linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22#include <linux/blk-mq.h>
  23#include <linux/ratelimit.h>
  24#include <asm/unaligned.h>
  25
  26#include <scsi/scsi.h>
  27#include <scsi/scsi_cmnd.h>
  28#include <scsi/scsi_dbg.h>
  29#include <scsi/scsi_device.h>
  30#include <scsi/scsi_driver.h>
  31#include <scsi/scsi_eh.h>
  32#include <scsi/scsi_host.h>
  33#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  34#include <scsi/scsi_dh.h>
  35
  36#include <trace/events/scsi.h>
  37
  38#include "scsi_debugfs.h"
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42static struct kmem_cache *scsi_sdb_cache;
  43static struct kmem_cache *scsi_sense_cache;
  44static struct kmem_cache *scsi_sense_isadma_cache;
  45static DEFINE_MUTEX(scsi_sense_cache_mutex);
  46
  47static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  48
  49static inline struct kmem_cache *
  50scsi_select_sense_cache(bool unchecked_isa_dma)
  51{
  52        return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  53}
  54
  55static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  56                                   unsigned char *sense_buffer)
  57{
  58        kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  59                        sense_buffer);
  60}
  61
  62static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  63        gfp_t gfp_mask, int numa_node)
  64{
  65        return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  66                                     gfp_mask, numa_node);
  67}
  68
  69int scsi_init_sense_cache(struct Scsi_Host *shost)
  70{
  71        struct kmem_cache *cache;
  72        int ret = 0;
  73
  74        cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  75        if (cache)
  76                return 0;
  77
  78        mutex_lock(&scsi_sense_cache_mutex);
  79        if (shost->unchecked_isa_dma) {
  80                scsi_sense_isadma_cache =
  81                        kmem_cache_create("scsi_sense_cache(DMA)",
  82                        SCSI_SENSE_BUFFERSIZE, 0,
  83                        SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  84                if (!scsi_sense_isadma_cache)
  85                        ret = -ENOMEM;
  86        } else {
  87                scsi_sense_cache =
  88                        kmem_cache_create("scsi_sense_cache",
  89                        SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
  90                if (!scsi_sense_cache)
  91                        ret = -ENOMEM;
  92        }
  93
  94        mutex_unlock(&scsi_sense_cache_mutex);
  95        return ret;
  96}
  97
  98/*
  99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 100 * not change behaviour from the previous unplug mechanism, experimentation
 101 * may prove this needs changing.
 102 */
 103#define SCSI_QUEUE_DELAY        3
 104
 105static void
 106scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 107{
 108        struct Scsi_Host *host = cmd->device->host;
 109        struct scsi_device *device = cmd->device;
 110        struct scsi_target *starget = scsi_target(device);
 111
 112        /*
 113         * Set the appropriate busy bit for the device/host.
 114         *
 115         * If the host/device isn't busy, assume that something actually
 116         * completed, and that we should be able to queue a command now.
 117         *
 118         * Note that the prior mid-layer assumption that any host could
 119         * always queue at least one command is now broken.  The mid-layer
 120         * will implement a user specifiable stall (see
 121         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 122         * if a command is requeued with no other commands outstanding
 123         * either for the device or for the host.
 124         */
 125        switch (reason) {
 126        case SCSI_MLQUEUE_HOST_BUSY:
 127                atomic_set(&host->host_blocked, host->max_host_blocked);
 128                break;
 129        case SCSI_MLQUEUE_DEVICE_BUSY:
 130        case SCSI_MLQUEUE_EH_RETRY:
 131                atomic_set(&device->device_blocked,
 132                           device->max_device_blocked);
 133                break;
 134        case SCSI_MLQUEUE_TARGET_BUSY:
 135                atomic_set(&starget->target_blocked,
 136                           starget->max_target_blocked);
 137                break;
 138        }
 139}
 140
 141static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 142{
 143        struct scsi_device *sdev = cmd->device;
 144
 145        if (cmd->request->rq_flags & RQF_DONTPREP) {
 146                cmd->request->rq_flags &= ~RQF_DONTPREP;
 147                scsi_mq_uninit_cmd(cmd);
 148        } else {
 149                WARN_ON_ONCE(true);
 150        }
 151        blk_mq_requeue_request(cmd->request, true);
 152        put_device(&sdev->sdev_gendev);
 153}
 154
 155/**
 156 * __scsi_queue_insert - private queue insertion
 157 * @cmd: The SCSI command being requeued
 158 * @reason:  The reason for the requeue
 159 * @unbusy: Whether the queue should be unbusied
 160 *
 161 * This is a private queue insertion.  The public interface
 162 * scsi_queue_insert() always assumes the queue should be unbusied
 163 * because it's always called before the completion.  This function is
 164 * for a requeue after completion, which should only occur in this
 165 * file.
 166 */
 167static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 168{
 169        struct scsi_device *device = cmd->device;
 170        struct request_queue *q = device->request_queue;
 171        unsigned long flags;
 172
 173        SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 174                "Inserting command %p into mlqueue\n", cmd));
 175
 176        scsi_set_blocked(cmd, reason);
 177
 178        /*
 179         * Decrement the counters, since these commands are no longer
 180         * active on the host/device.
 181         */
 182        if (unbusy)
 183                scsi_device_unbusy(device);
 184
 185        /*
 186         * Requeue this command.  It will go before all other commands
 187         * that are already in the queue. Schedule requeue work under
 188         * lock such that the kblockd_schedule_work() call happens
 189         * before blk_cleanup_queue() finishes.
 190         */
 191        cmd->result = 0;
 192        if (q->mq_ops) {
 193                scsi_mq_requeue_cmd(cmd);
 194                return;
 195        }
 196        spin_lock_irqsave(q->queue_lock, flags);
 197        blk_requeue_request(q, cmd->request);
 198        kblockd_schedule_work(&device->requeue_work);
 199        spin_unlock_irqrestore(q->queue_lock, flags);
 200}
 201
 202/*
 203 * Function:    scsi_queue_insert()
 204 *
 205 * Purpose:     Insert a command in the midlevel queue.
 206 *
 207 * Arguments:   cmd    - command that we are adding to queue.
 208 *              reason - why we are inserting command to queue.
 209 *
 210 * Lock status: Assumed that lock is not held upon entry.
 211 *
 212 * Returns:     Nothing.
 213 *
 214 * Notes:       We do this for one of two cases.  Either the host is busy
 215 *              and it cannot accept any more commands for the time being,
 216 *              or the device returned QUEUE_FULL and can accept no more
 217 *              commands.
 218 * Notes:       This could be called either from an interrupt context or a
 219 *              normal process context.
 220 */
 221void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 222{
 223        __scsi_queue_insert(cmd, reason, 1);
 224}
 225
 226
 227/**
 228 * scsi_execute - insert request and wait for the result
 229 * @sdev:       scsi device
 230 * @cmd:        scsi command
 231 * @data_direction: data direction
 232 * @buffer:     data buffer
 233 * @bufflen:    len of buffer
 234 * @sense:      optional sense buffer
 235 * @sshdr:      optional decoded sense header
 236 * @timeout:    request timeout in seconds
 237 * @retries:    number of times to retry request
 238 * @flags:      flags for ->cmd_flags
 239 * @rq_flags:   flags for ->rq_flags
 240 * @resid:      optional residual length
 241 *
 242 * Returns the scsi_cmnd result field if a command was executed, or a negative
 243 * Linux error code if we didn't get that far.
 244 */
 245int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 246                 int data_direction, void *buffer, unsigned bufflen,
 247                 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 248                 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 249                 int *resid)
 250{
 251        struct request *req;
 252        struct scsi_request *rq;
 253        int ret = DRIVER_ERROR << 24;
 254
 255        req = blk_get_request_flags(sdev->request_queue,
 256                        data_direction == DMA_TO_DEVICE ?
 257                        REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 258        if (IS_ERR(req))
 259                return ret;
 260        rq = scsi_req(req);
 261
 262        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 263                                        buffer, bufflen, __GFP_RECLAIM))
 264                goto out;
 265
 266        rq->cmd_len = COMMAND_SIZE(cmd[0]);
 267        memcpy(rq->cmd, cmd, rq->cmd_len);
 268        rq->retries = retries;
 269        req->timeout = timeout;
 270        req->cmd_flags |= flags;
 271        req->rq_flags |= rq_flags | RQF_QUIET;
 272
 273        /*
 274         * head injection *required* here otherwise quiesce won't work
 275         */
 276        blk_execute_rq(req->q, NULL, req, 1);
 277
 278        /*
 279         * Some devices (USB mass-storage in particular) may transfer
 280         * garbage data together with a residue indicating that the data
 281         * is invalid.  Prevent the garbage from being misinterpreted
 282         * and prevent security leaks by zeroing out the excess data.
 283         */
 284        if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 285                memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 286
 287        if (resid)
 288                *resid = rq->resid_len;
 289        if (sense && rq->sense_len)
 290                memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 291        if (sshdr)
 292                scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 293        ret = rq->result;
 294 out:
 295        blk_put_request(req);
 296
 297        return ret;
 298}
 299EXPORT_SYMBOL(scsi_execute);
 300
 301/*
 302 * Function:    scsi_init_cmd_errh()
 303 *
 304 * Purpose:     Initialize cmd fields related to error handling.
 305 *
 306 * Arguments:   cmd     - command that is ready to be queued.
 307 *
 308 * Notes:       This function has the job of initializing a number of
 309 *              fields related to error handling.   Typically this will
 310 *              be called once for each command, as required.
 311 */
 312static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 313{
 314        cmd->serial_number = 0;
 315        scsi_set_resid(cmd, 0);
 316        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 317        if (cmd->cmd_len == 0)
 318                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 319}
 320
 321void scsi_device_unbusy(struct scsi_device *sdev)
 322{
 323        struct Scsi_Host *shost = sdev->host;
 324        struct scsi_target *starget = scsi_target(sdev);
 325        unsigned long flags;
 326
 327        atomic_dec(&shost->host_busy);
 328        if (starget->can_queue > 0)
 329                atomic_dec(&starget->target_busy);
 330
 331        if (unlikely(scsi_host_in_recovery(shost) &&
 332                     (shost->host_failed || shost->host_eh_scheduled))) {
 333                spin_lock_irqsave(shost->host_lock, flags);
 334                scsi_eh_wakeup(shost);
 335                spin_unlock_irqrestore(shost->host_lock, flags);
 336        }
 337
 338        atomic_dec(&sdev->device_busy);
 339}
 340
 341static void scsi_kick_queue(struct request_queue *q)
 342{
 343        if (q->mq_ops)
 344                blk_mq_start_hw_queues(q);
 345        else
 346                blk_run_queue(q);
 347}
 348
 349/*
 350 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 351 * and call blk_run_queue for all the scsi_devices on the target -
 352 * including current_sdev first.
 353 *
 354 * Called with *no* scsi locks held.
 355 */
 356static void scsi_single_lun_run(struct scsi_device *current_sdev)
 357{
 358        struct Scsi_Host *shost = current_sdev->host;
 359        struct scsi_device *sdev, *tmp;
 360        struct scsi_target *starget = scsi_target(current_sdev);
 361        unsigned long flags;
 362
 363        spin_lock_irqsave(shost->host_lock, flags);
 364        starget->starget_sdev_user = NULL;
 365        spin_unlock_irqrestore(shost->host_lock, flags);
 366
 367        /*
 368         * Call blk_run_queue for all LUNs on the target, starting with
 369         * current_sdev. We race with others (to set starget_sdev_user),
 370         * but in most cases, we will be first. Ideally, each LU on the
 371         * target would get some limited time or requests on the target.
 372         */
 373        scsi_kick_queue(current_sdev->request_queue);
 374
 375        spin_lock_irqsave(shost->host_lock, flags);
 376        if (starget->starget_sdev_user)
 377                goto out;
 378        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 379                        same_target_siblings) {
 380                if (sdev == current_sdev)
 381                        continue;
 382                if (scsi_device_get(sdev))
 383                        continue;
 384
 385                spin_unlock_irqrestore(shost->host_lock, flags);
 386                scsi_kick_queue(sdev->request_queue);
 387                spin_lock_irqsave(shost->host_lock, flags);
 388        
 389                scsi_device_put(sdev);
 390        }
 391 out:
 392        spin_unlock_irqrestore(shost->host_lock, flags);
 393}
 394
 395static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 396{
 397        if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 398                return true;
 399        if (atomic_read(&sdev->device_blocked) > 0)
 400                return true;
 401        return false;
 402}
 403
 404static inline bool scsi_target_is_busy(struct scsi_target *starget)
 405{
 406        if (starget->can_queue > 0) {
 407                if (atomic_read(&starget->target_busy) >= starget->can_queue)
 408                        return true;
 409                if (atomic_read(&starget->target_blocked) > 0)
 410                        return true;
 411        }
 412        return false;
 413}
 414
 415static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 416{
 417        if (shost->can_queue > 0 &&
 418            atomic_read(&shost->host_busy) >= shost->can_queue)
 419                return true;
 420        if (atomic_read(&shost->host_blocked) > 0)
 421                return true;
 422        if (shost->host_self_blocked)
 423                return true;
 424        return false;
 425}
 426
 427static void scsi_starved_list_run(struct Scsi_Host *shost)
 428{
 429        LIST_HEAD(starved_list);
 430        struct scsi_device *sdev;
 431        unsigned long flags;
 432
 433        spin_lock_irqsave(shost->host_lock, flags);
 434        list_splice_init(&shost->starved_list, &starved_list);
 435
 436        while (!list_empty(&starved_list)) {
 437                struct request_queue *slq;
 438
 439                /*
 440                 * As long as shost is accepting commands and we have
 441                 * starved queues, call blk_run_queue. scsi_request_fn
 442                 * drops the queue_lock and can add us back to the
 443                 * starved_list.
 444                 *
 445                 * host_lock protects the starved_list and starved_entry.
 446                 * scsi_request_fn must get the host_lock before checking
 447                 * or modifying starved_list or starved_entry.
