linux/drivers/net/ethernet/netronome/nfp/nfp_net_common.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2015-2017 Netronome Systems, Inc.
   3 *
   4 * This software is dual licensed under the GNU General License Version 2,
   5 * June 1991 as shown in the file COPYING in the top-level directory of this
   6 * source tree or the BSD 2-Clause License provided below.  You have the
   7 * option to license this software under the complete terms of either license.
   8 *
   9 * The BSD 2-Clause License:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      1. Redistributions of source code must retain the above
  16 *         copyright notice, this list of conditions and the following
  17 *         disclaimer.
  18 *
  19 *      2. Redistributions in binary form must reproduce the above
  20 *         copyright notice, this list of conditions and the following
  21 *         disclaimer in the documentation and/or other materials
  22 *         provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34/*
  35 * nfp_net_common.c
  36 * Netronome network device driver: Common functions between PF and VF
  37 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
  38 *          Jason McMullan <jason.mcmullan@netronome.com>
  39 *          Rolf Neugebauer <rolf.neugebauer@netronome.com>
  40 *          Brad Petrus <brad.petrus@netronome.com>
  41 *          Chris Telfer <chris.telfer@netronome.com>
  42 */
  43
  44#include <linux/bitfield.h>
  45#include <linux/bpf.h>
  46#include <linux/bpf_trace.h>
  47#include <linux/module.h>
  48#include <linux/kernel.h>
  49#include <linux/init.h>
  50#include <linux/fs.h>
  51#include <linux/netdevice.h>
  52#include <linux/etherdevice.h>
  53#include <linux/interrupt.h>
  54#include <linux/ip.h>
  55#include <linux/ipv6.h>
  56#include <linux/page_ref.h>
  57#include <linux/pci.h>
  58#include <linux/pci_regs.h>
  59#include <linux/msi.h>
  60#include <linux/ethtool.h>
  61#include <linux/log2.h>
  62#include <linux/if_vlan.h>
  63#include <linux/random.h>
  64#include <linux/vmalloc.h>
  65#include <linux/ktime.h>
  66
  67#include <net/switchdev.h>
  68#include <net/vxlan.h>
  69
  70#include "nfpcore/nfp_nsp.h"
  71#include "nfp_app.h"
  72#include "nfp_net_ctrl.h"
  73#include "nfp_net.h"
  74#include "nfp_net_sriov.h"
  75#include "nfp_port.h"
  76
  77/**
  78 * nfp_net_get_fw_version() - Read and parse the FW version
  79 * @fw_ver:     Output fw_version structure to read to
  80 * @ctrl_bar:   Mapped address of the control BAR
  81 */
  82void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver,
  83                            void __iomem *ctrl_bar)
  84{
  85        u32 reg;
  86
  87        reg = readl(ctrl_bar + NFP_NET_CFG_VERSION);
  88        put_unaligned_le32(reg, fw_ver);
  89}
  90
  91static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag)
  92{
  93        return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM,
  94                                    dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
  95                                    dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
  96}
  97
  98static void
  99nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr)
 100{
 101        dma_sync_single_for_device(dp->dev, dma_addr,
 102                                   dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
 103                                   dp->rx_dma_dir);
 104}
 105
 106static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr)
 107{
 108        dma_unmap_single_attrs(dp->dev, dma_addr,
 109                               dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA,
 110                               dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
 111}
 112
 113static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr,
 114                                    unsigned int len)
 115{
 116        dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM,
 117                                len, dp->rx_dma_dir);
 118}
 119
 120/* Firmware reconfig
 121 *
 122 * Firmware reconfig may take a while so we have two versions of it -
 123 * synchronous and asynchronous (posted).  All synchronous callers are holding
 124 * RTNL so we don't have to worry about serializing them.
 125 */
 126static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update)
 127{
 128        nn_writel(nn, NFP_NET_CFG_UPDATE, update);
 129        /* ensure update is written before pinging HW */
 130        nn_pci_flush(nn);
 131        nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1);
 132}
 133
 134/* Pass 0 as update to run posted reconfigs. */
 135static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update)
 136{
 137        update |= nn->reconfig_posted;
 138        nn->reconfig_posted = 0;
 139
 140        nfp_net_reconfig_start(nn, update);
 141
 142        nn->reconfig_timer_active = true;
 143        mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ);
 144}
 145
 146static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check)
 147{
 148        u32 reg;
 149
 150        reg = nn_readl(nn, NFP_NET_CFG_UPDATE);
 151        if (reg == 0)
 152                return true;
 153        if (reg & NFP_NET_CFG_UPDATE_ERR) {
 154                nn_err(nn, "Reconfig error: 0x%08x\n", reg);
 155                return true;
 156        } else if (last_check) {
 157                nn_err(nn, "Reconfig timeout: 0x%08x\n", reg);
 158                return true;
 159        }
 160
 161        return false;
 162}
 163
 164static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline)
 165{
 166        bool timed_out = false;
 167
 168        /* Poll update field, waiting for NFP to ack the config */
 169        while (!nfp_net_reconfig_check_done(nn, timed_out)) {
 170                msleep(1);
 171                timed_out = time_is_before_eq_jiffies(deadline);
 172        }
 173
 174        if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR)
 175                return -EIO;
 176
 177        return timed_out ? -EIO : 0;
 178}
 179
 180static void nfp_net_reconfig_timer(struct timer_list *t)
 181{
 182        struct nfp_net *nn = from_timer(nn, t, reconfig_timer);
 183
 184        spin_lock_bh(&nn->reconfig_lock);
 185
 186        nn->reconfig_timer_active = false;
 187
 188        /* If sync caller is present it will take over from us */
 189        if (nn->reconfig_sync_present)
 190                goto done;
 191
 192        /* Read reconfig status and report errors */
 193        nfp_net_reconfig_check_done(nn, true);
 194
 195        if (nn->reconfig_posted)
 196                nfp_net_reconfig_start_async(nn, 0);
 197done:
 198        spin_unlock_bh(&nn->reconfig_lock);
 199}
 200
 201/**
 202 * nfp_net_reconfig_post() - Post async reconfig request
 203 * @nn:      NFP Net device to reconfigure
 204 * @update:  The value for the update field in the BAR config
 205 *
 206 * Record FW reconfiguration request.  Reconfiguration will be kicked off
 207 * whenever reconfiguration machinery is idle.  Multiple requests can be
 208 * merged together!
 209 */
 210static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update)
 211{
 212        spin_lock_bh(&nn->reconfig_lock);
 213
 214        /* Sync caller will kick off async reconf when it's done, just post */
 215        if (nn->reconfig_sync_present) {
 216                nn->reconfig_posted |= update;
 217                goto done;
 218        }
 219
 220        /* Opportunistically check if the previous command is done */
 221        if (!nn->reconfig_timer_active ||
 222            nfp_net_reconfig_check_done(nn, false))
 223                nfp_net_reconfig_start_async(nn, update);
 224        else
 225                nn->reconfig_posted |= update;
 226done:
 227        spin_unlock_bh(&nn->reconfig_lock);
 228}
 229
 230/**
 231 * nfp_net_reconfig() - Reconfigure the firmware
 232 * @nn:      NFP Net device to reconfigure
 233 * @update:  The value for the update field in the BAR config
 234 *
 235 * Write the update word to the BAR and ping the reconfig queue.  The
 236 * poll until the firmware has acknowledged the update by zeroing the
 237 * update word.
 238 *
 239 * Return: Negative errno on error, 0 on success
 240 */
 241int nfp_net_reconfig(struct nfp_net *nn, u32 update)
 242{
 243        bool cancelled_timer = false;
 244        u32 pre_posted_requests;
 245        int ret;
 246
 247        spin_lock_bh(&nn->reconfig_lock);
 248
 249        nn->reconfig_sync_present = true;
 250
 251        if (nn->reconfig_timer_active) {
 252                del_timer(&nn->reconfig_timer);
 253                nn->reconfig_timer_active = false;
 254                cancelled_timer = true;
 255        }
 256        pre_posted_requests = nn->reconfig_posted;
 257        nn->reconfig_posted = 0;
 258
 259        spin_unlock_bh(&nn->reconfig_lock);
 260
 261        if (cancelled_timer)
 262                nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires);
 263
 264        /* Run the posted reconfigs which were issued before we started */
 265        if (pre_posted_requests) {
 266                nfp_net_reconfig_start(nn, pre_posted_requests);
 267                nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
 268        }
 269
 270        nfp_net_reconfig_start(nn, update);
 271        ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT);
 272
 273        spin_lock_bh(&nn->reconfig_lock);
 274
 275        if (nn->reconfig_posted)
 276                nfp_net_reconfig_start_async(nn, 0);
 277
 278        nn->reconfig_sync_present = false;
 279
 280        spin_unlock_bh(&nn->reconfig_lock);
 281
 282        return ret;
 283}
 284
 285/**
 286 * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox
 287 * @nn:        NFP Net device to reconfigure
 288 * @mbox_cmd:  The value for the mailbox command
 289 *
 290 * Helper function for mailbox updates
 291 *
 292 * Return: Negative errno on error, 0 on success
 293 */
 294static int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd)
 295{
 296        int ret;
 297
 298        nn_writeq(nn, NFP_NET_CFG_MBOX_CMD, mbox_cmd);
 299
 300        ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX);
 301        if (ret) {
 302                nn_err(nn, "Mailbox update error\n");
 303                return ret;
 304        }
 305
 306        return -nn_readl(nn, NFP_NET_CFG_MBOX_RET);
 307}
 308
 309/* Interrupt configuration and handling
 310 */
 311
 312/**
 313 * nfp_net_irq_unmask() - Unmask automasked interrupt
 314 * @nn:       NFP Network structure
 315 * @entry_nr: MSI-X table entry
 316 *
 317 * Clear the ICR for the IRQ entry.
 318 */
 319static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr)
 320{
 321        nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED);
 322        nn_pci_flush(nn);
 323}
 324
 325/**
 326 * nfp_net_irqs_alloc() - allocates MSI-X irqs
 327 * @pdev:        PCI device structure
 328 * @irq_entries: Array to be initialized and used to hold the irq entries
 329 * @min_irqs:    Minimal acceptable number of interrupts
 330 * @wanted_irqs: Target number of interrupts to allocate
 331 *
 332 * Return: Number of irqs obtained or 0 on error.
 333 */
 334unsigned int
 335nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries,
 336                   unsigned int min_irqs, unsigned int wanted_irqs)
 337{
 338        unsigned int i;
 339        int got_irqs;
 340
 341        for (i = 0; i < wanted_irqs; i++)
 342                irq_entries[i].entry = i;
 343
 344        got_irqs = pci_enable_msix_range(pdev, irq_entries,
 345                                         min_irqs, wanted_irqs);
 346        if (got_irqs < 0) {
 347                dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n",
 348                        min_irqs, wanted_irqs, got_irqs);
 349                return 0;
 350        }
 351
 352        if (got_irqs < wanted_irqs)
 353                dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n",
 354                         wanted_irqs, got_irqs);
 355
 356        return got_irqs;
 357}
 358
 359/**
 360 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
 361 * @nn:          NFP Network structure
 362 * @irq_entries: Table of allocated interrupts
 363 * @n:           Size of @irq_entries (number of entries to grab)
 364 *
 365 * After interrupts are allocated with nfp_net_irqs_alloc() this function
 366 * should be called to assign them to a specific netdev (port).
 367 */
 368void
 369nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries,
 370                    unsigned int n)
 371{
 372        struct nfp_net_dp *dp = &nn->dp;
 373
 374        nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS;
 375        dp->num_r_vecs = nn->max_r_vecs;
 376
 377        memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n);
 378
 379        if (dp->num_rx_rings > dp->num_r_vecs ||
 380            dp->num_tx_rings > dp->num_r_vecs)
 381                dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n",
 382                         dp->num_rx_rings, dp->num_tx_rings,
 383                         dp->num_r_vecs);
 384
 385        dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings);
 386        dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings);
 387        dp->num_stack_tx_rings = dp->num_tx_rings;
 388}
 389
 390/**
 391 * nfp_net_irqs_disable() - Disable interrupts
 392 * @pdev:        PCI device structure
 393 *
 394 * Undoes what @nfp_net_irqs_alloc() does.
 395 */
 396void nfp_net_irqs_disable(struct pci_dev *pdev)
 397{
 398        pci_disable_msix(pdev);
 399}
 400
 401/**
 402 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
 403 * @irq:      Interrupt
 404 * @data:     Opaque data structure
 405 *
 406 * Return: Indicate if the interrupt has been handled.
 407 */
 408static irqreturn_t nfp_net_irq_rxtx(int irq, void *data)
 409{
 410        struct nfp_net_r_vector *r_vec = data;
 411
 412        napi_schedule_irqoff(&r_vec->napi);
 413
 414        /* The FW auto-masks any interrupt, either via the MASK bit in
 415         * the MSI-X table or via the per entry ICR field.  So there
 416         * is no need to disable interrupts here.
 417         */
 418        return IRQ_HANDLED;
 419}
 420
 421static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data)
 422{
 423        struct nfp_net_r_vector *r_vec = data;
 424
 425        tasklet_schedule(&r_vec->tasklet);
 426
 427        return IRQ_HANDLED;
 428}
 429
 430/**
 431 * nfp_net_read_link_status() - Reread link status from control BAR
 432 * @nn:       NFP Network structure
 433 */
 434static void nfp_net_read_link_status(struct nfp_net *nn)
 435{
 436        unsigned long flags;
 437        bool link_up;
 438        u32 sts;
 439
 440        spin_lock_irqsave(&nn->link_status_lock, flags);
 441
 442        sts = nn_readl(nn, NFP_NET_CFG_STS);
 443        link_up = !!(sts & NFP_NET_CFG_STS_LINK);
 444
 445        if (nn->link_up == link_up)
 446                goto out;
 447
 448        nn->link_up = link_up;
 449        if (nn->port)
 450                set_bit(NFP_PORT_CHANGED, &nn->port->flags);
 451
 452        if (nn->link_up) {
 453                netif_carrier_on(nn->dp.netdev);
 454                netdev_info(nn->dp.netdev, "NIC Link is Up\n");
 455        } else {
 456                netif_carrier_off(nn->dp.netdev);
 457                netdev_info(nn->dp.netdev, "NIC Link is Down\n");
 458        }
 459out:
 460        spin_unlock_irqrestore(&nn->link_status_lock, flags);
 461}
 462
 463/**
 464 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
 465 * @irq:      Interrupt
 466 * @data:     Opaque data structure
 467 *
 468 * Return: Indicate if the interrupt has been handled.
 469 */
 470static irqreturn_t nfp_net_irq_lsc(int irq, void *data)
 471{
 472        struct nfp_net *nn = data;
 473        struct msix_entry *entry;
 474
 475        entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX];
 476
 477        nfp_net_read_link_status(nn);
 478
 479        nfp_net_irq_unmask(nn, entry->entry);
 480
 481        return IRQ_HANDLED;
 482}
 483
 484/**
 485 * nfp_net_irq_exn() - Interrupt service routine for exceptions
 486 * @irq:      Interrupt
 487 * @data:     Opaque data structure
 488 *
 489 * Return: Indicate if the interrupt has been handled.
 490 */
 491static irqreturn_t nfp_net_irq_exn(int irq, void *data)
 492{
 493        struct nfp_net *nn = data;
 494
 495        nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__);
 496        /* XXX TO BE IMPLEMENTED */
 497        return IRQ_HANDLED;
 498}
 499
 500/**
 501 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
 502 * @tx_ring:  TX ring structure
 503 * @r_vec:    IRQ vector servicing this ring
 504 * @idx:      Ring index
 505 * @is_xdp:   Is this an XDP TX ring?
