linux/drivers/usb/dwc2/core.h
<<
>>
Prefs
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * core.h - DesignWare HS OTG Controller common declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38#ifndef __DWC2_CORE_H__
  39#define __DWC2_CORE_H__
  40
  41#include <linux/phy/phy.h>
  42#include <linux/regulator/consumer.h>
  43#include <linux/usb/gadget.h>
  44#include <linux/usb/otg.h>
  45#include <linux/usb/phy.h>
  46#include "hw.h"
  47
  48/*
  49 * Suggested defines for tracers:
  50 * - no_printk:    Disable tracing
  51 * - pr_info:      Print this info to the console
  52 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  53 */
  54
  55#define DWC2_TRACE_SCHEDULER            no_printk
  56#define DWC2_TRACE_SCHEDULER_VB         no_printk
  57
  58/* Detailed scheduler tracing, but won't overwhelm console */
  59#define dwc2_sch_dbg(hsotg, fmt, ...)                                   \
  60        DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),                   \
  61                             dev_name(hsotg->dev), ##__VA_ARGS__)
  62
  63/* Verbose scheduler tracing */
  64#define dwc2_sch_vdbg(hsotg, fmt, ...)                                  \
  65        DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),                \
  66                                dev_name(hsotg->dev), ##__VA_ARGS__)
  67
  68#ifdef CONFIG_MIPS
  69/*
  70 * There are some MIPS machines that can run in either big-endian
  71 * or little-endian mode and that use the dwc2 register without
  72 * a byteswap in both ways.
  73 * Unlike other architectures, MIPS apparently does not require a
  74 * barrier before the __raw_writel() to synchronize with DMA but does
  75 * require the barrier after the __raw_writel() to serialize a set of
  76 * writes. This set of operations was added specifically for MIPS and
  77 * should only be used there.
  78 */
  79static inline u32 dwc2_readl(const void __iomem *addr)
  80{
  81        u32 value = __raw_readl(addr);
  82
  83        /* In order to preserve endianness __raw_* operation is used. Therefore
  84         * a barrier is needed to ensure IO access is not re-ordered across
  85         * reads or writes
  86         */
  87        mb();
  88        return value;
  89}
  90
  91static inline void dwc2_writel(u32 value, void __iomem *addr)
  92{
  93        __raw_writel(value, addr);
  94
  95        /*
  96         * In order to preserve endianness __raw_* operation is used. Therefore
  97         * a barrier is needed to ensure IO access is not re-ordered across
  98         * reads or writes
  99         */
 100        mb();
 101#ifdef DWC2_LOG_WRITES
 102        pr_info("INFO:: wrote %08x to %p\n", value, addr);
 103#endif
 104}
 105#else
 106/* Normal architectures just use readl/write */
 107static inline u32 dwc2_readl(const void __iomem *addr)
 108{
 109        return readl(addr);
 110}
 111
 112static inline void dwc2_writel(u32 value, void __iomem *addr)
 113{
 114        writel(value, addr);
 115
 116#ifdef DWC2_LOG_WRITES
 117        pr_info("info:: wrote %08x to %p\n", value, addr);
 118#endif
 119}
 120#endif
 121
 122/* Maximum number of Endpoints/HostChannels */
 123#define MAX_EPS_CHANNELS        16
 124
 125/* dwc2-hsotg declarations */
 126static const char * const dwc2_hsotg_supply_names[] = {
 127        "vusb_d",               /* digital USB supply, 1.2V */
 128        "vusb_a",               /* analog USB supply, 1.1V */
 129};
 130
 131#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
 132
 133/*
 134 * EP0_MPS_LIMIT
 135 *
 136 * Unfortunately there seems to be a limit of the amount of data that can
 137 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 138 * packets (which practically means 1 packet and 63 bytes of data) when the
 139 * MPS is set to 64.
 140 *
 141 * This means if we are wanting to move >127 bytes of data, we need to
 142 * split the transactions up, but just doing one packet at a time does
 143 * not work (this may be an implicit DATA0 PID on first packet of the
 144 * transaction) and doing 2 packets is outside the controller's limits.
 145 *
 146 * If we try to lower the MPS size for EP0, then no transfers work properly
 147 * for EP0, and the system will fail basic enumeration. As no cause for this
 148 * has currently been found, we cannot support any large IN transfers for
 149 * EP0.
 150 */
 151#define EP0_MPS_LIMIT   64
 152
 153struct dwc2_hsotg;
 154struct dwc2_hsotg_req;
 155
 156/**
 157 * struct dwc2_hsotg_ep - driver endpoint definition.
 158 * @ep: The gadget layer representation of the endpoint.
 159 * @name: The driver generated name for the endpoint.
 160 * @queue: Queue of requests for this endpoint.
 161 * @parent: Reference back to the parent device structure.
 162 * @req: The current request that the endpoint is processing. This is
 163 *       used to indicate an request has been loaded onto the endpoint
 164 *       and has yet to be completed (maybe due to data move, or simply
 165 *       awaiting an ack from the core all the data has been completed).
 166 * @debugfs: File entry for debugfs file for this endpoint.
 167 * @lock: State lock to protect contents of endpoint.