 448                 */
 449                if (scsi_host_is_busy(shost))
 450                        break;
 451
 452                sdev = list_entry(starved_list.next,
 453                                  struct scsi_device, starved_entry);
 454                list_del_init(&sdev->starved_entry);
 455                if (scsi_target_is_busy(scsi_target(sdev))) {
 456                        list_move_tail(&sdev->starved_entry,
 457                                       &shost->starved_list);
 458                        continue;
 459                }
 460
 461                /*
 462                 * Once we drop the host lock, a racing scsi_remove_device()
 463                 * call may remove the sdev from the starved list and destroy
 464                 * it and the queue.  Mitigate by taking a reference to the
 465                 * queue and never touching the sdev again after we drop the
 466                 * host lock.  Note: if __scsi_remove_device() invokes
 467                 * blk_cleanup_queue() before the queue is run from this
 468                 * function then blk_run_queue() will return immediately since
 469                 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 470                 */
 471                slq = sdev->request_queue;
 472                if (!blk_get_queue(slq))
 473                        continue;
 474                spin_unlock_irqrestore(shost->host_lock, flags);
 475
 476                scsi_kick_queue(slq);
 477                blk_put_queue(slq);
 478
 479                spin_lock_irqsave(shost->host_lock, flags);
 480        }
 481        /* put any unprocessed entries back */
 482        list_splice(&starved_list, &shost->starved_list);
 483        spin_unlock_irqrestore(shost->host_lock, flags);
 484}
 485
 486/*
 487 * Function:   scsi_run_queue()
 488 *
 489 * Purpose:    Select a proper request queue to serve next
 490 *
 491 * Arguments:  q       - last request's queue
 492 *
 493 * Returns:     Nothing
 494 *
 495 * Notes:      The previous command was completely finished, start
 496 *             a new one if possible.
 497 */
 498static void scsi_run_queue(struct request_queue *q)
 499{
 500        struct scsi_device *sdev = q->queuedata;
 501
 502        if (scsi_target(sdev)->single_lun)
 503                scsi_single_lun_run(sdev);
 504        if (!list_empty(&sdev->host->starved_list))
 505                scsi_starved_list_run(sdev->host);
 506
 507        if (q->mq_ops)
 508                blk_mq_run_hw_queues(q, false);
 509        else
 510                blk_run_queue(q);
 511}
 512
 513void scsi_requeue_run_queue(struct work_struct *work)
 514{
 515        struct scsi_device *sdev;
 516        struct request_queue *q;
 517
 518        sdev = container_of(work, struct scsi_device, requeue_work);
 519        q = sdev->request_queue;
 520        scsi_run_queue(q);
 521}
 522
 523/*
 524 * Function:    scsi_requeue_command()
 525 *
 526 * Purpose:     Handle post-processing of completed commands.
 527 *
 528 * Arguments:   q       - queue to operate on
 529 *              cmd     - command that may need to be requeued.
 530 *
 531 * Returns:     Nothing
 532 *
 533 * Notes:       After command completion, there may be blocks left
 534 *              over which weren't finished by the previous command
 535 *              this can be for a number of reasons - the main one is
 536 *              I/O errors in the middle of the request, in which case
 537 *              we need to request the blocks that come after the bad
 538 *              sector.
 539 * Notes:       Upon return, cmd is a stale pointer.
 540 */
 541static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 542{
 543        struct scsi_device *sdev = cmd->device;
 544        struct request *req = cmd->request;
 545        unsigned long flags;
 546
 547        spin_lock_irqsave(q->queue_lock, flags);
 548        blk_unprep_request(req);
 549        req->special = NULL;
 550        scsi_put_command(cmd);
 551        blk_requeue_request(q, req);
 552        spin_unlock_irqrestore(q->queue_lock, flags);
 553
 554        scsi_run_queue(q);
 555
 556        put_device(&sdev->sdev_gendev);
 557}
 558
 559void scsi_run_host_queues(struct Scsi_Host *shost)
 560{
 561        struct scsi_device *sdev;
 562
 563        shost_for_each_device(sdev, shost)
 564                scsi_run_queue(sdev->request_queue);
 565}
 566
 567static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 568{
 569        if (!blk_rq_is_passthrough(cmd->request)) {
 570                struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 571
 572                if (drv->uninit_command)
 573                        drv->uninit_command(cmd);
 574        }
 575}
 576
 577static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 578{
 579        struct scsi_data_buffer *sdb;
 580
 581        if (cmd->sdb.table.nents)
 582                sg_free_table_chained(&cmd->sdb.table, true);
 583        if (cmd->request->next_rq) {
 584                sdb = cmd->request->next_rq->special;
 585                if (sdb)
 586                        sg_free_table_chained(&sdb->table, true);
 587        }
 588        if (scsi_prot_sg_count(cmd))
 589                sg_free_table_chained(&cmd->prot_sdb->table, true);
 590}
 591
 592static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 593{
 594        scsi_mq_free_sgtables(cmd);
 595        scsi_uninit_cmd(cmd);
 596        scsi_del_cmd_from_list(cmd);
 597}
 598
 599/*
 600 * Function:    scsi_release_buffers()
 601 *
 602 * Purpose:     Free resources allocate for a scsi_command.
 603 *
 604 * Arguments:   cmd     - command that we are bailing.
 605 *
 606 * Lock status: Assumed that no lock is held upon entry.
 607 *
 608 * Returns:     Nothing
 609 *
 610 * Notes:       In the event that an upper level driver rejects a
 611 *              command, we must release resources allocated during
 612 *              the __init_io() function.  Primarily this would involve
 613 *              the scatter-gather table.
 614 */
 615static void scsi_release_buffers(struct scsi_cmnd *cmd)
 616{
 617        if (cmd->sdb.table.nents)
 618                sg_free_table_chained(&cmd->sdb.table, false);
 619
 620        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 621
 622        if (scsi_prot_sg_count(cmd))
 623                sg_free_table_chained(&cmd->prot_sdb->table, false);
 624}
 625
 626static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 627{
 628        struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 629
 630        sg_free_table_chained(&bidi_sdb->table, false);
 631        kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 632        cmd->request->next_rq->special = NULL;
 633}
 634
 635static bool scsi_end_request(struct request *req, blk_status_t error,
 636                unsigned int bytes, unsigned int bidi_bytes)
 637{
 638        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 639        struct scsi_device *sdev = cmd->device;
 640        struct request_queue *q = sdev->request_queue;
 641
 642        if (blk_update_request(req, error, bytes))
 643                return true;
 644
 645        /* Bidi request must be completed as a whole */
 646        if (unlikely(bidi_bytes) &&
 647            blk_update_request(req->next_rq, error, bidi_bytes))
 648                return true;
 649
 650        if (blk_queue_add_random(q))
 651                add_disk_randomness(req->rq_disk);
 652
 653        if (!blk_rq_is_scsi(req)) {
 654                WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 655                cmd->flags &= ~SCMD_INITIALIZED;
 656        }
 657
 658        if (req->mq_ctx) {
 659                /*
 660                 * In the MQ case the command gets freed by __blk_mq_end_request,
 661                 * so we have to do all cleanup that depends on it earlier.
 662                 *
 663                 * We also can't kick the queues from irq context, so we
 664                 * will have to defer it to a workqueue.
 665                 */
 666                scsi_mq_uninit_cmd(cmd);
 667
 668                __blk_mq_end_request(req, error);
 669
 670                if (scsi_target(sdev)->single_lun ||
 671                    !list_empty(&sdev->host->starved_list))
 672                        kblockd_schedule_work(&sdev->requeue_work);
 673                else
 674                        blk_mq_run_hw_queues(q, true);
 675        } else {
 676                unsigned long flags;
 677
 678                if (bidi_bytes)
 679                        scsi_release_bidi_buffers(cmd);
 680                scsi_release_buffers(cmd);
 681                scsi_put_command(cmd);
 682
 683                spin_lock_irqsave(q->queue_lock, flags);
 684                blk_finish_request(req, error);
 685                spin_unlock_irqrestore(q->queue_lock, flags);
 686
 687                scsi_run_queue(q);
 688        }
 689
 690        put_device(&sdev->sdev_gendev);
 691        return false;
 692}
 693
 694/**
 695 * __scsi_error_from_host_byte - translate SCSI error code into errno
 696 * @cmd:        SCSI command (unused)
 697 * @result:     scsi error code
 698 *
 699 * Translate SCSI error code into block errors.
 700 */
 701static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
 702                int result)
 703{
 704        switch (host_byte(result)) {
 705        case DID_TRANSPORT_FAILFAST:
 706                return BLK_STS_TRANSPORT;
 707        case DID_TARGET_FAILURE:
 708                set_host_byte(cmd, DID_OK);
 709                return BLK_STS_TARGET;
 710        case DID_NEXUS_FAILURE:
 711                return BLK_STS_NEXUS;
 712        case DID_ALLOC_FAILURE:
 713                set_host_byte(cmd, DID_OK);
 714                return BLK_STS_NOSPC;
 715        case DID_MEDIUM_ERROR:
 716                set_host_byte(cmd, DID_OK);
 717                return BLK_STS_MEDIUM;
 718        default:
 719                return BLK_STS_IOERR;
 720        }
 721}
 722
 723/*
 724 * Function:    scsi_io_completion()
 725 *
 726 * Purpose:     Completion processing for block device I/O requests.
 727 *
 728 * Arguments:   cmd   - command that is finished.
 729 *
 730 * Lock status: Assumed that no lock is held upon entry.
 731 *
 732 * Returns:     Nothing
 733 *
 734 * Notes:       We will finish off the specified number of sectors.  If we
 735 *              are done, the command block will be released and the queue
 736 *              function will be goosed.  If we are not done then we have to
 737 *              figure out what to do next:
 738 *
 739 *              a) We can call scsi_requeue_command().  The request
 740 *                 will be unprepared and put back on the queue.  Then
 741 *                 a new command will be created for it.  This should
 742 *                 be used if we made forward progress, or if we want
 743 *                 to switch from READ(10) to READ(6) for example.
 744 *
 745 *              b) We can call __scsi_queue_insert().  The request will
 746 *                 be put back on the queue and retried using the same
 747 *                 command as before, possibly after a delay.
 748 *
 749 *              c) We can call scsi_end_request() with -EIO to fail
 750 *                 the remainder of the request.
 751 */
 752void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 753{
 754        int result = cmd->result;
 755        struct request_queue *q = cmd->device->request_queue;
 756        struct request *req = cmd->request;
 757        blk_status_t error = BLK_STS_OK;
 758        struct scsi_sense_hdr sshdr;
 759        bool sense_valid = false;
 760        int sense_deferred = 0, level = 0;
 761        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 762              ACTION_DELAYED_RETRY} action;
 763        unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 764
 765        if (result) {
 766                sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 767                if (sense_valid)
 768                        sense_deferred = scsi_sense_is_deferred(&sshdr);
 769        }
 770
 771        if (blk_rq_is_passthrough(req)) {
 772                if (result) {
 773                        if (sense_valid) {
 774                                /*
 775                                 * SG_IO wants current and deferred errors
 776                                 */
 777                                scsi_req(req)->sense_len =
 778                                        min(8 + cmd->sense_buffer[7],
 779                                            SCSI_SENSE_BUFFERSIZE);
 780                        }
 781                        if (!sense_deferred)
 782                                error = __scsi_error_from_host_byte(cmd, result);
 783                }
 784                /*
 785                 * __scsi_error_from_host_byte may have reset the host_byte
 786                 */
 787                scsi_req(req)->result = cmd->result;
 788                scsi_req(req)->resid_len = scsi_get_resid(cmd);
 789
 790                if (scsi_bidi_cmnd(cmd)) {
 791                        /*
 792                         * Bidi commands Must be complete as a whole,
 793                         * both sides at once.
 794                         */
 795                        scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
 796                        if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
 797                                        blk_rq_bytes(req->next_rq)))
 798                                BUG();
 799                        return;
 800                }
 801        } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 802                /*
 803                 * Flush commands do not transfers any data, and thus cannot use
 804                 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 805                 * This sets the error explicitly for the problem case.
 806                 */
 807                error = __scsi_error_from_host_byte(cmd, result);
 808        }
 809
 810        /* no bidi support for !blk_rq_is_passthrough yet */
 811        BUG_ON(blk_bidi_rq(req));
 812
 813        /*
 814         * Next deal with any sectors which we were able to correctly
 815         * handle.
 816         */
 817        SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 818                "%u sectors total, %d bytes done.\n",
 819                blk_rq_sectors(req), good_bytes));
 820
 821        /*
 822         * Recovered errors need reporting, but they're always treated as
 823         * success, so fiddle the result code here.  For passthrough requests
 824         * we already took a copy of the original into sreq->result which
 825         * is what gets returned to the user
 826         */
 827        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 828                /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 829                 * print since caller wants ATA registers. Only occurs on
 830                 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 831                 */
 832                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 833                        ;
 834                else if (!(req->rq_flags & RQF_QUIET))
 835                        scsi_print_sense(cmd);
 836                result = 0;
 837                /* for passthrough error may be set */
 838                error = BLK_STS_OK;
 839        }
 840
 841        /*
 842         * special case: failed zero length commands always need to
 843         * drop down into the retry code. Otherwise, if we finished
 844         * all bytes in the request we are done now.
 845         */
 846        if (!(blk_rq_bytes(req) == 0 && error) &&
 847            !scsi_end_request(req, error, good_bytes, 0))
 848                return;
 849
 850        /*
 851         * Kill remainder if no retrys.
 852         */
 853        if (error && scsi_noretry_cmd(cmd)) {
 854                if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 855                        BUG();
 856                return;
 857        }
 858
 859        /*
 860         * If there had been no error, but we have leftover bytes in the
 861         * requeues just queue the command up again.