 506 */
 507static void
 508nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring,
 509                     struct nfp_net_r_vector *r_vec, unsigned int idx,
 510                     bool is_xdp)
 511{
 512        struct nfp_net *nn = r_vec->nfp_net;
 513
 514        tx_ring->idx = idx;
 515        tx_ring->r_vec = r_vec;
 516        tx_ring->is_xdp = is_xdp;
 517        u64_stats_init(&tx_ring->r_vec->tx_sync);
 518
 519        tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
 520        tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
 521}
 522
 523/**
 524 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
 525 * @rx_ring:  RX ring structure
 526 * @r_vec:    IRQ vector servicing this ring
 527 * @idx:      Ring index
 528 */
 529static void
 530nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
 531                     struct nfp_net_r_vector *r_vec, unsigned int idx)
 532{
 533        struct nfp_net *nn = r_vec->nfp_net;
 534
 535        rx_ring->idx = idx;
 536        rx_ring->r_vec = r_vec;
 537        u64_stats_init(&rx_ring->r_vec->rx_sync);
 538
 539        rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
 540        rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
 541}
 542
 543/**
 544 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
 545 * @nn:         NFP Network structure
 546 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 547 * @format:     printf-style format to construct the interrupt name
 548 * @name:       Pointer to allocated space for interrupt name
 549 * @name_sz:    Size of space for interrupt name
 550 * @vector_idx: Index of MSI-X vector used for this interrupt
 551 * @handler:    IRQ handler to register for this interrupt
 552 */
 553static int
 554nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset,
 555                        const char *format, char *name, size_t name_sz,
 556                        unsigned int vector_idx, irq_handler_t handler)
 557{
 558        struct msix_entry *entry;
 559        int err;
 560
 561        entry = &nn->irq_entries[vector_idx];
 562
 563        snprintf(name, name_sz, format, nfp_net_name(nn));
 564        err = request_irq(entry->vector, handler, 0, name, nn);
 565        if (err) {
 566                nn_err(nn, "Failed to request IRQ %d (err=%d).\n",
 567                       entry->vector, err);
 568                return err;
 569        }
 570        nn_writeb(nn, ctrl_offset, entry->entry);
 571        nfp_net_irq_unmask(nn, entry->entry);
 572
 573        return 0;
 574}
 575
 576/**
 577 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
 578 * @nn:         NFP Network structure
 579 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
 580 * @vector_idx: Index of MSI-X vector used for this interrupt
 581 */
 582static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset,
 583                                 unsigned int vector_idx)
 584{
 585        nn_writeb(nn, ctrl_offset, 0xff);
 586        nn_pci_flush(nn);
 587        free_irq(nn->irq_entries[vector_idx].vector, nn);
 588}
 589
 590/* Transmit
 591 *
 592 * One queue controller peripheral queue is used for transmit.  The
 593 * driver en-queues packets for transmit by advancing the write
 594 * pointer.  The device indicates that packets have transmitted by
 595 * advancing the read pointer.  The driver maintains a local copy of
 596 * the read and write pointer in @struct nfp_net_tx_ring.  The driver
 597 * keeps @wr_p in sync with the queue controller write pointer and can
 598 * determine how many packets have been transmitted by comparing its
 599 * copy of the read pointer @rd_p with the read pointer maintained by
 600 * the queue controller peripheral.
 601 */
 602
 603/**
 604 * nfp_net_tx_full() - Check if the TX ring is full
 605 * @tx_ring: TX ring to check
 606 * @dcnt:    Number of descriptors that need to be enqueued (must be >= 1)
 607 *
 608 * This function checks, based on the *host copy* of read/write
 609 * pointer if a given TX ring is full.  The real TX queue may have
 610 * some newly made available slots.
 611 *
 612 * Return: True if the ring is full.
 613 */
 614static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt)
 615{
 616        return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt);
 617}
 618
 619/* Wrappers for deciding when to stop and restart TX queues */
 620static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring)
 621{
 622        return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4);
 623}
 624
 625static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring)
 626{
 627        return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1);
 628}
 629
 630/**
 631 * nfp_net_tx_ring_stop() - stop tx ring
 632 * @nd_q:    netdev queue
 633 * @tx_ring: driver tx queue structure
 634 *
 635 * Safely stop TX ring.  Remember that while we are running .start_xmit()
 636 * someone else may be cleaning the TX ring completions so we need to be
 637 * extra careful here.
 638 */
 639static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q,
 640                                 struct nfp_net_tx_ring *tx_ring)
 641{
 642        netif_tx_stop_queue(nd_q);
 643
 644        /* We can race with the TX completion out of NAPI so recheck */
 645        smp_mb();
 646        if (unlikely(nfp_net_tx_ring_should_wake(tx_ring)))
 647                netif_tx_start_queue(nd_q);
 648}
 649
 650/**
 651 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
 652 * @r_vec: per-ring structure
 653 * @txbuf: Pointer to driver soft TX descriptor
 654 * @txd: Pointer to HW TX descriptor
 655 * @skb: Pointer to SKB
 656 *
 657 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
 658 * Return error on packet header greater than maximum supported LSO header size.
 659 */
 660static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec,
 661                           struct nfp_net_tx_buf *txbuf,
 662                           struct nfp_net_tx_desc *txd, struct sk_buff *skb)
 663{
 664        u32 hdrlen;
 665        u16 mss;
 666
 667        if (!skb_is_gso(skb))
 668                return;
 669
 670        if (!skb->encapsulation) {
 671                txd->l3_offset = skb_network_offset(skb);
 672                txd->l4_offset = skb_transport_offset(skb);
 673                hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
 674        } else {
 675                txd->l3_offset = skb_inner_network_offset(skb);
 676                txd->l4_offset = skb_inner_transport_offset(skb);
 677                hdrlen = skb_inner_transport_header(skb) - skb->data +
 678                        inner_tcp_hdrlen(skb);
 679        }
 680
 681        txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs;
 682        txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1);
 683
 684        mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK;
 685        txd->lso_hdrlen = hdrlen;
 686        txd->mss = cpu_to_le16(mss);
 687        txd->flags |= PCIE_DESC_TX_LSO;
 688
 689        u64_stats_update_begin(&r_vec->tx_sync);
 690        r_vec->tx_lso++;
 691        u64_stats_update_end(&r_vec->tx_sync);
 692}
 693
 694/**
 695 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
 696 * @dp:  NFP Net data path struct
 697 * @r_vec: per-ring structure
 698 * @txbuf: Pointer to driver soft TX descriptor
 699 * @txd: Pointer to TX descriptor
 700 * @skb: Pointer to SKB
 701 *
 702 * This function sets the TX checksum flags in the TX descriptor based
 703 * on the configuration and the protocol of the packet to be transmitted.
 704 */
 705static void nfp_net_tx_csum(struct nfp_net_dp *dp,
 706                            struct nfp_net_r_vector *r_vec,
 707                            struct nfp_net_tx_buf *txbuf,
 708                            struct nfp_net_tx_desc *txd, struct sk_buff *skb)
 709{
 710        struct ipv6hdr *ipv6h;
 711        struct iphdr *iph;
 712        u8 l4_hdr;
 713
 714        if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM))
 715                return;
 716
 717        if (skb->ip_summed != CHECKSUM_PARTIAL)
 718                return;
 719
 720        txd->flags |= PCIE_DESC_TX_CSUM;
 721        if (skb->encapsulation)
 722                txd->flags |= PCIE_DESC_TX_ENCAP;
 723
 724        iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
 725        ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
 726
 727        if (iph->version == 4) {
 728                txd->flags |= PCIE_DESC_TX_IP4_CSUM;
 729                l4_hdr = iph->protocol;
 730        } else if (ipv6h->version == 6) {
 731                l4_hdr = ipv6h->nexthdr;
 732        } else {
 733                nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version);
 734                return;
 735        }
 736
 737        switch (l4_hdr) {
 738        case IPPROTO_TCP:
 739                txd->flags |= PCIE_DESC_TX_TCP_CSUM;
 740                break;
 741        case IPPROTO_UDP:
 742                txd->flags |= PCIE_DESC_TX_UDP_CSUM;
 743                break;
 744        default:
 745                nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr);
 746                return;
 747        }
 748
 749        u64_stats_update_begin(&r_vec->tx_sync);
 750        if (skb->encapsulation)
 751                r_vec->hw_csum_tx_inner += txbuf->pkt_cnt;
 752        else
 753                r_vec->hw_csum_tx += txbuf->pkt_cnt;
 754        u64_stats_update_end(&r_vec->tx_sync);
 755}
 756
 757static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring)
 758{
 759        wmb();
 760        nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add);
 761        tx_ring->wr_ptr_add = 0;
 762}
 763
 764static int nfp_net_prep_port_id(struct sk_buff *skb)
 765{
 766        struct metadata_dst *md_dst = skb_metadata_dst(skb);
 767        unsigned char *data;
 768
 769        if (likely(!md_dst))
 770                return 0;
 771        if (unlikely(md_dst->type != METADATA_HW_PORT_MUX))
 772                return 0;
 773
 774        if (unlikely(skb_cow_head(skb, 8)))
 775                return -ENOMEM;
 776
 777        data = skb_push(skb, 8);
 778        put_unaligned_be32(NFP_NET_META_PORTID, data);
 779        put_unaligned_be32(md_dst->u.port_info.port_id, data + 4);
 780
 781        return 8;
 782}
 783
 784/**
 785 * nfp_net_tx() - Main transmit entry point
 786 * @skb:    SKB to transmit
 787 * @netdev: netdev structure
 788 *
 789 * Return: NETDEV_TX_OK on success.
 790 */
 791static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
 792{
 793        struct nfp_net *nn = netdev_priv(netdev);
 794        const struct skb_frag_struct *frag;
 795        struct nfp_net_tx_desc *txd, txdg;
 796        int f, nr_frags, wr_idx, md_bytes;
 797        struct nfp_net_tx_ring *tx_ring;
 798        struct nfp_net_r_vector *r_vec;
 799        struct nfp_net_tx_buf *txbuf;
 800        struct netdev_queue *nd_q;
 801        struct nfp_net_dp *dp;
 802        dma_addr_t dma_addr;
 803        unsigned int fsize;
 804        u16 qidx;
 805
 806        dp = &nn->dp;
 807        qidx = skb_get_queue_mapping(skb);
 808        tx_ring = &dp->tx_rings[qidx];
 809        r_vec = tx_ring->r_vec;
 810        nd_q = netdev_get_tx_queue(dp->netdev, qidx);
 811
 812        nr_frags = skb_shinfo(skb)->nr_frags;
 813
 814        if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) {
 815                nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n",
 816                           qidx, tx_ring->wr_p, tx_ring->rd_p);
 817                netif_tx_stop_queue(nd_q);
 818                nfp_net_tx_xmit_more_flush(tx_ring);
 819                u64_stats_update_begin(&r_vec->tx_sync);
 820                r_vec->tx_busy++;
 821                u64_stats_update_end(&r_vec->tx_sync);
 822                return NETDEV_TX_BUSY;
 823        }
 824
 825        md_bytes = nfp_net_prep_port_id(skb);
 826        if (unlikely(md_bytes < 0)) {
 827                nfp_net_tx_xmit_more_flush(tx_ring);
 828                dev_kfree_skb_any(skb);
 829                return NETDEV_TX_OK;
 830        }
 831
 832        /* Start with the head skbuf */
 833        dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
 834                                  DMA_TO_DEVICE);
 835        if (dma_mapping_error(dp->dev, dma_addr))
 836                goto err_free;
 837
 838        wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
 839
 840        /* Stash the soft descriptor of the head then initialize it */
 841        txbuf = &tx_ring->txbufs[wr_idx];
 842        txbuf->skb = skb;
 843        txbuf->dma_addr = dma_addr;
 844        txbuf->fidx = -1;
 845        txbuf->pkt_cnt = 1;
 846        txbuf->real_len = skb->len;
 847
 848        /* Build TX descriptor */
 849        txd = &tx_ring->txds[wr_idx];
 850        txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes;
 851        txd->dma_len = cpu_to_le16(skb_headlen(skb));
 852        nfp_desc_set_dma_addr(txd, dma_addr);
 853        txd->data_len = cpu_to_le16(skb->len);
 854
 855        txd->flags = 0;
 856        txd->mss = 0;
 857        txd->lso_hdrlen = 0;
 858
 859        /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
 860        nfp_net_tx_tso(r_vec, txbuf, txd, skb);
 861        nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb);
 862        if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) {
 863                txd->flags |= PCIE_DESC_TX_VLAN;
 864                txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 865        }
 866
 867        /* Gather DMA */
 868        if (nr_frags > 0) {
 869                /* all descs must match except for in addr, length and eop */
 870                txdg = *txd;
 871
 872                for (f = 0; f < nr_frags; f++) {
 873                        frag = &skb_shinfo(skb)->frags[f];
 874                        fsize = skb_frag_size(frag);
 875
 876                        dma_addr = skb_frag_dma_map(dp->dev, frag, 0,
 877                                                    fsize, DMA_TO_DEVICE);
 878                        if (dma_mapping_error(dp->dev, dma_addr))
 879                                goto err_unmap;
 880
 881                        wr_idx = D_IDX(tx_ring, wr_idx + 1);
 882                        tx_ring->txbufs[wr_idx].skb = skb;
 883                        tx_ring->txbufs[wr_idx].dma_addr = dma_addr;
 884                        tx_ring->txbufs[wr_idx].fidx = f;
 885
 886                        txd = &tx_ring->txds[wr_idx];
 887                        *txd = txdg;
 888                        txd->dma_len = cpu_to_le16(fsize);
 889                        nfp_desc_set_dma_addr(txd, dma_addr);
 890                        txd->offset_eop |=
 891                                (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0;
 892                }
 893
 894                u64_stats_update_begin(&r_vec->tx_sync);
 895                r_vec->tx_gather++;
 896                u64_stats_update_end(&r_vec->tx_sync);
 897        }
 898
 899        netdev_tx_sent_queue(nd_q, txbuf->real_len);
 900
 901        skb_tx_timestamp(skb);
 902
 903        tx_ring->wr_p += nr_frags + 1;
 904        if (nfp_net_tx_ring_should_stop(tx_ring))
 905                nfp_net_tx_ring_stop(nd_q, tx_ring);
 906
 907        tx_ring->wr_ptr_add += nr_frags + 1;
 908        if (!skb->xmit_more || netif_xmit_stopped(nd_q))
 909                nfp_net_tx_xmit_more_flush(tx_ring);
 910
 911        return NETDEV_TX_OK;
 912
 913err_unmap:
 914        while (--f >= 0) {
 915                frag = &skb_shinfo(skb)->frags[f];
 916                dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
 917                               skb_frag_size(frag), DMA_TO_DEVICE);
 918                tx_ring->txbufs[wr_idx].skb = NULL;
 919                tx_ring->txbufs[wr_idx].dma_addr = 0;
 920                tx_ring->txbufs[wr_idx].fidx = -2;
 921                wr_idx = wr_idx - 1;
 922                if (wr_idx < 0)
 923                        wr_idx += tx_ring->cnt;
 924        }
 925        dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr,
 926                         skb_headlen(skb), DMA_TO_DEVICE);
 927        tx_ring->txbufs[wr_idx].skb = NULL;
 928        tx_ring->txbufs[wr_idx].dma_addr = 0;
 929        tx_ring->txbufs[wr_idx].fidx = -2;
 930err_free:
 931        nn_dp_warn(dp, "Failed to map DMA TX buffer\n");
 932        nfp_net_tx_xmit_more_flush(tx_ring);
 933        u64_stats_update_begin(&r_vec->tx_sync);
 934        r_vec->tx_errors++;
 935        u64_stats_update_end(&r_vec->tx_sync);
 936        dev_kfree_skb_any(skb);
 937        return NETDEV_TX_OK;
 938}
 939
 940/**
 941 * nfp_net_tx_complete() - Handled completed TX packets
 942 * @tx_ring:   TX ring structure
 943 *
 944 * Return: Number of completed TX descriptors
 945 */
 946static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring)
 947{
 948        struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
