linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful.
   9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
  10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
  11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
  12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
  13 * See the GNU General Public License for more details, a copy of which
  14 * can be found in the file COPYING included with this package
  15 *
  16 */
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18#include <linux/module.h>
  19#include <linux/parser.h>
  20#include <uapi/scsi/fc/fc_fs.h>
  21#include <uapi/scsi/fc/fc_els.h>
  22#include <linux/delay.h>
  23
  24#include "nvme.h"
  25#include "fabrics.h"
  26#include <linux/nvme-fc-driver.h>
  27#include <linux/nvme-fc.h>
  28
  29
  30/* *************************** Data Structures/Defines ****************** */
  31
  32
  33enum nvme_fc_queue_flags {
  34        NVME_FC_Q_CONNECTED = 0,
  35        NVME_FC_Q_LIVE,
  36};
  37
  38#define NVMEFC_QUEUE_DELAY      3               /* ms units */
  39
  40#define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
  41
  42struct nvme_fc_queue {
  43        struct nvme_fc_ctrl     *ctrl;
  44        struct device           *dev;
  45        struct blk_mq_hw_ctx    *hctx;
  46        void                    *lldd_handle;
  47        size_t                  cmnd_capsule_len;
  48        u32                     qnum;
  49        u32                     rqcnt;
  50        u32                     seqno;
  51
  52        u64                     connection_id;
  53        atomic_t                csn;
  54
  55        unsigned long           flags;
  56} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  57
  58enum nvme_fcop_flags {
  59        FCOP_FLAGS_TERMIO       = (1 << 0),
  60        FCOP_FLAGS_RELEASED     = (1 << 1),
  61        FCOP_FLAGS_COMPLETE     = (1 << 2),
  62        FCOP_FLAGS_AEN          = (1 << 3),
  63};
  64
  65struct nvmefc_ls_req_op {
  66        struct nvmefc_ls_req    ls_req;
  67
  68        struct nvme_fc_rport    *rport;
  69        struct nvme_fc_queue    *queue;
  70        struct request          *rq;
  71        u32                     flags;
  72
  73        int                     ls_error;
  74        struct completion       ls_done;
  75        struct list_head        lsreq_list;     /* rport->ls_req_list */
  76        bool                    req_queued;
  77};
  78
  79enum nvme_fcpop_state {
  80        FCPOP_STATE_UNINIT      = 0,
  81        FCPOP_STATE_IDLE        = 1,
  82        FCPOP_STATE_ACTIVE      = 2,
  83        FCPOP_STATE_ABORTED     = 3,
  84        FCPOP_STATE_COMPLETE    = 4,
  85};
  86
  87struct nvme_fc_fcp_op {
  88        struct nvme_request     nreq;           /*
  89                                                 * nvme/host/core.c
  90                                                 * requires this to be
  91                                                 * the 1st element in the
  92                                                 * private structure
  93                                                 * associated with the
  94                                                 * request.
  95                                                 */
  96        struct nvmefc_fcp_req   fcp_req;
  97
  98        struct nvme_fc_ctrl     *ctrl;
  99        struct nvme_fc_queue    *queue;
 100        struct request          *rq;
 101
 102        atomic_t                state;
 103        u32                     flags;
 104        u32                     rqno;
 105        u32                     nents;
 106
 107        struct nvme_fc_cmd_iu   cmd_iu;
 108        struct nvme_fc_ersp_iu  rsp_iu;
 109};
 110
 111struct nvme_fc_lport {
 112        struct nvme_fc_local_port       localport;
 113
 114        struct ida                      endp_cnt;
 115        struct list_head                port_list;      /* nvme_fc_port_list */
 116        struct list_head                endp_list;
 117        struct device                   *dev;   /* physical device for dma */
 118        struct nvme_fc_port_template    *ops;
 119        struct kref                     ref;
 120        atomic_t                        act_rport_cnt;
 121} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 122
 123struct nvme_fc_rport {
 124        struct nvme_fc_remote_port      remoteport;
 125
 126        struct list_head                endp_list; /* for lport->endp_list */
 127        struct list_head                ctrl_list;
 128        struct list_head                ls_req_list;
 129        struct device                   *dev;   /* physical device for dma */
 130        struct nvme_fc_lport            *lport;
 131        spinlock_t                      lock;
 132        struct kref                     ref;
 133        atomic_t                        act_ctrl_cnt;
 134        unsigned long                   dev_loss_end;
 135} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 136
 137enum nvme_fcctrl_flags {
 138        FCCTRL_TERMIO           = (1 << 0),
 139};
 140
 141struct nvme_fc_ctrl {
 142        spinlock_t              lock;
 143        struct nvme_fc_queue    *queues;
 144        struct device           *dev;
 145        struct nvme_fc_lport    *lport;
 146        struct nvme_fc_rport    *rport;
 147        u32                     cnum;
 148
 149        bool                    assoc_active;
 150        u64                     association_id;
 151
 152        struct list_head        ctrl_list;      /* rport->ctrl_list */
 153
 154        struct blk_mq_tag_set   admin_tag_set;
 155        struct blk_mq_tag_set   tag_set;
 156
 157        struct delayed_work     connect_work;
 158
 159        struct kref             ref;
 160        u32                     flags;
 161        u32                     iocnt;
 162        wait_queue_head_t       ioabort_wait;
 163
 164        struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
 165
 166        struct nvme_ctrl        ctrl;
 167};
 168
 169static inline struct nvme_fc_ctrl *
 170to_fc_ctrl(struct nvme_ctrl *ctrl)
 171{
 172        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 173}
 174
 175static inline struct nvme_fc_lport *
 176localport_to_lport(struct nvme_fc_local_port *portptr)
 177{
 178        return container_of(portptr, struct nvme_fc_lport, localport);
 179}
 180
 181static inline struct nvme_fc_rport *
 182remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 183{
 184        return container_of(portptr, struct nvme_fc_rport, remoteport);
 185}
 186
 187static inline struct nvmefc_ls_req_op *
 188ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 189{
 190        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 191}
 192
 193static inline struct nvme_fc_fcp_op *
 194fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 195{
 196        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 197}
 198
 199
 200
 201/* *************************** Globals **************************** */
 202
 203
 204static DEFINE_SPINLOCK(nvme_fc_lock);
 205
 206static LIST_HEAD(nvme_fc_lport_list);
 207static DEFINE_IDA(nvme_fc_local_port_cnt);
 208static DEFINE_IDA(nvme_fc_ctrl_cnt);
 209
 210
 211
 212/*
 213 * These items are short-term. They will eventually be moved into
 214 * a generic FC class. See comments in module init.
 215 */
 216static struct class *fc_class;
 217static struct device *fc_udev_device;
 218
 219
 220/* *********************** FC-NVME Port Management ************************ */
 221
 222static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 223                        struct nvme_fc_queue *, unsigned int);
 224
 225static void
 226nvme_fc_free_lport(struct kref *ref)
 227{
 228        struct nvme_fc_lport *lport =
 229                container_of(ref, struct nvme_fc_lport, ref);
 230        unsigned long flags;
 231
 232        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 233        WARN_ON(!list_empty(&lport->endp_list));
 234
 235        /* remove from transport list */
 236        spin_lock_irqsave(&nvme_fc_lock, flags);
 237        list_del(&lport->port_list);
 238        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 239
 240        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 241        ida_destroy(&lport->endp_cnt);
 242
 243        put_device(lport->dev);
 244
 245        kfree(lport);
 246}
 247
 248static void
 249nvme_fc_lport_put(struct nvme_fc_lport *lport)
 250{
 251        kref_put(&lport->ref, nvme_fc_free_lport);
 252}
 253
 254static int
 255nvme_fc_lport_get(struct nvme_fc_lport *lport)
 256{
 257        return kref_get_unless_zero(&lport->ref);
 258}
 259
 260
 261static struct nvme_fc_lport *
 262nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
 263                        struct nvme_fc_port_template *ops,
 264                        struct device *dev)
 265{
 266        struct nvme_fc_lport *lport;
 267        unsigned long flags;
 268
 269        spin_lock_irqsave(&nvme_fc_lock, flags);
 270
 271        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
 272                if (lport->localport.node_name != pinfo->node_name ||
 273                    lport->localport.port_name != pinfo->port_name)
 274                        continue;
 275
 276                if (lport->dev != dev) {
 277                        lport = ERR_PTR(-EXDEV);
 278                        goto out_done;
 279                }
 280
 281                if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
 282                        lport = ERR_PTR(-EEXIST);
 283                        goto out_done;
 284                }
 285
 286                if (!nvme_fc_lport_get(lport)) {
 287                        /*
 288                         * fails if ref cnt already 0. If so,
 289                         * act as if lport already deleted
 290                         */
 291                        lport = NULL;
 292                        goto out_done;
 293                }
 294
 295                /* resume the lport */
 296
 297                lport->ops = ops;
 298                lport->localport.port_role = pinfo->port_role;
 299                lport->localport.port_id = pinfo->port_id;
 300                lport->localport.port_state = FC_OBJSTATE_ONLINE;
 301
 302                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 303
 304                return lport;
 305        }
 306
 307        lport = NULL;
 308
 309out_done:
 310        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 311
 312        return lport;
 313}
 314
 315/**
 316 * nvme_fc_register_localport - transport entry point called by an
 317 *                              LLDD to register the existence of a NVME
 318 *                              host FC port.
 319 * @pinfo:     pointer to information about the port to be registered
 320 * @template:  LLDD entrypoints and operational parameters for the port
 321 * @dev:       physical hardware device node port corresponds to. Will be
 322 *             used for DMA mappings
 323 * @lport_p:   pointer to a local port pointer. Upon success, the routine
 324 *             will allocate a nvme_fc_local_port structure and place its
 325 *             address in the local port pointer. Upon failure, local port
 326 *             pointer will be set to 0.
 327 *
 328 * Returns:
 329 * a completion status. Must be 0 upon success; a negative errno
 330 * (ex: -ENXIO) upon failure.
 331 */
 332int
 333nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 334                        struct nvme_fc_port_template *template,
 335                        struct device *dev,
 336                        struct nvme_fc_local_port **portptr)
 337{
 338        struct nvme_fc_lport *newrec;
 339        unsigned long flags;
 340        int ret, idx;
 341
 342        if (!template->localport_delete || !template->remoteport_delete ||
 343            !template->ls_req || !template->fcp_io ||
 344            !template->ls_abort || !template->fcp_abort ||
 345            !template->max_hw_queues || !template->max_sgl_segments ||
 346            !template->max_dif_sgl_segments || !template->dma_boundary) {
 347                ret = -EINVAL;
 348                goto out_reghost_failed;
 349        }
 350
 351        /*
 352         * look to see if there is already a localport that had been
 353         * deregistered and in the process of waiting for all the
 354         * references to fully be removed.  If the references haven't
 355         * expired, we can simply re-enable the localport. Remoteports
 356         * and controller reconnections should resume naturally.
 357         */
 358        newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
 359
 360        /* found an lport, but something about its state is bad */
 361        if (IS_ERR(newrec)) {
 362                ret = PTR_ERR(newrec);
 363                goto out_reghost_failed;
 364
 365        /* found existing lport, which was resumed */
 366        } else if (newrec) {
 367                *portptr = &newrec->localport;
 368                return 0;
 369        }
 370
 371        /* nothing found - allocate a new localport struct */
 372
 373        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 374                         GFP_KERNEL);
 375        if (!newrec) {
 376                ret = -ENOMEM;
 377                goto out_reghost_failed;
 378        }
 379
 380        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 381        if (idx < 0) {
 382                ret = -ENOSPC;
 383                goto out_fail_kfree;
 384        }
 385
 386        if (!get_device(dev) && dev) {
 387                ret = -ENODEV;
 388                goto out_ida_put;
 389        }
 390
 391        INIT_LIST_HEAD(&newrec->port_list);
 392        INIT_LIST_HEAD(&newrec->endp_list);
 393        kref_init(&newrec->ref);
 394        atomic_set(&newrec->act_rport_cnt, 0);
 395        newrec->ops = template;
 396        newrec->dev = dev;
 397        ida_init(&newrec->endp_cnt);
 398        newrec->localport.private = &newrec[1];
 399        newrec->localport.node_name = pinfo->node_name;
 400        newrec->localport.port_name = pinfo->port_name;
 401        newrec->localport.port_role = pinfo->port_role;
 402        newrec->localport.port_id = pinfo->port_id;
 403        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 404        newrec->localport.port_num = idx;
 405
 406        spin_lock_irqsave(&nvme_fc_lock, flags);
 407        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 408        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 409
 410        if (dev)
 411                dma_set_seg_boundary(dev, template->dma_boundary);
 412
 413        *portptr = &newrec->localport;
 414        return 0;
 415
 416out_ida_put:
 417        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 418out_fail_kfree:
 419        kfree(newrec);
 420out_reghost_failed:
 421        *portptr = NULL;
 422
 423        return ret;
 424}
 425EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 426
 427/**
 428 * nvme_fc_unregister_localport - transport entry point called by an
 429 *                              LLDD to deregister/remove a previously
 430 *                              registered a NVME host FC port.
