc++;
2131                        i++;
2132
2133                        if (i == tx_ring->count) {
2134                                tx_desc = I40E_TX_DESC(tx_ring, 0);
2135                                i = 0;
2136                        }
2137
2138                        dma += max_data;
2139                        size -= max_data;
2140
2141                        max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2142                        tx_desc->buffer_addr = cpu_to_le64(dma);
2143                }
2144
2145                if (likely(!data_len))
2146                        break;
2147
2148                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2149                                                          size, td_tag);
2150
2151                tx_desc++;
2152                i++;
2153
2154                if (i == tx_ring->count) {
2155                        tx_desc = I40E_TX_DESC(tx_ring, 0);
2156                        i = 0;
2157                }
2158
2159                size = skb_frag_size(frag);
2160                data_len -= size;
2161
2162                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2163                                       DMA_TO_DEVICE);
2164
2165                tx_bi = &tx_ring->tx_bi[i];
2166        }
2167
2168        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2169
2170        i++;
2171        if (i == tx_ring->count)
2172                i = 0;
2173
2174        tx_ring->next_to_use = i;
2175
2176        i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2177
2178        /* write last descriptor with RS and EOP bits */
2179        td_cmd |= I40E_TXD_CMD;
2180        tx_desc->cmd_type_offset_bsz =
2181                        build_ctob(td_cmd, td_offset, size, td_tag);
2182
2183        /* Force memory writes to complete before letting h/w know there
2184         * are new descriptors to fetch.
2185         *
2186         * We also use this memory barrier to make certain all of the
2187         * status bits have been updated before next_to_watch is written.
2188         */
2189        wmb();
2190
2191        /* set next_to_watch value indicating a packet is present */
2192        first->next_to_watch = tx_desc;
2193
2194        /* notify HW of packet */
2195        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2196                writel(i, tx_ring->tail);
2197
2198                /* we need this if more than one processor can write to our tail
2199                 * at a time, it synchronizes IO on IA64/Altix systems
2200                 */
2201                mmiowb();
2202        }
2203
2204        return;
2205
2206dma_error:
2207        dev_info(tx_ring->dev, "TX DMA map failed\n");
2208
2209        /* clear dma mappings for failed tx_bi map */
2210        for (;;) {
2211                tx_bi = &tx_ring->tx_bi[i];
2212                i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2213                if (tx_bi == first)
2214                        break;
2215                if (i == 0)
2216                        i = tx_ring->count;
2217                i--;
2218        }
2219
2220        tx_ring->next_to_use = i;
2221}
2222
2223/**
2224 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2225 * @skb:     send buffer
2226 * @tx_ring: ring to send buffer on
2227 *
2228 * Returns NETDEV_TX_OK if sent, else an error code
2229 **/
2230static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2231                                        struct i40e_ring *tx_ring)
2232{
2233        u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2234        u32 cd_tunneling = 0, cd_l2tag2 = 0;
2235        struct i40e_tx_buffer *first;
2236        u32 td_offset = 0;
2237        u32 tx_flags = 0;
2238        __be16 protocol;
2239        u32 td_cmd = 0;
2240        u8 hdr_len = 0;
2241        int tso, count;
2242
2243        /* prefetch the data, we'll need it later */
2244        prefetch(skb->data);
2245
2246        i40e_trace(xmit_frame_ring, skb, tx_ring);
2247
2248        count = i40e_xmit_descriptor_count(skb);
2249        if (i40e_chk_linearize(skb, count)) {
2250                if (__skb_linearize(skb)) {
2251                        dev_kfree_skb_any(skb);
2252                        return NETDEV_TX_OK;
2253                }
2254                count = i40e_txd_use_count(skb->len);
2255                tx_ring->tx_stats.tx_linearize++;
2256        }
2257
2258        /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2259         *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2260         *       + 4 desc gap to avoid the cache line where head is,
2261         *       + 1 desc for context descriptor,
2262         * otherwise try next time
2263         */
2264        if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2265                tx_ring->tx_stats.tx_busy++;
2266                return NETDEV_TX_BUSY;
2267        }
2268
2269        /* record the location of the first descriptor for this packet */
2270        first = &tx_ring->tx_bi[tx_ring->next_to_use];
2271        first->skb = skb;
2272        first->bytecount = skb->len;
2273        first->gso_segs = 1;
2274
2275        /* prepare the xmit flags */
2276        if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2277                goto out_drop;
2278
2279        /* obtain protocol of skb */
2280        protocol = vlan_get_protocol(skb);
2281
2282        /* setup IPv4/IPv6 offloads */
2283        if (protocol == htons(ETH_P_IP))
2284                tx_flags |= I40E_TX_FLAGS_IPV4;
2285        else if (protocol == htons(ETH_P_IPV6))
2286                tx_flags |= I40E_TX_FLAGS_IPV6;
2287
2288        tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2289
2290        if (tso < 0)
2291                goto out_drop;
2292        else if (tso)
2293                tx_flags |= I40E_TX_FLAGS_TSO;
2294
2295        /* Always offload the checksum, since it's in the data descriptor */
2296        tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2297                                  tx_ring, &cd_tunneling);
2298        if (tso < 0)
2299                goto out_drop;
2300
2301        skb_tx_timestamp(skb);
2302
2303        /* always enable CRC insertion offload */
2304        td_cmd |= I40E_TX_DESC_CMD_ICRC;
2305
2306        i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2307                           cd_tunneling, cd_l2tag2);
2308
2309        i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2310                      td_cmd, td_offset);
2311
2312        return NETDEV_TX_OK;
2313
2314out_drop:
2315        i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2316        dev_kfree_skb_any(first->skb);
2317        first->skb = NULL;
2318        return NETDEV_TX_OK;
2319}
2320
2321/**
2322 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2323 * @skb:    send buffer
2324 * @netdev: network interface device structure
2325 *
2326 * Returns NETDEV_TX_OK if sent, else an error code
2327 **/
2328netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2329{
2330        struct i40evf_adapter *adapter = netdev_priv(netdev);
2331        struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2332
2333        /* hardware can't handle really short frames, hardware padding works
2334         * beyond this point
2335         */
2336        if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2337                if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2338                        return NETDEV_TX_OK;
2339                skb->len = I40E_MIN_TX_LEN;
2340                skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2341        }
2342
2343        return i40e_xmit_frame_ring(skb, tx_ring);
2344}
2345