 949        struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
 950        const struct skb_frag_struct *frag;
 951        struct netdev_queue *nd_q;
 952        u32 done_pkts = 0, done_bytes = 0;
 953        struct sk_buff *skb;
 954        int todo, nr_frags;
 955        u32 qcp_rd_p;
 956        int fidx;
 957        int idx;
 958
 959        if (tx_ring->wr_p == tx_ring->rd_p)
 960                return;
 961
 962        /* Work out how many descriptors have been transmitted */
 963        qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
 964
 965        if (qcp_rd_p == tx_ring->qcp_rd_p)
 966                return;
 967
 968        todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
 969
 970        while (todo--) {
 971                idx = D_IDX(tx_ring, tx_ring->rd_p++);
 972
 973                skb = tx_ring->txbufs[idx].skb;
 974                if (!skb)
 975                        continue;
 976
 977                nr_frags = skb_shinfo(skb)->nr_frags;
 978                fidx = tx_ring->txbufs[idx].fidx;
 979
 980                if (fidx == -1) {
 981                        /* unmap head */
 982                        dma_unmap_single(dp->dev, tx_ring->txbufs[idx].dma_addr,
 983                                         skb_headlen(skb), DMA_TO_DEVICE);
 984
 985                        done_pkts += tx_ring->txbufs[idx].pkt_cnt;
 986                        done_bytes += tx_ring->txbufs[idx].real_len;
 987                } else {
 988                        /* unmap fragment */
 989                        frag = &skb_shinfo(skb)->frags[fidx];
 990                        dma_unmap_page(dp->dev, tx_ring->txbufs[idx].dma_addr,
 991                                       skb_frag_size(frag), DMA_TO_DEVICE);
 992                }
 993
 994                /* check for last gather fragment */
 995                if (fidx == nr_frags - 1)
 996                        dev_consume_skb_any(skb);
 997
 998                tx_ring->txbufs[idx].dma_addr = 0;
 999                tx_ring->txbufs[idx].skb = NULL;
1000                tx_ring->txbufs[idx].fidx = -2;
1001        }
1002
1003        tx_ring->qcp_rd_p = qcp_rd_p;
1004
1005        u64_stats_update_begin(&r_vec->tx_sync);
1006        r_vec->tx_bytes += done_bytes;
1007        r_vec->tx_pkts += done_pkts;
1008        u64_stats_update_end(&r_vec->tx_sync);
1009
1010        if (!dp->netdev)
1011                return;
1012
1013        nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1014        netdev_tx_completed_queue(nd_q, done_pkts, done_bytes);
1015        if (nfp_net_tx_ring_should_wake(tx_ring)) {
1016                /* Make sure TX thread will see updated tx_ring->rd_p */
1017                smp_mb();
1018
1019                if (unlikely(netif_tx_queue_stopped(nd_q)))
1020                        netif_tx_wake_queue(nd_q);
1021        }
1022
1023        WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1024                  "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1025                  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1026}
1027
1028static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring)
1029{
1030        struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
1031        u32 done_pkts = 0, done_bytes = 0;
1032        bool done_all;
1033        int idx, todo;
1034        u32 qcp_rd_p;
1035
1036        /* Work out how many descriptors have been transmitted */
1037        qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q);
1038
1039        if (qcp_rd_p == tx_ring->qcp_rd_p)
1040                return true;
1041
1042        todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p);
1043
1044        done_all = todo <= NFP_NET_XDP_MAX_COMPLETE;
1045        todo = min(todo, NFP_NET_XDP_MAX_COMPLETE);
1046
1047        tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo);
1048
1049        done_pkts = todo;
1050        while (todo--) {
1051                idx = D_IDX(tx_ring, tx_ring->rd_p);
1052                tx_ring->rd_p++;
1053
1054                done_bytes += tx_ring->txbufs[idx].real_len;
1055        }
1056
1057        u64_stats_update_begin(&r_vec->tx_sync);
1058        r_vec->tx_bytes += done_bytes;
1059        r_vec->tx_pkts += done_pkts;
1060        u64_stats_update_end(&r_vec->tx_sync);
1061
1062        WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt,
1063                  "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1064                  tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt);
1065
1066        return done_all;
1067}
1068
1069/**
1070 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1071 * @dp:         NFP Net data path struct
1072 * @tx_ring:    TX ring structure
1073 *
1074 * Assumes that the device is stopped
1075 */
1076static void
1077nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
1078{
1079        const struct skb_frag_struct *frag;
1080        struct netdev_queue *nd_q;
1081
1082        while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) {
1083                struct nfp_net_tx_buf *tx_buf;
1084                struct sk_buff *skb;
1085                int idx, nr_frags;
1086
1087                idx = D_IDX(tx_ring, tx_ring->rd_p);
1088                tx_buf = &tx_ring->txbufs[idx];
1089
1090                skb = tx_ring->txbufs[idx].skb;
1091                nr_frags = skb_shinfo(skb)->nr_frags;
1092
1093                if (tx_buf->fidx == -1) {
1094                        /* unmap head */
1095                        dma_unmap_single(dp->dev, tx_buf->dma_addr,
1096                                         skb_headlen(skb), DMA_TO_DEVICE);
1097                } else {
1098                        /* unmap fragment */
1099                        frag = &skb_shinfo(skb)->frags[tx_buf->fidx];
1100                        dma_unmap_page(dp->dev, tx_buf->dma_addr,
1101                                       skb_frag_size(frag), DMA_TO_DEVICE);
1102                }
1103
1104                /* check for last gather fragment */
1105                if (tx_buf->fidx == nr_frags - 1)
1106                        dev_kfree_skb_any(skb);
1107
1108                tx_buf->dma_addr = 0;
1109                tx_buf->skb = NULL;
1110                tx_buf->fidx = -2;
1111
1112                tx_ring->qcp_rd_p++;
1113                tx_ring->rd_p++;
1114        }
1115
1116        memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt);
1117        tx_ring->wr_p = 0;
1118        tx_ring->rd_p = 0;
1119        tx_ring->qcp_rd_p = 0;
1120        tx_ring->wr_ptr_add = 0;
1121
1122        if (tx_ring->is_xdp || !dp->netdev)
1123                return;
1124
1125        nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx);
1126        netdev_tx_reset_queue(nd_q);
1127}
1128
1129static void nfp_net_tx_timeout(struct net_device *netdev)
1130{
1131        struct nfp_net *nn = netdev_priv(netdev);
1132        int i;
1133
1134        for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) {
1135                if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i)))
1136                        continue;
1137                nn_warn(nn, "TX timeout on ring: %d\n", i);
1138        }
1139        nn_warn(nn, "TX watchdog timeout\n");
1140}
1141
1142/* Receive processing
1143 */
1144static unsigned int
1145nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp)
1146{
1147        unsigned int fl_bufsz;
1148
1149        fl_bufsz = NFP_NET_RX_BUF_HEADROOM;
1150        fl_bufsz += dp->rx_dma_off;
1151        if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1152                fl_bufsz += NFP_NET_MAX_PREPEND;
1153        else
1154                fl_bufsz += dp->rx_offset;
1155        fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu;
1156
1157        fl_bufsz = SKB_DATA_ALIGN(fl_bufsz);
1158        fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1159
1160        return fl_bufsz;
1161}
1162
1163static void
1164nfp_net_free_frag(void *frag, bool xdp)
1165{
1166        if (!xdp)
1167                skb_free_frag(frag);
1168        else
1169                __free_page(virt_to_page(frag));
1170}
1171
1172/**
1173 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1174 * @dp:         NFP Net data path struct
1175 * @dma_addr:   Pointer to storage for DMA address (output param)
1176 *
1177 * This function will allcate a new page frag, map it for DMA.
1178 *
1179 * Return: allocated page frag or NULL on failure.
1180 */
1181static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1182{
1183        void *frag;
1184
1185        if (!dp->xdp_prog) {
1186                frag = netdev_alloc_frag(dp->fl_bufsz);
1187        } else {
1188                struct page *page;
1189
1190                page = alloc_page(GFP_KERNEL);
1191                frag = page ? page_address(page) : NULL;
1192        }
1193        if (!frag) {
1194                nn_dp_warn(dp, "Failed to alloc receive page frag\n");
1195                return NULL;
1196        }
1197
1198        *dma_addr = nfp_net_dma_map_rx(dp, frag);
1199        if (dma_mapping_error(dp->dev, *dma_addr)) {
1200                nfp_net_free_frag(frag, dp->xdp_prog);
1201                nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1202                return NULL;
1203        }
1204
1205        return frag;
1206}
1207
1208static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
1209{
1210        void *frag;
1211
1212        if (!dp->xdp_prog) {
1213                frag = napi_alloc_frag(dp->fl_bufsz);
1214                if (unlikely(!frag))
1215                        return NULL;
1216        } else {
1217                struct page *page;
1218
1219                page = dev_alloc_page();
1220                if (unlikely(!page))
1221                        return NULL;
1222                frag = page_address(page);
1223        }
1224
1225        *dma_addr = nfp_net_dma_map_rx(dp, frag);
1226        if (dma_mapping_error(dp->dev, *dma_addr)) {
1227                nfp_net_free_frag(frag, dp->xdp_prog);
1228                nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
1229                return NULL;
1230        }
1231
1232        return frag;
1233}
1234
1235/**
1236 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1237 * @dp:         NFP Net data path struct
1238 * @rx_ring:    RX ring structure
1239 * @frag:       page fragment buffer
1240 * @dma_addr:   DMA address of skb mapping
1241 */
1242static void nfp_net_rx_give_one(const struct nfp_net_dp *dp,
1243                                struct nfp_net_rx_ring *rx_ring,
1244                                void *frag, dma_addr_t dma_addr)
1245{
1246        unsigned int wr_idx;
1247
1248        wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1249
1250        nfp_net_dma_sync_dev_rx(dp, dma_addr);
1251
1252        /* Stash SKB and DMA address away */
1253        rx_ring->rxbufs[wr_idx].frag = frag;
1254        rx_ring->rxbufs[wr_idx].dma_addr = dma_addr;
1255
1256        /* Fill freelist descriptor */
1257        rx_ring->rxds[wr_idx].fld.reserved = 0;
1258        rx_ring->rxds[wr_idx].fld.meta_len_dd = 0;
1259        nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld,
1260                              dma_addr + dp->rx_dma_off);
1261
1262        rx_ring->wr_p++;
1263        if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) {
1264                /* Update write pointer of the freelist queue. Make
1265                 * sure all writes are flushed before telling the hardware.
1266                 */
1267                wmb();
1268                nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH);
1269        }
1270}
1271
1272/**
1273 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1274 * @rx_ring:    RX ring structure
1275 *
1276 * Warning: Do *not* call if ring buffers were never put on the FW freelist
1277 *          (i.e. device was not enabled)!
1278 */
1279static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
1280{
1281        unsigned int wr_idx, last_idx;
1282
1283        /* Move the empty entry to the end of the list */
1284        wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
1285        last_idx = rx_ring->cnt - 1;
1286        rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr;
1287        rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag;
1288        rx_ring->rxbufs[last_idx].dma_addr = 0;
1289        rx_ring->rxbufs[last_idx].frag = NULL;
1290
1291        memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt);
1292        rx_ring->wr_p = 0;
1293        rx_ring->rd_p = 0;
1294}
1295
1296/**
1297 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1298 * @dp:         NFP Net data path struct
1299 * @rx_ring:    RX ring to remove buffers from
1300 *
1301 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1302 * entries.  After device is disabled nfp_net_rx_ring_reset() must be called
1303 * to restore required ring geometry.
1304 */
1305static void
1306nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
1307                          struct nfp_net_rx_ring *rx_ring)
1308{
1309        unsigned int i;
1310
1311        for (i = 0; i < rx_ring->cnt - 1; i++) {
1312                /* NULL skb can only happen when initial filling of the ring
1313                 * fails to allocate enough buffers and calls here to free
1314                 * already allocated ones.
1315                 */
1316                if (!rx_ring->rxbufs[i].frag)
1317                        continue;
1318
1319                nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
1320                nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
1321                rx_ring->rxbufs[i].dma_addr = 0;
1322                rx_ring->rxbufs[i].frag = NULL;
1323        }
1324}
1325
1326/**
1327 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1328 * @dp:         NFP Net data path struct
1329 * @rx_ring:    RX ring to remove buffers from
1330 */
1331static int
1332nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
1333                           struct nfp_net_rx_ring *rx_ring)
1334{
1335        struct nfp_net_rx_buf *rxbufs;
1336        unsigned int i;
1337
1338        rxbufs = rx_ring->rxbufs;
1339
1340        for (i = 0; i < rx_ring->cnt - 1; i++) {
1341                rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
1342                if (!rxbufs[i].frag) {
1343                        nfp_net_rx_ring_bufs_free(dp, rx_ring);
1344                        return -ENOMEM;
1345                }
1346        }
1347
1348        return 0;
1349}
1350
1351/**
1352 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1353 * @dp:      NFP Net data path struct
1354 * @rx_ring: RX ring to fill
1355 */
1356static void
1357nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp,
1358                              struct nfp_net_rx_ring *rx_ring)
1359{
1360        unsigned int i;
1361
1362        for (i = 0; i < rx_ring->cnt - 1; i++)
1363                nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag,
1364                                    rx_ring->rxbufs[i].dma_addr);
1365}
1366
1367/**
1368 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1369 * @flags: RX descriptor flags field in CPU byte order
1370 */
1371static int nfp_net_rx_csum_has_errors(u16 flags)
1372{
1373        u16 csum_all_checked, csum_all_ok;
1374
1375        csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL;
1376        csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK;
1377
1378        return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT);
1379}
1380
1381/**
1382 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1383 * @dp:  NFP Net data path struct
1384 * @r_vec: per-ring structure
1385 * @rxd: Pointer to RX descriptor
1386 * @meta: Parsed metadata prepend
1387 * @skb: Pointer to SKB
1388 */
1389static void nfp_net_rx_csum(struct nfp_net_dp *dp,
1390                            struct nfp_net_r_vector *r_vec,
1391                            struct nfp_net_rx_desc *rxd,
1392                            struct nfp_meta_parsed *meta, struct sk_buff *skb)
1393{
1394        skb_checksum_none_assert(skb);
1395
1396        if (!(dp->netdev->features & NETIF_F_RXCSUM))
1397                return;
1398
1399        if (meta->csum_type) {
1400                skb->ip_summed = meta->csum_type;
1401                skb->csum = meta->csum;
1402                u64_stats_update_begin(&r_vec->rx_sync);
1403                r_vec->hw_csum_rx_ok++;
1404                u64_stats_update_end(&r_vec->rx_sync);
1405                return;
1406        }
1407
1408        if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) {
1409                u64_stats_update_begin(&r_vec->rx_sync);
1410                r_vec->hw_csum_rx_error++;
1411                u64_stats_update_end(&r_vec->rx_sync);
1412                return;
1413        }
1414
1415        /* Assume that the firmware will never report inner CSUM_OK unless outer
1416         * L4 headers were successfully parsed. FW will always report zero UDP
1417         * checksum as CSUM_OK.