 431 * @localport: pointer to the (registered) local port that is to be
 432 *             deregistered.
 433 *
 434 * Returns:
 435 * a completion status. Must be 0 upon success; a negative errno
 436 * (ex: -ENXIO) upon failure.
 437 */
 438int
 439nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 440{
 441        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 442        unsigned long flags;
 443
 444        if (!portptr)
 445                return -EINVAL;
 446
 447        spin_lock_irqsave(&nvme_fc_lock, flags);
 448
 449        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 450                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 451                return -EINVAL;
 452        }
 453        portptr->port_state = FC_OBJSTATE_DELETED;
 454
 455        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 456
 457        if (atomic_read(&lport->act_rport_cnt) == 0)
 458                lport->ops->localport_delete(&lport->localport);
 459
 460        nvme_fc_lport_put(lport);
 461
 462        return 0;
 463}
 464EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 465
 466/*
 467 * TRADDR strings, per FC-NVME are fixed format:
 468 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
 469 * udev event will only differ by prefix of what field is
 470 * being specified:
 471 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
 472 *  19 + 43 + null_fudge = 64 characters
 473 */
 474#define FCNVME_TRADDR_LENGTH            64
 475
 476static void
 477nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
 478                struct nvme_fc_rport *rport)
 479{
 480        char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
 481        char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
 482        char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
 483
 484        if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
 485                return;
 486
 487        snprintf(hostaddr, sizeof(hostaddr),
 488                "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
 489                lport->localport.node_name, lport->localport.port_name);
 490        snprintf(tgtaddr, sizeof(tgtaddr),
 491                "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
 492                rport->remoteport.node_name, rport->remoteport.port_name);
 493        kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
 494}
 495
 496static void
 497nvme_fc_free_rport(struct kref *ref)
 498{
 499        struct nvme_fc_rport *rport =
 500                container_of(ref, struct nvme_fc_rport, ref);
 501        struct nvme_fc_lport *lport =
 502                        localport_to_lport(rport->remoteport.localport);
 503        unsigned long flags;
 504
 505        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 506        WARN_ON(!list_empty(&rport->ctrl_list));
 507
 508        /* remove from lport list */
 509        spin_lock_irqsave(&nvme_fc_lock, flags);
 510        list_del(&rport->endp_list);
 511        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 512
 513        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 514
 515        kfree(rport);
 516
 517        nvme_fc_lport_put(lport);
 518}
 519
 520static void
 521nvme_fc_rport_put(struct nvme_fc_rport *rport)
 522{
 523        kref_put(&rport->ref, nvme_fc_free_rport);
 524}
 525
 526static int
 527nvme_fc_rport_get(struct nvme_fc_rport *rport)
 528{
 529        return kref_get_unless_zero(&rport->ref);
 530}
 531
 532static void
 533nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
 534{
 535        switch (ctrl->ctrl.state) {
 536        case NVME_CTRL_NEW:
 537        case NVME_CTRL_RECONNECTING:
 538                /*
 539                 * As all reconnects were suppressed, schedule a
 540                 * connect.
 541                 */
 542                dev_info(ctrl->ctrl.device,
 543                        "NVME-FC{%d}: connectivity re-established. "
 544                        "Attempting reconnect\n", ctrl->cnum);
 545
 546                queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
 547                break;
 548
 549        case NVME_CTRL_RESETTING:
 550                /*
 551                 * Controller is already in the process of terminating the
 552                 * association. No need to do anything further. The reconnect
 553                 * step will naturally occur after the reset completes.
 554                 */
 555                break;
 556
 557        default:
 558                /* no action to take - let it delete */
 559                break;
 560        }
 561}
 562
 563static struct nvme_fc_rport *
 564nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
 565                                struct nvme_fc_port_info *pinfo)
 566{
 567        struct nvme_fc_rport *rport;
 568        struct nvme_fc_ctrl *ctrl;
 569        unsigned long flags;
 570
 571        spin_lock_irqsave(&nvme_fc_lock, flags);
 572
 573        list_for_each_entry(rport, &lport->endp_list, endp_list) {
 574                if (rport->remoteport.node_name != pinfo->node_name ||
 575                    rport->remoteport.port_name != pinfo->port_name)
 576                        continue;
 577
 578                if (!nvme_fc_rport_get(rport)) {
 579                        rport = ERR_PTR(-ENOLCK);
 580                        goto out_done;
 581                }
 582
 583                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 584
 585                spin_lock_irqsave(&rport->lock, flags);
 586
 587                /* has it been unregistered */
 588                if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
 589                        /* means lldd called us twice */
 590                        spin_unlock_irqrestore(&rport->lock, flags);
 591                        nvme_fc_rport_put(rport);
 592                        return ERR_PTR(-ESTALE);
 593                }
 594
 595                rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
 596                rport->dev_loss_end = 0;
 597
 598                /*
 599                 * kick off a reconnect attempt on all associations to the
 600                 * remote port. A successful reconnects will resume i/o.
 601                 */
 602                list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 603                        nvme_fc_resume_controller(ctrl);
 604
 605                spin_unlock_irqrestore(&rport->lock, flags);
 606
 607                return rport;
 608        }
 609
 610        rport = NULL;
 611
 612out_done:
 613        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 614
 615        return rport;
 616}
 617
 618static inline void
 619__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
 620                        struct nvme_fc_port_info *pinfo)
 621{
 622        if (pinfo->dev_loss_tmo)
 623                rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
 624        else
 625                rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
 626}
 627
 628/**
 629 * nvme_fc_register_remoteport - transport entry point called by an
 630 *                              LLDD to register the existence of a NVME
 631 *                              subsystem FC port on its fabric.
 632 * @localport: pointer to the (registered) local port that the remote
 633 *             subsystem port is connected to.
 634 * @pinfo:     pointer to information about the port to be registered
 635 * @rport_p:   pointer to a remote port pointer. Upon success, the routine
 636 *             will allocate a nvme_fc_remote_port structure and place its
 637 *             address in the remote port pointer. Upon failure, remote port
 638 *             pointer will be set to 0.
 639 *
 640 * Returns:
 641 * a completion status. Must be 0 upon success; a negative errno
 642 * (ex: -ENXIO) upon failure.
 643 */
 644int
 645nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 646                                struct nvme_fc_port_info *pinfo,
 647                                struct nvme_fc_remote_port **portptr)
 648{
 649        struct nvme_fc_lport *lport = localport_to_lport(localport);
 650        struct nvme_fc_rport *newrec;
 651        unsigned long flags;
 652        int ret, idx;
 653
 654        if (!nvme_fc_lport_get(lport)) {
 655                ret = -ESHUTDOWN;
 656                goto out_reghost_failed;
 657        }
 658
 659        /*
 660         * look to see if there is already a remoteport that is waiting
 661         * for a reconnect (within dev_loss_tmo) with the same WWN's.
 662         * If so, transition to it and reconnect.
 663         */
 664        newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
 665
 666        /* found an rport, but something about its state is bad */
 667        if (IS_ERR(newrec)) {
 668                ret = PTR_ERR(newrec);
 669                goto out_lport_put;
 670
 671        /* found existing rport, which was resumed */
 672        } else if (newrec) {
 673                nvme_fc_lport_put(lport);
 674                __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 675                nvme_fc_signal_discovery_scan(lport, newrec);
 676                *portptr = &newrec->remoteport;
 677                return 0;
 678        }
 679
 680        /* nothing found - allocate a new remoteport struct */
 681
 682        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 683                         GFP_KERNEL);
 684        if (!newrec) {
 685                ret = -ENOMEM;
 686                goto out_lport_put;
 687        }
 688
 689        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 690        if (idx < 0) {
 691                ret = -ENOSPC;
 692                goto out_kfree_rport;
 693        }
 694
 695        INIT_LIST_HEAD(&newrec->endp_list);
 696        INIT_LIST_HEAD(&newrec->ctrl_list);
 697        INIT_LIST_HEAD(&newrec->ls_req_list);
 698        kref_init(&newrec->ref);
 699        atomic_set(&newrec->act_ctrl_cnt, 0);
 700        spin_lock_init(&newrec->lock);
 701        newrec->remoteport.localport = &lport->localport;
 702        newrec->dev = lport->dev;
 703        newrec->lport = lport;
 704        newrec->remoteport.private = &newrec[1];
 705        newrec->remoteport.port_role = pinfo->port_role;
 706        newrec->remoteport.node_name = pinfo->node_name;
 707        newrec->remoteport.port_name = pinfo->port_name;
 708        newrec->remoteport.port_id = pinfo->port_id;
 709        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 710        newrec->remoteport.port_num = idx;
 711        __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 712
 713        spin_lock_irqsave(&nvme_fc_lock, flags);
 714        list_add_tail(&newrec->endp_list, &lport->endp_list);
 715        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 716
 717        nvme_fc_signal_discovery_scan(lport, newrec);
 718
 719        *portptr = &newrec->remoteport;
 720        return 0;
 721
 722out_kfree_rport:
 723        kfree(newrec);
 724out_lport_put:
 725        nvme_fc_lport_put(lport);
 726out_reghost_failed:
 727        *portptr = NULL;
 728        return ret;
 729}
 730EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 731
 732static int
 733nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
 734{
 735        struct nvmefc_ls_req_op *lsop;
 736        unsigned long flags;
 737
 738restart:
 739        spin_lock_irqsave(&rport->lock, flags);
 740
 741        list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
 742                if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
 743                        lsop->flags |= FCOP_FLAGS_TERMIO;
 744                        spin_unlock_irqrestore(&rport->lock, flags);
 745                        rport->lport->ops->ls_abort(&rport->lport->localport,
 746                                                &rport->remoteport,
 747                                                &lsop->ls_req);
 748                        goto restart;
 749                }
 750        }
 751        spin_unlock_irqrestore(&rport->lock, flags);
 752
 753        return 0;
 754}
 755
 756static void
 757nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
 758{
 759        dev_info(ctrl->ctrl.device,
 760                "NVME-FC{%d}: controller connectivity lost. Awaiting "
 761                "Reconnect", ctrl->cnum);
 762
 763        switch (ctrl->ctrl.state) {
 764        case NVME_CTRL_NEW:
 765        case NVME_CTRL_LIVE:
 766                /*
 767                 * Schedule a controller reset. The reset will terminate the
 768                 * association and schedule the reconnect timer.  Reconnects
 769                 * will be attempted until either the ctlr_loss_tmo
 770                 * (max_retries * connect_delay) expires or the remoteport's
 771                 * dev_loss_tmo expires.
 772                 */
 773                if (nvme_reset_ctrl(&ctrl->ctrl)) {
 774                        dev_warn(ctrl->ctrl.device,
 775                                "NVME-FC{%d}: Couldn't schedule reset. "
 776                                "Deleting controller.\n",
 777                                ctrl->cnum);
 778                        nvme_delete_ctrl(&ctrl->ctrl);
 779                }
 780                break;
 781
 782        case NVME_CTRL_RECONNECTING:
 783                /*
 784                 * The association has already been terminated and the
 785                 * controller is attempting reconnects.  No need to do anything
 786                 * futher.  Reconnects will be attempted until either the
 787                 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
 788                 * remoteport's dev_loss_tmo expires.
 789                 */
 790                break;
 791
 792        case NVME_CTRL_RESETTING:
 793                /*
 794                 * Controller is already in the process of terminating the
 795                 * association.  No need to do anything further. The reconnect
 796                 * step will kick in naturally after the association is
 797                 * terminated.
 798                 */
 799                break;
 800
 801        case NVME_CTRL_DELETING:
 802        default:
 803                /* no action to take - let it delete */
 804                break;
 805        }
 806}
 807
 808/**
 809 * nvme_fc_unregister_remoteport - transport entry point called by an
 810 *                              LLDD to deregister/remove a previously
 811 *                              registered a NVME subsystem FC port.
 812 * @remoteport: pointer to the (registered) remote port that is to be
 813 *              deregistered.
 814 *
 815 * Returns:
 816 * a completion status. Must be 0 upon success; a negative errno
 817 * (ex: -ENXIO) upon failure.
 818 */
 819int
 820nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 821{
 822        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 823        struct nvme_fc_ctrl *ctrl;
 824        unsigned long flags;
 825
 826        if (!portptr)
 827                return -EINVAL;
 828
 829        spin_lock_irqsave(&rport->lock, flags);
 830
 831        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 832                spin_unlock_irqrestore(&rport->lock, flags);
 833                return -EINVAL;
 834        }
 835        portptr->port_state = FC_OBJSTATE_DELETED;
 836
 837        rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
 838
 839        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
 840                /* if dev_loss_tmo==0, dev loss is immediate */
 841                if (!portptr->dev_loss_tmo) {
 842                        dev_warn(ctrl->ctrl.device,
 843                                "NVME-FC{%d}: controller connectivity lost. "
 844                                "Deleting controller.\n",
 845                                ctrl->cnum);
 846                        nvme_delete_ctrl(&ctrl->ctrl);
 847                } else
 848                        nvme_fc_ctrl_connectivity_loss(ctrl);
 849        }
 850
 851        spin_unlock_irqrestore(&rport->lock, flags);
 852
 853        nvme_fc_abort_lsops(rport);
 854
 855        if (atomic_read(&rport->act_ctrl_cnt) == 0)
 856                rport->lport->ops->remoteport_delete(portptr);
 857
 858        /*
 859         * release the reference, which will allow, if all controllers
 860         * go away, which should only occur after dev_loss_tmo occurs,
 861         * for the rport to be torn down.