 862         */
 863        if (result == 0)
 864                goto requeue;
 865
 866        error = __scsi_error_from_host_byte(cmd, result);
 867
 868        if (host_byte(result) == DID_RESET) {
 869                /* Third party bus reset or reset for error recovery
 870                 * reasons.  Just retry the command and see what
 871                 * happens.
 872                 */
 873                action = ACTION_RETRY;
 874        } else if (sense_valid && !sense_deferred) {
 875                switch (sshdr.sense_key) {
 876                case UNIT_ATTENTION:
 877                        if (cmd->device->removable) {
 878                                /* Detected disc change.  Set a bit
 879                                 * and quietly refuse further access.
 880                                 */
 881                                cmd->device->changed = 1;
 882                                action = ACTION_FAIL;
 883                        } else {
 884                                /* Must have been a power glitch, or a
 885                                 * bus reset.  Could not have been a
 886                                 * media change, so we just retry the
 887                                 * command and see what happens.
 888                                 */
 889                                action = ACTION_RETRY;
 890                        }
 891                        break;
 892                case ILLEGAL_REQUEST:
 893                        /* If we had an ILLEGAL REQUEST returned, then
 894                         * we may have performed an unsupported
 895                         * command.  The only thing this should be
 896                         * would be a ten byte read where only a six
 897                         * byte read was supported.  Also, on a system
 898                         * where READ CAPACITY failed, we may have
 899                         * read past the end of the disk.
 900                         */
 901                        if ((cmd->device->use_10_for_rw &&
 902                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 903                            (cmd->cmnd[0] == READ_10 ||
 904                             cmd->cmnd[0] == WRITE_10)) {
 905                                /* This will issue a new 6-byte command. */
 906                                cmd->device->use_10_for_rw = 0;
 907                                action = ACTION_REPREP;
 908                        } else if (sshdr.asc == 0x10) /* DIX */ {
 909                                action = ACTION_FAIL;
 910                                error = BLK_STS_PROTECTION;
 911                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 912                        } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 913                                action = ACTION_FAIL;
 914                                error = BLK_STS_TARGET;
 915                        } else
 916                                action = ACTION_FAIL;
 917                        break;
 918                case ABORTED_COMMAND:
 919                        action = ACTION_FAIL;
 920                        if (sshdr.asc == 0x10) /* DIF */
 921                                error = BLK_STS_PROTECTION;
 922                        break;
 923                case NOT_READY:
 924                        /* If the device is in the process of becoming
 925                         * ready, or has a temporary blockage, retry.
 926                         */
 927                        if (sshdr.asc == 0x04) {
 928                                switch (sshdr.ascq) {
 929                                case 0x01: /* becoming ready */
 930                                case 0x04: /* format in progress */
 931                                case 0x05: /* rebuild in progress */
 932                                case 0x06: /* recalculation in progress */
 933                                case 0x07: /* operation in progress */
 934                                case 0x08: /* Long write in progress */
 935                                case 0x09: /* self test in progress */
 936                                case 0x14: /* space allocation in progress */
 937                                        action = ACTION_DELAYED_RETRY;
 938                                        break;
 939                                default:
 940                                        action = ACTION_FAIL;
 941                                        break;
 942                                }
 943                        } else
 944                                action = ACTION_FAIL;
 945                        break;
 946                case VOLUME_OVERFLOW:
 947                        /* See SSC3rXX or current. */
 948                        action = ACTION_FAIL;
 949                        break;
 950                default:
 951                        action = ACTION_FAIL;
 952                        break;
 953                }
 954        } else
 955                action = ACTION_FAIL;
 956
 957        if (action != ACTION_FAIL &&
 958            time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 959                action = ACTION_FAIL;
 960
 961        switch (action) {
 962        case ACTION_FAIL:
 963                /* Give up and fail the remainder of the request */
 964                if (!(req->rq_flags & RQF_QUIET)) {
 965                        static DEFINE_RATELIMIT_STATE(_rs,
 966                                        DEFAULT_RATELIMIT_INTERVAL,
 967                                        DEFAULT_RATELIMIT_BURST);
 968
 969                        if (unlikely(scsi_logging_level))
 970                                level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 971                                                       SCSI_LOG_MLCOMPLETE_BITS);
 972
 973                        /*
 974                         * if logging is enabled the failure will be printed
 975                         * in scsi_log_completion(), so avoid duplicate messages
 976                         */
 977                        if (!level && __ratelimit(&_rs)) {
 978                                scsi_print_result(cmd, NULL, FAILED);
 979                                if (driver_byte(result) & DRIVER_SENSE)
 980                                        scsi_print_sense(cmd);
 981                                scsi_print_command(cmd);
 982                        }
 983                }
 984                if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
 985                        return;
 986                /*FALLTHRU*/
 987        case ACTION_REPREP:
 988        requeue:
 989                /* Unprep the request and put it back at the head of the queue.
 990                 * A new command will be prepared and issued.
 991                 */
 992                if (q->mq_ops) {
 993                        scsi_mq_requeue_cmd(cmd);
 994                } else {
 995                        scsi_release_buffers(cmd);
 996                        scsi_requeue_command(q, cmd);
 997                }
 998                break;
 999        case ACTION_RETRY:
1000                /* Retry the same command immediately */
1001                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1002                break;
1003        case ACTION_DELAYED_RETRY:
1004                /* Retry the same command after a delay */
1005                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1006                break;
1007        }
1008}
1009
1010static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1011{
1012        int count;
1013
1014        /*
1015         * If sg table allocation fails, requeue request later.
1016         */
1017        if (unlikely(sg_alloc_table_chained(&sdb->table,
1018                        blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1019                return BLKPREP_DEFER;
1020
1021        /* 
1022         * Next, walk the list, and fill in the addresses and sizes of
1023         * each segment.
1024         */
1025        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1026        BUG_ON(count > sdb->table.nents);
1027        sdb->table.nents = count;
1028        sdb->length = blk_rq_payload_bytes(req);
1029        return BLKPREP_OK;
1030}
1031
1032/*
1033 * Function:    scsi_init_io()
1034 *
1035 * Purpose:     SCSI I/O initialize function.
1036 *
1037 * Arguments:   cmd   - Command descriptor we wish to initialize
1038 *
1039 * Returns:     0 on success
1040 *              BLKPREP_DEFER if the failure is retryable
1041 *              BLKPREP_KILL if the failure is fatal
1042 */
1043int scsi_init_io(struct scsi_cmnd *cmd)
1044{
1045        struct scsi_device *sdev = cmd->device;
1046        struct request *rq = cmd->request;
1047        bool is_mq = (rq->mq_ctx != NULL);
1048        int error = BLKPREP_KILL;
1049
1050        if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1051                goto err_exit;
1052
1053        error = scsi_init_sgtable(rq, &cmd->sdb);
1054        if (error)
1055                goto err_exit;
1056
1057        if (blk_bidi_rq(rq)) {
1058                if (!rq->q->mq_ops) {
1059                        struct scsi_data_buffer *bidi_sdb =
1060                                kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1061                        if (!bidi_sdb) {
1062                                error = BLKPREP_DEFER;
1063                                goto err_exit;
1064                        }
1065
1066                        rq->next_rq->special = bidi_sdb;
1067                }
1068
1069                error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1070                if (error)
1071                        goto err_exit;
1072        }
1073
1074        if (blk_integrity_rq(rq)) {
1075                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076                int ivecs, count;
1077
1078                if (prot_sdb == NULL) {
1079                        /*
1080                         * This can happen if someone (e.g. multipath)
1081                         * queues a command to a device on an adapter
1082                         * that does not support DIX.
1083                         */
1084                        WARN_ON_ONCE(1);
1085                        error = BLKPREP_KILL;
1086                        goto err_exit;
1087                }
1088
1089                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1090
1091                if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1092                                prot_sdb->table.sgl)) {
1093                        error = BLKPREP_DEFER;
1094                        goto err_exit;
1095                }
1096
1097                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098                                                prot_sdb->table.sgl);
1099                BUG_ON(unlikely(count > ivecs));
1100                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1101
1102                cmd->prot_sdb = prot_sdb;
1103                cmd->prot_sdb->table.nents = count;
1104        }
1105
1106        return BLKPREP_OK;
1107err_exit:
1108        if (is_mq) {
1109                scsi_mq_free_sgtables(cmd);
1110        } else {
1111                scsi_release_buffers(cmd);
1112                cmd->request->special = NULL;
1113                scsi_put_command(cmd);
1114                put_device(&sdev->sdev_gendev);
1115        }
1116        return error;
1117}
1118EXPORT_SYMBOL(scsi_init_io);
1119
1120/**
1121 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1122 * @rq: Request associated with the SCSI command to be initialized.
1123 *
1124 * This function initializes the members of struct scsi_cmnd that must be
1125 * initialized before request processing starts and that won't be
1126 * reinitialized if a SCSI command is requeued.
1127 *
1128 * Called from inside blk_get_request() for pass-through requests and from
1129 * inside scsi_init_command() for filesystem requests.
1130 */
1131void scsi_initialize_rq(struct request *rq)
1132{
1133        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1134
1135        scsi_req_init(&cmd->req);
1136        cmd->jiffies_at_alloc = jiffies;
1137        cmd->retries = 0;
1138}
1139EXPORT_SYMBOL(scsi_initialize_rq);
1140
1141/* Add a command to the list used by the aacraid and dpt_i2o drivers */
1142void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1143{
1144        struct scsi_device *sdev = cmd->device;
1145        struct Scsi_Host *shost = sdev->host;
1146        unsigned long flags;
1147
1148        if (shost->use_cmd_list) {
1149                spin_lock_irqsave(&sdev->list_lock, flags);
1150                list_add_tail(&cmd->list, &sdev->cmd_list);
1151                spin_unlock_irqrestore(&sdev->list_lock, flags);
1152        }
1153}
1154
1155/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1156void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1157{
1158        struct scsi_device *sdev = cmd->device;
1159        struct Scsi_Host *shost = sdev->host;
1160        unsigned long flags;
1161
1162        if (shost->use_cmd_list) {
1163                spin_lock_irqsave(&sdev->list_lock, flags);
1164                BUG_ON(list_empty(&cmd->list));
1165                list_del_init(&cmd->list);
1166                spin_unlock_irqrestore(&sdev->list_lock, flags);
1167        }
1168}
1169
1170/* Called after a request has been started. */
1171void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1172{
1173        void *buf = cmd->sense_buffer;
1174        void *prot = cmd->prot_sdb;
1175        struct request *rq = blk_mq_rq_from_pdu(cmd);
1176        unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1177        unsigned long jiffies_at_alloc;
1178        int retries;
1179
1180        if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1181                flags |= SCMD_INITIALIZED;
1182                scsi_initialize_rq(rq);
1183        }
1184
1185        jiffies_at_alloc = cmd->jiffies_at_alloc;
1186        retries = cmd->retries;
1187        /* zero out the cmd, except for the embedded scsi_request */
1188        memset((char *)cmd + sizeof(cmd->req), 0,
1189                sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1190
1191        cmd->device = dev;
1192        cmd->sense_buffer = buf;
1193        cmd->prot_sdb = prot;
1194        cmd->flags = flags;
1195        INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1196        cmd->jiffies_at_alloc = jiffies_at_alloc;
1197        cmd->retries = retries;
1198
1199        scsi_add_cmd_to_list(cmd);
1200}
1201
1202static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1203{
1204        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1205
1206        /*
1207         * Passthrough requests may transfer data, in which case they must
1208         * a bio attached to them.  Or they might contain a SCSI command
1209         * that does not transfer data, in which case they may optionally
1210         * submit a request without an attached bio.
1211         */
1212        if (req->bio) {
1213                int ret = scsi_init_io(cmd);
1214                if (unlikely(ret))
1215                        return ret;
1216        } else {
1217                BUG_ON(blk_rq_bytes(req));
1218
1219                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1220        }
1221
1222        cmd->cmd_len = scsi_req(req)->cmd_len;
1223        cmd->cmnd = scsi_req(req)->cmd;
1224        cmd->transfersize = blk_rq_bytes(req);
1225        cmd->allowed = scsi_req(req)->retries;
1226        return BLKPREP_OK;
1227}
1228
1229/*
1230 * Setup a normal block command.  These are simple request from filesystems
1231 * that still need to be translated to SCSI CDBs from the ULD.
1232 */
1233static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234{
1235        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1236
1237        if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1238                int ret = sdev->handler->prep_fn(sdev, req);
1239                if (ret != BLKPREP_OK)
1240                        return ret;
1241        }
1242
1243        cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1244        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1245        return scsi_cmd_to_driver(cmd)->init_command(cmd);
1246}
1247
1248static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1249{
1250        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1251
1252        if (!blk_rq_bytes(req))
1253                cmd->sc_data_direction = DMA_NONE;
1254        else if (rq_data_dir(req) == WRITE)
1255                cmd->sc_data_direction = DMA_TO_DEVICE;
1256        else
1257                cmd->sc_data_direction = DMA_FROM_DEVICE;
1258
1259        if (blk_rq_is_scsi(req))
1260                return scsi_setup_scsi_cmnd(sdev, req);
1261        else
1262                return scsi_setup_fs_cmnd(sdev, req);
1263}
1264
1265static int
1266scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1267{
1268        int ret = BLKPREP_OK;
1269
1270        /*
1271         * If the device is not in running state we will reject some
1272         * or all commands.
1273         */
1274        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1275                switch (sdev->sdev_state) {
1276                case SDEV_OFFLINE:
1277                case SDEV_TRANSPORT_OFFLINE:
1278                        /*
1279                         * If the device is offline we refuse to process any
1280                         * commands.  The device must be brought online
1281                         * before trying any recovery commands.
1282                         */
1283                        sdev_printk(KERN_ERR, sdev,
1284                                    "rejecting I/O to offline device\n");
1285                        ret = BLKPREP_KILL;
1286                        break;
1287                case SDEV_DEL:
1288                        /*
1289                         * If the device is fully deleted, we refuse to
1290                         * process any commands as well.