1418         */
1419        if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK ||
1420            rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) {
1421                __skb_incr_checksum_unnecessary(skb);
1422                u64_stats_update_begin(&r_vec->rx_sync);
1423                r_vec->hw_csum_rx_ok++;
1424                u64_stats_update_end(&r_vec->rx_sync);
1425        }
1426
1427        if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK ||
1428            rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) {
1429                __skb_incr_checksum_unnecessary(skb);
1430                u64_stats_update_begin(&r_vec->rx_sync);
1431                r_vec->hw_csum_rx_inner_ok++;
1432                u64_stats_update_end(&r_vec->rx_sync);
1433        }
1434}
1435
1436static void
1437nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta,
1438                 unsigned int type, __be32 *hash)
1439{
1440        if (!(netdev->features & NETIF_F_RXHASH))
1441                return;
1442
1443        switch (type) {
1444        case NFP_NET_RSS_IPV4:
1445        case NFP_NET_RSS_IPV6:
1446        case NFP_NET_RSS_IPV6_EX:
1447                meta->hash_type = PKT_HASH_TYPE_L3;
1448                break;
1449        default:
1450                meta->hash_type = PKT_HASH_TYPE_L4;
1451                break;
1452        }
1453
1454        meta->hash = get_unaligned_be32(hash);
1455}
1456
1457static void
1458nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta,
1459                      void *data, struct nfp_net_rx_desc *rxd)
1460{
1461        struct nfp_net_rx_hash *rx_hash = data;
1462
1463        if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS))
1464                return;
1465
1466        nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type),
1467                         &rx_hash->hash);
1468}
1469
1470static void *
1471nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta,
1472                   void *data, int meta_len)
1473{
1474        u32 meta_info;
1475
1476        meta_info = get_unaligned_be32(data);
1477        data += 4;
1478
1479        while (meta_info) {
1480                switch (meta_info & NFP_NET_META_FIELD_MASK) {
1481                case NFP_NET_META_HASH:
1482                        meta_info >>= NFP_NET_META_FIELD_SIZE;
1483                        nfp_net_set_hash(netdev, meta,
1484                                         meta_info & NFP_NET_META_FIELD_MASK,
1485                                         (__be32 *)data);
1486                        data += 4;
1487                        break;
1488                case NFP_NET_META_MARK:
1489                        meta->mark = get_unaligned_be32(data);
1490                        data += 4;
1491                        break;
1492                case NFP_NET_META_PORTID:
1493                        meta->portid = get_unaligned_be32(data);
1494                        data += 4;
1495                        break;
1496                case NFP_NET_META_CSUM:
1497                        meta->csum_type = CHECKSUM_COMPLETE;
1498                        meta->csum =
1499                                (__force __wsum)__get_unaligned_cpu32(data);
1500                        data += 4;
1501                        break;
1502                default:
1503                        return NULL;
1504                }
1505
1506                meta_info >>= NFP_NET_META_FIELD_SIZE;
1507        }
1508
1509        return data;
1510}
1511
1512static void
1513nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec,
1514                struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf,
1515                struct sk_buff *skb)
1516{
1517        u64_stats_update_begin(&r_vec->rx_sync);
1518        r_vec->rx_drops++;
1519        /* If we have both skb and rxbuf the replacement buffer allocation
1520         * must have failed, count this as an alloc failure.
1521         */
1522        if (skb && rxbuf)
1523                r_vec->rx_replace_buf_alloc_fail++;
1524        u64_stats_update_end(&r_vec->rx_sync);
1525
1526        /* skb is build based on the frag, free_skb() would free the frag
1527         * so to be able to reuse it we need an extra ref.
1528         */
1529        if (skb && rxbuf && skb->head == rxbuf->frag)
1530                page_ref_inc(virt_to_head_page(rxbuf->frag));
1531        if (rxbuf)
1532                nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr);
1533        if (skb)
1534                dev_kfree_skb_any(skb);
1535}
1536
1537static bool
1538nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring,
1539                   struct nfp_net_tx_ring *tx_ring,
1540                   struct nfp_net_rx_buf *rxbuf, unsigned int dma_off,
1541                   unsigned int pkt_len, bool *completed)
1542{
1543        struct nfp_net_tx_buf *txbuf;
1544        struct nfp_net_tx_desc *txd;
1545        int wr_idx;
1546
1547        if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1548                if (!*completed) {
1549                        nfp_net_xdp_complete(tx_ring);
1550                        *completed = true;
1551                }
1552
1553                if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1554                        nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf,
1555                                        NULL);
1556                        return false;
1557                }
1558        }
1559
1560        wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1561
1562        /* Stash the soft descriptor of the head then initialize it */
1563        txbuf = &tx_ring->txbufs[wr_idx];
1564
1565        nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr);
1566
1567        txbuf->frag = rxbuf->frag;
1568        txbuf->dma_addr = rxbuf->dma_addr;
1569        txbuf->fidx = -1;
1570        txbuf->pkt_cnt = 1;
1571        txbuf->real_len = pkt_len;
1572
1573        dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off,
1574                                   pkt_len, DMA_BIDIRECTIONAL);
1575
1576        /* Build TX descriptor */
1577        txd = &tx_ring->txds[wr_idx];
1578        txd->offset_eop = PCIE_DESC_TX_EOP;
1579        txd->dma_len = cpu_to_le16(pkt_len);
1580        nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off);
1581        txd->data_len = cpu_to_le16(pkt_len);
1582
1583        txd->flags = 0;
1584        txd->mss = 0;
1585        txd->lso_hdrlen = 0;
1586
1587        tx_ring->wr_p++;
1588        tx_ring->wr_ptr_add++;
1589        return true;
1590}
1591
1592/**
1593 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1594 * @rx_ring:   RX ring to receive from
1595 * @budget:    NAPI budget
1596 *
1597 * Note, this function is separated out from the napi poll function to
1598 * more cleanly separate packet receive code from other bookkeeping
1599 * functions performed in the napi poll function.
1600 *
1601 * Return: Number of packets received.
1602 */
1603static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget)
1604{
1605        struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
1606        struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
1607        struct nfp_net_tx_ring *tx_ring;
1608        struct bpf_prog *xdp_prog;
1609        bool xdp_tx_cmpl = false;
1610        unsigned int true_bufsz;
1611        struct sk_buff *skb;
1612        int pkts_polled = 0;
1613        int idx;
1614
1615        rcu_read_lock();
1616        xdp_prog = READ_ONCE(dp->xdp_prog);
1617        true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz;
1618        tx_ring = r_vec->xdp_ring;
1619
1620        while (pkts_polled < budget) {
1621                unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1622                struct nfp_net_rx_buf *rxbuf;
1623                struct nfp_net_rx_desc *rxd;
1624                struct nfp_meta_parsed meta;
1625                struct net_device *netdev;
1626                dma_addr_t new_dma_addr;
1627                u32 meta_len_xdp = 0;
1628                void *new_frag;
1629
1630                idx = D_IDX(rx_ring, rx_ring->rd_p);
1631
1632                rxd = &rx_ring->rxds[idx];
1633                if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1634                        break;
1635
1636                /* Memory barrier to ensure that we won't do other reads
1637                 * before the DD bit.
1638                 */
1639                dma_rmb();
1640
1641                memset(&meta, 0, sizeof(meta));
1642
1643                rx_ring->rd_p++;
1644                pkts_polled++;
1645
1646                rxbuf = &rx_ring->rxbufs[idx];
1647                /*         < meta_len >
1648                 *  <-- [rx_offset] -->
1649                 *  ---------------------------------------------------------
1650                 * | [XX] |  metadata  |             packet           | XXXX |
1651                 *  ---------------------------------------------------------
1652                 *         <---------------- data_len --------------->
1653                 *
1654                 * The rx_offset is fixed for all packets, the meta_len can vary
1655                 * on a packet by packet basis. If rx_offset is set to zero
1656                 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1657                 * buffer and is immediately followed by the packet (no [XX]).
1658                 */
1659                meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1660                data_len = le16_to_cpu(rxd->rxd.data_len);
1661                pkt_len = data_len - meta_len;
1662
1663                pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1664                if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1665                        pkt_off += meta_len;
1666                else
1667                        pkt_off += dp->rx_offset;
1668                meta_off = pkt_off - meta_len;
1669
1670                /* Stats update */
1671                u64_stats_update_begin(&r_vec->rx_sync);
1672                r_vec->rx_pkts++;
1673                r_vec->rx_bytes += pkt_len;
1674                u64_stats_update_end(&r_vec->rx_sync);
1675
1676                if (unlikely(meta_len > NFP_NET_MAX_PREPEND ||
1677                             (dp->rx_offset && meta_len > dp->rx_offset))) {
1678                        nn_dp_warn(dp, "oversized RX packet metadata %u\n",
1679                                   meta_len);
1680                        nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1681                        continue;
1682                }
1683
1684                nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off,
1685                                        data_len);
1686
1687                if (!dp->chained_metadata_format) {
1688                        nfp_net_set_hash_desc(dp->netdev, &meta,
1689                                              rxbuf->frag + meta_off, rxd);
1690                } else if (meta_len) {
1691                        void *end;
1692
1693                        end = nfp_net_parse_meta(dp->netdev, &meta,
1694                                                 rxbuf->frag + meta_off,
1695                                                 meta_len);
1696                        if (unlikely(end != rxbuf->frag + pkt_off)) {
1697                                nn_dp_warn(dp, "invalid RX packet metadata\n");
1698                                nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf,
1699                                                NULL);
1700                                continue;
1701                        }
1702                }
1703
1704                if (xdp_prog && !(rxd->rxd.flags & PCIE_DESC_RX_BPF &&
1705                                  dp->bpf_offload_xdp) && !meta.portid) {
1706                        void *orig_data = rxbuf->frag + pkt_off;
1707                        unsigned int dma_off;
1708                        struct xdp_buff xdp;
1709                        int act;
1710
1711                        xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM;
1712                        xdp.data = orig_data;
1713                        xdp.data_meta = orig_data;
1714                        xdp.data_end = orig_data + pkt_len;
1715
1716                        act = bpf_prog_run_xdp(xdp_prog, &xdp);
1717
1718                        pkt_len -= xdp.data - orig_data;
1719                        pkt_off += xdp.data - orig_data;
1720
1721                        switch (act) {
1722                        case XDP_PASS:
1723                                meta_len_xdp = xdp.data - xdp.data_meta;
1724                                break;
1725                        case XDP_TX:
1726                                dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM;
1727                                if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring,
1728                                                                 tx_ring, rxbuf,
1729                                                                 dma_off,
1730                                                                 pkt_len,
1731                                                                 &xdp_tx_cmpl)))
1732                                        trace_xdp_exception(dp->netdev,
1733                                                            xdp_prog, act);
1734                                continue;
1735                        default:
1736                                bpf_warn_invalid_xdp_action(act);
1737                                /* fall through */
1738                        case XDP_ABORTED:
1739                                trace_xdp_exception(dp->netdev, xdp_prog, act);
1740                                /* fall through */
1741                        case XDP_DROP:
1742                                nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag,
1743                                                    rxbuf->dma_addr);
1744                                continue;
1745                        }
1746                }
1747
1748                skb = build_skb(rxbuf->frag, true_bufsz);
1749                if (unlikely(!skb)) {
1750                        nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
1751                        continue;
1752                }
1753                new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
1754                if (unlikely(!new_frag)) {
1755                        nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
1756                        continue;
1757                }
1758
1759                nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
1760
1761                nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
1762
1763                if (likely(!meta.portid)) {
1764                        netdev = dp->netdev;
1765                } else {
1766                        struct nfp_net *nn;
1767
1768                        nn = netdev_priv(dp->netdev);
1769                        netdev = nfp_app_repr_get(nn->app, meta.portid);
1770                        if (unlikely(!netdev)) {
1771                                nfp_net_rx_drop(dp, r_vec, rx_ring, NULL, skb);
1772                                continue;
1773                        }
1774                        nfp_repr_inc_rx_stats(netdev, pkt_len);
1775                }
1776
1777                skb_reserve(skb, pkt_off);
1778                skb_put(skb, pkt_len);
1779
1780                skb->mark = meta.mark;
1781                skb_set_hash(skb, meta.hash, meta.hash_type);
1782
1783                skb_record_rx_queue(skb, rx_ring->idx);
1784                skb->protocol = eth_type_trans(skb, netdev);
1785
1786                nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb);
1787
1788                if (rxd->rxd.flags & PCIE_DESC_RX_VLAN)
1789                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1790                                               le16_to_cpu(rxd->rxd.vlan));
1791                if (meta_len_xdp)
1792                        skb_metadata_set(skb, meta_len_xdp);
1793
1794                napi_gro_receive(&rx_ring->r_vec->napi, skb);
1795        }
1796
1797        if (xdp_prog) {
1798                if (tx_ring->wr_ptr_add)
1799                        nfp_net_tx_xmit_more_flush(tx_ring);
1800                else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) &&
1801                         !xdp_tx_cmpl)
1802                        if (!nfp_net_xdp_complete(tx_ring))
1803                                pkts_polled = budget;
1804        }
1805        rcu_read_unlock();
1806
1807        return pkts_polled;
1808}
1809
1810/**
1811 * nfp_net_poll() - napi poll function
1812 * @napi:    NAPI structure
1813 * @budget:  NAPI budget
1814 *
1815 * Return: number of packets polled.