 862         */
 863        nvme_fc_rport_put(rport);
 864
 865        return 0;
 866}
 867EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 868
 869/**
 870 * nvme_fc_rescan_remoteport - transport entry point called by an
 871 *                              LLDD to request a nvme device rescan.
 872 * @remoteport: pointer to the (registered) remote port that is to be
 873 *              rescanned.
 874 *
 875 * Returns: N/A
 876 */
 877void
 878nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
 879{
 880        struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
 881
 882        nvme_fc_signal_discovery_scan(rport->lport, rport);
 883}
 884EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
 885
 886int
 887nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
 888                        u32 dev_loss_tmo)
 889{
 890        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 891        unsigned long flags;
 892
 893        spin_lock_irqsave(&rport->lock, flags);
 894
 895        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 896                spin_unlock_irqrestore(&rport->lock, flags);
 897                return -EINVAL;
 898        }
 899
 900        /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
 901        rport->remoteport.dev_loss_tmo = dev_loss_tmo;
 902
 903        spin_unlock_irqrestore(&rport->lock, flags);
 904
 905        return 0;
 906}
 907EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
 908
 909
 910/* *********************** FC-NVME DMA Handling **************************** */
 911
 912/*
 913 * The fcloop device passes in a NULL device pointer. Real LLD's will
 914 * pass in a valid device pointer. If NULL is passed to the dma mapping
 915 * routines, depending on the platform, it may or may not succeed, and
 916 * may crash.
 917 *
 918 * As such:
 919 * Wrapper all the dma routines and check the dev pointer.
 920 *
 921 * If simple mappings (return just a dma address, we'll noop them,
 922 * returning a dma address of 0.
 923 *
 924 * On more complex mappings (dma_map_sg), a pseudo routine fills
 925 * in the scatter list, setting all dma addresses to 0.
 926 */
 927
 928static inline dma_addr_t
 929fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 930                enum dma_data_direction dir)
 931{
 932        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 933}
 934
 935static inline int
 936fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 937{
 938        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 939}
 940
 941static inline void
 942fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 943        enum dma_data_direction dir)
 944{
 945        if (dev)
 946                dma_unmap_single(dev, addr, size, dir);
 947}
 948
 949static inline void
 950fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 951                enum dma_data_direction dir)
 952{
 953        if (dev)
 954                dma_sync_single_for_cpu(dev, addr, size, dir);
 955}
 956
 957static inline void
 958fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 959                enum dma_data_direction dir)
 960{
 961        if (dev)
 962                dma_sync_single_for_device(dev, addr, size, dir);
 963}
 964
 965/* pseudo dma_map_sg call */
 966static int
 967fc_map_sg(struct scatterlist *sg, int nents)
 968{
 969        struct scatterlist *s;
 970        int i;
 971
 972        WARN_ON(nents == 0 || sg[0].length == 0);
 973
 974        for_each_sg(sg, s, nents, i) {
 975                s->dma_address = 0L;
 976#ifdef CONFIG_NEED_SG_DMA_LENGTH
 977                s->dma_length = s->length;
 978#endif
 979        }
 980        return nents;
 981}
 982
 983static inline int
 984fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 985                enum dma_data_direction dir)
 986{
 987        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 988}
 989
 990static inline void
 991fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 992                enum dma_data_direction dir)
 993{
 994        if (dev)
 995                dma_unmap_sg(dev, sg, nents, dir);
 996}
 997
 998/* *********************** FC-NVME LS Handling **************************** */
 999
1000static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1001static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1002
1003
1004static void
1005__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1006{
1007        struct nvme_fc_rport *rport = lsop->rport;
1008        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1009        unsigned long flags;
1010
1011        spin_lock_irqsave(&rport->lock, flags);
1012
1013        if (!lsop->req_queued) {
1014                spin_unlock_irqrestore(&rport->lock, flags);
1015                return;
1016        }
1017
1018        list_del(&lsop->lsreq_list);
1019
1020        lsop->req_queued = false;
1021
1022        spin_unlock_irqrestore(&rport->lock, flags);
1023
1024        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1025                                  (lsreq->rqstlen + lsreq->rsplen),
1026                                  DMA_BIDIRECTIONAL);
1027
1028        nvme_fc_rport_put(rport);
1029}
1030
1031static int
1032__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1033                struct nvmefc_ls_req_op *lsop,
1034                void (*done)(struct nvmefc_ls_req *req, int status))
1035{
1036        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1037        unsigned long flags;
1038        int ret = 0;
1039
1040        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1041                return -ECONNREFUSED;
1042
1043        if (!nvme_fc_rport_get(rport))
1044                return -ESHUTDOWN;
1045
1046        lsreq->done = done;
1047        lsop->rport = rport;
1048        lsop->req_queued = false;
1049        INIT_LIST_HEAD(&lsop->lsreq_list);
1050        init_completion(&lsop->ls_done);
1051
1052        lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1053                                  lsreq->rqstlen + lsreq->rsplen,
1054                                  DMA_BIDIRECTIONAL);
1055        if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1056                ret = -EFAULT;
1057                goto out_putrport;
1058        }
1059        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1060
1061        spin_lock_irqsave(&rport->lock, flags);
1062
1063        list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1064
1065        lsop->req_queued = true;
1066
1067        spin_unlock_irqrestore(&rport->lock, flags);
1068
1069        ret = rport->lport->ops->ls_req(&rport->lport->localport,
1070                                        &rport->remoteport, lsreq);
1071        if (ret)
1072                goto out_unlink;
1073
1074        return 0;
1075
1076out_unlink:
1077        lsop->ls_error = ret;
1078        spin_lock_irqsave(&rport->lock, flags);
1079        lsop->req_queued = false;
1080        list_del(&lsop->lsreq_list);
1081        spin_unlock_irqrestore(&rport->lock, flags);
1082        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1083                                  (lsreq->rqstlen + lsreq->rsplen),
1084                                  DMA_BIDIRECTIONAL);
1085out_putrport:
1086        nvme_fc_rport_put(rport);
1087
1088        return ret;
1089}
1090
1091static void
1092nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1093{
1094        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1095
1096        lsop->ls_error = status;
1097        complete(&lsop->ls_done);
1098}
1099
1100static int
1101nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1102{
1103        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1104        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1105        int ret;
1106
1107        ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1108
1109        if (!ret) {
1110                /*
1111                 * No timeout/not interruptible as we need the struct
1112                 * to exist until the lldd calls us back. Thus mandate
1113                 * wait until driver calls back. lldd responsible for
1114                 * the timeout action
1115                 */
1116                wait_for_completion(&lsop->ls_done);
1117
1118                __nvme_fc_finish_ls_req(lsop);
1119
1120                ret = lsop->ls_error;
1121        }
1122
1123        if (ret)
1124                return ret;
1125
1126        /* ACC or RJT payload ? */
1127        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1128                return -ENXIO;
1129
1130        return 0;
1131}
1132
1133static int
1134nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1135                struct nvmefc_ls_req_op *lsop,
1136                void (*done)(struct nvmefc_ls_req *req, int status))
1137{
1138        /* don't wait for completion */
1139
1140        return __nvme_fc_send_ls_req(rport, lsop, done);
1141}
1142
1143/* Validation Error indexes into the string table below */
1144enum {
1145        VERR_NO_ERROR           = 0,
1146        VERR_LSACC              = 1,
1147        VERR_LSDESC_RQST        = 2,
1148        VERR_LSDESC_RQST_LEN    = 3,
1149        VERR_ASSOC_ID           = 4,
1150        VERR_ASSOC_ID_LEN       = 5,
1151        VERR_CONN_ID            = 6,
1152        VERR_CONN_ID_LEN        = 7,
1153        VERR_CR_ASSOC           = 8,
1154        VERR_CR_ASSOC_ACC_LEN   = 9,
1155        VERR_CR_CONN            = 10,
1156        VERR_CR_CONN_ACC_LEN    = 11,
1157        VERR_DISCONN            = 12,
1158        VERR_DISCONN_ACC_LEN    = 13,
1159};
1160
1161static char *validation_errors[] = {
1162        "OK",
1163        "Not LS_ACC",
1164        "Not LSDESC_RQST",
1165        "Bad LSDESC_RQST Length",
1166        "Not Association ID",
1167        "Bad Association ID Length",
1168        "Not Connection ID",
1169        "Bad Connection ID Length",
1170        "Not CR_ASSOC Rqst",
1171        "Bad CR_ASSOC ACC Length",
1172        "Not CR_CONN Rqst",
1173        "Bad CR_CONN ACC Length",
1174        "Not Disconnect Rqst",
1175        "Bad Disconnect ACC Length",
1176};
1177
1178static int
1179nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1180        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1181{
1182        struct nvmefc_ls_req_op *lsop;
1183        struct nvmefc_ls_req *lsreq;
1184        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1185        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1186        int ret, fcret = 0;
1187
1188        lsop = kzalloc((sizeof(*lsop) +
1189                         ctrl->lport->ops->lsrqst_priv_sz +
1190                         sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
1191        if (!lsop) {
1192                ret = -ENOMEM;
1193                goto out_no_memory;
1194        }
1195        lsreq = &lsop->ls_req;
1196
1197        lsreq->private = (void *)&lsop[1];
1198        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
1199                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1200        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1201
1202        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1203        assoc_rqst->desc_list_len =
1204                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1205
1206        assoc_rqst->assoc_cmd.desc_tag =
1207                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1208        assoc_rqst->assoc_cmd.desc_len =
1209                        fcnvme_lsdesc_len(
1210                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1211
1212        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1213        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
1214        /* Linux supports only Dynamic controllers */
1215        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1216        uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1217        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1218                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1219        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1220                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1221
1222        lsop->queue = queue;
1223        lsreq->rqstaddr = assoc_rqst;
1224        lsreq->rqstlen = sizeof(*assoc_rqst);
1225        lsreq->rspaddr = assoc_acc;
1226        lsreq->rsplen = sizeof(*assoc_acc);
1227        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1228
1229        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1230        if (ret)
1231                goto out_free_buffer;
1232
1233        /* process connect LS completion */
1234
1235        /* validate the ACC response */
1236        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1237                fcret = VERR_LSACC;
1238        else if (assoc_acc->hdr.desc_list_len !=
1239                        fcnvme_lsdesc_len(
1240                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
1241                fcret = VERR_CR_ASSOC_ACC_LEN;
1242        else if (assoc_acc->hdr.rqst.desc_tag !=
1243                        cpu_to_be32(FCNVME_LSDESC_RQST))
1244                fcret = VERR_LSDESC_RQST;
1245        else if (assoc_acc->hdr.rqst.desc_len !=
1246                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1247                fcret = VERR_LSDESC_RQST_LEN;
1248        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1249                fcret = VERR_CR_ASSOC;
1250        else if (assoc_acc->associd.desc_tag !=
1251                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1252                fcret = VERR_ASSOC_ID;
1253        else if (assoc_acc->associd.desc_len !=
1254                        fcnvme_lsdesc_len(
1255                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1256                fcret = VERR_ASSOC_ID_LEN;
1257        else if (assoc_acc->connectid.desc_tag !=
1258                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1259                fcret = VERR_CONN_ID;
1260        else if (assoc_acc->connectid.desc_len !=
1261                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1262                fcret = VERR_CONN_ID_LEN;
1263
1264        if (fcret) {
1265                ret = -EBADF;
1266                dev_err(ctrl->dev,
1267                        "q %d connect failed: %s\n",
1268                        queue->qnum, validation_errors[fcret]);
1269        } else {
1270                ctrl->association_id =
1271                        be64_to_cpu(assoc_acc->associd.association_id);
1272                queue->connection_id =
1273                        be64_to_cpu(assoc_acc->connectid.connection_id);
1274                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1275        }
1276
1277out_free_buffer:
1278        kfree(lsop);
1279out_no_memory:
1280        if (ret)
1281                dev_err(ctrl->dev,
1282                        "queue %d connect admin queue failed (%d).\n",
1283                        queue->qnum, ret);
1284        return ret;
1285}
1286
1287static int
1288nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289                        u16 qsize, u16 ersp_ratio)
1290{
1291        struct nvmefc_ls_req_op *lsop;
1292        struct nvmefc_ls_req *lsreq;
1293        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294        struct fcnvme_ls_cr_conn_acc *conn_acc;
1295        int ret, fcret = 0;
1296
1297        lsop = kzalloc((sizeof(*lsop) +
1298                         ctrl->lport->ops->lsrqst_priv_sz +
1299                         sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
1300        if (!lsop) {
1301                ret = -ENOMEM;
1302                goto out_no_memory;
1303        }
1304        lsreq = &lsop->ls_req;
1305
1306        lsreq->private = (void *)&lsop[1];
1307        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
1308                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1309        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310
1311        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1312        conn_rqst->desc_list_len = cpu_to_be32(
1313                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1314                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1315
1316        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1317        conn_rqst->associd.desc_len =
1318                        fcnvme_lsdesc_len(
1319                                sizeof(struct fcnvme_lsdesc_assoc_id));
1320        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1321        conn_rqst->connect_cmd.desc_tag =
1322                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1323        conn_rqst->connect_cmd.desc_len =
1324                        fcnvme_lsdesc_len(
1325                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1326        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1327        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1328        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
1329
1330        lsop->queue = queue;
1331        lsreq->rqstaddr = conn_rqst;
1332        lsreq->rqstlen = sizeof(*conn_rqst);
1333        lsreq->rspaddr = conn_acc;
1334        lsreq->rsplen = sizeof(*conn_acc);
1335        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1336
1337        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1338        if (ret)
1339                goto out_free_buffer;
1340
1341        /* process connect LS completion */
1342
1343        /* validate the ACC response */
1344        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1345                fcret = VERR_LSACC;
1346        else if (conn_acc->hdr.desc_list_len !=
1347                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1348                fcret = VERR_CR_CONN_ACC_LEN;
1349        else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1350                fcret = VERR_LSDESC_RQST;
1351        else if (conn_acc->hdr.rqst.desc_len !=
1352                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1353                fcret = VERR_LSDESC_RQST_LEN;
1354        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1355                fcret = VERR_CR_CONN;
1356        else if (conn_acc->connectid.desc_tag !=
1357                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1358                fcret = VERR_CONN_ID;
1359        else if (conn_acc->connectid.desc_len !=
1360                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1361                fcret = VERR_CONN_ID_LEN;
1362
1363        if (fcret) {
1364                ret = -EBADF;
1365                dev_err(ctrl->dev,
1366                        "q %d connect failed: %s\n",
1367                        queue->qnum, validation_errors[fcret]);
1368        } else {
1369                queue->connection_id =
1370                        be64_to_cpu(conn_acc->connectid.connection_id);
1371                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1372        }
1373
1374out_free_buffer:
1375        kfree(lsop);
1376out_no_memory:
1377        if (ret)
1378                dev_err(ctrl->dev,
1379                        "queue %d connect command failed (%d).\n",
1380                        queue->qnum, ret);
1381        return ret;
1382}
1383
1384static void
1385nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1386{
1387        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1388
1389        __nvme_fc_finish_ls_req(lsop);
1390
1391        /* fc-nvme iniator doesn't care about success or failure of cmd */
1392
1393        kfree(lsop);
1394}
1395
1396/*
1397 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1398 * the FC-NVME Association.  Terminating the association also
1399 * terminates the FC-NVME connections (per queue, both admin and io
1400 * queues) that are part of the association. E.g. things are torn
1401 * down, and the related FC-NVME Association ID and Connection IDs
1402 * become invalid.