1291                         */
1292                        sdev_printk(KERN_ERR, sdev,
1293                                    "rejecting I/O to dead device\n");
1294                        ret = BLKPREP_KILL;
1295                        break;
1296                case SDEV_BLOCK:
1297                case SDEV_CREATED_BLOCK:
1298                        ret = BLKPREP_DEFER;
1299                        break;
1300                case SDEV_QUIESCE:
1301                        /*
1302                         * If the devices is blocked we defer normal commands.
1303                         */
1304                        if (req && !(req->rq_flags & RQF_PREEMPT))
1305                                ret = BLKPREP_DEFER;
1306                        break;
1307                default:
1308                        /*
1309                         * For any other not fully online state we only allow
1310                         * special commands.  In particular any user initiated
1311                         * command is not allowed.
1312                         */
1313                        if (req && !(req->rq_flags & RQF_PREEMPT))
1314                                ret = BLKPREP_KILL;
1315                        break;
1316                }
1317        }
1318        return ret;
1319}
1320
1321static int
1322scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1323{
1324        struct scsi_device *sdev = q->queuedata;
1325
1326        switch (ret) {
1327        case BLKPREP_KILL:
1328        case BLKPREP_INVALID:
1329                scsi_req(req)->result = DID_NO_CONNECT << 16;
1330                /* release the command and kill it */
1331                if (req->special) {
1332                        struct scsi_cmnd *cmd = req->special;
1333                        scsi_release_buffers(cmd);
1334                        scsi_put_command(cmd);
1335                        put_device(&sdev->sdev_gendev);
1336                        req->special = NULL;
1337                }
1338                break;
1339        case BLKPREP_DEFER:
1340                /*
1341                 * If we defer, the blk_peek_request() returns NULL, but the
1342                 * queue must be restarted, so we schedule a callback to happen
1343                 * shortly.
1344                 */
1345                if (atomic_read(&sdev->device_busy) == 0)
1346                        blk_delay_queue(q, SCSI_QUEUE_DELAY);
1347                break;
1348        default:
1349                req->rq_flags |= RQF_DONTPREP;
1350        }
1351
1352        return ret;
1353}
1354
1355static int scsi_prep_fn(struct request_queue *q, struct request *req)
1356{
1357        struct scsi_device *sdev = q->queuedata;
1358        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1359        int ret;
1360
1361        ret = scsi_prep_state_check(sdev, req);
1362        if (ret != BLKPREP_OK)
1363                goto out;
1364
1365        if (!req->special) {
1366                /* Bail if we can't get a reference to the device */
1367                if (unlikely(!get_device(&sdev->sdev_gendev))) {
1368                        ret = BLKPREP_DEFER;
1369                        goto out;
1370                }
1371
1372                scsi_init_command(sdev, cmd);
1373                req->special = cmd;
1374        }
1375
1376        cmd->tag = req->tag;
1377        cmd->request = req;
1378        cmd->prot_op = SCSI_PROT_NORMAL;
1379
1380        ret = scsi_setup_cmnd(sdev, req);
1381out:
1382        return scsi_prep_return(q, req, ret);
1383}
1384
1385static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1386{
1387        scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1388}
1389
1390/*
1391 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1392 * return 0.
1393 *
1394 * Called with the queue_lock held.
1395 */
1396static inline int scsi_dev_queue_ready(struct request_queue *q,
1397                                  struct scsi_device *sdev)
1398{
1399        unsigned int busy;
1400
1401        busy = atomic_inc_return(&sdev->device_busy) - 1;
1402        if (atomic_read(&sdev->device_blocked)) {
1403                if (busy)
1404                        goto out_dec;
1405
1406                /*
1407                 * unblock after device_blocked iterates to zero
1408                 */
1409                if (atomic_dec_return(&sdev->device_blocked) > 0) {
1410                        /*
1411                         * For the MQ case we take care of this in the caller.
1412                         */
1413                        if (!q->mq_ops)
1414                                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1415                        goto out_dec;
1416                }
1417                SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1418                                   "unblocking device at zero depth\n"));
1419        }
1420
1421        if (busy >= sdev->queue_depth)
1422                goto out_dec;
1423
1424        return 1;
1425out_dec:
1426        atomic_dec(&sdev->device_busy);
1427        return 0;
1428}
1429
1430/*
1431 * scsi_target_queue_ready: checks if there we can send commands to target
1432 * @sdev: scsi device on starget to check.
1433 */
1434static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1435                                           struct scsi_device *sdev)
1436{
1437        struct scsi_target *starget = scsi_target(sdev);
1438        unsigned int busy;
1439
1440        if (starget->single_lun) {
1441                spin_lock_irq(shost->host_lock);
1442                if (starget->starget_sdev_user &&
1443                    starget->starget_sdev_user != sdev) {
1444                        spin_unlock_irq(shost->host_lock);
1445                        return 0;
1446                }
1447                starget->starget_sdev_user = sdev;
1448                spin_unlock_irq(shost->host_lock);
1449        }
1450
1451        if (starget->can_queue <= 0)
1452                return 1;
1453
1454        busy = atomic_inc_return(&starget->target_busy) - 1;
1455        if (atomic_read(&starget->target_blocked) > 0) {
1456                if (busy)
1457                        goto starved;
1458
1459                /*
1460                 * unblock after target_blocked iterates to zero
1461                 */
1462                if (atomic_dec_return(&starget->target_blocked) > 0)
1463                        goto out_dec;
1464
1465                SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1466                                 "unblocking target at zero depth\n"));
1467        }
1468
1469        if (busy >= starget->can_queue)
1470                goto starved;
1471
1472        return 1;
1473
1474starved:
1475        spin_lock_irq(shost->host_lock);
1476        list_move_tail(&sdev->starved_entry, &shost->starved_list);
1477        spin_unlock_irq(shost->host_lock);
1478out_dec:
1479        if (starget->can_queue > 0)
1480                atomic_dec(&starget->target_busy);
1481        return 0;
1482}
1483
1484/*
1485 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1486 * return 0. We must end up running the queue again whenever 0 is
1487 * returned, else IO can hang.
1488 */
1489static inline int scsi_host_queue_ready(struct request_queue *q,
1490                                   struct Scsi_Host *shost,
1491                                   struct scsi_device *sdev)
1492{
1493        unsigned int busy;
1494
1495        if (scsi_host_in_recovery(shost))
1496                return 0;
1497
1498        busy = atomic_inc_return(&shost->host_busy) - 1;
1499        if (atomic_read(&shost->host_blocked) > 0) {
1500                if (busy)
1501                        goto starved;
1502
1503                /*
1504                 * unblock after host_blocked iterates to zero
1505                 */
1506                if (atomic_dec_return(&shost->host_blocked) > 0)
1507                        goto out_dec;
1508
1509                SCSI_LOG_MLQUEUE(3,
1510                        shost_printk(KERN_INFO, shost,
1511                                     "unblocking host at zero depth\n"));
1512        }
1513
1514        if (shost->can_queue > 0 && busy >= shost->can_queue)
1515                goto starved;
1516        if (shost->host_self_blocked)
1517                goto starved;
1518
1519        /* We're OK to process the command, so we can't be starved */
1520        if (!list_empty(&sdev->starved_entry)) {
1521                spin_lock_irq(shost->host_lock);
1522                if (!list_empty(&sdev->starved_entry))
1523                        list_del_init(&sdev->starved_entry);
1524                spin_unlock_irq(shost->host_lock);
1525        }
1526
1527        return 1;
1528
1529starved:
1530        spin_lock_irq(shost->host_lock);
1531        if (list_empty(&sdev->starved_entry))
1532                list_add_tail(&sdev->starved_entry, &shost->starved_list);
1533        spin_unlock_irq(shost->host_lock);
1534out_dec:
1535        atomic_dec(&shost->host_busy);
1536        return 0;
1537}
1538
1539/*
1540 * Busy state exporting function for request stacking drivers.
1541 *
1542 * For efficiency, no lock is taken to check the busy state of
1543 * shost/starget/sdev, since the returned value is not guaranteed and
1544 * may be changed after request stacking drivers call the function,
1545 * regardless of taking lock or not.
1546 *
1547 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1548 * needs to return 'not busy'. Otherwise, request stacking drivers
1549 * may hold requests forever.
1550 */
1551static int scsi_lld_busy(struct request_queue *q)
1552{
1553        struct scsi_device *sdev = q->queuedata;
1554        struct Scsi_Host *shost;
1555
1556        if (blk_queue_dying(q))
1557                return 0;
1558
1559        shost = sdev->host;
1560
1561        /*
1562         * Ignore host/starget busy state.
1563         * Since block layer does not have a concept of fairness across
1564         * multiple queues, congestion of host/starget needs to be handled
1565         * in SCSI layer.
1566         */
1567        if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1568                return 1;
1569
1570        return 0;
1571}
1572
1573/*
1574 * Kill a request for a dead device
1575 */
1576static void scsi_kill_request(struct request *req, struct request_queue *q)
1577{
1578        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1579        struct scsi_device *sdev;
1580        struct scsi_target *starget;
1581        struct Scsi_Host *shost;
1582
1583        blk_start_request(req);
1584
1585        scmd_printk(KERN_INFO, cmd, "killing request\n");
1586
1587        sdev = cmd->device;
1588        starget = scsi_target(sdev);
1589        shost = sdev->host;
1590        scsi_init_cmd_errh(cmd);
1591        cmd->result = DID_NO_CONNECT << 16;
1592        atomic_inc(&cmd->device->iorequest_cnt);
1593
1594        /*
1595         * SCSI request completion path will do scsi_device_unbusy(),
1596         * bump busy counts.  To bump the counters, we need to dance
1597         * with the locks as normal issue path does.
1598         */
1599        atomic_inc(&sdev->device_busy);
1600        atomic_inc(&shost->host_busy);
1601        if (starget->can_queue > 0)
1602                atomic_inc(&starget->target_busy);
1603
1604        blk_complete_request(req);
1605}
1606
1607static void scsi_softirq_done(struct request *rq)
1608{
1609        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1610        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1611        int disposition;
1612
1613        INIT_LIST_HEAD(&cmd->eh_entry);
1614
1615        atomic_inc(&cmd->device->iodone_cnt);
1616        if (cmd->result)
1617                atomic_inc(&cmd->device->ioerr_cnt);
1618
1619        disposition = scsi_decide_disposition(cmd);
1620        if (disposition != SUCCESS &&
1621            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1622                sdev_printk(KERN_ERR, cmd->device,
1623                            "timing out command, waited %lus\n",
1624                            wait_for/HZ);
1625                disposition = SUCCESS;
1626        }
1627
1628        scsi_log_completion(cmd, disposition);
1629
1630        switch (disposition) {
1631                case SUCCESS:
1632                        scsi_finish_command(cmd);
1633                        break;
1634                case NEEDS_RETRY:
1635                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1636                        break;
1637                case ADD_TO_MLQUEUE:
1638                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1639                        break;
1640                default:
1641                        scsi_eh_scmd_add(cmd);
1642                        break;
1643        }
1644}
1645
1646/**
1647 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1648 * @cmd: command block we are dispatching.
1649 *
1650 * Return: nonzero return request was rejected and device's queue needs to be
1651 * plugged.
1652 */
1653static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1654{
1655        struct Scsi_Host *host = cmd->device->host;
1656        int rtn = 0;
1657
1658        atomic_inc(&cmd->device->iorequest_cnt);
1659
1660        /* check if the device is still usable */
1661        if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1662                /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1663                 * returns an immediate error upwards, and signals
1664                 * that the device is no longer present */
1665                cmd->result = DID_NO_CONNECT << 16;
1666                goto done;
1667        }
1668
1669        /* Check to see if the scsi lld made this device blocked. */
1670        if (unlikely(scsi_device_blocked(cmd->device))) {
1671                /*
1672                 * in blocked state, the command is just put back on
1673                 * the device queue.  The suspend state has already
1674                 * blocked the queue so future requests should not
1675                 * occur until the device transitions out of the
1676                 * suspend state.
1677                 */
1678                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1679                        "queuecommand : device blocked\n"));
1680                return SCSI_MLQUEUE_DEVICE_BUSY;
1681        }
1682
1683        /* Store the LUN value in cmnd, if needed. */
1684        if (cmd->device->lun_in_cdb)
1685                cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1686                               (cmd->device->lun << 5 & 0xe0);
1687
1688        scsi_log_send(cmd);
1689
1690        /*
1691         * Before we queue this command, check if the command
1692         * length exceeds what the host adapter can handle.
1693         */
1694        if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1695                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696                               "queuecommand : command too long. "
1697                               "cdb_size=%d host->max_cmd_len=%d\n",
1698                               cmd->cmd_len, cmd->device->host->max_cmd_len));
1699                cmd->result = (DID_ABORT << 16);
1700                goto done;
1701        }
1702
1703        if (unlikely(host->shost_state == SHOST_DEL)) {
1704                cmd->result = (DID_NO_CONNECT << 16);
1705                goto done;
1706
1707        }
1708
1709        trace_scsi_dispatch_cmd_start(cmd);
1710        rtn = host->hostt->queuecommand(host, cmd);
1711        if (rtn) {
1712                trace_scsi_dispatch_cmd_error(cmd, rtn);
1713                if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1714                    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1715                        rtn = SCSI_MLQUEUE_HOST_BUSY;
1716
1717                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1718                        "queuecommand : request rejected\n"));
1719        }
1720
1721        return rtn;
1722 done:
1723        cmd->scsi_done(cmd);
1724        return 0;
1725}
1726
1727/**
1728 * scsi_done - Invoke completion on finished SCSI command.
1729 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1730 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1731 *
1732 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1733 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1734 * calls blk_complete_request() for further processing.
1735 *
1736 * This function is interrupt context safe.
1737 */
1738static void scsi_done(struct scsi_cmnd *cmd)
1739{
1740        trace_scsi_dispatch_cmd_done(cmd);
1741        blk_complete_request(cmd->request);
1742}
1743
1744/*
1745 * Function:    scsi_request_fn()
1746 *
1747 * Purpose:     Main strategy routine for SCSI.