1816 */
1817static int nfp_net_poll(struct napi_struct *napi, int budget)
1818{
1819        struct nfp_net_r_vector *r_vec =
1820                container_of(napi, struct nfp_net_r_vector, napi);
1821        unsigned int pkts_polled = 0;
1822
1823        if (r_vec->tx_ring)
1824                nfp_net_tx_complete(r_vec->tx_ring);
1825        if (r_vec->rx_ring)
1826                pkts_polled = nfp_net_rx(r_vec->rx_ring, budget);
1827
1828        if (pkts_polled < budget)
1829                if (napi_complete_done(napi, pkts_polled))
1830                        nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
1831
1832        return pkts_polled;
1833}
1834
1835/* Control device data path
1836 */
1837
1838static bool
1839nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
1840                struct sk_buff *skb, bool old)
1841{
1842        unsigned int real_len = skb->len, meta_len = 0;
1843        struct nfp_net_tx_ring *tx_ring;
1844        struct nfp_net_tx_buf *txbuf;
1845        struct nfp_net_tx_desc *txd;
1846        struct nfp_net_dp *dp;
1847        dma_addr_t dma_addr;
1848        int wr_idx;
1849
1850        dp = &r_vec->nfp_net->dp;
1851        tx_ring = r_vec->tx_ring;
1852
1853        if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) {
1854                nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n");
1855                goto err_free;
1856        }
1857
1858        if (unlikely(nfp_net_tx_full(tx_ring, 1))) {
1859                u64_stats_update_begin(&r_vec->tx_sync);
1860                r_vec->tx_busy++;
1861                u64_stats_update_end(&r_vec->tx_sync);
1862                if (!old)
1863                        __skb_queue_tail(&r_vec->queue, skb);
1864                else
1865                        __skb_queue_head(&r_vec->queue, skb);
1866                return true;
1867        }
1868
1869        if (nfp_app_ctrl_has_meta(nn->app)) {
1870                if (unlikely(skb_headroom(skb) < 8)) {
1871                        nn_dp_warn(dp, "CTRL TX on skb without headroom\n");
1872                        goto err_free;
1873                }
1874                meta_len = 8;
1875                put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4));
1876                put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4));
1877        }
1878
1879        /* Start with the head skbuf */
1880        dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb),
1881                                  DMA_TO_DEVICE);
1882        if (dma_mapping_error(dp->dev, dma_addr))
1883                goto err_dma_warn;
1884
1885        wr_idx = D_IDX(tx_ring, tx_ring->wr_p);
1886
1887        /* Stash the soft descriptor of the head then initialize it */
1888        txbuf = &tx_ring->txbufs[wr_idx];
1889        txbuf->skb = skb;
1890        txbuf->dma_addr = dma_addr;
1891        txbuf->fidx = -1;
1892        txbuf->pkt_cnt = 1;
1893        txbuf->real_len = real_len;
1894
1895        /* Build TX descriptor */
1896        txd = &tx_ring->txds[wr_idx];
1897        txd->offset_eop = meta_len | PCIE_DESC_TX_EOP;
1898        txd->dma_len = cpu_to_le16(skb_headlen(skb));
1899        nfp_desc_set_dma_addr(txd, dma_addr);
1900        txd->data_len = cpu_to_le16(skb->len);
1901
1902        txd->flags = 0;
1903        txd->mss = 0;
1904        txd->lso_hdrlen = 0;
1905
1906        tx_ring->wr_p++;
1907        tx_ring->wr_ptr_add++;
1908        nfp_net_tx_xmit_more_flush(tx_ring);
1909
1910        return false;
1911
1912err_dma_warn:
1913        nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n");
1914err_free:
1915        u64_stats_update_begin(&r_vec->tx_sync);
1916        r_vec->tx_errors++;
1917        u64_stats_update_end(&r_vec->tx_sync);
1918        dev_kfree_skb_any(skb);
1919        return false;
1920}
1921
1922bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
1923{
1924        struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
1925        bool ret;
1926
1927        spin_lock_bh(&r_vec->lock);
1928        ret = nfp_ctrl_tx_one(nn, r_vec, skb, false);
1929        spin_unlock_bh(&r_vec->lock);
1930
1931        return ret;
1932}
1933
1934static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec)
1935{
1936        struct sk_buff *skb;
1937
1938        while ((skb = __skb_dequeue(&r_vec->queue)))
1939                if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true))
1940                        return;
1941}
1942
1943static bool
1944nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len)
1945{
1946        u32 meta_type, meta_tag;
1947
1948        if (!nfp_app_ctrl_has_meta(nn->app))
1949                return !meta_len;
1950
1951        if (meta_len != 8)
1952                return false;
1953
1954        meta_type = get_unaligned_be32(data);
1955        meta_tag = get_unaligned_be32(data + 4);
1956
1957        return (meta_type == NFP_NET_META_PORTID &&
1958                meta_tag == NFP_META_PORT_ID_CTRL);
1959}
1960
1961static bool
1962nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp,
1963                struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring)
1964{
1965        unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off;
1966        struct nfp_net_rx_buf *rxbuf;
1967        struct nfp_net_rx_desc *rxd;
1968        dma_addr_t new_dma_addr;
1969        struct sk_buff *skb;
1970        void *new_frag;
1971        int idx;
1972
1973        idx = D_IDX(rx_ring, rx_ring->rd_p);
1974
1975        rxd = &rx_ring->rxds[idx];
1976        if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD))
1977                return false;
1978
1979        /* Memory barrier to ensure that we won't do other reads
1980         * before the DD bit.
1981         */
1982        dma_rmb();
1983
1984        rx_ring->rd_p++;
1985
1986        rxbuf = &rx_ring->rxbufs[idx];
1987        meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK;
1988        data_len = le16_to_cpu(rxd->rxd.data_len);
1989        pkt_len = data_len - meta_len;
1990
1991        pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off;
1992        if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC)
1993                pkt_off += meta_len;
1994        else
1995                pkt_off += dp->rx_offset;
1996        meta_off = pkt_off - meta_len;
1997
1998        /* Stats update */
1999        u64_stats_update_begin(&r_vec->rx_sync);
2000        r_vec->rx_pkts++;
2001        r_vec->rx_bytes += pkt_len;
2002        u64_stats_update_end(&r_vec->rx_sync);
2003
2004        nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len);
2005
2006        if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) {
2007                nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n",
2008                           meta_len);
2009                nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2010                return true;
2011        }
2012
2013        skb = build_skb(rxbuf->frag, dp->fl_bufsz);
2014        if (unlikely(!skb)) {
2015                nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL);
2016                return true;
2017        }
2018        new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr);
2019        if (unlikely(!new_frag)) {
2020                nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb);
2021                return true;
2022        }
2023
2024        nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr);
2025
2026        nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr);
2027
2028        skb_reserve(skb, pkt_off);
2029        skb_put(skb, pkt_len);
2030
2031        nfp_app_ctrl_rx(nn->app, skb);
2032
2033        return true;
2034}
2035
2036static void nfp_ctrl_rx(struct nfp_net_r_vector *r_vec)
2037{
2038        struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring;
2039        struct nfp_net *nn = r_vec->nfp_net;
2040        struct nfp_net_dp *dp = &nn->dp;
2041
2042        while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring))
2043                continue;
2044}
2045
2046static void nfp_ctrl_poll(unsigned long arg)
2047{
2048        struct nfp_net_r_vector *r_vec = (void *)arg;
2049
2050        spin_lock_bh(&r_vec->lock);
2051        nfp_net_tx_complete(r_vec->tx_ring);
2052        __nfp_ctrl_tx_queued(r_vec);
2053        spin_unlock_bh(&r_vec->lock);
2054
2055        nfp_ctrl_rx(r_vec);
2056
2057        nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry);
2058}
2059
2060/* Setup and Configuration
2061 */
2062
2063/**
2064 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2065 * @nn:         NFP Network structure
2066 */
2067static void nfp_net_vecs_init(struct nfp_net *nn)
2068{
2069        struct nfp_net_r_vector *r_vec;
2070        int r;
2071
2072        nn->lsc_handler = nfp_net_irq_lsc;
2073        nn->exn_handler = nfp_net_irq_exn;
2074
2075        for (r = 0; r < nn->max_r_vecs; r++) {
2076                struct msix_entry *entry;
2077
2078                entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r];
2079
2080                r_vec = &nn->r_vecs[r];
2081                r_vec->nfp_net = nn;
2082                r_vec->irq_entry = entry->entry;
2083                r_vec->irq_vector = entry->vector;
2084
2085                if (nn->dp.netdev) {
2086                        r_vec->handler = nfp_net_irq_rxtx;
2087                } else {
2088                        r_vec->handler = nfp_ctrl_irq_rxtx;
2089
2090                        __skb_queue_head_init(&r_vec->queue);
2091                        spin_lock_init(&r_vec->lock);
2092                        tasklet_init(&r_vec->tasklet, nfp_ctrl_poll,
2093                                     (unsigned long)r_vec);
2094                        tasklet_disable(&r_vec->tasklet);
2095                }
2096
2097                cpumask_set_cpu(r, &r_vec->affinity_mask);
2098        }
2099}
2100
2101/**
2102 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2103 * @tx_ring:   TX ring to free
2104 */
2105static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring)
2106{
2107        struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2108        struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2109
2110        kfree(tx_ring->txbufs);
2111
2112        if (tx_ring->txds)
2113                dma_free_coherent(dp->dev, tx_ring->size,
2114                                  tx_ring->txds, tx_ring->dma);
2115
2116        tx_ring->cnt = 0;
2117        tx_ring->txbufs = NULL;
2118        tx_ring->txds = NULL;
2119        tx_ring->dma = 0;
2120        tx_ring->size = 0;
2121}
2122
2123/**
2124 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2125 * @dp:        NFP Net data path struct
2126 * @tx_ring:   TX Ring structure to allocate
2127 *
2128 * Return: 0 on success, negative errno otherwise.
2129 */
2130static int
2131nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring)
2132{
2133        struct nfp_net_r_vector *r_vec = tx_ring->r_vec;
2134        int sz;
2135
2136        tx_ring->cnt = dp->txd_cnt;
2137
2138        tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt;
2139        tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size,
2140                                            &tx_ring->dma, GFP_KERNEL);
2141        if (!tx_ring->txds)
2142                goto err_alloc;
2143
2144        sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt;
2145        tx_ring->txbufs = kzalloc(sz, GFP_KERNEL);
2146        if (!tx_ring->txbufs)
2147                goto err_alloc;
2148
2149        if (!tx_ring->is_xdp && dp->netdev)
2150                netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask,
2151                                    tx_ring->idx);
2152
2153        return 0;
2154
2155err_alloc:
2156        nfp_net_tx_ring_free(tx_ring);
2157        return -ENOMEM;
2158}
2159
2160static void
2161nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp,
2162                          struct nfp_net_tx_ring *tx_ring)
2163{
2164        unsigned int i;
2165
2166        if (!tx_ring->is_xdp)
2167                return;
2168
2169        for (i = 0; i < tx_ring->cnt; i++) {
2170                if (!tx_ring->txbufs[i].frag)
2171                        return;
2172
2173                nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr);
2174                __free_page(virt_to_page(tx_ring->txbufs[i].frag));
2175        }
2176}
2177
2178static int
2179nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp,
2180                           struct nfp_net_tx_ring *tx_ring)
2181{
2182        struct nfp_net_tx_buf *txbufs = tx_ring->txbufs;
2183        unsigned int i;
2184
2185        if (!tx_ring->is_xdp)
2186                return 0;
2187
2188        for (i = 0; i < tx_ring->cnt; i++) {
2189                txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr);
2190                if (!txbufs[i].frag) {
2191                        nfp_net_tx_ring_bufs_free(dp, tx_ring);
2192                        return -ENOMEM;
2193                }
2194        }
2195
2196        return 0;
2197}
2198
2199static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2200{
2201        unsigned int r;
2202
2203        dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
2204                               GFP_KERNEL);
2205        if (!dp->tx_rings)
2206                return -ENOMEM;
2207
2208        for (r = 0; r < dp->num_tx_rings; r++) {
2209                int bias = 0;
2210
2211                if (r >= dp->num_stack_tx_rings)
2212                        bias = dp->num_stack_tx_rings;
2213
2214                nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias],
2215                                     r, bias);
2216
2217                if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
2218                        goto err_free_prev;
2219
2220                if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
2221                        goto err_free_ring;
2222        }
2223
2224        return 0;
2225
2226err_free_prev:
2227        while (r--) {
2228                nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2229err_free_ring:
2230                nfp_net_tx_ring_free(&dp->tx_rings[r]);
2231        }
2232        kfree(dp->tx_rings);
2233        return -ENOMEM;
2234}
2235
2236static void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
2237{
2238        unsigned int r;
2239
2240        for (r = 0; r < dp->num_tx_rings; r++) {
2241                nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
2242                nfp_net_tx_ring_free(&dp->tx_rings[r]);
2243        }
2244
2245        kfree(dp->tx_rings);
2246}
2247
2248/**
2249 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2250 * @rx_ring:  RX ring to free
2251 */
2252static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
2253{
2254        struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
2255        struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
2256
2257        kfree(rx_ring->rxbufs);
2258
2259        if (rx_ring->rxds)
2260                dma_free_coherent(dp->dev, rx_ring->size,
2261                                  rx_ring->rxds, rx_ring->dma);
2262
2263        rx_ring->cnt = 0;
2264        rx_ring->rxbufs = NULL;
2265        rx_ring->rxds = NULL;
2266        rx_ring->dma = 0;
2267        rx_ring->size = 0;
2268}
2269
2270/**
2271 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2272 * @dp:       NFP Net data path struct
2273 * @rx_ring:  RX ring to allocate
2274 *
2275 * Return: 0 on success, negative errno otherwise.
2276 */
2277static int
2278nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
2279{
2280        int sz;
2281
2282        rx_ring->cnt = dp->rxd_cnt;
2283        rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt;
2284        rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size,
2285                                            &rx_ring->dma, GFP_KERNEL);
2286        if (!rx_ring->rxds)
2287                goto err_alloc;
2288
2289        sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt;
2290        rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL);
2291        if (!rx_ring->rxbufs)
2292                goto err_alloc;
2293
2294        return 0;
2295
2296err_alloc:
2297        nfp_net_rx_ring_free(rx_ring);
2298        return -ENOMEM;
2299}
2300
2301static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
2302{
2303        unsigned int r;
2304
2305        dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
2306                               GFP_KERNEL);
2307        if (!dp->rx_rings)
2308                return -ENOMEM;
2309
2310        for (r = 0; r < dp->num_rx_rings; r++) {
2311                nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
2312
2313                if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
2314                        goto err_free_prev;
2315
2316                if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
2317                        goto err_free_ring;
2318        }
2319
2320        return 0;
2321
2322err_free_prev:
2323        while (r--) {
2324                nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2325err_free_ring:
2326                nfp_net_rx_ring_free(&dp->rx_rings[r]);
2327        }
2328        kfree(dp->rx_rings);
2329        return -ENOMEM;
2330}
2331
2332static void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
2333{
2334        unsigned int r;
2335
2336        for (r = 0; r < dp->num_rx_rings; r++) {
2337                nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
2338                nfp_net_rx_ring_free(&dp->rx_rings[r]);
2339        }
2340
2341        kfree(dp->rx_rings);
2342}
2343
2344static void
2345nfp_net_vector_assign_rings(struct nfp_net_dp *dp,
2346                            struct nfp_net_r_vector *r_vec, int idx)
2347{
2348        r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL;
2349        r_vec->tx_ring =
2350                idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL;
2351
2352        r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ?
2353                &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL;
2354}
2355
2356static int
2357nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec,
2358                       int idx)
2359{
2360        int err;
2361
2362        /* Setup NAPI */
2363        if (nn->dp.netdev)
2364                netif_napi_add(nn->dp.netdev, &r_vec->napi,
2365                               nfp_net_poll, NAPI_POLL_WEIGHT);
2366        else
2367                tasklet_enable(&r_vec->tasklet);
2368
2369        snprintf(r_vec->name, sizeof(r_vec->name),
2370                 "%s-rxtx-%d", nfp_net_name(nn), idx);
2371        err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name,
2372                          r_vec);
2373        if (err) {
2374                if (nn->dp.netdev)
2375                        netif_napi_del(&r_vec->napi);
2376                else
2377                        tasklet_disable(&r_vec->tasklet);
2378
2379                nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector);
2380                return err;
2381        }
2382        disable_irq(r_vec->irq_vector);
2383
2384        irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask);
2385
2386        nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector,
2387               r_vec->irq_entry);
2388
2389        return 0;
2390}
2391
2392static void
2393nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec)
2394{
2395        irq_set_affinity_hint(r_vec->irq_vector, NULL);
2396        if (nn->dp.netdev)
2397                netif_napi_del(&r_vec->napi);
2398        else
2399                tasklet_disable(&r_vec->tasklet);
2400
2401        free_irq(r_vec->irq_vector, r_vec);
2402}
2403
2404/**
2405 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2406 * @nn:      NFP Net device to reconfigure
2407 */
2408void nfp_net_rss_write_itbl(struct nfp_net *nn)
2409{
2410        int i;
2411
2412        for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4)
2413                nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i,
2414                          get_unaligned_le32(nn->rss_itbl + i));
2415}
2416
2417/**
2418 * nfp_net_rss_write_key() - Write RSS hash key to device
2419 * @nn:      NFP Net device to reconfigure
2420 */
2421void nfp_net_rss_write_key(struct nfp_net *nn)
2422{
2423        int i;
2424
2425        for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4)
2426                nn_writel(nn, NFP_NET_CFG_RSS_KEY + i,
2427                          get_unaligned_le32(nn->rss_key + i));
2428}
2429
2430/**
2431 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2432 * @nn:      NFP Net device to reconfigure
2433 */
2434void nfp_net_coalesce_write_cfg(struct nfp_net *nn)
2435{
2436        u8 i;
2437        u32 factor;
2438        u32 value;
2439
2440        /* Compute factor used to convert coalesce '_usecs' parameters to
2441         * ME timestamp ticks.  There are 16 ME clock cycles for each timestamp
2442         * count.