1403 *
1404 * The behavior of the fc-nvme initiator is such that it's
1405 * understanding of the association and connections will implicitly
1406 * be torn down. The action is implicit as it may be due to a loss of
1407 * connectivity with the fc-nvme target, so you may never get a
1408 * response even if you tried.  As such, the action of this routine
1409 * is to asynchronously send the LS, ignore any results of the LS, and
1410 * continue on with terminating the association. If the fc-nvme target
1411 * is present and receives the LS, it too can tear down.
1412 */
1413static void
1414nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1415{
1416        struct fcnvme_ls_disconnect_rqst *discon_rqst;
1417        struct fcnvme_ls_disconnect_acc *discon_acc;
1418        struct nvmefc_ls_req_op *lsop;
1419        struct nvmefc_ls_req *lsreq;
1420        int ret;
1421
1422        lsop = kzalloc((sizeof(*lsop) +
1423                         ctrl->lport->ops->lsrqst_priv_sz +
1424                         sizeof(*discon_rqst) + sizeof(*discon_acc)),
1425                        GFP_KERNEL);
1426        if (!lsop)
1427                /* couldn't sent it... too bad */
1428                return;
1429
1430        lsreq = &lsop->ls_req;
1431
1432        lsreq->private = (void *)&lsop[1];
1433        discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1434                        (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1435        discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1436
1437        discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1438        discon_rqst->desc_list_len = cpu_to_be32(
1439                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1440                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1441
1442        discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1443        discon_rqst->associd.desc_len =
1444                        fcnvme_lsdesc_len(
1445                                sizeof(struct fcnvme_lsdesc_assoc_id));
1446
1447        discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1448
1449        discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1450                                                FCNVME_LSDESC_DISCONN_CMD);
1451        discon_rqst->discon_cmd.desc_len =
1452                        fcnvme_lsdesc_len(
1453                                sizeof(struct fcnvme_lsdesc_disconn_cmd));
1454        discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1455        discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1456
1457        lsreq->rqstaddr = discon_rqst;
1458        lsreq->rqstlen = sizeof(*discon_rqst);
1459        lsreq->rspaddr = discon_acc;
1460        lsreq->rsplen = sizeof(*discon_acc);
1461        lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1462
1463        ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1464                                nvme_fc_disconnect_assoc_done);
1465        if (ret)
1466                kfree(lsop);
1467
1468        /* only meaningful part to terminating the association */
1469        ctrl->association_id = 0;
1470}
1471
1472
1473/* *********************** NVME Ctrl Routines **************************** */
1474
1475static void __nvme_fc_final_op_cleanup(struct request *rq);
1476static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1477
1478static int
1479nvme_fc_reinit_request(void *data, struct request *rq)
1480{
1481        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1482        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1483
1484        memset(cmdiu, 0, sizeof(*cmdiu));
1485        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1486        cmdiu->fc_id = NVME_CMD_FC_ID;
1487        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1488        memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1489
1490        return 0;
1491}
1492
1493static void
1494__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1495                struct nvme_fc_fcp_op *op)
1496{
1497        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1498                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1499        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1500                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1501
1502        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1503}
1504
1505static void
1506nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1507                unsigned int hctx_idx)
1508{
1509        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1510
1511        return __nvme_fc_exit_request(set->driver_data, op);
1512}
1513
1514static int
1515__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1516{
1517        int state;
1518
1519        state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1520        if (state != FCPOP_STATE_ACTIVE) {
1521                atomic_set(&op->state, state);
1522                return -ECANCELED;
1523        }
1524
1525        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1526                                        &ctrl->rport->remoteport,
1527                                        op->queue->lldd_handle,
1528                                        &op->fcp_req);
1529
1530        return 0;
1531}
1532
1533static void
1534nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1535{
1536        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1537        unsigned long flags;
1538        int i, ret;
1539
1540        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1541                if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1542                        continue;
1543
1544                spin_lock_irqsave(&ctrl->lock, flags);
1545                if (ctrl->flags & FCCTRL_TERMIO) {
1546                        ctrl->iocnt++;
1547                        aen_op->flags |= FCOP_FLAGS_TERMIO;
1548                }
1549                spin_unlock_irqrestore(&ctrl->lock, flags);
1550
1551                ret = __nvme_fc_abort_op(ctrl, aen_op);
1552                if (ret) {
1553                        /*
1554                         * if __nvme_fc_abort_op failed the io wasn't
1555                         * active. Thus this call path is running in
1556                         * parallel to the io complete. Treat as non-error.
1557                         */
1558
1559                        /* back out the flags/counters */
1560                        spin_lock_irqsave(&ctrl->lock, flags);
1561                        if (ctrl->flags & FCCTRL_TERMIO)
1562                                ctrl->iocnt--;
1563                        aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1564                        spin_unlock_irqrestore(&ctrl->lock, flags);
1565                        return;
1566                }
1567        }
1568}
1569
1570static inline int
1571__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1572                struct nvme_fc_fcp_op *op)
1573{
1574        unsigned long flags;
1575        bool complete_rq = false;
1576
1577        spin_lock_irqsave(&ctrl->lock, flags);
1578        if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1579                if (ctrl->flags & FCCTRL_TERMIO) {
1580                        if (!--ctrl->iocnt)
1581                                wake_up(&ctrl->ioabort_wait);
1582                }
1583        }
1584        if (op->flags & FCOP_FLAGS_RELEASED)
1585                complete_rq = true;
1586        else
1587                op->flags |= FCOP_FLAGS_COMPLETE;
1588        spin_unlock_irqrestore(&ctrl->lock, flags);
1589
1590        return complete_rq;
1591}
1592
1593static void
1594nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1595{
1596        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1597        struct request *rq = op->rq;
1598        struct nvmefc_fcp_req *freq = &op->fcp_req;
1599        struct nvme_fc_ctrl *ctrl = op->ctrl;
1600        struct nvme_fc_queue *queue = op->queue;
1601        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1602        struct nvme_command *sqe = &op->cmd_iu.sqe;
1603        __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1604        union nvme_result result;
1605        bool terminate_assoc = true;
1606
1607        /*
1608         * WARNING:
1609         * The current linux implementation of a nvme controller
1610         * allocates a single tag set for all io queues and sizes
1611         * the io queues to fully hold all possible tags. Thus, the
1612         * implementation does not reference or care about the sqhd
1613         * value as it never needs to use the sqhd/sqtail pointers
1614         * for submission pacing.
1615         *
1616         * This affects the FC-NVME implementation in two ways:
1617         * 1) As the value doesn't matter, we don't need to waste
1618         *    cycles extracting it from ERSPs and stamping it in the
1619         *    cases where the transport fabricates CQEs on successful
1620         *    completions.
1621         * 2) The FC-NVME implementation requires that delivery of
1622         *    ERSP completions are to go back to the nvme layer in order
1623         *    relative to the rsn, such that the sqhd value will always
1624         *    be "in order" for the nvme layer. As the nvme layer in
1625         *    linux doesn't care about sqhd, there's no need to return
1626         *    them in order.
1627         *
1628         * Additionally:
1629         * As the core nvme layer in linux currently does not look at
1630         * every field in the cqe - in cases where the FC transport must
1631         * fabricate a CQE, the following fields will not be set as they
1632         * are not referenced:
1633         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1634         *
1635         * Failure or error of an individual i/o, in a transport
1636         * detected fashion unrelated to the nvme completion status,
1637         * potentially cause the initiator and target sides to get out
1638         * of sync on SQ head/tail (aka outstanding io count allowed).
1639         * Per FC-NVME spec, failure of an individual command requires
1640         * the connection to be terminated, which in turn requires the
1641         * association to be terminated.
1642         */
1643
1644        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1645                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1646
1647        if (atomic_read(&op->state) == FCPOP_STATE_ABORTED ||
1648                        op->flags & FCOP_FLAGS_TERMIO)
1649                status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1650        else if (freq->status)
1651                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1652
1653        /*
1654         * For the linux implementation, if we have an unsuccesful
1655         * status, they blk-mq layer can typically be called with the
1656         * non-zero status and the content of the cqe isn't important.
1657         */
1658        if (status)
1659                goto done;
1660
1661        /*
1662         * command completed successfully relative to the wire
1663         * protocol. However, validate anything received and
1664         * extract the status and result from the cqe (create it
1665         * where necessary).
1666         */
1667
1668        switch (freq->rcv_rsplen) {
1669
1670        case 0:
1671        case NVME_FC_SIZEOF_ZEROS_RSP:
1672                /*
1673                 * No response payload or 12 bytes of payload (which
1674                 * should all be zeros) are considered successful and
1675                 * no payload in the CQE by the transport.
1676                 */
1677                if (freq->transferred_length !=
1678                        be32_to_cpu(op->cmd_iu.data_len)) {
1679                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1680                        goto done;
1681                }
1682                result.u64 = 0;
1683                break;
1684
1685        case sizeof(struct nvme_fc_ersp_iu):
1686                /*
1687                 * The ERSP IU contains a full completion with CQE.
1688                 * Validate ERSP IU and look at cqe.