1748 *
1749 * Arguments:   q       - Pointer to actual queue.
1750 *
1751 * Returns:     Nothing
1752 *
1753 * Lock status: request queue lock assumed to be held when called.
1754 *
1755 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1756 * protection for ZBC disks.
1757 */
1758static void scsi_request_fn(struct request_queue *q)
1759        __releases(q->queue_lock)
1760        __acquires(q->queue_lock)
1761{
1762        struct scsi_device *sdev = q->queuedata;
1763        struct Scsi_Host *shost;
1764        struct scsi_cmnd *cmd;
1765        struct request *req;
1766
1767        /*
1768         * To start with, we keep looping until the queue is empty, or until
1769         * the host is no longer able to accept any more requests.
1770         */
1771        shost = sdev->host;
1772        for (;;) {
1773                int rtn;
1774                /*
1775                 * get next queueable request.  We do this early to make sure
1776                 * that the request is fully prepared even if we cannot
1777                 * accept it.
1778                 */
1779                req = blk_peek_request(q);
1780                if (!req)
1781                        break;
1782
1783                if (unlikely(!scsi_device_online(sdev))) {
1784                        sdev_printk(KERN_ERR, sdev,
1785                                    "rejecting I/O to offline device\n");
1786                        scsi_kill_request(req, q);
1787                        continue;
1788                }
1789
1790                if (!scsi_dev_queue_ready(q, sdev))
1791                        break;
1792
1793                /*
1794                 * Remove the request from the request list.
1795                 */
1796                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1797                        blk_start_request(req);
1798
1799                spin_unlock_irq(q->queue_lock);
1800                cmd = blk_mq_rq_to_pdu(req);
1801                if (cmd != req->special) {
1802                        printk(KERN_CRIT "impossible request in %s.\n"
1803                                         "please mail a stack trace to "
1804                                         "linux-scsi@vger.kernel.org\n",
1805                                         __func__);
1806                        blk_dump_rq_flags(req, "foo");
1807                        BUG();
1808                }
1809
1810                /*
1811                 * We hit this when the driver is using a host wide
1812                 * tag map. For device level tag maps the queue_depth check
1813                 * in the device ready fn would prevent us from trying
1814                 * to allocate a tag. Since the map is a shared host resource
1815                 * we add the dev to the starved list so it eventually gets
1816                 * a run when a tag is freed.
1817                 */
1818                if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1819                        spin_lock_irq(shost->host_lock);
1820                        if (list_empty(&sdev->starved_entry))
1821                                list_add_tail(&sdev->starved_entry,
1822                                              &shost->starved_list);
1823                        spin_unlock_irq(shost->host_lock);
1824                        goto not_ready;
1825                }
1826
1827                if (!scsi_target_queue_ready(shost, sdev))
1828                        goto not_ready;
1829
1830                if (!scsi_host_queue_ready(q, shost, sdev))
1831                        goto host_not_ready;
1832        
1833                if (sdev->simple_tags)
1834                        cmd->flags |= SCMD_TAGGED;
1835                else
1836                        cmd->flags &= ~SCMD_TAGGED;
1837
1838                /*
1839                 * Finally, initialize any error handling parameters, and set up
1840                 * the timers for timeouts.
1841                 */
1842                scsi_init_cmd_errh(cmd);
1843
1844                /*
1845                 * Dispatch the command to the low-level driver.
1846                 */
1847                cmd->scsi_done = scsi_done;
1848                rtn = scsi_dispatch_cmd(cmd);
1849                if (rtn) {
1850                        scsi_queue_insert(cmd, rtn);
1851                        spin_lock_irq(q->queue_lock);
1852                        goto out_delay;
1853                }
1854                spin_lock_irq(q->queue_lock);
1855        }
1856
1857        return;
1858
1859 host_not_ready:
1860        if (scsi_target(sdev)->can_queue > 0)
1861                atomic_dec(&scsi_target(sdev)->target_busy);
1862 not_ready:
1863        /*
1864         * lock q, handle tag, requeue req, and decrement device_busy. We
1865         * must return with queue_lock held.
1866         *
1867         * Decrementing device_busy without checking it is OK, as all such
1868         * cases (host limits or settings) should run the queue at some
1869         * later time.
1870         */
1871        spin_lock_irq(q->queue_lock);
1872        blk_requeue_request(q, req);
1873        atomic_dec(&sdev->device_busy);
1874out_delay:
1875        if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1876                blk_delay_queue(q, SCSI_QUEUE_DELAY);
1877}
1878
1879static inline blk_status_t prep_to_mq(int ret)
1880{
1881        switch (ret) {
1882        case BLKPREP_OK:
1883                return BLK_STS_OK;
1884        case BLKPREP_DEFER:
1885                return BLK_STS_RESOURCE;
1886        default:
1887                return BLK_STS_IOERR;
1888        }
1889}
1890
1891/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1892static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1893{
1894        return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1895                sizeof(struct scatterlist);
1896}
1897
1898static int scsi_mq_prep_fn(struct request *req)
1899{
1900        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901        struct scsi_device *sdev = req->q->queuedata;
1902        struct Scsi_Host *shost = sdev->host;
1903        struct scatterlist *sg;
1904
1905        scsi_init_command(sdev, cmd);
1906
1907        req->special = cmd;
1908
1909        cmd->request = req;
1910
1911        cmd->tag = req->tag;
1912        cmd->prot_op = SCSI_PROT_NORMAL;
1913
1914        sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1915        cmd->sdb.table.sgl = sg;
1916
1917        if (scsi_host_get_prot(shost)) {
1918                memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1919
1920                cmd->prot_sdb->table.sgl =
1921                        (struct scatterlist *)(cmd->prot_sdb + 1);
1922        }
1923
1924        if (blk_bidi_rq(req)) {
1925                struct request *next_rq = req->next_rq;
1926                struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1927
1928                memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1929                bidi_sdb->table.sgl =
1930                        (struct scatterlist *)(bidi_sdb + 1);
1931
1932                next_rq->special = bidi_sdb;
1933        }
1934
1935        blk_mq_start_request(req);
1936
1937        return scsi_setup_cmnd(sdev, req);
1938}
1939
1940static void scsi_mq_done(struct scsi_cmnd *cmd)
1941{
1942        trace_scsi_dispatch_cmd_done(cmd);
1943        blk_mq_complete_request(cmd->request);
1944}
1945
1946static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1947{
1948        struct request_queue *q = hctx->queue;
1949        struct scsi_device *sdev = q->queuedata;
1950
1951        atomic_dec(&sdev->device_busy);
1952        put_device(&sdev->sdev_gendev);
1953}
1954
1955static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1956{
1957        struct request_queue *q = hctx->queue;
1958        struct scsi_device *sdev = q->queuedata;
1959
1960        if (!get_device(&sdev->sdev_gendev))
1961                goto out;
1962        if (!scsi_dev_queue_ready(q, sdev))
1963                goto out_put_device;
1964
1965        return true;
1966
1967out_put_device:
1968        put_device(&sdev->sdev_gendev);
1969out:
1970        if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1971                blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1972        return false;
1973}
1974
1975static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1976                         const struct blk_mq_queue_data *bd)
1977{
1978        struct request *req = bd->rq;
1979        struct request_queue *q = req->q;
1980        struct scsi_device *sdev = q->queuedata;
1981        struct Scsi_Host *shost = sdev->host;
1982        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1983        blk_status_t ret;
1984        int reason;
1985
1986        ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1987        if (ret != BLK_STS_OK)
1988                goto out_put_budget;
1989
1990        ret = BLK_STS_RESOURCE;
1991        if (!scsi_target_queue_ready(shost, sdev))
1992                goto out_put_budget;
1993        if (!scsi_host_queue_ready(q, shost, sdev))
1994                goto out_dec_target_busy;
1995
1996        if (!(req->rq_flags & RQF_DONTPREP)) {
1997                ret = prep_to_mq(scsi_mq_prep_fn(req));
1998                if (ret != BLK_STS_OK)
1999                        goto out_dec_host_busy;
2000                req->rq_flags |= RQF_DONTPREP;
2001        } else {
2002                blk_mq_start_request(req);
2003        }
2004
2005        if (sdev->simple_tags)
2006                cmd->flags |= SCMD_TAGGED;
2007        else
2008                cmd->flags &= ~SCMD_TAGGED;
2009
2010        scsi_init_cmd_errh(cmd);
2011        cmd->scsi_done = scsi_mq_done;
2012
2013        reason = scsi_dispatch_cmd(cmd);
2014        if (reason) {
2015                scsi_set_blocked(cmd, reason);
2016                ret = BLK_STS_RESOURCE;
2017                goto out_dec_host_busy;
2018        }
2019
2020        return BLK_STS_OK;
2021
2022out_dec_host_busy:
2023       atomic_dec(&shost->host_busy);
2024out_dec_target_busy:
2025        if (scsi_target(sdev)->can_queue > 0)
2026                atomic_dec(&scsi_target(sdev)->target_busy);
2027out_put_budget:
2028        scsi_mq_put_budget(hctx);
2029        switch (ret) {
2030        case BLK_STS_OK:
2031                break;
2032        case BLK_STS_RESOURCE:
2033                if (atomic_read(&sdev->device_busy) == 0 &&
2034                    !scsi_device_blocked(sdev))
2035                        blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2036                break;
2037        default:
2038                /*
2039                 * Make sure to release all allocated ressources when
2040                 * we hit an error, as we will never see this command
2041                 * again.
2042                 */
2043                if (req->rq_flags & RQF_DONTPREP)
2044                        scsi_mq_uninit_cmd(cmd);
2045                break;
2046        }
2047        return ret;
2048}
2049
2050static enum blk_eh_timer_return scsi_timeout(struct request *req,
2051                bool reserved)
2052{
2053        if (reserved)
2054                return BLK_EH_RESET_TIMER;
2055        return scsi_times_out(req);
2056}
2057
2058static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2059                                unsigned int hctx_idx, unsigned int numa_node)
2060{
2061        struct Scsi_Host *shost = set->driver_data;
2062        const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2063        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2064        struct scatterlist *sg;
2065
2066        if (unchecked_isa_dma)
2067                cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2068        cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2069                                                    GFP_KERNEL, numa_node);
2070        if (!cmd->sense_buffer)
2071                return -ENOMEM;
2072        cmd->req.sense = cmd->sense_buffer;
2073
2074        if (scsi_host_get_prot(shost)) {
2075                sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2076                        shost->hostt->cmd_size;
2077                cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2078        }
2079
2080        return 0;
2081}
2082
2083static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2084                                 unsigned int hctx_idx)
2085{
2086        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2087
2088        scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2089                               cmd->sense_buffer);
2090}
2091
2092static int scsi_map_queues(struct blk_mq_tag_set *set)
2093{
2094        struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2095
2096        if (shost->hostt->map_queues)
2097                return shost->hostt->map_queues(shost);
2098        return blk_mq_map_queues(set);
2099}
2100
2101static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2102{
2103        struct device *host_dev;
2104        u64 bounce_limit = 0xffffffff;
2105
2106        if (shost->unchecked_isa_dma)
2107                return BLK_BOUNCE_ISA;
2108        /*
2109         * Platforms with virtual-DMA translation
2110         * hardware have no practical limit.
2111         */
2112        if (!PCI_DMA_BUS_IS_PHYS)
2113                return BLK_BOUNCE_ANY;
2114
2115        host_dev = scsi_get_device(shost);
2116        if (host_dev && host_dev->dma_mask)
2117                bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2118
2119        return bounce_limit;
2120}
2121
2122void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2123{
2124        struct device *dev = shost->dma_dev;
2125
2126        queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2127
2128        /*
2129         * this limit is imposed by hardware restrictions
2130         */
2131        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2132                                        SG_MAX_SEGMENTS));
2133
2134        if (scsi_host_prot_dma(shost)) {
2135                shost->sg_prot_tablesize =
2136                        min_not_zero(shost->sg_prot_tablesize,
2137                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2138                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2139                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2140        }
2141
2142        blk_queue_max_hw_sectors(q, shost->max_sectors);
2143        blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2144        blk_queue_segment_boundary(q, shost->dma_boundary);
2145        dma_set_seg_boundary(dev, shost->dma_boundary);
2146
2147        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2148
2149        if (!shost->use_clustering)
2150                q->limits.cluster = 0;
2151
2152        /*
2153         * Set a reasonable default alignment:  The larger of 32-byte (dword),
2154         * which is a common minimum for HBAs, and the minimum DMA alignment,
2155         * which is set by the platform.
2156         *
2157         * Devices that require a bigger alignment can increase it later.