2443         */
2444        factor = nn->me_freq_mhz / 16;
2445
2446        /* copy RX interrupt coalesce parameters */
2447        value = (nn->rx_coalesce_max_frames << 16) |
2448                (factor * nn->rx_coalesce_usecs);
2449        for (i = 0; i < nn->dp.num_rx_rings; i++)
2450                nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value);
2451
2452        /* copy TX interrupt coalesce parameters */
2453        value = (nn->tx_coalesce_max_frames << 16) |
2454                (factor * nn->tx_coalesce_usecs);
2455        for (i = 0; i < nn->dp.num_tx_rings; i++)
2456                nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value);
2457}
2458
2459/**
2460 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2461 * @nn:      NFP Net device to reconfigure
2462 * @addr:    MAC address to write
2463 *
2464 * Writes the MAC address from the netdev to the device control BAR.  Does not
2465 * perform the required reconfig.  We do a bit of byte swapping dance because
2466 * firmware is LE.
2467 */
2468static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr)
2469{
2470        nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr));
2471        nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4));
2472}
2473
2474static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
2475{
2476        nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
2477        nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
2478        nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
2479
2480        nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
2481        nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
2482        nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
2483}
2484
2485/**
2486 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2487 * @nn:      NFP Net device to reconfigure
2488 */
2489static void nfp_net_clear_config_and_disable(struct nfp_net *nn)
2490{
2491        u32 new_ctrl, update;
2492        unsigned int r;
2493        int err;
2494
2495        new_ctrl = nn->dp.ctrl;
2496        new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE;
2497        update = NFP_NET_CFG_UPDATE_GEN;
2498        update |= NFP_NET_CFG_UPDATE_MSIX;
2499        update |= NFP_NET_CFG_UPDATE_RING;
2500
2501        if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2502                new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG;
2503
2504        nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
2505        nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
2506
2507        nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2508        err = nfp_net_reconfig(nn, update);
2509        if (err)
2510                nn_err(nn, "Could not disable device: %d\n", err);
2511
2512        for (r = 0; r < nn->dp.num_rx_rings; r++)
2513                nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]);
2514        for (r = 0; r < nn->dp.num_tx_rings; r++)
2515                nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]);
2516        for (r = 0; r < nn->dp.num_r_vecs; r++)
2517                nfp_net_vec_clear_ring_data(nn, r);
2518
2519        nn->dp.ctrl = new_ctrl;
2520}
2521
2522static void
2523nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
2524                             struct nfp_net_rx_ring *rx_ring, unsigned int idx)
2525{
2526        /* Write the DMA address, size and MSI-X info to the device */
2527        nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
2528        nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
2529        nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
2530}
2531
2532static void
2533nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
2534                             struct nfp_net_tx_ring *tx_ring, unsigned int idx)
2535{
2536        nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
2537        nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
2538        nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
2539}
2540
2541/**
2542 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2543 * @nn:      NFP Net device to reconfigure
2544 */
2545static int nfp_net_set_config_and_enable(struct nfp_net *nn)
2546{
2547        u32 bufsz, new_ctrl, update = 0;
2548        unsigned int r;
2549        int err;
2550
2551        new_ctrl = nn->dp.ctrl;
2552
2553        if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) {
2554                nfp_net_rss_write_key(nn);
2555                nfp_net_rss_write_itbl(nn);
2556                nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg);
2557                update |= NFP_NET_CFG_UPDATE_RSS;
2558        }
2559
2560        if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) {
2561                nfp_net_coalesce_write_cfg(nn);
2562                update |= NFP_NET_CFG_UPDATE_IRQMOD;
2563        }
2564
2565        for (r = 0; r < nn->dp.num_tx_rings; r++)
2566                nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r);
2567        for (r = 0; r < nn->dp.num_rx_rings; r++)
2568                nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r);
2569
2570        nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ?
2571                  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1);
2572
2573        nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ?
2574                  0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1);
2575
2576        if (nn->dp.netdev)
2577                nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
2578
2579        nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu);
2580
2581        bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA;
2582        nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz);
2583
2584        /* Enable device */
2585        new_ctrl |= NFP_NET_CFG_CTRL_ENABLE;
2586        update |= NFP_NET_CFG_UPDATE_GEN;
2587        update |= NFP_NET_CFG_UPDATE_MSIX;
2588        update |= NFP_NET_CFG_UPDATE_RING;
2589        if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG)
2590                new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG;
2591
2592        nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2593        err = nfp_net_reconfig(nn, update);
2594        if (err) {
2595                nfp_net_clear_config_and_disable(nn);
2596                return err;
2597        }
2598
2599        nn->dp.ctrl = new_ctrl;
2600
2601        for (r = 0; r < nn->dp.num_rx_rings; r++)
2602                nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]);
2603
2604        /* Since reconfiguration requests while NFP is down are ignored we
2605         * have to wipe the entire VXLAN configuration and reinitialize it.
2606         */
2607        if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) {
2608                memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports));
2609                memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt));
2610                udp_tunnel_get_rx_info(nn->dp.netdev);
2611        }
2612
2613        return 0;
2614}
2615
2616/**
2617 * nfp_net_close_stack() - Quiesce the stack (part of close)
2618 * @nn:      NFP Net device to reconfigure
2619 */
2620static void nfp_net_close_stack(struct nfp_net *nn)
2621{
2622        unsigned int r;
2623
2624        disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2625        netif_carrier_off(nn->dp.netdev);
2626        nn->link_up = false;
2627
2628        for (r = 0; r < nn->dp.num_r_vecs; r++) {
2629                disable_irq(nn->r_vecs[r].irq_vector);
2630                napi_disable(&nn->r_vecs[r].napi);
2631        }
2632
2633        netif_tx_disable(nn->dp.netdev);
2634}
2635
2636/**
2637 * nfp_net_close_free_all() - Free all runtime resources
2638 * @nn:      NFP Net device to reconfigure
2639 */
2640static void nfp_net_close_free_all(struct nfp_net *nn)
2641{
2642        unsigned int r;
2643
2644        nfp_net_tx_rings_free(&nn->dp);
2645        nfp_net_rx_rings_free(&nn->dp);
2646
2647        for (r = 0; r < nn->dp.num_r_vecs; r++)
2648                nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2649
2650        nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2651        nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2652}
2653
2654/**
2655 * nfp_net_netdev_close() - Called when the device is downed
2656 * @netdev:      netdev structure
2657 */
2658static int nfp_net_netdev_close(struct net_device *netdev)
2659{
2660        struct nfp_net *nn = netdev_priv(netdev);
2661
2662        /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2663         */
2664        nfp_net_close_stack(nn);
2665
2666        /* Step 2: Tell NFP
2667         */
2668        nfp_net_clear_config_and_disable(nn);
2669        nfp_port_configure(netdev, false);
2670
2671        /* Step 3: Free resources
2672         */
2673        nfp_net_close_free_all(nn);
2674
2675        nn_dbg(nn, "%s down", netdev->name);
2676        return 0;
2677}
2678
2679void nfp_ctrl_close(struct nfp_net *nn)
2680{
2681        int r;
2682
2683        rtnl_lock();
2684
2685        for (r = 0; r < nn->dp.num_r_vecs; r++) {
2686                disable_irq(nn->r_vecs[r].irq_vector);
2687                tasklet_disable(&nn->r_vecs[r].tasklet);
2688        }
2689
2690        nfp_net_clear_config_and_disable(nn);
2691
2692        nfp_net_close_free_all(nn);
2693
2694        rtnl_unlock();
2695}
2696
2697/**
2698 * nfp_net_open_stack() - Start the device from stack's perspective
2699 * @nn:      NFP Net device to reconfigure
2700 */
2701static void nfp_net_open_stack(struct nfp_net *nn)
2702{
2703        unsigned int r;
2704
2705        for (r = 0; r < nn->dp.num_r_vecs; r++) {
2706                napi_enable(&nn->r_vecs[r].napi);
2707                enable_irq(nn->r_vecs[r].irq_vector);
2708        }
2709
2710        netif_tx_wake_all_queues(nn->dp.netdev);
2711
2712        enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2713        nfp_net_read_link_status(nn);
2714}
2715
2716static int nfp_net_open_alloc_all(struct nfp_net *nn)
2717{
2718        int err, r;
2719
2720        err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn",
2721                                      nn->exn_name, sizeof(nn->exn_name),
2722                                      NFP_NET_IRQ_EXN_IDX, nn->exn_handler);
2723        if (err)
2724                return err;
2725        err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc",
2726                                      nn->lsc_name, sizeof(nn->lsc_name),
2727                                      NFP_NET_IRQ_LSC_IDX, nn->lsc_handler);
2728        if (err)
2729                goto err_free_exn;
2730        disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector);
2731
2732        for (r = 0; r < nn->dp.num_r_vecs; r++) {
2733                err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2734                if (err)
2735                        goto err_cleanup_vec_p;
2736        }
2737
2738        err = nfp_net_rx_rings_prepare(nn, &nn->dp);
2739        if (err)
2740                goto err_cleanup_vec;
2741
2742        err = nfp_net_tx_rings_prepare(nn, &nn->dp);
2743        if (err)
2744                goto err_free_rx_rings;
2745
2746        for (r = 0; r < nn->max_r_vecs; r++)
2747                nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2748
2749        return 0;
2750
2751err_free_rx_rings:
2752        nfp_net_rx_rings_free(&nn->dp);
2753err_cleanup_vec:
2754        r = nn->dp.num_r_vecs;
2755err_cleanup_vec_p:
2756        while (r--)
2757                nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
2758        nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX);
2759err_free_exn:
2760        nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX);
2761        return err;
2762}
2763
2764static int nfp_net_netdev_open(struct net_device *netdev)
2765{
2766        struct nfp_net *nn = netdev_priv(netdev);
2767        int err;
2768
2769        /* Step 1: Allocate resources for rings and the like
2770         * - Request interrupts
2771         * - Allocate RX and TX ring resources
2772         * - Setup initial RSS table
2773         */
2774        err = nfp_net_open_alloc_all(nn);
2775        if (err)
2776                return err;
2777
2778        err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings);
2779        if (err)
2780                goto err_free_all;
2781
2782        err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings);
2783        if (err)
2784                goto err_free_all;
2785
2786        /* Step 2: Configure the NFP
2787         * - Ifup the physical interface if it exists
2788         * - Enable rings from 0 to tx_rings/rx_rings - 1.