1689                 */
1690                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1691                                        (freq->rcv_rsplen / 4) ||
1692                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
1693                                        freq->transferred_length ||
1694                             op->rsp_iu.status_code ||
1695                             sqe->common.command_id != cqe->command_id)) {
1696                        status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1697                        goto done;
1698                }
1699                result = cqe->result;
1700                status = cqe->status;
1701                break;
1702
1703        default:
1704                status = cpu_to_le16(NVME_SC_INTERNAL << 1);
1705                goto done;
1706        }
1707
1708        terminate_assoc = false;
1709
1710done:
1711        if (op->flags & FCOP_FLAGS_AEN) {
1712                nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1713                __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1714                atomic_set(&op->state, FCPOP_STATE_IDLE);
1715                op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1716                nvme_fc_ctrl_put(ctrl);
1717                goto check_error;
1718        }
1719
1720        /*
1721         * Force failures of commands if we're killing the controller
1722         * or have an error on a command used to create an new association
1723         */
1724        if (status &&
1725            (blk_queue_dying(rq->q) ||
1726             ctrl->ctrl.state == NVME_CTRL_NEW ||
1727             ctrl->ctrl.state == NVME_CTRL_RECONNECTING))
1728                status |= cpu_to_le16(NVME_SC_DNR << 1);
1729
1730        if (__nvme_fc_fcpop_chk_teardowns(ctrl, op))
1731                __nvme_fc_final_op_cleanup(rq);
1732        else
1733                nvme_end_request(rq, status, result);
1734
1735check_error:
1736        if (terminate_assoc)
1737                nvme_fc_error_recovery(ctrl, "transport detected io error");
1738}
1739
1740static int
1741__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1742                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1743                struct request *rq, u32 rqno)
1744{
1745        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1746        int ret = 0;
1747
1748        memset(op, 0, sizeof(*op));
1749        op->fcp_req.cmdaddr = &op->cmd_iu;
1750        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1751        op->fcp_req.rspaddr = &op->rsp_iu;
1752        op->fcp_req.rsplen = sizeof(op->rsp_iu);
1753        op->fcp_req.done = nvme_fc_fcpio_done;
1754        op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1755        op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1756        op->ctrl = ctrl;
1757        op->queue = queue;
1758        op->rq = rq;
1759        op->rqno = rqno;
1760
1761        cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1762        cmdiu->fc_id = NVME_CMD_FC_ID;
1763        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1764
1765        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1766                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1767        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1768                dev_err(ctrl->dev,
1769                        "FCP Op failed - cmdiu dma mapping failed.\n");
1770                ret = EFAULT;
1771                goto out_on_error;
1772        }
1773
1774        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1775                                &op->rsp_iu, sizeof(op->rsp_iu),
1776                                DMA_FROM_DEVICE);
1777        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1778                dev_err(ctrl->dev,
1779                        "FCP Op failed - rspiu dma mapping failed.\n");
1780                ret = EFAULT;
1781        }
1782
1783        atomic_set(&op->state, FCPOP_STATE_IDLE);
1784out_on_error:
1785        return ret;
1786}
1787
1788static int
1789nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1790                unsigned int hctx_idx, unsigned int numa_node)
1791{
1792        struct nvme_fc_ctrl *ctrl = set->driver_data;
1793        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1794        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1795        struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1796
1797        return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1798}
1799
1800static int
1801nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1802{
1803        struct nvme_fc_fcp_op *aen_op;
1804        struct nvme_fc_cmd_iu *cmdiu;
1805        struct nvme_command *sqe;
1806        void *private;
1807        int i, ret;
1808
1809        aen_op = ctrl->aen_ops;
1810        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1811                private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1812                                                GFP_KERNEL);
1813                if (!private)
1814                        return -ENOMEM;
1815
1816                cmdiu = &aen_op->cmd_iu;
1817                sqe = &cmdiu->sqe;
1818                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1819                                aen_op, (struct request *)NULL,
1820                                (NVME_AQ_BLK_MQ_DEPTH + i));
1821                if (ret) {
1822                        kfree(private);
1823                        return ret;
1824                }
1825
1826                aen_op->flags = FCOP_FLAGS_AEN;
1827                aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1828                aen_op->fcp_req.private = private;
1829
1830                memset(sqe, 0, sizeof(*sqe));
1831                sqe->common.opcode = nvme_admin_async_event;
1832                /* Note: core layer may overwrite the sqe.command_id value */
1833                sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
1834        }
1835        return 0;
1836}
1837
1838static void
1839nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1840{
1841        struct nvme_fc_fcp_op *aen_op;
1842        int i;
1843
1844        aen_op = ctrl->aen_ops;
1845        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
1846                if (!aen_op->fcp_req.private)
1847                        continue;
1848
1849                __nvme_fc_exit_request(ctrl, aen_op);
1850
1851                kfree(aen_op->fcp_req.private);
1852                aen_op->fcp_req.private = NULL;
1853        }
1854}
1855
1856static inline void
1857__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1858                unsigned int qidx)
1859{
1860        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1861
1862        hctx->driver_data = queue;
1863        queue->hctx = hctx;
1864}
1865
1866static int
1867nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1868                unsigned int hctx_idx)
1869{
1870        struct nvme_fc_ctrl *ctrl = data;
1871
1872        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1873
1874        return 0;
1875}
1876
1877static int
1878nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1879                unsigned int hctx_idx)
1880{
1881        struct nvme_fc_ctrl *ctrl = data;
1882
1883        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1884
1885        return 0;
1886}
1887
1888static void
1889nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
1890{
1891        struct nvme_fc_queue *queue;
1892
1893        queue = &ctrl->queues[idx];
1894        memset(queue, 0, sizeof(*queue));
1895        queue->ctrl = ctrl;
1896        queue->qnum = idx;
1897        atomic_set(&queue->csn, 1);
1898        queue->dev = ctrl->dev;
1899
1900        if (idx > 0)
1901                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1902        else
1903                queue->cmnd_capsule_len = sizeof(struct nvme_command);
1904
1905        /*
1906         * Considered whether we should allocate buffers for all SQEs
1907         * and CQEs and dma map them - mapping their respective entries
1908         * into the request structures (kernel vm addr and dma address)
1909         * thus the driver could use the buffers/mappings directly.
1910         * It only makes sense if the LLDD would use them for its
1911         * messaging api. It's very unlikely most adapter api's would use
1912         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1913         * structures were used instead.
1914         */
1915}
1916
1917/*
1918 * This routine terminates a queue at the transport level.
1919 * The transport has already ensured that all outstanding ios on
1920 * the queue have been terminated.
1921 * The transport will send a Disconnect LS request to terminate
1922 * the queue's connection. Termination of the admin queue will also
1923 * terminate the association at the target.
1924 */
1925static void
1926nvme_fc_free_queue(struct nvme_fc_queue *queue)
1927{
1928        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1929                return;
1930
1931        clear_bit(NVME_FC_Q_LIVE, &queue->flags);
1932        /*
1933         * Current implementation never disconnects a single queue.
1934         * It always terminates a whole association. So there is never
1935         * a disconnect(queue) LS sent to the target.
1936         */
1937
1938        queue->connection_id = 0;
1939}
1940
1941static void
1942__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1943        struct nvme_fc_queue *queue, unsigned int qidx)
1944{
1945        if (ctrl->lport->ops->delete_queue)
1946                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1947                                queue->lldd_handle);
1948        queue->lldd_handle = NULL;
1949}
1950
1951static void
1952nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1953{
1954        int i;
1955
1956        for (i = 1; i < ctrl->ctrl.queue_count; i++)
1957                nvme_fc_free_queue(&ctrl->queues[i]);
1958}
1959
1960static int
1961__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1962        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1963{
1964        int ret = 0;
1965
1966        queue->lldd_handle = NULL;
1967        if (ctrl->lport->ops->create_queue)
1968                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1969                                qidx, qsize, &queue->lldd_handle);
1970
1971        return ret;
1972}
1973
1974static void
1975nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1976{
1977        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
1978        int i;
1979
1980        for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
1981                __nvme_fc_delete_hw_queue(ctrl, queue, i);
1982}
1983
1984static int
1985nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1986{
1987        struct nvme_fc_queue *queue = &ctrl->queues[1];
1988        int i, ret;
1989
1990        for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
1991                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1992                if (ret)
1993                        goto delete_queues;
1994        }
1995
1996        return 0;
1997
1998delete_queues:
1999        for (; i >= 0; i--)
2000                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2001        return ret;
2002}
2003
2004static int
2005nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2006{
2007        int i, ret = 0;
2008
2009        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2010                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2011                                        (qsize / 5));
2012                if (ret)
2013                        break;
2014                ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2015                if (ret)
2016                        break;
2017
2018                set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2019        }
2020
2021        return ret;
2022}
2023
2024static void
2025nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2026{
2027        int i;
2028
2029        for (i = 1; i < ctrl->ctrl.queue_count; i++)
2030                nvme_fc_init_queue(ctrl, i);
2031}
2032
2033static void
2034nvme_fc_ctrl_free(struct kref *ref)
2035{
2036        struct nvme_fc_ctrl *ctrl =
2037                container_of(ref, struct nvme_fc_ctrl, ref);
2038        unsigned long flags;
2039
2040        if (ctrl->ctrl.tagset) {
2041                blk_cleanup_queue(ctrl->ctrl.connect_q);
2042                blk_mq_free_tag_set(&ctrl->tag_set);
2043        }
2044
2045        /* remove from rport list */
2046        spin_lock_irqsave(&ctrl->rport->lock, flags);
2047        list_del(&ctrl->ctrl_list);
2048        spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2049
2050        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2051        blk_cleanup_queue(ctrl->ctrl.admin_q);
2052        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2053
2054        kfree(ctrl->queues);
2055
2056        put_device(ctrl->dev);
2057        nvme_fc_rport_put(ctrl->rport);
2058
2059        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2060        if (ctrl->ctrl.opts)
2061                nvmf_free_options(ctrl->ctrl.opts);
2062        kfree(ctrl);
2063}
2064
2065static void
2066nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2067{
2068        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2069}
2070
2071static int
2072nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2073{
2074        return kref_get_unless_zero(&ctrl->ref);
2075}
2076
2077/*
2078 * All accesses from nvme core layer done - can now free the
2079 * controller. Called after last nvme_put_ctrl() call
2080 */
2081static void
2082nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2083{
2084        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2085
2086        WARN_ON(nctrl != &ctrl->ctrl);
2087
2088        nvme_fc_ctrl_put(ctrl);
2089}
2090
2091static void
2092nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2093{
2094        /* only proceed if in LIVE state - e.g. on first error */
2095        if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2096                return;
2097
2098        dev_warn(ctrl->ctrl.device,
2099                "NVME-FC{%d}: transport association error detected: %s\n",
2100                ctrl->cnum, errmsg);
2101        dev_warn(ctrl->ctrl.device,
2102                "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2103
2104        nvme_reset_ctrl(&ctrl->ctrl);
2105}
2106
2107static enum blk_eh_timer_return
2108nvme_fc_timeout(struct request *rq, bool reserved)
2109{
2110        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2111        struct nvme_fc_ctrl *ctrl = op->ctrl;
2112        int ret;
2113
2114        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2115                        atomic_read(&op->state) == FCPOP_STATE_ABORTED)
2116                return BLK_EH_RESET_TIMER;
2117
2118        ret = __nvme_fc_abort_op(ctrl, op);
2119        if (ret)
2120                /* io wasn't active to abort */
2121                return BLK_EH_NOT_HANDLED;
2122
2123        /*
2124         * we can't individually ABTS an io without affecting the queue,
2125         * thus killing the queue, adn thus the association.
2126         * So resolve by performing a controller reset, which will stop
2127         * the host/io stack, terminate the association on the link,
2128         * and recreate an association on the link.
2129         */
2130        nvme_fc_error_recovery(ctrl, "io timeout error");
2131
2132        /*
2133         * the io abort has been initiated. Have the reset timer
2134         * restarted and the abort completion will complete the io
2135         * shortly. Avoids a synchronous wait while the abort finishes.
2136         */
2137        return BLK_EH_RESET_TIMER;
2138}
2139
2140static int
2141nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2142                struct nvme_fc_fcp_op *op)
2143{
2144        struct nvmefc_fcp_req *freq = &op->fcp_req;
2145        enum dma_data_direction dir;
2146        int ret;
2147
2148        freq->sg_cnt = 0;
2149
2150        if (!blk_rq_payload_bytes(rq))
2151                return 0;
2152
2153        freq->sg_table.sgl = freq->first_sgl;
2154        ret = sg_alloc_table_chained(&freq->sg_table,
2155                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
2156        if (ret)
2157                return -ENOMEM;
2158
2159        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2160        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2161        dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
2162        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2163                                op->nents, dir);
2164        if (unlikely(freq->sg_cnt <= 0)) {
2165                sg_free_table_chained(&freq->sg_table, true);
2166                freq->sg_cnt = 0;
2167                return -EFAULT;
2168        }
2169
2170        /*
2171         * TODO: blk_integrity_rq(rq)  for DIF
2172         */
2173        return 0;
2174}
2175
2176static void
2177nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2178                struct nvme_fc_fcp_op *op)
2179{
2180        struct nvmefc_fcp_req *freq = &op->fcp_req;
2181
2182        if (!freq->sg_cnt)
2183                return;
2184
2185        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2186                                ((rq_data_dir(rq) == WRITE) ?
2187                                        DMA_TO_DEVICE : DMA_FROM_DEVICE));
2188
2189        nvme_cleanup_cmd(rq);
2190
2191        sg_free_table_chained(&freq->sg_table, true);
2192
2193        freq->sg_cnt = 0;
2194}
2195
2196/*
2197 * In FC, the queue is a logical thing. At transport connect, the target
2198 * creates its "queue" and returns a handle that is to be given to the
2199 * target whenever it posts something to the corresponding SQ.  When an
2200 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2201 * command contained within the SQE, an io, and assigns a FC exchange
2202 * to it. The SQE and the associated SQ handle are sent in the initial
2203 * CMD IU sents on the exchange. All transfers relative to the io occur
2204 * as part of the exchange.  The CQE is the last thing for the io,
2205 * which is transferred (explicitly or implicitly) with the RSP IU
2206 * sent on the exchange. After the CQE is received, the FC exchange is
2207 * terminaed and the Exchange may be used on a different io.