2158         */
2159        blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2160}
2161EXPORT_SYMBOL_GPL(__scsi_init_queue);
2162
2163static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2164                            gfp_t gfp)
2165{
2166        struct Scsi_Host *shost = q->rq_alloc_data;
2167        const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2168        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2169
2170        memset(cmd, 0, sizeof(*cmd));
2171
2172        if (unchecked_isa_dma)
2173                cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2174        cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2175                                                    NUMA_NO_NODE);
2176        if (!cmd->sense_buffer)
2177                goto fail;
2178        cmd->req.sense = cmd->sense_buffer;
2179
2180        if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2181                cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2182                if (!cmd->prot_sdb)
2183                        goto fail_free_sense;
2184        }
2185
2186        return 0;
2187
2188fail_free_sense:
2189        scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2190fail:
2191        return -ENOMEM;
2192}
2193
2194static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2195{
2196        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2197
2198        if (cmd->prot_sdb)
2199                kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2200        scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2201                               cmd->sense_buffer);
2202}
2203
2204struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2205{
2206        struct Scsi_Host *shost = sdev->host;
2207        struct request_queue *q;
2208
2209        q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2210        if (!q)
2211                return NULL;
2212        q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2213        q->rq_alloc_data = shost;
2214        q->request_fn = scsi_request_fn;
2215        q->init_rq_fn = scsi_old_init_rq;
2216        q->exit_rq_fn = scsi_old_exit_rq;
2217        q->initialize_rq_fn = scsi_initialize_rq;
2218
2219        if (blk_init_allocated_queue(q) < 0) {
2220                blk_cleanup_queue(q);
2221                return NULL;
2222        }
2223
2224        __scsi_init_queue(shost, q);
2225        blk_queue_prep_rq(q, scsi_prep_fn);
2226        blk_queue_unprep_rq(q, scsi_unprep_fn);
2227        blk_queue_softirq_done(q, scsi_softirq_done);
2228        blk_queue_rq_timed_out(q, scsi_times_out);
2229        blk_queue_lld_busy(q, scsi_lld_busy);
2230        return q;
2231}
2232
2233static const struct blk_mq_ops scsi_mq_ops = {
2234        .get_budget     = scsi_mq_get_budget,
2235        .put_budget     = scsi_mq_put_budget,
2236        .queue_rq       = scsi_queue_rq,
2237        .complete       = scsi_softirq_done,
2238        .timeout        = scsi_timeout,
2239#ifdef CONFIG_BLK_DEBUG_FS
2240        .show_rq        = scsi_show_rq,
2241#endif
2242        .init_request   = scsi_mq_init_request,
2243        .exit_request   = scsi_mq_exit_request,
2244        .initialize_rq_fn = scsi_initialize_rq,
2245        .map_queues     = scsi_map_queues,
2246};
2247
2248struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2249{
2250        sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2251        if (IS_ERR(sdev->request_queue))
2252                return NULL;
2253
2254        sdev->request_queue->queuedata = sdev;
2255        __scsi_init_queue(sdev->host, sdev->request_queue);
2256        return sdev->request_queue;
2257}
2258
2259int scsi_mq_setup_tags(struct Scsi_Host *shost)
2260{
2261        unsigned int cmd_size, sgl_size;
2262
2263        sgl_size = scsi_mq_sgl_size(shost);
2264        cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2265        if (scsi_host_get_prot(shost))
2266                cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2267
2268        memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2269        shost->tag_set.ops = &scsi_mq_ops;
2270        shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2271        shost->tag_set.queue_depth = shost->can_queue;
2272        shost->tag_set.cmd_size = cmd_size;
2273        shost->tag_set.numa_node = NUMA_NO_NODE;
2274        shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2275        shost->tag_set.flags |=
2276                BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2277        shost->tag_set.driver_data = shost;
2278
2279        return blk_mq_alloc_tag_set(&shost->tag_set);
2280}
2281
2282void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2283{
2284        blk_mq_free_tag_set(&shost->tag_set);
2285}
2286
2287/**
2288 * scsi_device_from_queue - return sdev associated with a request_queue
2289 * @q: The request queue to return the sdev from
2290 *
2291 * Return the sdev associated with a request queue or NULL if the
2292 * request_queue does not reference a SCSI device.
2293 */
2294struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2295{
2296        struct scsi_device *sdev = NULL;
2297
2298        if (q->mq_ops) {
2299                if (q->mq_ops == &scsi_mq_ops)
2300                        sdev = q->queuedata;
2301        } else if (q->request_fn == scsi_request_fn)
2302                sdev = q->queuedata;
2303        if (!sdev || !get_device(&sdev->sdev_gendev))
2304                sdev = NULL;
2305
2306        return sdev;
2307}
2308EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2309
2310/*
2311 * Function:    scsi_block_requests()
2312 *
2313 * Purpose:     Utility function used by low-level drivers to prevent further
2314 *              commands from being queued to the device.
2315 *
2316 * Arguments:   shost       - Host in question
2317 *
2318 * Returns:     Nothing
2319 *
2320 * Lock status: No locks are assumed held.
2321 *
2322 * Notes:       There is no timer nor any other means by which the requests
2323 *              get unblocked other than the low-level driver calling
2324 *              scsi_unblock_requests().
2325 */
2326void scsi_block_requests(struct Scsi_Host *shost)
2327{
2328        shost->host_self_blocked = 1;
2329}
2330EXPORT_SYMBOL(scsi_block_requests);
2331
2332/*
2333 * Function:    scsi_unblock_requests()
2334 *
2335 * Purpose:     Utility function used by low-level drivers to allow further
2336 *              commands from being queued to the device.
2337 *
2338 * Arguments:   shost       - Host in question
2339 *
2340 * Returns:     Nothing
2341 *
2342 * Lock status: No locks are assumed held.
2343 *
2344 * Notes:       There is no timer nor any other means by which the requests
2345 *              get unblocked other than the low-level driver calling
2346 *              scsi_unblock_requests().
2347 *
2348 *              This is done as an API function so that changes to the
2349 *              internals of the scsi mid-layer won't require wholesale
2350 *              changes to drivers that use this feature.
2351 */
2352void scsi_unblock_requests(struct Scsi_Host *shost)
2353{
2354        shost->host_self_blocked = 0;
2355        scsi_run_host_queues(shost);
2356}
2357EXPORT_SYMBOL(scsi_unblock_requests);
2358
2359int __init scsi_init_queue(void)
2360{
2361        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2362                                           sizeof(struct scsi_data_buffer),
2363                                           0, 0, NULL);
2364        if (!scsi_sdb_cache) {
2365                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2366                return -ENOMEM;
2367        }
2368
2369        return 0;
2370}
2371
2372void scsi_exit_queue(void)
2373{
2374        kmem_cache_destroy(scsi_sense_cache);
2375        kmem_cache_destroy(scsi_sense_isadma_cache);
2376        kmem_cache_destroy(scsi_sdb_cache);
2377}
2378
2379/**
2380 *      scsi_mode_select - issue a mode select
2381 *      @sdev:  SCSI device to be queried
2382 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2383 *      @sp:    Save page bit (0 == don't save, 1 == save)
2384 *      @modepage: mode page being requested
2385 *      @buffer: request buffer (may not be smaller than eight bytes)
2386 *      @len:   length of request buffer.
2387 *      @timeout: command timeout
2388 *      @retries: number of retries before failing
2389 *      @data: returns a structure abstracting the mode header data
2390 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2391 *              must be SCSI_SENSE_BUFFERSIZE big.
2392 *
2393 *      Returns zero if successful; negative error number or scsi
2394 *      status on error
2395 *
2396 */
2397int
2398scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2399                 unsigned char *buffer, int len, int timeout, int retries,
2400                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2401{
2402        unsigned char cmd[10];
2403        unsigned char *real_buffer;
2404        int ret;
2405
2406        memset(cmd, 0, sizeof(cmd));
2407        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2408
2409        if (sdev->use_10_for_ms) {
2410                if (len > 65535)
2411                        return -EINVAL;
2412                real_buffer = kmalloc(8 + len, GFP_KERNEL);
2413                if (!real_buffer)
2414                        return -ENOMEM;
2415                memcpy(real_buffer + 8, buffer, len);
2416                len += 8;
2417                real_buffer[0] = 0;
2418                real_buffer[1] = 0;
2419                real_buffer[2] = data->medium_type;
2420                real_buffer[3] = data->device_specific;
2421                real_buffer[4] = data->longlba ? 0x01 : 0;
2422                real_buffer[5] = 0;
2423                real_buffer[6] = data->block_descriptor_length >> 8;
2424                real_buffer[7] = data->block_descriptor_length;
2425
2426                cmd[0] = MODE_SELECT_10;
2427                cmd[7] = len >> 8;
2428                cmd[8] = len;
2429        } else {
2430                if (len > 255 || data->block_descriptor_length > 255 ||
2431                    data->longlba)
2432                        return -EINVAL;
2433
2434                real_buffer = kmalloc(4 + len, GFP_KERNEL);
2435                if (!real_buffer)
2436                        return -ENOMEM;
2437                memcpy(real_buffer + 4, buffer, len);
2438                len += 4;
2439                real_buffer[0] = 0;
2440                real_buffer[1] = data->medium_type;
2441                real_buffer[2] = data->device_specific;
2442                real_buffer[3] = data->block_descriptor_length;
2443                
2444
2445                cmd[0] = MODE_SELECT;
2446                cmd[4] = len;
2447        }
2448
2449        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2450                               sshdr, timeout, retries, NULL);
2451        kfree(real_buffer);
2452        return ret;
2453}
2454EXPORT_SYMBOL_GPL(scsi_mode_select);
2455
2456/**
2457 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2458 *      @sdev:  SCSI device to be queried
2459 *      @dbd:   set if mode sense will allow block descriptors to be returned
2460 *      @modepage: mode page being requested
2461 *      @buffer: request buffer (may not be smaller than eight bytes)
2462 *      @len:   length of request buffer.
2463 *      @timeout: command timeout
2464 *      @retries: number of retries before failing
2465 *      @data: returns a structure abstracting the mode header data
2466 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2467 *              must be SCSI_SENSE_BUFFERSIZE big.
2468 *
2469 *      Returns zero if unsuccessful, or the header offset (either 4
2470 *      or 8 depending on whether a six or ten byte command was
2471 *      issued) if successful.
2472 */
2473int
2474scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2475                  unsigned char *buffer, int len, int timeout, int retries,
2476                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2477{
2478        unsigned char cmd[12];
2479        int use_10_for_ms;
2480        int header_length;
2481        int result, retry_count = retries;
2482        struct scsi_sense_hdr my_sshdr;
2483
2484        memset(data, 0, sizeof(*data));
2485        memset(&cmd[0], 0, 12);
2486        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2487        cmd[2] = modepage;
2488
2489        /* caller might not be interested in sense, but we need it */
2490        if (!sshdr)
2491                sshdr = &my_sshdr;
2492
2493 retry:
2494        use_10_for_ms = sdev->use_10_for_ms;
2495
2496        if (use_10_for_ms) {
2497                if (len < 8)
2498                        len = 8;
2499
2500                cmd[0] = MODE_SENSE_10;
2501                cmd[8] = len;
2502                header_length = 8;
2503        } else {
2504                if (len < 4)
2505                        len = 4;
2506
2507                cmd[0] = MODE_SENSE;
2508                cmd[4] = len;
2509                header_length = 4;
2510        }
2511
2512        memset(buffer, 0, len);
2513
2514        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2515                                  sshdr, timeout, retries, NULL);
2516
2517        /* This code looks awful: what it's doing is making sure an
2518         * ILLEGAL REQUEST sense return identifies the actual command
2519         * byte as the problem.  MODE_SENSE commands can return
2520         * ILLEGAL REQUEST if the code page isn't supported */
2521
2522        if (use_10_for_ms && !scsi_status_is_good(result) &&
2523            (driver_byte(result) & DRIVER_SENSE)) {
2524                if (scsi_sense_valid(sshdr)) {
2525                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2526                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2527                                /* 
2528                                 * Invalid command operation code
2529                                 */
2530                                sdev->use_10_for_ms = 0;
2531                                goto retry;
2532                        }
2533                }
2534        }
2535
2536        if(scsi_status_is_good(result)) {
2537                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2538                             (modepage == 6 || modepage == 8))) {
2539                        /* Initio breakage? */
2540                        header_length = 0;
2541                        data->length = 13;
2542                        data->medium_type = 0;
2543                        data->device_specific = 0;
2544                        data->longlba = 0;
2545                        data->block_descriptor_length = 0;
2546                } else if(use_10_for_ms) {
2547                        data->length = buffer[0]*256 + buffer[1] + 2;
2548                        data->medium_type = buffer[2];
2549                        data->device_specific = buffer[3];
2550                        data->longlba = buffer[4] & 0x01;
2551                        data->block_descriptor_length = buffer[6]*256
2552                                + buffer[7];
2553                } else {
2554                        data->length = buffer[0] + 1;
2555                        data->medium_type = buffer[1];
2556                        data->device_specific = buffer[2];
2557                        data->block_descriptor_length = buffer[3];
2558                }
2559                data->header_length = header_length;
2560        } else if ((status_byte(result) == CHECK_CONDITION) &&
2561                   scsi_sense_valid(sshdr) &&
2562                   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2563                retry_count--;
2564                goto retry;
2565        }
2566
2567        return result;
2568}
2569EXPORT_SYMBOL(scsi_mode_sense);
2570
2571/**
2572 *      scsi_test_unit_ready - test if unit is ready
2573 *      @sdev:  scsi device to change the state of.
2574 *      @timeout: command timeout
2575 *      @retries: number of retries before failing
2576 *      @sshdr: outpout pointer for decoded sense information.
2577 *
2578 *      Returns zero if unsuccessful or an error if TUR failed.  For
2579 *      removable media, UNIT_ATTENTION sets ->changed flag.
2580 **/
2581int
2582scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2583                     struct scsi_sense_hdr *sshdr)
2584{
2585        char cmd[] = {
2586                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2587        };
2588        int result;
2589
2590        /* try to eat the UNIT_ATTENTION if there are enough retries */
2591        do {
2592                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2593                                          timeout, retries, NULL);
2594                if (sdev->removable && scsi_sense_valid(sshdr) &&
2595                    sshdr->sense_key == UNIT_ATTENTION)
2596                        sdev->changed = 1;
2597        } while (scsi_sense_valid(sshdr) &&
2598                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2599
2600        return result;
2601}
2602EXPORT_SYMBOL(scsi_test_unit_ready);
2603
2604/**
2605 *      scsi_device_set_state - Take the given device through the device state model.
2606 *      @sdev:  scsi device to change the state of.
2607 *      @state: state to change to.
2608 *
2609 *      Returns zero if successful or an error if the requested
2610 *      transition is illegal.