2789         * - Write MAC address (in case it changed)
2790         * - Set the MTU
2791         * - Set the Freelist buffer size
2792         * - Enable the FW
2793         */
2794        err = nfp_port_configure(netdev, true);
2795        if (err)
2796                goto err_free_all;
2797
2798        err = nfp_net_set_config_and_enable(nn);
2799        if (err)
2800                goto err_port_disable;
2801
2802        /* Step 3: Enable for kernel
2803         * - put some freelist descriptors on each RX ring
2804         * - enable NAPI on each ring
2805         * - enable all TX queues
2806         * - set link state
2807         */
2808        nfp_net_open_stack(nn);
2809
2810        return 0;
2811
2812err_port_disable:
2813        nfp_port_configure(netdev, false);
2814err_free_all:
2815        nfp_net_close_free_all(nn);
2816        return err;
2817}
2818
2819int nfp_ctrl_open(struct nfp_net *nn)
2820{
2821        int err, r;
2822
2823        /* ring dumping depends on vNICs being opened/closed under rtnl */
2824        rtnl_lock();
2825
2826        err = nfp_net_open_alloc_all(nn);
2827        if (err)
2828                goto err_unlock;
2829
2830        err = nfp_net_set_config_and_enable(nn);
2831        if (err)
2832                goto err_free_all;
2833
2834        for (r = 0; r < nn->dp.num_r_vecs; r++)
2835                enable_irq(nn->r_vecs[r].irq_vector);
2836
2837        rtnl_unlock();
2838
2839        return 0;
2840
2841err_free_all:
2842        nfp_net_close_free_all(nn);
2843err_unlock:
2844        rtnl_unlock();
2845        return err;
2846}
2847
2848static void nfp_net_set_rx_mode(struct net_device *netdev)
2849{
2850        struct nfp_net *nn = netdev_priv(netdev);
2851        u32 new_ctrl;
2852
2853        new_ctrl = nn->dp.ctrl;
2854
2855        if (netdev->flags & IFF_PROMISC) {
2856                if (nn->cap & NFP_NET_CFG_CTRL_PROMISC)
2857                        new_ctrl |= NFP_NET_CFG_CTRL_PROMISC;
2858                else
2859                        nn_warn(nn, "FW does not support promiscuous mode\n");
2860        } else {
2861                new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC;
2862        }
2863
2864        if (new_ctrl == nn->dp.ctrl)
2865                return;
2866
2867        nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
2868        nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN);
2869
2870        nn->dp.ctrl = new_ctrl;
2871}
2872
2873static void nfp_net_rss_init_itbl(struct nfp_net *nn)
2874{
2875        int i;
2876
2877        for (i = 0; i < sizeof(nn->rss_itbl); i++)
2878                nn->rss_itbl[i] =
2879                        ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings);
2880}
2881
2882static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp)
2883{
2884        struct nfp_net_dp new_dp = *dp;
2885
2886        *dp = nn->dp;
2887        nn->dp = new_dp;
2888
2889        nn->dp.netdev->mtu = new_dp.mtu;
2890
2891        if (!netif_is_rxfh_configured(nn->dp.netdev))
2892                nfp_net_rss_init_itbl(nn);
2893}
2894
2895static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp)
2896{
2897        unsigned int r;
2898        int err;
2899
2900        nfp_net_dp_swap(nn, dp);
2901
2902        for (r = 0; r < nn->max_r_vecs; r++)
2903                nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r);
2904
2905        err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings);
2906        if (err)
2907                return err;
2908
2909        if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) {
2910                err = netif_set_real_num_tx_queues(nn->dp.netdev,
2911                                                   nn->dp.num_stack_tx_rings);
2912                if (err)
2913                        return err;
2914        }
2915
2916        return nfp_net_set_config_and_enable(nn);
2917}
2918
2919struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn)
2920{
2921        struct nfp_net_dp *new;
2922
2923        new = kmalloc(sizeof(*new), GFP_KERNEL);
2924        if (!new)
2925                return NULL;
2926
2927        *new = nn->dp;
2928
2929        /* Clear things which need to be recomputed */
2930        new->fl_bufsz = 0;
2931        new->tx_rings = NULL;
2932        new->rx_rings = NULL;
2933        new->num_r_vecs = 0;
2934        new->num_stack_tx_rings = 0;
2935
2936        return new;
2937}
2938
2939static int
2940nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp,
2941                     struct netlink_ext_ack *extack)
2942{
2943        /* XDP-enabled tests */
2944        if (!dp->xdp_prog)
2945                return 0;
2946        if (dp->fl_bufsz > PAGE_SIZE) {
2947                NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled");
2948                return -EINVAL;
2949        }
2950        if (dp->num_tx_rings > nn->max_tx_rings) {
2951                NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled");
2952                return -EINVAL;
2953        }
2954
2955        return 0;
2956}
2957
2958int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp,
2959                          struct netlink_ext_ack *extack)
2960{
2961        int r, err;
2962
2963        dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp);
2964
2965        dp->num_stack_tx_rings = dp->num_tx_rings;
2966        if (dp->xdp_prog)
2967                dp->num_stack_tx_rings -= dp->num_rx_rings;
2968
2969        dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings);
2970
2971        err = nfp_net_check_config(nn, dp, extack);
2972        if (err)
2973                goto exit_free_dp;
2974
2975        if (!netif_running(dp->netdev)) {
2976                nfp_net_dp_swap(nn, dp);
2977                err = 0;
2978                goto exit_free_dp;
2979        }
2980
2981        /* Prepare new rings */
2982        for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) {
2983                err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r);
2984                if (err) {
2985                        dp->num_r_vecs = r;
2986                        goto err_cleanup_vecs;
2987                }
2988        }
2989
2990        err = nfp_net_rx_rings_prepare(nn, dp);
2991        if (err)
2992                goto err_cleanup_vecs;
2993
2994        err = nfp_net_tx_rings_prepare(nn, dp);
2995        if (err)
2996                goto err_free_rx;
2997
2998        /* Stop device, swap in new rings, try to start the firmware */
2999        nfp_net_close_stack(nn);
3000        nfp_net_clear_config_and_disable(nn);
3001
3002        err = nfp_net_dp_swap_enable(nn, dp);
3003        if (err) {
3004                int err2;
3005
3006                nfp_net_clear_config_and_disable(nn);
3007
3008                /* Try with old configuration and old rings */
3009                err2 = nfp_net_dp_swap_enable(nn, dp);
3010                if (err2)
3011                        nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n",
3012                               err, err2);
3013        }
3014        for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3015                nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3016
3017        nfp_net_rx_rings_free(dp);
3018        nfp_net_tx_rings_free(dp);
3019
3020        nfp_net_open_stack(nn);
3021exit_free_dp:
3022        kfree(dp);
3023
3024        return err;
3025
3026err_free_rx:
3027        nfp_net_rx_rings_free(dp);
3028err_cleanup_vecs:
3029        for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--)
3030                nfp_net_cleanup_vector(nn, &nn->r_vecs[r]);
3031        kfree(dp);
3032        return err;
3033}
3034
3035static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu)
3036{
3037        struct nfp_net *nn = netdev_priv(netdev);
3038        struct nfp_net_dp *dp;
3039
3040        dp = nfp_net_clone_dp(nn);
3041        if (!dp)
3042                return -ENOMEM;
3043
3044        dp->mtu = new_mtu;
3045
3046        return nfp_net_ring_reconfig(nn, dp, NULL);
3047}
3048
3049static int
3050nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3051{
3052        struct nfp_net *nn = netdev_priv(netdev);
3053
3054        /* Priority tagged packets with vlan id 0 are processed by the
3055         * NFP as untagged packets
3056         */
3057        if (!vid)
3058                return 0;
3059
3060        nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3061        nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3062
3063        return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD);
3064}
3065
3066static int
3067nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3068{
3069        struct nfp_net *nn = netdev_priv(netdev);
3070
3071        /* Priority tagged packets with vlan id 0 are processed by the
3072         * NFP as untagged packets
3073         */
3074        if (!vid)
3075                return 0;
3076
3077        nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_VID, vid);
3078        nn_writew(nn, NFP_NET_CFG_VLAN_FILTER_PROTO, ETH_P_8021Q);
3079
3080        return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL);
3081}
3082
3083static void nfp_net_stat64(struct net_device *netdev,
3084                           struct rtnl_link_stats64 *stats)
3085{
3086        struct nfp_net *nn = netdev_priv(netdev);
3087        int r;
3088
3089        for (r = 0; r < nn->dp.num_r_vecs; r++) {
3090                struct nfp_net_r_vector *r_vec = &nn->r_vecs[r];
3091                u64 data[3];
3092                unsigned int start;
3093
3094                do {
3095                        start = u64_stats_fetch_begin(&r_vec->rx_sync);
3096                        data[0] = r_vec->rx_pkts;
3097                        data[1] = r_vec->rx_bytes;
3098                        data[2] = r_vec->rx_drops;
3099                } while (u64_stats_fetch_retry(&r_vec->rx_sync, start));
3100                stats->rx_packets += data[0];
3101                stats->rx_bytes += data[1];
3102                stats->rx_dropped += data[2];
3103
3104                do {
3105                        start = u64_stats_fetch_begin(&r_vec->tx_sync);
3106                        data[0] = r_vec->tx_pkts;
3107                        data[1] = r_vec->tx_bytes;
3108                        data[2] = r_vec->tx_errors;
3109                } while (u64_stats_fetch_retry(&r_vec->tx_sync, start));
3110                stats->tx_packets += data[0];
3111                stats->tx_bytes += data[1];
3112                stats->tx_errors += data[2];
3113        }
3114}
3115
3116static int nfp_net_set_features(struct net_device *netdev,
3117                                netdev_features_t features)
3118{
3119        netdev_features_t changed = netdev->features ^ features;
3120        struct nfp_net *nn = netdev_priv(netdev);
3121        u32 new_ctrl;
3122        int err;
3123
3124        /* Assume this is not called with features we have not advertised */
3125
3126        new_ctrl = nn->dp.ctrl;
3127
3128        if (changed & NETIF_F_RXCSUM) {
3129                if (features & NETIF_F_RXCSUM)
3130                        new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3131                else
3132                        new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY;
3133        }
3134
3135        if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3136                if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
3137                        new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3138                else
3139                        new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM;
3140        }
3141
3142        if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
3143                if (features & (NETIF_F_TSO | NETIF_F_TSO6))
3144                        new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3145                                              NFP_NET_CFG_CTRL_LSO;
3146                else
3147                        new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3148        }
3149
3150        if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
3151                if (features & NETIF_F_HW_VLAN_CTAG_RX)
3152                        new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3153                else
3154                        new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN;
3155        }
3156
3157        if (changed & NETIF_F_HW_VLAN_CTAG_TX) {
3158                if (features & NETIF_F_HW_VLAN_CTAG_TX)
3159                        new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3160                else
3161                        new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN;
3162        }
3163
3164        if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
3165                if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
3166                        new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3167                else
3168                        new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER;
3169        }
3170
3171        if (changed & NETIF_F_SG) {
3172                if (features & NETIF_F_SG)
3173                        new_ctrl |= NFP_NET_CFG_CTRL_GATHER;
3174                else
3175                        new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER;
3176        }
3177
3178        if (changed & NETIF_F_HW_TC && nfp_app_tc_busy(nn->app, nn)) {
3179                nn_err(nn, "Cannot disable HW TC offload while in use\n");
3180                return -EBUSY;
3181        }
3182
3183        nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3184               netdev->features, features, changed);
3185
3186        if (new_ctrl == nn->dp.ctrl)
3187                return 0;
3188
3189        nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl);
3190        nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl);
3191        err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN);
3192        if (err)
3193                return err;
3194
3195        nn->dp.ctrl = new_ctrl;
3196
3197        return 0;
3198}
3199
3200static netdev_features_t
3201nfp_net_features_check(struct sk_buff *skb, struct net_device *dev,
3202                       netdev_features_t features)
3203{
3204        u8 l4_hdr;
3205
3206        /* We can't do TSO over double tagged packets (802.1AD) */
3207        features &= vlan_features_check(skb, features);
3208
3209        if (!skb->encapsulation)
3210                return features;
3211
3212        /* Ensure that inner L4 header offset fits into TX descriptor field */
3213        if (skb_is_gso(skb)) {
3214                u32 hdrlen;
3215
3216                hdrlen = skb_inner_transport_header(skb) - skb->data +
3217                        inner_tcp_hdrlen(skb);
3218
3219                if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ))
3220                        features &= ~NETIF_F_GSO_MASK;
3221        }
3222
3223        /* VXLAN/GRE check */
3224        switch (vlan_get_protocol(skb)) {
3225        case htons(ETH_P_IP):
3226                l4_hdr = ip_hdr(skb)->protocol;
3227                break;
3228        case htons(ETH_P_IPV6):
3229                l4_hdr = ipv6_hdr(skb)->nexthdr;
3230                break;
3231        default:
3232                return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3233        }
3234
3235        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
3236            skb->inner_protocol != htons(ETH_P_TEB) ||
3237            (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) ||
3238            (l4_hdr == IPPROTO_UDP &&
3239             (skb_inner_mac_header(skb) - skb_transport_header(skb) !=
3240              sizeof(struct udphdr) + sizeof(struct vxlanhdr))))
3241                return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3242
3243        return features;
3244}
3245
3246/**
3247 * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW
3248 * @nn:   NFP Net device to reconfigure
3249 * @idx:  Index into the port table where new port should be written
3250 * @port: UDP port to configure (pass zero to remove VXLAN port)
3251 */
3252static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port)
3253{
3254        int i;
3255
3256        nn->vxlan_ports[idx] = port;
3257
3258        if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN))
3259                return;
3260
3261        BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1);
3262        for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2)
3263                nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port),
3264                          be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 |
3265                          be16_to_cpu(nn->vxlan_ports[i]));
3266
3267        nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN);
3268}
3269
3270/**
3271 * nfp_net_find_vxlan_idx() - find table entry of the port or a free one
3272 * @nn:   NFP Network structure
3273 * @port: UDP port to look for
3274 *
3275 * Return: if the port is already in the table -- it's position;
3276 *         if the port is not in the table -- free position to use;
3277 *         if the table is full -- -ENOSPC.
3278 */
3279static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port)
3280{
3281        int i, free_idx = -ENOSPC;
3282
3283        for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) {
3284                if (nn->vxlan_ports[i] == port)
3285                        return i;
3286                if (!nn->vxlan_usecnt[i])
3287                        free_idx = i;
3288        }
3289
3290        return free_idx;
3291}
3292
3293static void nfp_net_add_vxlan_port(struct net_device *netdev,
3294                                   struct udp_tunnel_info *ti)
3295{
3296        struct nfp_net *nn = netdev_priv(netdev);
3297        int idx;
3298
3299        if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3300                return;
3301
3302        idx = nfp_net_find_vxlan_idx(nn, ti->port);
3303        if (idx == -ENOSPC)
3304                return;
3305
3306        if (!nn->vxlan_usecnt[idx]++)
3307                nfp_net_set_vxlan_port(nn, idx, ti->port);
3308}
3309
3310static void nfp_net_del_vxlan_port(struct net_device *netdev,
3311                                   struct udp_tunnel_info *ti)
3312{
3313        struct nfp_net *nn = netdev_priv(netdev);
3314        int idx;
3315
3316        if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3317                return;
3318
3319        idx = nfp_net_find_vxlan_idx(nn, ti->port);
3320        if (idx == -ENOSPC || !nn->vxlan_usecnt[idx])
3321                return;
3322
3323        if (!--nn->vxlan_usecnt[idx])
3324                nfp_net_set_vxlan_port(nn, idx, 0);
3325}
3326
3327static int
3328nfp_net_xdp_setup_drv(struct nfp_net *nn, struct bpf_prog *prog,
3329                      struct netlink_ext_ack *extack)
3330{
3331        struct nfp_net_dp *dp;
3332
3333        if (!prog == !nn->dp.xdp_prog) {
3334                WRITE_ONCE(nn->dp.xdp_prog, prog);
3335                return 0;
3336        }
3337
3338        dp = nfp_net_clone_dp(nn);
3339        if (!dp)
3340                return -ENOMEM;
3341
3342        dp->xdp_prog = prog;
3343        dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings;
3344        dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
3345        dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0;
3346
3347        /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3348        return nfp_net_ring_reconfig(nn, dp, extack);
3349}
3350
3351static int
3352nfp_net_xdp_setup(struct nfp_net *nn, struct bpf_prog *prog, u32 flags,
3353                  struct netlink_ext_ack *extack)
3354{
3355        struct bpf_prog *drv_prog, *offload_prog;
3356        int err;
3357
3358        if (nn->xdp_prog && (flags ^ nn->xdp_flags) & XDP_FLAGS_MODES)
3359                return -EBUSY;
3360
3361        /* Load both when no flags set to allow easy activation of driver path
3362         * when program is replaced by one which can't be offloaded.