2208 *
2209 * The transport to LLDD api has the transport making a request for a
2210 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2211 * resource and transfers the command. The LLDD will then process all
2212 * steps to complete the io. Upon completion, the transport done routine
2213 * is called.
2214 *
2215 * So - while the operation is outstanding to the LLDD, there is a link
2216 * level FC exchange resource that is also outstanding. This must be
2217 * considered in all cleanup operations.
2218 */
2219static blk_status_t
2220nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2221        struct nvme_fc_fcp_op *op, u32 data_len,
2222        enum nvmefc_fcp_datadir io_dir)
2223{
2224        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2225        struct nvme_command *sqe = &cmdiu->sqe;
2226        u32 csn;
2227        int ret;
2228
2229        /*
2230         * before attempting to send the io, check to see if we believe
2231         * the target device is present
2232         */
2233        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2234                goto busy;
2235
2236        if (!nvme_fc_ctrl_get(ctrl))
2237                return BLK_STS_IOERR;
2238
2239        /* format the FC-NVME CMD IU and fcp_req */
2240        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2241        csn = atomic_inc_return(&queue->csn);
2242        cmdiu->csn = cpu_to_be32(csn);
2243        cmdiu->data_len = cpu_to_be32(data_len);
2244        switch (io_dir) {
2245        case NVMEFC_FCP_WRITE:
2246                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2247                break;
2248        case NVMEFC_FCP_READ:
2249                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2250                break;
2251        case NVMEFC_FCP_NODATA:
2252                cmdiu->flags = 0;
2253                break;
2254        }
2255        op->fcp_req.payload_length = data_len;
2256        op->fcp_req.io_dir = io_dir;
2257        op->fcp_req.transferred_length = 0;
2258        op->fcp_req.rcv_rsplen = 0;
2259        op->fcp_req.status = NVME_SC_SUCCESS;
2260        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2261
2262        /*
2263         * validate per fabric rules, set fields mandated by fabric spec
2264         * as well as those by FC-NVME spec.
2265         */
2266        WARN_ON_ONCE(sqe->common.metadata);
2267        sqe->common.flags |= NVME_CMD_SGL_METABUF;
2268
2269        /*
2270         * format SQE DPTR field per FC-NVME rules:
2271         *    type=0x5     Transport SGL Data Block Descriptor
2272         *    subtype=0xA  Transport-specific value
2273         *    address=0
2274         *    length=length of the data series
2275         */
2276        sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2277                                        NVME_SGL_FMT_TRANSPORT_A;
2278        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2279        sqe->rw.dptr.sgl.addr = 0;
2280
2281        if (!(op->flags & FCOP_FLAGS_AEN)) {
2282                ret = nvme_fc_map_data(ctrl, op->rq, op);
2283                if (ret < 0) {
2284                        nvme_cleanup_cmd(op->rq);
2285                        nvme_fc_ctrl_put(ctrl);
2286                        if (ret == -ENOMEM || ret == -EAGAIN)
2287                                return BLK_STS_RESOURCE;
2288                        return BLK_STS_IOERR;
2289                }
2290        }
2291
2292        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2293                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2294
2295        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2296
2297        if (!(op->flags & FCOP_FLAGS_AEN))
2298                blk_mq_start_request(op->rq);
2299
2300        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2301                                        &ctrl->rport->remoteport,
2302                                        queue->lldd_handle, &op->fcp_req);
2303
2304        if (ret) {
2305                if (!(op->flags & FCOP_FLAGS_AEN))
2306                        nvme_fc_unmap_data(ctrl, op->rq, op);
2307
2308                nvme_fc_ctrl_put(ctrl);
2309
2310                if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2311                                ret != -EBUSY)
2312                        return BLK_STS_IOERR;
2313
2314                goto busy;
2315        }
2316
2317        return BLK_STS_OK;
2318
2319busy:
2320        if (!(op->flags & FCOP_FLAGS_AEN) && queue->hctx)
2321                blk_mq_delay_run_hw_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
2322
2323        return BLK_STS_RESOURCE;
2324}
2325
2326static inline blk_status_t nvme_fc_is_ready(struct nvme_fc_queue *queue,
2327                struct request *rq)
2328{
2329        if (unlikely(!test_bit(NVME_FC_Q_LIVE, &queue->flags)))
2330                return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
2331        return BLK_STS_OK;
2332}
2333
2334static blk_status_t
2335nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2336                        const struct blk_mq_queue_data *bd)
2337{
2338        struct nvme_ns *ns = hctx->queue->queuedata;
2339        struct nvme_fc_queue *queue = hctx->driver_data;
2340        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2341        struct request *rq = bd->rq;
2342        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2343        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2344        struct nvme_command *sqe = &cmdiu->sqe;
2345        enum nvmefc_fcp_datadir io_dir;
2346        u32 data_len;
2347        blk_status_t ret;
2348
2349        ret = nvme_fc_is_ready(queue, rq);
2350        if (unlikely(ret))
2351                return ret;
2352
2353        ret = nvme_setup_cmd(ns, rq, sqe);
2354        if (ret)
2355                return ret;
2356
2357        data_len = blk_rq_payload_bytes(rq);
2358        if (data_len)
2359                io_dir = ((rq_data_dir(rq) == WRITE) ?
2360                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2361        else
2362                io_dir = NVMEFC_FCP_NODATA;
2363
2364        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2365}
2366
2367static struct blk_mq_tags *
2368nvme_fc_tagset(struct nvme_fc_queue *queue)
2369{
2370        if (queue->qnum == 0)
2371                return queue->ctrl->admin_tag_set.tags[queue->qnum];
2372
2373        return queue->ctrl->tag_set.tags[queue->qnum - 1];
2374}
2375
2376static int
2377nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2378
2379{
2380        struct nvme_fc_queue *queue = hctx->driver_data;
2381        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2382        struct request *req;
2383        struct nvme_fc_fcp_op *op;
2384
2385        req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2386        if (!req)
2387                return 0;
2388
2389        op = blk_mq_rq_to_pdu(req);
2390
2391        if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2392                 (ctrl->lport->ops->poll_queue))
2393                ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2394                                                 queue->lldd_handle);
2395
2396        return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2397}
2398
2399static void
2400nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2401{
2402        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2403        struct nvme_fc_fcp_op *aen_op;
2404        unsigned long flags;
2405        bool terminating = false;
2406        blk_status_t ret;
2407
2408        spin_lock_irqsave(&ctrl->lock, flags);
2409        if (ctrl->flags & FCCTRL_TERMIO)
2410                terminating = true;
2411        spin_unlock_irqrestore(&ctrl->lock, flags);
2412
2413        if (terminating)
2414                return;
2415
2416        aen_op = &ctrl->aen_ops[0];
2417
2418        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2419                                        NVMEFC_FCP_NODATA);
2420        if (ret)
2421                dev_err(ctrl->ctrl.device,
2422                        "failed async event work\n");
2423}
2424
2425static void
2426__nvme_fc_final_op_cleanup(struct request *rq)
2427{
2428        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2429        struct nvme_fc_ctrl *ctrl = op->ctrl;
2430
2431        atomic_set(&op->state, FCPOP_STATE_IDLE);
2432        op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2433                        FCOP_FLAGS_COMPLETE);
2434
2435        nvme_fc_unmap_data(ctrl, rq, op);
2436        nvme_complete_rq(rq);
2437        nvme_fc_ctrl_put(ctrl);
2438
2439}
2440
2441static void
2442nvme_fc_complete_rq(struct request *rq)
2443{
2444        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2445        struct nvme_fc_ctrl *ctrl = op->ctrl;
2446        unsigned long flags;
2447        bool completed = false;
2448
2449        /*
2450         * the core layer, on controller resets after calling
2451         * nvme_shutdown_ctrl(), calls complete_rq without our
2452         * calling blk_mq_complete_request(), thus there may still
2453         * be live i/o outstanding with the LLDD. Means transport has
2454         * to track complete calls vs fcpio_done calls to know what
2455         * path to take on completes and dones.
2456         */
2457        spin_lock_irqsave(&ctrl->lock, flags);
2458        if (op->flags & FCOP_FLAGS_COMPLETE)
2459                completed = true;
2460        else
2461                op->flags |= FCOP_FLAGS_RELEASED;
2462        spin_unlock_irqrestore(&ctrl->lock, flags);
2463
2464        if (completed)
2465                __nvme_fc_final_op_cleanup(rq);
2466}
2467
2468/*
2469 * This routine is used by the transport when it needs to find active
2470 * io on a queue that is to be terminated. The transport uses
2471 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2472 * this routine to kill them on a 1 by 1 basis.
2473 *
2474 * As FC allocates FC exchange for each io, the transport must contact
2475 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2476 * After terminating the exchange the LLDD will call the transport's
2477 * normal io done path for the request, but it will have an aborted
2478 * status. The done path will return the io request back to the block
2479 * layer with an error status.
2480 */
2481static void
2482nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2483{
2484        struct nvme_ctrl *nctrl = data;
2485        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2486        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2487        unsigned long flags;
2488        int status;
2489
2490        if (!blk_mq_request_started(req))
2491                return;
2492
2493        spin_lock_irqsave(&ctrl->lock, flags);
2494        if (ctrl->flags & FCCTRL_TERMIO) {
2495                ctrl->iocnt++;
2496                op->flags |= FCOP_FLAGS_TERMIO;
2497        }
2498        spin_unlock_irqrestore(&ctrl->lock, flags);
2499
2500        status = __nvme_fc_abort_op(ctrl, op);
2501        if (status) {
2502                /*
2503                 * if __nvme_fc_abort_op failed the io wasn't
2504                 * active. Thus this call path is running in
2505                 * parallel to the io complete. Treat as non-error.
2506                 */
2507
2508                /* back out the flags/counters */
2509                spin_lock_irqsave(&ctrl->lock, flags);
2510                if (ctrl->flags & FCCTRL_TERMIO)
2511                        ctrl->iocnt--;
2512                op->flags &= ~FCOP_FLAGS_TERMIO;
2513                spin_unlock_irqrestore(&ctrl->lock, flags);
2514                return;
2515        }
2516}
2517
2518
2519static const struct blk_mq_ops nvme_fc_mq_ops = {
2520        .queue_rq       = nvme_fc_queue_rq,
2521        .complete       = nvme_fc_complete_rq,
2522        .init_request   = nvme_fc_init_request,
2523        .exit_request   = nvme_fc_exit_request,
2524        .init_hctx      = nvme_fc_init_hctx,
2525        .poll           = nvme_fc_poll,
2526        .timeout        = nvme_fc_timeout,
2527};
2528
2529static int
2530nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2531{
2532        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2533        unsigned int nr_io_queues;
2534        int ret;
2535
2536        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2537                                ctrl->lport->ops->max_hw_queues);
2538        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2539        if (ret) {
2540                dev_info(ctrl->ctrl.device,
2541                        "set_queue_count failed: %d\n", ret);
2542                return ret;
2543        }
2544
2545        ctrl->ctrl.queue_count = nr_io_queues + 1;
2546        if (!nr_io_queues)
2547                return 0;
2548
2549        nvme_fc_init_io_queues(ctrl);
2550
2551        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2552        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2553        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2554        ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2555        ctrl->tag_set.numa_node = NUMA_NO_NODE;
2556        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2557        ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2558                                        (SG_CHUNK_SIZE *
2559                                                sizeof(struct scatterlist)) +
2560                                        ctrl->lport->ops->fcprqst_priv_sz;
2561        ctrl->tag_set.driver_data = ctrl;
2562        ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2563        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2564
2565        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2566        if (ret)
2567                return ret;
2568
2569        ctrl->ctrl.tagset = &ctrl->tag_set;
2570
2571        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2572        if (IS_ERR(ctrl->ctrl.connect_q)) {
2573                ret = PTR_ERR(ctrl->ctrl.connect_q);
2574                goto out_free_tag_set;
2575        }
2576
2577        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2578        if (ret)
2579                goto out_cleanup_blk_queue;
2580
2581        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2582        if (ret)
2583                goto out_delete_hw_queues;
2584
2585        return 0;
2586
2587out_delete_hw_queues:
2588        nvme_fc_delete_hw_io_queues(ctrl);
2589out_cleanup_blk_queue:
2590        blk_cleanup_queue(ctrl->ctrl.connect_q);
2591out_free_tag_set:
2592        blk_mq_free_tag_set(&ctrl->tag_set);
2593        nvme_fc_free_io_queues(ctrl);
2594
2595        /* force put free routine to ignore io queues */
2596        ctrl->ctrl.tagset = NULL;
2597
2598        return ret;
2599}
2600
2601static int
2602nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2603{
2604        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2605        unsigned int nr_io_queues;
2606        int ret;
2607
2608        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2609                                ctrl->lport->ops->max_hw_queues);
2610        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2611        if (ret) {
2612                dev_info(ctrl->ctrl.device,
2613                        "set_queue_count failed: %d\n", ret);
2614                return ret;
2615        }
2616
2617        ctrl->ctrl.queue_count = nr_io_queues + 1;
2618        /* check for io queues existing */
2619        if (ctrl->ctrl.queue_count == 1)
2620                return 0;
2621
2622        nvme_fc_init_io_queues(ctrl);
2623
2624        ret = nvme_reinit_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
2625        if (ret)
2626                goto out_free_io_queues;
2627
2628        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2629        if (ret)
2630                goto out_free_io_queues;
2631
2632        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2633        if (ret)
2634                goto out_delete_hw_queues;
2635
2636        blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2637
2638        return 0;
2639
2640out_delete_hw_queues:
2641        nvme_fc_delete_hw_io_queues(ctrl);
2642out_free_io_queues:
2643        nvme_fc_free_io_queues(ctrl);
2644        return ret;
2645}
2646
2647static void
2648nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2649{
2650        struct nvme_fc_lport *lport = rport->lport;
2651
2652        atomic_inc(&lport->act_rport_cnt);
2653}
2654
2655static void
2656nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2657{
2658        struct nvme_fc_lport *lport = rport->lport;
2659        u32 cnt;
2660
2661        cnt = atomic_dec_return(&lport->act_rport_cnt);
2662        if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2663                lport->ops->localport_delete(&lport->localport);
2664}
2665
2666static int
2667nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2668{
2669        struct nvme_fc_rport *rport = ctrl->rport;
2670        u32 cnt;
2671
2672        if (ctrl->assoc_active)
2673                return 1;
2674
2675        ctrl->assoc_active = true;
2676        cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2677        if (cnt == 1)
2678                nvme_fc_rport_active_on_lport(rport);
2679
2680        return 0;
2681}
2682
2683static int
2684nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2685{
2686        struct nvme_fc_rport *rport = ctrl->rport;
2687        struct nvme_fc_lport *lport = rport->lport;
2688        u32 cnt;
2689
2690        /* ctrl->assoc_active=false will be set independently */
2691
2692        cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2693        if (cnt == 0) {
2694                if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2695                        lport->ops->remoteport_delete(&rport->remoteport);
2696                nvme_fc_rport_inactive_on_lport(rport);
2697        }
2698
2699        return 0;
2700}
2701
2702/*
2703 * This routine restarts the controller on the host side, and
2704 * on the link side, recreates the controller association.