2611 */
2612int
2613scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2614{
2615        enum scsi_device_state oldstate = sdev->sdev_state;
2616
2617        if (state == oldstate)
2618                return 0;
2619
2620        switch (state) {
2621        case SDEV_CREATED:
2622                switch (oldstate) {
2623                case SDEV_CREATED_BLOCK:
2624                        break;
2625                default:
2626                        goto illegal;
2627                }
2628                break;
2629                        
2630        case SDEV_RUNNING:
2631                switch (oldstate) {
2632                case SDEV_CREATED:
2633                case SDEV_OFFLINE:
2634                case SDEV_TRANSPORT_OFFLINE:
2635                case SDEV_QUIESCE:
2636                case SDEV_BLOCK:
2637                        break;
2638                default:
2639                        goto illegal;
2640                }
2641                break;
2642
2643        case SDEV_QUIESCE:
2644                switch (oldstate) {
2645                case SDEV_RUNNING:
2646                case SDEV_OFFLINE:
2647                case SDEV_TRANSPORT_OFFLINE:
2648                        break;
2649                default:
2650                        goto illegal;
2651                }
2652                break;
2653
2654        case SDEV_OFFLINE:
2655        case SDEV_TRANSPORT_OFFLINE:
2656                switch (oldstate) {
2657                case SDEV_CREATED:
2658                case SDEV_RUNNING:
2659                case SDEV_QUIESCE:
2660                case SDEV_BLOCK:
2661                        break;
2662                default:
2663                        goto illegal;
2664                }
2665                break;
2666
2667        case SDEV_BLOCK:
2668                switch (oldstate) {
2669                case SDEV_RUNNING:
2670                case SDEV_CREATED_BLOCK:
2671                        break;
2672                default:
2673                        goto illegal;
2674                }
2675                break;
2676
2677        case SDEV_CREATED_BLOCK:
2678                switch (oldstate) {
2679                case SDEV_CREATED:
2680                        break;
2681                default:
2682                        goto illegal;
2683                }
2684                break;
2685
2686        case SDEV_CANCEL:
2687                switch (oldstate) {
2688                case SDEV_CREATED:
2689                case SDEV_RUNNING:
2690                case SDEV_QUIESCE:
2691                case SDEV_OFFLINE:
2692                case SDEV_TRANSPORT_OFFLINE:
2693                        break;
2694                default:
2695                        goto illegal;
2696                }
2697                break;
2698
2699        case SDEV_DEL:
2700                switch (oldstate) {
2701                case SDEV_CREATED:
2702                case SDEV_RUNNING:
2703                case SDEV_OFFLINE:
2704                case SDEV_TRANSPORT_OFFLINE:
2705                case SDEV_CANCEL:
2706                case SDEV_BLOCK:
2707                case SDEV_CREATED_BLOCK:
2708                        break;
2709                default:
2710                        goto illegal;
2711                }
2712                break;
2713
2714        }
2715        sdev->sdev_state = state;
2716        return 0;
2717
2718 illegal:
2719        SCSI_LOG_ERROR_RECOVERY(1,
2720                                sdev_printk(KERN_ERR, sdev,
2721                                            "Illegal state transition %s->%s",
2722                                            scsi_device_state_name(oldstate),
2723                                            scsi_device_state_name(state))
2724                                );
2725        return -EINVAL;
2726}
2727EXPORT_SYMBOL(scsi_device_set_state);
2728
2729/**
2730 *      sdev_evt_emit - emit a single SCSI device uevent
2731 *      @sdev: associated SCSI device
2732 *      @evt: event to emit
2733 *
2734 *      Send a single uevent (scsi_event) to the associated scsi_device.
2735 */
2736static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2737{
2738        int idx = 0;
2739        char *envp[3];
2740
2741        switch (evt->evt_type) {
2742        case SDEV_EVT_MEDIA_CHANGE:
2743                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2744                break;
2745        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2746                scsi_rescan_device(&sdev->sdev_gendev);
2747                envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2748                break;
2749        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2750                envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2751                break;
2752        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2753               envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2754                break;
2755        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2756                envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2757                break;
2758        case SDEV_EVT_LUN_CHANGE_REPORTED:
2759                envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2760                break;
2761        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2762                envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2763                break;
2764        case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2765                envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2766                break;
2767        default:
2768                /* do nothing */
2769                break;
2770        }
2771
2772        envp[idx++] = NULL;
2773
2774        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2775}
2776
2777/**
2778 *      sdev_evt_thread - send a uevent for each scsi event
2779 *      @work: work struct for scsi_device
2780 *
2781 *      Dispatch queued events to their associated scsi_device kobjects
2782 *      as uevents.
2783 */
2784void scsi_evt_thread(struct work_struct *work)
2785{
2786        struct scsi_device *sdev;
2787        enum scsi_device_event evt_type;
2788        LIST_HEAD(event_list);
2789
2790        sdev = container_of(work, struct scsi_device, event_work);
2791
2792        for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2793                if (test_and_clear_bit(evt_type, sdev->pending_events))
2794                        sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2795
2796        while (1) {
2797                struct scsi_event *evt;
2798                struct list_head *this, *tmp;
2799                unsigned long flags;
2800
2801                spin_lock_irqsave(&sdev->list_lock, flags);
2802                list_splice_init(&sdev->event_list, &event_list);
2803                spin_unlock_irqrestore(&sdev->list_lock, flags);
2804
2805                if (list_empty(&event_list))
2806                        break;
2807
2808                list_for_each_safe(this, tmp, &event_list) {
2809                        evt = list_entry(this, struct scsi_event, node);
2810                        list_del(&evt->node);
2811                        scsi_evt_emit(sdev, evt);
2812                        kfree(evt);
2813                }
2814        }
2815}
2816
2817/**
2818 *      sdev_evt_send - send asserted event to uevent thread
2819 *      @sdev: scsi_device event occurred on
2820 *      @evt: event to send
2821 *
2822 *      Assert scsi device event asynchronously.
2823 */
2824void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2825{
2826        unsigned long flags;
2827
2828#if 0
2829        /* FIXME: currently this check eliminates all media change events
2830         * for polled devices.  Need to update to discriminate between AN
2831         * and polled events */
2832        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2833                kfree(evt);
2834                return;
2835        }
2836#endif
2837
2838        spin_lock_irqsave(&sdev->list_lock, flags);
2839        list_add_tail(&evt->node, &sdev->event_list);
2840        schedule_work(&sdev->event_work);
2841        spin_unlock_irqrestore(&sdev->list_lock, flags);
2842}
2843EXPORT_SYMBOL_GPL(sdev_evt_send);
2844
2845/**
2846 *      sdev_evt_alloc - allocate a new scsi event
2847 *      @evt_type: type of event to allocate
2848 *      @gfpflags: GFP flags for allocation
2849 *
2850 *      Allocates and returns a new scsi_event.
2851 */
2852struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2853                                  gfp_t gfpflags)
2854{
2855        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2856        if (!evt)
2857                return NULL;
2858
2859        evt->evt_type = evt_type;
2860        INIT_LIST_HEAD(&evt->node);
2861
2862        /* evt_type-specific initialization, if any */
2863        switch (evt_type) {
2864        case SDEV_EVT_MEDIA_CHANGE:
2865        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2866        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2867        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2868        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2869        case SDEV_EVT_LUN_CHANGE_REPORTED:
2870        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2871        case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2872        default:
2873                /* do nothing */
2874                break;
2875        }
2876
2877        return evt;
2878}
2879EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2880
2881/**
2882 *      sdev_evt_send_simple - send asserted event to uevent thread
2883 *      @sdev: scsi_device event occurred on
2884 *      @evt_type: type of event to send
2885 *      @gfpflags: GFP flags for allocation
2886 *
2887 *      Assert scsi device event asynchronously, given an event type.
2888 */
2889void sdev_evt_send_simple(struct scsi_device *sdev,
2890                          enum scsi_device_event evt_type, gfp_t gfpflags)
2891{
2892        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2893        if (!evt) {
2894                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2895                            evt_type);
2896                return;
2897        }
2898
2899        sdev_evt_send(sdev, evt);
2900}
2901EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2902
2903/**
2904 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2905 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2906 */
2907static int scsi_request_fn_active(struct scsi_device *sdev)
2908{
2909        struct request_queue *q = sdev->request_queue;
2910        int request_fn_active;
2911
2912        WARN_ON_ONCE(sdev->host->use_blk_mq);
2913
2914        spin_lock_irq(q->queue_lock);
2915        request_fn_active = q->request_fn_active;
2916        spin_unlock_irq(q->queue_lock);
2917
2918        return request_fn_active;
2919}
2920
2921/**
2922 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2923 * @sdev: SCSI device pointer.
2924 *
2925 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2926 * invoked from scsi_request_fn() have finished.
2927 */
2928static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2929{
2930        WARN_ON_ONCE(sdev->host->use_blk_mq);
2931
2932        while (scsi_request_fn_active(sdev))
2933                msleep(20);
2934}
2935
2936/**
2937 *      scsi_device_quiesce - Block user issued commands.
2938 *      @sdev:  scsi device to quiesce.
2939 *
2940 *      This works by trying to transition to the SDEV_QUIESCE state
2941 *      (which must be a legal transition).  When the device is in this
2942 *      state, only special requests will be accepted, all others will
2943 *      be deferred.  Since special requests may also be requeued requests,
2944 *      a successful return doesn't guarantee the device will be 
2945 *      totally quiescent.
2946 *
2947 *      Must be called with user context, may sleep.
2948 *
2949 *      Returns zero if unsuccessful or an error if not.
2950 */
2951int
2952scsi_device_quiesce(struct scsi_device *sdev)
2953{
2954        struct request_queue *q = sdev->request_queue;
2955        int err;
2956
2957        /*
2958         * It is allowed to call scsi_device_quiesce() multiple times from
2959         * the same context but concurrent scsi_device_quiesce() calls are
2960         * not allowed.
2961         */
2962        WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2963
2964        blk_set_preempt_only(q);
2965
2966        blk_mq_freeze_queue(q);
2967        /*
2968         * Ensure that the effect of blk_set_preempt_only() will be visible
2969         * for percpu_ref_tryget() callers that occur after the queue
2970         * unfreeze even if the queue was already frozen before this function
2971         * was called. See also https://lwn.net/Articles/573497/.
2972         */
2973        synchronize_rcu();
2974        blk_mq_unfreeze_queue(q);
2975
2976        mutex_lock(&sdev->state_mutex);
2977        err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2978        if (err == 0)
2979                sdev->quiesced_by = current;
2980        else
2981                blk_clear_preempt_only(q);
2982        mutex_unlock(&sdev->state_mutex);
2983
2984        return err;
2985}
2986EXPORT_SYMBOL(scsi_device_quiesce);
2987
2988/**
2989 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2990 *      @sdev:  scsi device to resume.
2991 *
2992 *      Moves the device from quiesced back to running and restarts the
2993 *      queues.
2994 *
2995 *      Must be called with user context, may sleep.
2996 */
2997void scsi_device_resume(struct scsi_device *sdev)
2998{
2999        /* check if the device state was mutated prior to resume, and if
3000         * so assume the state is being managed elsewhere (for example
3001         * device deleted during suspend)
3002         */
3003        mutex_lock(&sdev->state_mutex);
3004        WARN_ON_ONCE(!sdev->quiesced_by);
3005        sdev->quiesced_by = NULL;
3006        blk_clear_preempt_only(sdev->request_queue);
3007        if (sdev->sdev_state == SDEV_QUIESCE)
3008                scsi_device_set_state(sdev, SDEV_RUNNING);
3009        mutex_unlock(&sdev->state_mutex);
3010}
3011EXPORT_SYMBOL(scsi_device_resume);
3012
3013static void
3014device_quiesce_fn(struct scsi_device *sdev, void *data)
3015{
3016        scsi_device_quiesce(sdev);
3017}
3018
3019void
3020scsi_target_quiesce(struct scsi_target *starget)
3021{
3022        starget_for_each_device(starget, NULL, device_quiesce_fn);
3023}
3024EXPORT_SYMBOL(scsi_target_quiesce);
3025
3026static void
3027device_resume_fn(struct scsi_device *sdev, void *data)
3028{
3029        scsi_device_resume(sdev);
3030}
3031
3032void
3033scsi_target_resume(struct scsi_target *starget)
3034{
3035        starget_for_each_device(starget, NULL, device_resume_fn);
3036}
3037EXPORT_SYMBOL(scsi_target_resume);
3038
3039/**
3040 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3041 * @sdev: device to block
3042 *
3043 * Pause SCSI command processing on the specified device. Does not sleep.
3044 *
3045 * Returns zero if successful or a negative error code upon failure.
3046 *
3047 * Notes:
3048 * This routine transitions the device to the SDEV_BLOCK state (which must be
3049 * a legal transition). When the device is in this state, command processing
3050 * is paused until the device leaves the SDEV_BLOCK state. See also
3051 * scsi_internal_device_unblock_nowait().
3052 */
3053int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3054{
3055        struct request_queue *q = sdev->request_queue;
3056        unsigned long flags;
3057        int err = 0;
3058
3059        err = scsi_device_set_state(sdev, SDEV_BLOCK);
3060        if (err) {
3061                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3062
3063                if (err)
3064                        return err;
3065        }
3066
3067        /* 
3068         * The device has transitioned to SDEV_BLOCK.  Stop the
3069         * block layer from calling the midlayer with this device's
3070         * request queue. 
3071         */
3072        if (q->mq_ops) {
3073                blk_mq_quiesce_queue_nowait(q);
3074        } else {
3075                spin_lock_irqsave(q->queue_lock, flags);
3076                blk_stop_queue(q);
3077                spin_unlock_irqrestore(q->queue_lock, flags);
3078        }
3079
3080        return 0;
3081}
3082EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3083
3084/**
3085 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3086 * @sdev: device to block
3087 *
3088 * Pause SCSI command processing on the specified device and wait until all
3089 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3090 *
3091 * Returns zero if successful or a negative error code upon failure.
3092 *
3093 * Note:
3094 * This routine transitions the device to the SDEV_BLOCK state (which must be
3095 * a legal transition). When the device is in this state, command processing
3096 * is paused until the device leaves the SDEV_BLOCK state. See also
3097 * scsi_internal_device_unblock().