3363         */
3364        drv_prog     = flags & XDP_FLAGS_HW_MODE  ? NULL : prog;
3365        offload_prog = flags & XDP_FLAGS_DRV_MODE ? NULL : prog;
3366
3367        err = nfp_net_xdp_setup_drv(nn, drv_prog, extack);
3368        if (err)
3369                return err;
3370
3371        err = nfp_app_xdp_offload(nn->app, nn, offload_prog);
3372        if (err && flags & XDP_FLAGS_HW_MODE)
3373                return err;
3374
3375        if (nn->xdp_prog)
3376                bpf_prog_put(nn->xdp_prog);
3377        nn->xdp_prog = prog;
3378        nn->xdp_flags = flags;
3379
3380        return 0;
3381}
3382
3383static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
3384{
3385        struct nfp_net *nn = netdev_priv(netdev);
3386
3387        switch (xdp->command) {
3388        case XDP_SETUP_PROG:
3389        case XDP_SETUP_PROG_HW:
3390                return nfp_net_xdp_setup(nn, xdp->prog, xdp->flags,
3391                                         xdp->extack);
3392        case XDP_QUERY_PROG:
3393                xdp->prog_attached = !!nn->xdp_prog;
3394                if (nn->dp.bpf_offload_xdp)
3395                        xdp->prog_attached = XDP_ATTACHED_HW;
3396                xdp->prog_id = nn->xdp_prog ? nn->xdp_prog->aux->id : 0;
3397                return 0;
3398        case BPF_OFFLOAD_VERIFIER_PREP:
3399                return nfp_app_bpf_verifier_prep(nn->app, nn, xdp);
3400        case BPF_OFFLOAD_TRANSLATE:
3401                return nfp_app_bpf_translate(nn->app, nn,
3402                                             xdp->offload.prog);
3403        case BPF_OFFLOAD_DESTROY:
3404                return nfp_app_bpf_destroy(nn->app, nn,
3405                                           xdp->offload.prog);
3406        default:
3407                return -EINVAL;
3408        }
3409}
3410
3411static int nfp_net_set_mac_address(struct net_device *netdev, void *addr)
3412{
3413        struct nfp_net *nn = netdev_priv(netdev);
3414        struct sockaddr *saddr = addr;
3415        int err;
3416
3417        err = eth_prepare_mac_addr_change(netdev, addr);
3418        if (err)
3419                return err;
3420
3421        nfp_net_write_mac_addr(nn, saddr->sa_data);
3422
3423        err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR);
3424        if (err)
3425                return err;
3426
3427        eth_commit_mac_addr_change(netdev, addr);
3428
3429        return 0;
3430}
3431
3432const struct net_device_ops nfp_net_netdev_ops = {
3433        .ndo_open               = nfp_net_netdev_open,
3434        .ndo_stop               = nfp_net_netdev_close,
3435        .ndo_start_xmit         = nfp_net_tx,
3436        .ndo_get_stats64        = nfp_net_stat64,
3437        .ndo_vlan_rx_add_vid    = nfp_net_vlan_rx_add_vid,
3438        .ndo_vlan_rx_kill_vid   = nfp_net_vlan_rx_kill_vid,
3439        .ndo_set_vf_mac         = nfp_app_set_vf_mac,
3440        .ndo_set_vf_vlan        = nfp_app_set_vf_vlan,
3441        .ndo_set_vf_spoofchk    = nfp_app_set_vf_spoofchk,
3442        .ndo_get_vf_config      = nfp_app_get_vf_config,
3443        .ndo_set_vf_link_state  = nfp_app_set_vf_link_state,
3444        .ndo_setup_tc           = nfp_port_setup_tc,
3445        .ndo_tx_timeout         = nfp_net_tx_timeout,
3446        .ndo_set_rx_mode        = nfp_net_set_rx_mode,
3447        .ndo_change_mtu         = nfp_net_change_mtu,
3448        .ndo_set_mac_address    = nfp_net_set_mac_address,
3449        .ndo_set_features       = nfp_net_set_features,
3450        .ndo_features_check     = nfp_net_features_check,
3451        .ndo_get_phys_port_name = nfp_port_get_phys_port_name,
3452        .ndo_udp_tunnel_add     = nfp_net_add_vxlan_port,
3453        .ndo_udp_tunnel_del     = nfp_net_del_vxlan_port,
3454        .ndo_bpf                = nfp_net_xdp,
3455};
3456
3457/**
3458 * nfp_net_info() - Print general info about the NIC
3459 * @nn:      NFP Net device to reconfigure
3460 */
3461void nfp_net_info(struct nfp_net *nn)
3462{
3463        nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3464                nn->dp.is_vf ? "VF " : "",
3465                nn->dp.num_tx_rings, nn->max_tx_rings,
3466                nn->dp.num_rx_rings, nn->max_rx_rings);
3467        nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3468                nn->fw_ver.resv, nn->fw_ver.class,
3469                nn->fw_ver.major, nn->fw_ver.minor,
3470                nn->max_mtu);
3471        nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3472                nn->cap,
3473                nn->cap & NFP_NET_CFG_CTRL_PROMISC  ? "PROMISC "  : "",
3474                nn->cap & NFP_NET_CFG_CTRL_L2BC     ? "L2BCFILT " : "",
3475                nn->cap & NFP_NET_CFG_CTRL_L2MC     ? "L2MCFILT " : "",
3476                nn->cap & NFP_NET_CFG_CTRL_RXCSUM   ? "RXCSUM "   : "",
3477                nn->cap & NFP_NET_CFG_CTRL_TXCSUM   ? "TXCSUM "   : "",
3478                nn->cap & NFP_NET_CFG_CTRL_RXVLAN   ? "RXVLAN "   : "",
3479                nn->cap & NFP_NET_CFG_CTRL_TXVLAN   ? "TXVLAN "   : "",
3480                nn->cap & NFP_NET_CFG_CTRL_SCATTER  ? "SCATTER "  : "",
3481                nn->cap & NFP_NET_CFG_CTRL_GATHER   ? "GATHER "   : "",
3482                nn->cap & NFP_NET_CFG_CTRL_LSO      ? "TSO1 "     : "",
3483                nn->cap & NFP_NET_CFG_CTRL_LSO2     ? "TSO2 "     : "",
3484                nn->cap & NFP_NET_CFG_CTRL_RSS      ? "RSS1 "     : "",
3485                nn->cap & NFP_NET_CFG_CTRL_RSS2     ? "RSS2 "     : "",
3486                nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "",
3487                nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "",
3488                nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "",
3489                nn->cap & NFP_NET_CFG_CTRL_IRQMOD   ? "IRQMOD "   : "",
3490                nn->cap & NFP_NET_CFG_CTRL_VXLAN    ? "VXLAN "    : "",
3491                nn->cap & NFP_NET_CFG_CTRL_NVGRE    ? "NVGRE "    : "",
3492                nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ?
3493                                                      "RXCSUM_COMPLETE " : "",
3494                nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "",
3495                nfp_app_extra_cap(nn->app, nn));
3496}
3497
3498/**
3499 * nfp_net_alloc() - Allocate netdev and related structure
3500 * @pdev:         PCI device
3501 * @needs_netdev: Whether to allocate a netdev for this vNIC
3502 * @max_tx_rings: Maximum number of TX rings supported by device
3503 * @max_rx_rings: Maximum number of RX rings supported by device
3504 *
3505 * This function allocates a netdev device and fills in the initial
3506 * part of the @struct nfp_net structure.  In case of control device
3507 * nfp_net structure is allocated without the netdev.
3508 *
3509 * Return: NFP Net device structure, or ERR_PTR on error.
3510 */
3511struct nfp_net *nfp_net_alloc(struct pci_dev *pdev, bool needs_netdev,
3512                              unsigned int max_tx_rings,
3513                              unsigned int max_rx_rings)
3514{
3515        struct nfp_net *nn;
3516
3517        if (needs_netdev) {
3518                struct net_device *netdev;
3519
3520                netdev = alloc_etherdev_mqs(sizeof(struct nfp_net),
3521                                            max_tx_rings, max_rx_rings);
3522                if (!netdev)
3523                        return ERR_PTR(-ENOMEM);
3524
3525                SET_NETDEV_DEV(netdev, &pdev->dev);
3526                nn = netdev_priv(netdev);
3527                nn->dp.netdev = netdev;
3528        } else {
3529                nn = vzalloc(sizeof(*nn));
3530                if (!nn)
3531                        return ERR_PTR(-ENOMEM);
3532        }
3533
3534        nn->dp.dev = &pdev->dev;
3535        nn->pdev = pdev;
3536
3537        nn->max_tx_rings = max_tx_rings;
3538        nn->max_rx_rings = max_rx_rings;
3539
3540        nn->dp.num_tx_rings = min_t(unsigned int,
3541                                    max_tx_rings, num_online_cpus());
3542        nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings,
3543                                 netif_get_num_default_rss_queues());
3544
3545        nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings);
3546        nn->dp.num_r_vecs = min_t(unsigned int,
3547                                  nn->dp.num_r_vecs, num_online_cpus());
3548
3549        nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT;
3550        nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT;
3551
3552        spin_lock_init(&nn->reconfig_lock);
3553        spin_lock_init(&nn->link_status_lock);
3554
3555        timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0);
3556
3557        return nn;
3558}
3559
3560/**
3561 * nfp_net_free() - Undo what @nfp_net_alloc() did
3562 * @nn:      NFP Net device to reconfigure
3563 */
3564void nfp_net_free(struct nfp_net *nn)
3565{
3566        if (nn->xdp_prog)
3567                bpf_prog_put(nn->xdp_prog);
3568
3569        if (nn->dp.netdev)
3570                free_netdev(nn->dp.netdev);
3571        else
3572                vfree(nn);
3573}
3574
3575/**
3576 * nfp_net_rss_key_sz() - Get current size of the RSS key
3577 * @nn:         NFP Net device instance
3578 *
3579 * Return: size of the RSS key for currently selected hash function.
3580 */
3581unsigned int nfp_net_rss_key_sz(struct nfp_net *nn)
3582{
3583        switch (nn->rss_hfunc) {
3584        case ETH_RSS_HASH_TOP:
3585                return NFP_NET_CFG_RSS_KEY_SZ;
3586        case ETH_RSS_HASH_XOR:
3587                return 0;
3588        case ETH_RSS_HASH_CRC32:
3589                return 4;
3590        }
3591
3592        nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc);
3593        return 0;
3594}
3595
3596/**
3597 * nfp_net_rss_init() - Set the initial RSS parameters
3598 * @nn:      NFP Net device to reconfigure
3599 */
3600static void nfp_net_rss_init(struct nfp_net *nn)
3601{
3602        unsigned long func_bit, rss_cap_hfunc;
3603        u32 reg;
3604
3605        /* Read the RSS function capability and select first supported func */
3606        reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP);
3607        rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg);
3608        if (!rss_cap_hfunc)
3609                rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC,
3610                                          NFP_NET_CFG_RSS_TOEPLITZ);
3611
3612        func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS);
3613        if (func_bit == NFP_NET_CFG_RSS_HFUNCS) {
3614                dev_warn(nn->dp.dev,
3615                         "Bad RSS config, defaulting to Toeplitz hash\n");
3616                func_bit = ETH_RSS_HASH_TOP_BIT;
3617        }
3618        nn->rss_hfunc = 1 << func_bit;
3619
3620        netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn));
3621
3622        nfp_net_rss_init_itbl(nn);
3623
3624        /* Enable IPv4/IPv6 TCP by default */
3625        nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP |
3626                      NFP_NET_CFG_RSS_IPV6_TCP |
3627                      FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) |
3628                      NFP_NET_CFG_RSS_MASK;
3629}
3630
3631/**
3632 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3633 * @nn:      NFP Net device to reconfigure
3634 */
3635static void nfp_net_irqmod_init(struct nfp_net *nn)
3636{
3637        nn->rx_coalesce_usecs      = 50;
3638        nn->rx_coalesce_max_frames = 64;
3639        nn->tx_coalesce_usecs      = 50;
3640        nn->tx_coalesce_max_frames = 64;
3641}
3642
3643static void nfp_net_netdev_init(struct nfp_net *nn)
3644{
3645        struct net_device *netdev = nn->dp.netdev;
3646
3647        nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr);
3648
3649        netdev->mtu = nn->dp.mtu;
3650
3651        /* Advertise/enable offloads based on capabilities
3652         *
3653         * Note: netdev->features show the currently enabled features
3654         * and netdev->hw_features advertises which features are
3655         * supported.  By default we enable most features.
3656         */
3657        if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR)
3658                netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3659
3660        netdev->hw_features = NETIF_F_HIGHDMA;
3661        if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) {
3662                netdev->hw_features |= NETIF_F_RXCSUM;
3663                nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY;
3664        }
3665        if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) {
3666                netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3667                nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM;
3668        }
3669        if (nn->cap & NFP_NET_CFG_CTRL_GATHER) {
3670                netdev->hw_features |= NETIF_F_SG;
3671                nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER;
3672        }
3673        if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) ||
3674            nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3675                netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
3676                nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?:
3677                                         NFP_NET_CFG_CTRL_LSO;
3678        }
3679        if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY)
3680                netdev->hw_features |= NETIF_F_RXHASH;
3681        if (nn->cap & NFP_NET_CFG_CTRL_VXLAN &&
3682            nn->cap & NFP_NET_CFG_CTRL_NVGRE) {
3683                if (nn->cap & NFP_NET_CFG_CTRL_LSO)
3684                        netdev->hw_features |= NETIF_F_GSO_GRE |
3685                                               NETIF_F_GSO_UDP_TUNNEL;
3686                nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE;
3687
3688                netdev->hw_enc_features = netdev->hw_features;
3689        }
3690
3691        netdev->vlan_features = netdev->hw_features;
3692
3693        if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) {
3694                netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
3695                nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN;
3696        }
3697        if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) {
3698                if (nn->cap & NFP_NET_CFG_CTRL_LSO2) {
3699                        nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3700                } else {
3701                        netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
3702                        nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN;
3703                }
3704        }
3705        if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) {
3706                netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3707                nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER;
3708        }
3709
3710        netdev->features = netdev->hw_features;
3711
3712        if (nfp_app_has_tc(nn->app))
3713                netdev->hw_features |= NETIF_F_HW_TC;
3714
3715        /* Advertise but disable TSO by default. */
3716        netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
3717        nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY;
3718
3719        /* Finalise the netdev setup */
3720        netdev->netdev_ops = &nfp_net_netdev_ops;
3721        netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000);
3722
3723        SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops);
3724
3725        /* MTU range: 68 - hw-specific max */
3726        netdev->min_mtu = ETH_MIN_MTU;
3727        netdev->max_mtu = nn->max_mtu;
3728
3729        netif_carrier_off(netdev);
3730
3731        nfp_net_set_ethtool_ops(netdev);
3732}
3733
3734/**
3735 * nfp_net_init() - Initialise/finalise the nfp_net structure
3736 * @nn:         NFP Net device structure
3737 *
3738 * Return: 0 on success or negative errno on error.
3739 */
3740int nfp_net_init(struct nfp_net *nn)
3741{
3742        int err;
3743
3744        nn->dp.rx_dma_dir = DMA_FROM_DEVICE;
3745
3746        /* Get some of the read-only fields from the BAR */
3747        nn->cap = nn_readl(nn, NFP_NET_CFG_CAP);
3748        nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU);
3749
3750        /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
3751         * we allow use of non-chained metadata if RSS(v1) is the only
3752         * advertised capability requiring metadata.
3753         */
3754        nn->dp.chained_metadata_format = nn->fw_ver.major == 4 ||
3755                                         !nn->dp.netdev ||
3756                                         !(nn->cap & NFP_NET_CFG_CTRL_RSS) ||
3757                                         nn->cap & NFP_NET_CFG_CTRL_CHAIN_META;
3758        /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
3759         * it has the same meaning as RSSv2.
3760         */
3761        if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4)
3762                nn->cap &= ~NFP_NET_CFG_CTRL_RSS;
3763
3764        /* Determine RX packet/metadata boundary offset */
3765        if (nn->fw_ver.major >= 2) {
3766                u32 reg;
3767
3768                reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET);
3769                if (reg > NFP_NET_MAX_PREPEND) {
3770                        nn_err(nn, "Invalid rx offset: %d\n", reg);
3771                        return -EINVAL;
3772                }
3773                nn->dp.rx_offset = reg;
3774        } else {
3775                nn->dp.rx_offset = NFP_NET_RX_OFFSET;
3776        }
3777
3778        /* Set default MTU and Freelist buffer size */
3779        if (nn->max_mtu < NFP_NET_DEFAULT_MTU)
3780                nn->dp.mtu = nn->max_mtu;
3781        else
3782                nn->dp.mtu = NFP_NET_DEFAULT_MTU;
3783        nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp);
3784
3785        if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) {
3786                nfp_net_rss_init(nn);
3787                nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?:
3788                                         NFP_NET_CFG_CTRL_RSS;
3789        }
3790
3791        /* Allow L2 Broadcast and Multicast through by default, if supported */
3792        if (nn->cap & NFP_NET_CFG_CTRL_L2BC)
3793                nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC;
3794        if (nn->cap & NFP_NET_CFG_CTRL_L2MC)
3795                nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2MC;
3796
3797        /* Allow IRQ moderation, if supported */
3798        if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) {
3799                nfp_net_irqmod_init(nn);
3800                nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD;
3801        }
3802
3803        if (nn->dp.netdev)
3804                nfp_net_netdev_init(nn);
3805
3806        /* Stash the re-configuration queue away.  First odd queue in TX Bar */
3807        nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ;
3808
3809        /* Make sure the FW knows the netdev is supposed to be disabled here */
3810        nn_writel(nn, NFP_NET_CFG_CTRL, 0);
3811        nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0);
3812        nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0);
3813        err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING |
3814                                   NFP_NET_CFG_UPDATE_GEN);
3815        if (err)
3816                return err;
3817
3818        nfp_net_vecs_init(nn);
3819
3820        if (!nn->dp.netdev)
3821                return 0;
3822        return register_netdev(nn->dp.netdev);
3823}
3824
3825/**
3826 * nfp_net_clean() - Undo what nfp_net_init() did.
3827 * @nn:         NFP Net device structure
3828 */
3829void nfp_net_clean(struct nfp_net *nn)
3830{
3831        if (!nn->dp.netdev)
3832                return;
3833
3834        unregister_netdev(nn->dp.netdev);
3835}
3836