2705 */
2706static int
2707nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2708{
2709        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2710        int ret;
2711        bool changed;
2712
2713        ++ctrl->ctrl.nr_reconnects;
2714
2715        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2716                return -ENODEV;
2717
2718        if (nvme_fc_ctlr_active_on_rport(ctrl))
2719                return -ENOTUNIQ;
2720
2721        /*
2722         * Create the admin queue
2723         */
2724
2725        nvme_fc_init_queue(ctrl, 0);
2726
2727        ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2728                                NVME_AQ_BLK_MQ_DEPTH);
2729        if (ret)
2730                goto out_free_queue;
2731
2732        ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2733                                NVME_AQ_BLK_MQ_DEPTH,
2734                                (NVME_AQ_BLK_MQ_DEPTH / 4));
2735        if (ret)
2736                goto out_delete_hw_queue;
2737
2738        if (ctrl->ctrl.state != NVME_CTRL_NEW)
2739                blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2740
2741        ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2742        if (ret)
2743                goto out_disconnect_admin_queue;
2744
2745        set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2746
2747        /*
2748         * Check controller capabilities
2749         *
2750         * todo:- add code to check if ctrl attributes changed from
2751         * prior connection values
2752         */
2753
2754        ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->ctrl.cap);
2755        if (ret) {
2756                dev_err(ctrl->ctrl.device,
2757                        "prop_get NVME_REG_CAP failed\n");
2758                goto out_disconnect_admin_queue;
2759        }
2760
2761        ctrl->ctrl.sqsize =
2762                min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap) + 1, ctrl->ctrl.sqsize);
2763
2764        ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
2765        if (ret)
2766                goto out_disconnect_admin_queue;
2767
2768        ctrl->ctrl.max_hw_sectors =
2769                (ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
2770
2771        ret = nvme_init_identify(&ctrl->ctrl);
2772        if (ret)
2773                goto out_disconnect_admin_queue;
2774
2775        /* sanity checks */
2776
2777        /* FC-NVME does not have other data in the capsule */
2778        if (ctrl->ctrl.icdoff) {
2779                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2780                                ctrl->ctrl.icdoff);
2781                goto out_disconnect_admin_queue;
2782        }
2783
2784        /* FC-NVME supports normal SGL Data Block Descriptors */
2785
2786        if (opts->queue_size > ctrl->ctrl.maxcmd) {
2787                /* warn if maxcmd is lower than queue_size */
2788                dev_warn(ctrl->ctrl.device,
2789                        "queue_size %zu > ctrl maxcmd %u, reducing "
2790                        "to queue_size\n",
2791                        opts->queue_size, ctrl->ctrl.maxcmd);
2792                opts->queue_size = ctrl->ctrl.maxcmd;
2793        }
2794
2795        ret = nvme_fc_init_aen_ops(ctrl);
2796        if (ret)
2797                goto out_term_aen_ops;
2798
2799        /*
2800         * Create the io queues
2801         */
2802
2803        if (ctrl->ctrl.queue_count > 1) {
2804                if (ctrl->ctrl.state == NVME_CTRL_NEW)
2805                        ret = nvme_fc_create_io_queues(ctrl);
2806                else
2807                        ret = nvme_fc_reinit_io_queues(ctrl);
2808                if (ret)
2809                        goto out_term_aen_ops;
2810        }
2811
2812        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2813
2814        ctrl->ctrl.nr_reconnects = 0;
2815
2816        if (changed)
2817                nvme_start_ctrl(&ctrl->ctrl);
2818
2819        return 0;       /* Success */
2820
2821out_term_aen_ops:
2822        nvme_fc_term_aen_ops(ctrl);
2823out_disconnect_admin_queue:
2824        /* send a Disconnect(association) LS to fc-nvme target */
2825        nvme_fc_xmt_disconnect_assoc(ctrl);
2826out_delete_hw_queue:
2827        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2828out_free_queue:
2829        nvme_fc_free_queue(&ctrl->queues[0]);
2830        ctrl->assoc_active = false;
2831        nvme_fc_ctlr_inactive_on_rport(ctrl);
2832
2833        return ret;
2834}
2835
2836/*
2837 * This routine stops operation of the controller on the host side.
2838 * On the host os stack side: Admin and IO queues are stopped,
2839 *   outstanding ios on them terminated via FC ABTS.
2840 * On the link side: the association is terminated.
2841 */
2842static void
2843nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2844{
2845        unsigned long flags;
2846
2847        if (!ctrl->assoc_active)
2848                return;
2849        ctrl->assoc_active = false;
2850
2851        spin_lock_irqsave(&ctrl->lock, flags);
2852        ctrl->flags |= FCCTRL_TERMIO;
2853        ctrl->iocnt = 0;
2854        spin_unlock_irqrestore(&ctrl->lock, flags);
2855
2856        /*
2857         * If io queues are present, stop them and terminate all outstanding
2858         * ios on them. As FC allocates FC exchange for each io, the
2859         * transport must contact the LLDD to terminate the exchange,
2860         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2861         * to tell us what io's are busy and invoke a transport routine
2862         * to kill them with the LLDD.  After terminating the exchange
2863         * the LLDD will call the transport's normal io done path, but it
2864         * will have an aborted status. The done path will return the
2865         * io requests back to the block layer as part of normal completions
2866         * (but with error status).
2867         */
2868        if (ctrl->ctrl.queue_count > 1) {
2869                nvme_stop_queues(&ctrl->ctrl);
2870                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2871                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2872        }
2873
2874        /*
2875         * Other transports, which don't have link-level contexts bound
2876         * to sqe's, would try to gracefully shutdown the controller by
2877         * writing the registers for shutdown and polling (call
2878         * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2879         * just aborted and we will wait on those contexts, and given
2880         * there was no indication of how live the controlelr is on the
2881         * link, don't send more io to create more contexts for the
2882         * shutdown. Let the controller fail via keepalive failure if
2883         * its still present.
2884         */
2885
2886        /*
2887         * clean up the admin queue. Same thing as above.
2888         * use blk_mq_tagset_busy_itr() and the transport routine to
2889         * terminate the exchanges.
2890         */
2891        if (ctrl->ctrl.state != NVME_CTRL_NEW)
2892                blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2893        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2894                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2895
2896        /* kill the aens as they are a separate path */
2897        nvme_fc_abort_aen_ops(ctrl);
2898
2899        /* wait for all io that had to be aborted */
2900        spin_lock_irq(&ctrl->lock);
2901        wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
2902        ctrl->flags &= ~FCCTRL_TERMIO;
2903        spin_unlock_irq(&ctrl->lock);
2904
2905        nvme_fc_term_aen_ops(ctrl);
2906
2907        /*
2908         * send a Disconnect(association) LS to fc-nvme target
2909         * Note: could have been sent at top of process, but
2910         * cleaner on link traffic if after the aborts complete.
2911         * Note: if association doesn't exist, association_id will be 0
2912         */
2913        if (ctrl->association_id)
2914                nvme_fc_xmt_disconnect_assoc(ctrl);
2915
2916        if (ctrl->ctrl.tagset) {
2917                nvme_fc_delete_hw_io_queues(ctrl);
2918                nvme_fc_free_io_queues(ctrl);
2919        }
2920
2921        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2922        nvme_fc_free_queue(&ctrl->queues[0]);
2923
2924        nvme_fc_ctlr_inactive_on_rport(ctrl);
2925}
2926
2927static void
2928nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
2929{
2930        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2931
2932        cancel_delayed_work_sync(&ctrl->connect_work);
2933        /*
2934         * kill the association on the link side.  this will block
2935         * waiting for io to terminate
2936         */
2937        nvme_fc_delete_association(ctrl);
2938}
2939
2940static void
2941nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2942{
2943        struct nvme_fc_rport *rport = ctrl->rport;
2944        struct nvme_fc_remote_port *portptr = &rport->remoteport;
2945        unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
2946        bool recon = true;
2947
2948        if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING)
2949                return;
2950
2951        if (portptr->port_state == FC_OBJSTATE_ONLINE)
2952                dev_info(ctrl->ctrl.device,
2953                        "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2954                        ctrl->cnum, status);
2955        else if (time_after_eq(jiffies, rport->dev_loss_end))
2956                recon = false;
2957
2958        if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
2959                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2960                        dev_info(ctrl->ctrl.device,
2961                                "NVME-FC{%d}: Reconnect attempt in %ld "
2962                                "seconds\n",
2963                                ctrl->cnum, recon_delay / HZ);
2964                else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
2965                        recon_delay = rport->dev_loss_end - jiffies;
2966
2967                queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
2968        } else {
2969                if (portptr->port_state == FC_OBJSTATE_ONLINE)
2970                        dev_warn(ctrl->ctrl.device,
2971                                "NVME-FC{%d}: Max reconnect attempts (%d) "
2972                                "reached. Removing controller\n",
2973                                ctrl->cnum, ctrl->ctrl.nr_reconnects);
2974                else
2975                        dev_warn(ctrl->ctrl.device,
2976                                "NVME-FC{%d}: dev_loss_tmo (%d) expired "
2977                                "while waiting for remoteport connectivity. "
2978                                "Removing controller\n", ctrl->cnum,
2979                                portptr->dev_loss_tmo);
2980                WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
2981        }
2982}
2983
2984static void
2985nvme_fc_reset_ctrl_work(struct work_struct *work)
2986{
2987        struct nvme_fc_ctrl *ctrl =
2988                container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2989        int ret;
2990
2991        nvme_stop_ctrl(&ctrl->ctrl);
2992
2993        /* will block will waiting for io to terminate */
2994        nvme_fc_delete_association(ctrl);
2995
2996        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
2997                dev_err(ctrl->ctrl.device,
2998                        "NVME-FC{%d}: error_recovery: Couldn't change state "
2999                        "to RECONNECTING\n", ctrl->cnum);
3000                return;
3001        }
3002
3003        if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
3004                ret = nvme_fc_create_association(ctrl);
3005        else
3006                ret = -ENOTCONN;
3007
3008        if (ret)
3009                nvme_fc_reconnect_or_delete(ctrl, ret);
3010        else
3011                dev_info(ctrl->ctrl.device,
3012                        "NVME-FC{%d}: controller reset complete\n",
3013                        ctrl->cnum);
3014}
3015
3016static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3017        .name                   = "fc",
3018        .module                 = THIS_MODULE,
3019        .flags                  = NVME_F_FABRICS,
3020        .reg_read32             = nvmf_reg_read32,
3021        .reg_read64             = nvmf_reg_read64,
3022        .reg_write32            = nvmf_reg_write32,
3023        .free_ctrl              = nvme_fc_nvme_ctrl_freed,
3024        .submit_async_event     = nvme_fc_submit_async_event,
3025        .delete_ctrl            = nvme_fc_delete_ctrl,
3026        .get_address            = nvmf_get_address,
3027        .reinit_request         = nvme_fc_reinit_request,
3028};
3029
3030static void
3031nvme_fc_connect_ctrl_work(struct work_struct *work)
3032{
3033        int ret;
3034
3035        struct nvme_fc_ctrl *ctrl =
3036                        container_of(to_delayed_work(work),
3037                                struct nvme_fc_ctrl, connect_work);
3038
3039        ret = nvme_fc_create_association(ctrl);
3040        if (ret)
3041                nvme_fc_reconnect_or_delete(ctrl, ret);
3042        else
3043                dev_info(ctrl->ctrl.device,
3044                        "NVME-FC{%d}: controller reconnect complete\n",
3045                        ctrl->cnum);
3046}
3047
3048
3049static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3050        .queue_rq       = nvme_fc_queue_rq,
3051        .complete       = nvme_fc_complete_rq,
3052        .init_request   = nvme_fc_init_request,
3053        .exit_request   = nvme_fc_exit_request,
3054        .init_hctx      = nvme_fc_init_admin_hctx,
3055        .timeout        = nvme_fc_timeout,
3056};
3057
3058
3059/*
3060 * Fails a controller request if it matches an existing controller
3061 * (association) with the same tuple:
3062 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3063 *
3064 * The ports don't need to be compared as they are intrinsically
3065 * already matched by the port pointers supplied.