3098 *
3099 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3100 * scsi_internal_device_block() has blocked a SCSI device and also
3101 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3102 */
3103static int scsi_internal_device_block(struct scsi_device *sdev)
3104{
3105        struct request_queue *q = sdev->request_queue;
3106        int err;
3107
3108        mutex_lock(&sdev->state_mutex);
3109        err = scsi_internal_device_block_nowait(sdev);
3110        if (err == 0) {
3111                if (q->mq_ops)
3112                        blk_mq_quiesce_queue(q);
3113                else
3114                        scsi_wait_for_queuecommand(sdev);
3115        }
3116        mutex_unlock(&sdev->state_mutex);
3117
3118        return err;
3119}
3120 
3121void scsi_start_queue(struct scsi_device *sdev)
3122{
3123        struct request_queue *q = sdev->request_queue;
3124        unsigned long flags;
3125
3126        if (q->mq_ops) {
3127                blk_mq_unquiesce_queue(q);
3128        } else {
3129                spin_lock_irqsave(q->queue_lock, flags);
3130                blk_start_queue(q);
3131                spin_unlock_irqrestore(q->queue_lock, flags);
3132        }
3133}
3134
3135/**
3136 * scsi_internal_device_unblock_nowait - resume a device after a block request
3137 * @sdev:       device to resume
3138 * @new_state:  state to set the device to after unblocking
3139 *
3140 * Restart the device queue for a previously suspended SCSI device. Does not
3141 * sleep.
3142 *
3143 * Returns zero if successful or a negative error code upon failure.
3144 *
3145 * Notes:
3146 * This routine transitions the device to the SDEV_RUNNING state or to one of
3147 * the offline states (which must be a legal transition) allowing the midlayer
3148 * to goose the queue for this device.
3149 */
3150int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3151                                        enum scsi_device_state new_state)
3152{
3153        /*
3154         * Try to transition the scsi device to SDEV_RUNNING or one of the
3155         * offlined states and goose the device queue if successful.
3156         */
3157        switch (sdev->sdev_state) {
3158        case SDEV_BLOCK:
3159        case SDEV_TRANSPORT_OFFLINE:
3160                sdev->sdev_state = new_state;
3161                break;
3162        case SDEV_CREATED_BLOCK:
3163                if (new_state == SDEV_TRANSPORT_OFFLINE ||
3164                    new_state == SDEV_OFFLINE)
3165                        sdev->sdev_state = new_state;
3166                else
3167                        sdev->sdev_state = SDEV_CREATED;
3168                break;
3169        case SDEV_CANCEL:
3170        case SDEV_OFFLINE:
3171                break;
3172        default:
3173                return -EINVAL;
3174        }
3175        scsi_start_queue(sdev);
3176
3177        return 0;
3178}
3179EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3180
3181/**
3182 * scsi_internal_device_unblock - resume a device after a block request
3183 * @sdev:       device to resume
3184 * @new_state:  state to set the device to after unblocking
3185 *
3186 * Restart the device queue for a previously suspended SCSI device. May sleep.
3187 *
3188 * Returns zero if successful or a negative error code upon failure.
3189 *
3190 * Notes:
3191 * This routine transitions the device to the SDEV_RUNNING state or to one of
3192 * the offline states (which must be a legal transition) allowing the midlayer
3193 * to goose the queue for this device.
3194 */
3195static int scsi_internal_device_unblock(struct scsi_device *sdev,
3196                                        enum scsi_device_state new_state)
3197{
3198        int ret;
3199
3200        mutex_lock(&sdev->state_mutex);
3201        ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3202        mutex_unlock(&sdev->state_mutex);
3203
3204        return ret;
3205}
3206
3207static void
3208device_block(struct scsi_device *sdev, void *data)
3209{
3210        scsi_internal_device_block(sdev);
3211}
3212
3213static int
3214target_block(struct device *dev, void *data)
3215{
3216        if (scsi_is_target_device(dev))
3217                starget_for_each_device(to_scsi_target(dev), NULL,
3218                                        device_block);
3219        return 0;
3220}
3221
3222void
3223scsi_target_block(struct device *dev)
3224{
3225        if (scsi_is_target_device(dev))
3226                starget_for_each_device(to_scsi_target(dev), NULL,
3227                                        device_block);
3228        else
3229                device_for_each_child(dev, NULL, target_block);
3230}
3231EXPORT_SYMBOL_GPL(scsi_target_block);
3232
3233static void
3234device_unblock(struct scsi_device *sdev, void *data)
3235{
3236        scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3237}
3238
3239static int
3240target_unblock(struct device *dev, void *data)
3241{
3242        if (scsi_is_target_device(dev))
3243                starget_for_each_device(to_scsi_target(dev), data,
3244                                        device_unblock);
3245        return 0;
3246}
3247
3248void
3249scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3250{
3251        if (scsi_is_target_device(dev))
3252                starget_for_each_device(to_scsi_target(dev), &new_state,
3253                                        device_unblock);
3254        else
3255                device_for_each_child(dev, &new_state, target_unblock);
3256}
3257EXPORT_SYMBOL_GPL(scsi_target_unblock);
3258
3259/**
3260 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3261 * @sgl:        scatter-gather list
3262 * @sg_count:   number of segments in sg
3263 * @offset:     offset in bytes into sg, on return offset into the mapped area
3264 * @len:        bytes to map, on return number of bytes mapped
3265 *
3266 * Returns virtual address of the start of the mapped page
3267 */
3268void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3269                          size_t *offset, size_t *len)
3270{
3271        int i;
3272        size_t sg_len = 0, len_complete = 0;
3273        struct scatterlist *sg;
3274        struct page *page;
3275
3276        WARN_ON(!irqs_disabled());
3277
3278        for_each_sg(sgl, sg, sg_count, i) {
3279                len_complete = sg_len; /* Complete sg-entries */
3280                sg_len += sg->length;
3281                if (sg_len > *offset)
3282                        break;
3283        }
3284
3285        if (unlikely(i == sg_count)) {
3286                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3287                        "elements %d\n",
3288                       __func__, sg_len, *offset, sg_count);
3289                WARN_ON(1);
3290                return NULL;
3291        }
3292
3293        /* Offset starting from the beginning of first page in this sg-entry */
3294        *offset = *offset - len_complete + sg->offset;
3295
3296        /* Assumption: contiguous pages can be accessed as "page + i" */
3297        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3298        *offset &= ~PAGE_MASK;
3299
3300        /* Bytes in this sg-entry from *offset to the end of the page */
3301        sg_len = PAGE_SIZE - *offset;
3302        if (*len > sg_len)
3303                *len = sg_len;
3304
3305        return kmap_atomic(page);
3306}
3307EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3308
3309/**
3310 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3311 * @virt:       virtual address to be unmapped
3312 */
3313void scsi_kunmap_atomic_sg(void *virt)
3314{
3315        kunmap_atomic(virt);
3316}
3317EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3318
3319void sdev_disable_disk_events(struct scsi_device *sdev)
3320{
3321        atomic_inc(&sdev->disk_events_disable_depth);
3322}
3323EXPORT_SYMBOL(sdev_disable_disk_events);
3324
3325void sdev_enable_disk_events(struct scsi_device *sdev)
3326{
3327        if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3328                return;
3329        atomic_dec(&sdev->disk_events_disable_depth);
3330}
3331EXPORT_SYMBOL(sdev_enable_disk_events);
3332
3333/**
3334 * scsi_vpd_lun_id - return a unique device identification
3335 * @sdev: SCSI device
3336 * @id:   buffer for the identification
3337 * @id_len:  length of the buffer
3338 *
3339 * Copies a unique device identification into @id based
3340 * on the information in the VPD page 0x83 of the device.
3341 * The string will be formatted as a SCSI name string.
3342 *
3343 * Returns the length of the identification or error on failure.
3344 * If the identifier is longer than the supplied buffer the actual
3345 * identifier length is returned and the buffer is not zero-padded.
3346 */
3347int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3348{
3349        u8 cur_id_type = 0xff;
3350        u8 cur_id_size = 0;
3351        const unsigned char *d, *cur_id_str;
3352        const struct scsi_vpd *vpd_pg83;
3353        int id_size = -EINVAL;
3354
3355        rcu_read_lock();
3356        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3357        if (!vpd_pg83) {
3358                rcu_read_unlock();
3359                return -ENXIO;
3360        }
3361
3362        /*
3363         * Look for the correct descriptor.
3364         * Order of preference for lun descriptor:
3365         * - SCSI name string
3366         * - NAA IEEE Registered Extended
3367         * - EUI-64 based 16-byte
3368         * - EUI-64 based 12-byte
3369         * - NAA IEEE Registered
3370         * - NAA IEEE Extended
3371         * - T10 Vendor ID
3372         * as longer descriptors reduce the likelyhood
3373         * of identification clashes.
3374         */
3375
3376        /* The id string must be at least 20 bytes + terminating NULL byte */
3377        if (id_len < 21) {
3378                rcu_read_unlock();
3379                return -EINVAL;
3380        }
3381
3382        memset(id, 0, id_len);
3383        d = vpd_pg83->data + 4;
3384        while (d < vpd_pg83->data + vpd_pg83->len) {
3385                /* Skip designators not referring to the LUN */
3386                if ((d[1] & 0x30) != 0x00)
3387                        goto next_desig;
3388
3389                switch (d[1] & 0xf) {
3390                case 0x1:
3391                        /* T10 Vendor ID */
3392                        if (cur_id_size > d[3])
3393                                break;
3394                        /* Prefer anything */
3395                        if (cur_id_type > 0x01 && cur_id_type != 0xff)
3396                                break;
3397                        cur_id_size = d[3];
3398                        if (cur_id_size + 4 > id_len)
3399                                cur_id_size = id_len - 4;
3400                        cur_id_str = d + 4;
3401                        cur_id_type = d[1] & 0xf;
3402                        id_size = snprintf(id, id_len, "t10.%*pE",
3403                                           cur_id_size, cur_id_str);
3404                        break;
3405                case 0x2:
3406                        /* EUI-64 */
3407                        if (cur_id_size > d[3])
3408                                break;
3409                        /* Prefer NAA IEEE Registered Extended */
3410                        if (cur_id_type == 0x3 &&
3411                            cur_id_size == d[3])
3412                                break;
3413                        cur_id_size = d[3];
3414                        cur_id_str = d + 4;
3415                        cur_id_type = d[1] & 0xf;
3416                        switch (cur_id_size) {
3417                        case 8:
3418                                id_size = snprintf(id, id_len,
3419                                                   "eui.%8phN",
3420                                                   cur_id_str);
3421                                break;
3422                        case 12:
3423                                id_size = snprintf(id, id_len,
3424                                                   "eui.%12phN",
3425                                                   cur_id_str);
3426                                break;
3427                        case 16:
3428                                id_size = snprintf(id, id_len,
3429                                                   "eui.%16phN",
3430                                                   cur_id_str);
3431                                break;
3432                        default:
3433                                cur_id_size = 0;
3434                                break;
3435                        }
3436                        break;
3437                case 0x3:
3438                        /* NAA */
3439                        if (cur_id_size > d[3])
3440                                break;
3441                        cur_id_size = d[3];
3442                        cur_id_str = d + 4;
3443                        cur_id_type = d[1] & 0xf;
3444                        switch (cur_id_size) {
3445                        case 8:
3446                                id_size = snprintf(id, id_len,
3447                                                   "naa.%8phN",
3448                                                   cur_id_str);
3449                                break;
3450                        case 16:
3451                                id_size = snprintf(id, id_len,
3452                                                   "naa.%16phN",
3453                                                   cur_id_str);
3454                                break;
3455                        default:
3456                                cur_id_size = 0;
3457                                break;
3458                        }
3459                        break;
3460                case 0x8:
3461                        /* SCSI name string */
3462                        if (cur_id_size + 4 > d[3])
3463                                break;
3464                        /* Prefer others for truncated descriptor */
3465                        if (cur_id_size && d[3] > id_len)
3466                                break;
3467                        cur_id_size = id_size = d[3];
3468                        cur_id_str = d + 4;
3469                        cur_id_type = d[1] & 0xf;
3470                        if (cur_id_size >= id_len)
3471                                cur_id_size = id_len - 1;
3472                        memcpy(id, cur_id_str, cur_id_size);
3473                        /* Decrease priority for truncated descriptor */
3474                        if (cur_id_size != id_size)
3475                                cur_id_size = 6;
3476                        break;
3477                default:
3478                        break;
3479                }
3480next_desig:
3481                d += d[3] + 4;
3482        }
3483        rcu_read_unlock();
3484
3485        return id_size;
3486}
3487EXPORT_SYMBOL(scsi_vpd_lun_id);
3488
3489/*
3490 * scsi_vpd_tpg_id - return a target port group identifier
3491 * @sdev: SCSI device
3492 *
3493 * Returns the Target Port Group identifier from the information
3494 * froom VPD page 0x83 of the device.
3495 *
3496 * Returns the identifier or error on failure.
3497 */
3498int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3499{
3500        const unsigned char *d;
3501        const struct scsi_vpd *vpd_pg83;
3502        int group_id = -EAGAIN, rel_port = -1;
3503
3504        rcu_read_lock();
3505        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3506        if (!vpd_pg83) {
3507                rcu_read_unlock();
3508                return -ENXIO;
3509        }
3510
3511        d = vpd_pg83->data + 4;
3512        while (d < vpd_pg83->data + vpd_pg83->len) {
3513                switch (d[1] & 0xf) {
3514                case 0x4:
3515                        /* Relative target port */
3516                        rel_port = get_unaligned_be16(&d[6]);
3517                        break;
3518                case 0x5:
3519                        /* Target port group */
3520                        group_id = get_unaligned_be16(&d[6]);
3521                        break;
3522                default:
3523                        break;
3524                }
3525                d += d[3] + 4;
3526        }
3527        rcu_read_unlock();
3528
3529        if (group_id >= 0 && rel_id && rel_port != -1)
3530                *rel_id = rel_port;
3531
3532        return group_id;
3533}
3534EXPORT_SYMBOL(scsi_vpd_tpg_id);
3535