3066 */
3067static bool
3068nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3069                struct nvmf_ctrl_options *opts)
3070{
3071        struct nvme_fc_ctrl *ctrl;
3072        unsigned long flags;
3073        bool found = false;
3074
3075        spin_lock_irqsave(&rport->lock, flags);
3076        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3077                found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3078                if (found)
3079                        break;
3080        }
3081        spin_unlock_irqrestore(&rport->lock, flags);
3082
3083        return found;
3084}
3085
3086static struct nvme_ctrl *
3087nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3088        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3089{
3090        struct nvme_fc_ctrl *ctrl;
3091        unsigned long flags;
3092        int ret, idx, retry;
3093
3094        if (!(rport->remoteport.port_role &
3095            (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3096                ret = -EBADR;
3097                goto out_fail;
3098        }
3099
3100        if (!opts->duplicate_connect &&
3101            nvme_fc_existing_controller(rport, opts)) {
3102                ret = -EALREADY;
3103                goto out_fail;
3104        }
3105
3106        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3107        if (!ctrl) {
3108                ret = -ENOMEM;
3109                goto out_fail;
3110        }
3111
3112        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3113        if (idx < 0) {
3114                ret = -ENOSPC;
3115                goto out_free_ctrl;
3116        }
3117
3118        ctrl->ctrl.opts = opts;
3119        INIT_LIST_HEAD(&ctrl->ctrl_list);
3120        ctrl->lport = lport;
3121        ctrl->rport = rport;
3122        ctrl->dev = lport->dev;
3123        ctrl->cnum = idx;
3124        ctrl->assoc_active = false;
3125        init_waitqueue_head(&ctrl->ioabort_wait);
3126
3127        get_device(ctrl->dev);
3128        kref_init(&ctrl->ref);
3129
3130        INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3131        INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3132        spin_lock_init(&ctrl->lock);
3133
3134        /* io queue count */
3135        ctrl->ctrl.queue_count = min_t(unsigned int,
3136                                opts->nr_io_queues,
3137                                lport->ops->max_hw_queues);
3138        ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3139
3140        ctrl->ctrl.sqsize = opts->queue_size - 1;
3141        ctrl->ctrl.kato = opts->kato;
3142
3143        ret = -ENOMEM;
3144        ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3145                                sizeof(struct nvme_fc_queue), GFP_KERNEL);
3146        if (!ctrl->queues)
3147                goto out_free_ida;
3148
3149        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3150        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3151        ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3152        ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3153        ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
3154        ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
3155                                        (SG_CHUNK_SIZE *
3156                                                sizeof(struct scatterlist)) +
3157                                        ctrl->lport->ops->fcprqst_priv_sz;
3158        ctrl->admin_tag_set.driver_data = ctrl;
3159        ctrl->admin_tag_set.nr_hw_queues = 1;
3160        ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3161        ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3162
3163        ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3164        if (ret)
3165                goto out_free_queues;
3166        ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3167
3168        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3169        if (IS_ERR(ctrl->ctrl.admin_q)) {
3170                ret = PTR_ERR(ctrl->ctrl.admin_q);
3171                goto out_free_admin_tag_set;
3172        }
3173
3174        /*
3175         * Would have been nice to init io queues tag set as well.
3176         * However, we require interaction from the controller
3177         * for max io queue count before we can do so.
3178         * Defer this to the connect path.
3179         */
3180
3181        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3182        if (ret)
3183                goto out_cleanup_admin_q;
3184
3185        /* at this point, teardown path changes to ref counting on nvme ctrl */
3186
3187        spin_lock_irqsave(&rport->lock, flags);
3188        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3189        spin_unlock_irqrestore(&rport->lock, flags);
3190
3191        /*
3192         * It's possible that transactions used to create the association
3193         * may fail. Examples: CreateAssociation LS or CreateIOConnection
3194         * LS gets dropped/corrupted/fails; or a frame gets dropped or a
3195         * command times out for one of the actions to init the controller
3196         * (Connect, Get/Set_Property, Set_Features, etc). Many of these
3197         * transport errors (frame drop, LS failure) inherently must kill
3198         * the association. The transport is coded so that any command used
3199         * to create the association (prior to a LIVE state transition
3200         * while NEW or RECONNECTING) will fail if it completes in error or
3201         * times out.
3202         *
3203         * As such: as the connect request was mostly likely due to a
3204         * udev event that discovered the remote port, meaning there is
3205         * not an admin or script there to restart if the connect
3206         * request fails, retry the initial connection creation up to
3207         * three times before giving up and declaring failure.
3208         */
3209        for (retry = 0; retry < 3; retry++) {
3210                ret = nvme_fc_create_association(ctrl);
3211                if (!ret)
3212                        break;
3213        }
3214
3215        if (ret) {
3216                /* couldn't schedule retry - fail out */
3217                dev_err(ctrl->ctrl.device,
3218                        "NVME-FC{%d}: Connect retry failed\n", ctrl->cnum);
3219
3220                ctrl->ctrl.opts = NULL;
3221
3222                /* initiate nvme ctrl ref counting teardown */
3223                nvme_uninit_ctrl(&ctrl->ctrl);
3224
3225                /* Remove core ctrl ref. */
3226                nvme_put_ctrl(&ctrl->ctrl);
3227
3228                /* as we're past the point where we transition to the ref
3229                 * counting teardown path, if we return a bad pointer here,
3230                 * the calling routine, thinking it's prior to the
3231                 * transition, will do an rport put. Since the teardown
3232                 * path also does a rport put, we do an extra get here to
3233                 * so proper order/teardown happens.
3234                 */
3235                nvme_fc_rport_get(rport);
3236
3237                if (ret > 0)
3238                        ret = -EIO;
3239                return ERR_PTR(ret);
3240        }
3241
3242        nvme_get_ctrl(&ctrl->ctrl);
3243
3244        dev_info(ctrl->ctrl.device,
3245                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3246                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3247
3248        return &ctrl->ctrl;
3249
3250out_cleanup_admin_q:
3251        blk_cleanup_queue(ctrl->ctrl.admin_q);
3252out_free_admin_tag_set:
3253        blk_mq_free_tag_set(&ctrl->admin_tag_set);
3254out_free_queues:
3255        kfree(ctrl->queues);
3256out_free_ida:
3257        put_device(ctrl->dev);
3258        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3259out_free_ctrl:
3260        kfree(ctrl);
3261out_fail:
3262        /* exit via here doesn't follow ctlr ref points */
3263        return ERR_PTR(ret);
3264}
3265
3266
3267struct nvmet_fc_traddr {
3268        u64     nn;
3269        u64     pn;
3270};
3271
3272static int
3273__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3274{
3275        u64 token64;
3276
3277        if (match_u64(sstr, &token64))
3278                return -EINVAL;
3279        *val = token64;
3280
3281        return 0;
3282}
3283
3284/*
3285 * This routine validates and extracts the WWN's from the TRADDR string.
3286 * As kernel parsers need the 0x to determine number base, universally
3287 * build string to parse with 0x prefix before parsing name strings.
3288 */
3289static int
3290nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3291{
3292        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3293        substring_t wwn = { name, &name[sizeof(name)-1] };
3294        int nnoffset, pnoffset;
3295
3296        /* validate it string one of the 2 allowed formats */
3297        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3298                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3299                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3300                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3301                nnoffset = NVME_FC_TRADDR_OXNNLEN;
3302                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3303                                                NVME_FC_TRADDR_OXNNLEN;
3304        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3305                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3306                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3307                                "pn-", NVME_FC_TRADDR_NNLEN))) {
3308                nnoffset = NVME_FC_TRADDR_NNLEN;
3309                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3310        } else
3311                goto out_einval;
3312
3313        name[0] = '0';
3314        name[1] = 'x';
3315        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3316
3317        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3318        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3319                goto out_einval;
3320
3321        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3322        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3323                goto out_einval;
3324
3325        return 0;
3326
3327out_einval:
3328        pr_warn("%s: bad traddr string\n", __func__);
3329        return -EINVAL;
3330}
3331
3332static struct nvme_ctrl *
3333nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3334{
3335        struct nvme_fc_lport *lport;
3336        struct nvme_fc_rport *rport;
3337        struct nvme_ctrl *ctrl;
3338        struct nvmet_fc_traddr laddr = { 0L, 0L };
3339        struct nvmet_fc_traddr raddr = { 0L, 0L };
3340        unsigned long flags;
3341        int ret;
3342
3343        ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3344        if (ret || !raddr.nn || !raddr.pn)
3345                return ERR_PTR(-EINVAL);
3346
3347        ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3348        if (ret || !laddr.nn || !laddr.pn)
3349                return ERR_PTR(-EINVAL);
3350
3351        /* find the host and remote ports to connect together */
3352        spin_lock_irqsave(&nvme_fc_lock, flags);
3353        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3354                if (lport->localport.node_name != laddr.nn ||
3355                    lport->localport.port_name != laddr.pn)
3356                        continue;
3357
3358                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3359                        if (rport->remoteport.node_name != raddr.nn ||
3360                            rport->remoteport.port_name != raddr.pn)
3361                                continue;
3362
3363                        /* if fail to get reference fall through. Will error */
3364                        if (!nvme_fc_rport_get(rport))
3365                                break;
3366
3367                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3368
3369                        ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3370                        if (IS_ERR(ctrl))
3371                                nvme_fc_rport_put(rport);
3372                        return ctrl;
3373                }
3374        }
3375        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3376
3377        return ERR_PTR(-ENOENT);
3378}
3379
3380
3381static struct nvmf_transport_ops nvme_fc_transport = {
3382        .name           = "fc",
3383        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3384        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3385        .create_ctrl    = nvme_fc_create_ctrl,
3386};
3387
3388static int __init nvme_fc_init_module(void)
3389{
3390        int ret;
3391
3392        /*
3393         * NOTE:
3394         * It is expected that in the future the kernel will combine
3395         * the FC-isms that are currently under scsi and now being
3396         * added to by NVME into a new standalone FC class. The SCSI
3397         * and NVME protocols and their devices would be under this
3398         * new FC class.
3399         *
3400         * As we need something to post FC-specific udev events to,
3401         * specifically for nvme probe events, start by creating the
3402         * new device class.  When the new standalone FC class is
3403         * put in place, this code will move to a more generic
3404         * location for the class.
3405         */
3406        fc_class = class_create(THIS_MODULE, "fc");
3407        if (IS_ERR(fc_class)) {
3408                pr_err("couldn't register class fc\n");
3409                return PTR_ERR(fc_class);
3410        }
3411
3412        /*
3413         * Create a device for the FC-centric udev events
3414         */
3415        fc_udev_device = device_create(fc_class, NULL, MKDEV(0, 0), NULL,
3416                                "fc_udev_device");
3417        if (IS_ERR(fc_udev_device)) {
3418                pr_err("couldn't create fc_udev device!\n");
3419                ret = PTR_ERR(fc_udev_device);
3420                goto out_destroy_class;
3421        }
3422
3423        ret = nvmf_register_transport(&nvme_fc_transport);
3424        if (ret)
3425                goto out_destroy_device;
3426
3427        return 0;
3428
3429out_destroy_device:
3430        device_destroy(fc_class, MKDEV(0, 0));
3431out_destroy_class:
3432        class_destroy(fc_class);
3433        return ret;
3434}
3435
3436static void __exit nvme_fc_exit_module(void)
3437{
3438        /* sanity check - all lports should be removed */
3439        if (!list_empty(&nvme_fc_lport_list))
3440                pr_warn("%s: localport list not empty\n", __func__);
3441
3442        nvmf_unregister_transport(&nvme_fc_transport);
3443
3444        ida_destroy(&nvme_fc_local_port_cnt);
3445        ida_destroy(&nvme_fc_ctrl_cnt);
3446
3447        device_destroy(fc_class, MKDEV(0, 0));
3448        class_destroy(fc_class);
3449}
3450
3451module_init(nvme_fc_init_module);
3452module_exit(nvme_fc_exit_module);
3453
3454MODULE_LICENSE("GPL v2");
3455