 168 * @dir_in: Set to true if this endpoint is of the IN direction, which
 169 *          means that it is sending data to the Host.
 170 * @index: The index for the endpoint registers.
 171 * @mc: Multi Count - number of transactions per microframe
 172 * @interval - Interval for periodic endpoints, in frames or microframes.
 173 * @name: The name array passed to the USB core.
 174 * @halted: Set if the endpoint has been halted.
 175 * @periodic: Set if this is a periodic ep, such as Interrupt
 176 * @isochronous: Set if this is a isochronous ep
 177 * @send_zlp: Set if we need to send a zero-length packet.
 178 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 179 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 180 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 181 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
 182 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 183 * @total_data: The total number of data bytes done.
 184 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 185 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 186 * @last_load: The offset of data for the last start of request.
 187 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 188 * @target_frame: Targeted frame num to setup next ISOC transfer
 189 * @frame_overrun: Indicates SOF number overrun in DSTS
 190 *
 191 * This is the driver's state for each registered enpoint, allowing it
 192 * to keep track of transactions that need doing. Each endpoint has a
 193 * lock to protect the state, to try and avoid using an overall lock
 194 * for the host controller as much as possible.
 195 *
 196 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 197 * and keep track of the amount of data in the periodic FIFO for each
 198 * of these as we don't have a status register that tells us how much
 199 * is in each of them. (note, this may actually be useless information
 200 * as in shared-fifo mode periodic in acts like a single-frame packet
 201 * buffer than a fifo)
 202 */
 203struct dwc2_hsotg_ep {
 204        struct usb_ep           ep;
 205        struct list_head        queue;
 206        struct dwc2_hsotg       *parent;
 207        struct dwc2_hsotg_req    *req;
 208        struct dentry           *debugfs;
 209
 210        unsigned long           total_data;
 211        unsigned int            size_loaded;
 212        unsigned int            last_load;
 213        unsigned int            fifo_load;
 214        unsigned short          fifo_size;
 215        unsigned short          fifo_index;
 216
 217        unsigned char           dir_in;
 218        unsigned char           index;
 219        unsigned char           mc;
 220        unsigned char           interval;
 221
 222        unsigned int            halted:1;
 223        unsigned int            periodic:1;
 224        unsigned int            isochronous:1;
 225        unsigned int            send_zlp:1;
 226        unsigned int            target_frame;
 227#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 228        bool                    frame_overrun;
 229
 230        dma_addr_t              desc_list_dma;
 231        struct dwc2_dma_desc    *desc_list;
 232        u8                      desc_count;
 233
 234        unsigned char           isoc_chain_num;
 235        unsigned int            next_desc;
 236
 237        char                    name[10];
 238};
 239
 240/**
 241 * struct dwc2_hsotg_req - data transfer request
 242 * @req: The USB gadget request
 243 * @queue: The list of requests for the endpoint this is queued for.
 244 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 245 */
 246struct dwc2_hsotg_req {
 247        struct usb_request      req;
 248        struct list_head        queue;
 249        void *saved_req_buf;
 250};
 251
 252#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
 253        IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 254#define call_gadget(_hs, _entry) \
 255do { \
 256        if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 257                (_hs)->driver && (_hs)->driver->_entry) { \
 258                spin_unlock(&_hs->lock); \
 259                (_hs)->driver->_entry(&(_hs)->gadget); \
 260                spin_lock(&_hs->lock); \
 261        } \
 262} while (0)
 263#else
 264#define call_gadget(_hs, _entry)        do {} while (0)
 265#endif
 266
 267struct dwc2_hsotg;
 268struct dwc2_host_chan;
 269
 270/* Device States */
 271enum dwc2_lx_state {
 272        DWC2_L0,        /* On state */
 273        DWC2_L1,        /* LPM sleep state */
 274        DWC2_L2,        /* USB suspend state */
 275        DWC2_L3,        /* Off state */
 276};
 277
 278/* Gadget ep0 states */
 279enum dwc2_ep0_state {
 280        DWC2_EP0_SETUP,
 281        DWC2_EP0_DATA_IN,
 282        DWC2_EP0_DATA_OUT,
 283        DWC2_EP0_STATUS_IN,
 284        DWC2_EP0_STATUS_OUT,
 285};
 286
 287/**
 288 * struct dwc2_core_params - Parameters for configuring the core
 289 *
 290 * @otg_cap:            Specifies the OTG capabilities.
 291 *                       0 - HNP and SRP capable
 292 *                       1 - SRP Only capable
 293 *                       2 - No HNP/SRP capable (always available)
 294 *                      Defaults to best available option (0, 1, then 2)
 295 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 296 *                      the data FIFOs. The driver will automatically detect the
 297 *                      value for this parameter if none is specified.
 298 *                       0 - Slave (always available)
 299 *                       1 - DMA (default, if available)
 300 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 301 *                      address DMA mode or descriptor DMA mode for accessing
 302 *                      the data FIFOs. The driver will automatically detect the
 303 *                      value for this if none is specified.
 304 *                       0 - Address DMA
 305 *                       1 - Descriptor DMA (default, if available)
 306 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 307 *                      address DMA mode or descriptor DMA mode for accessing
 308 *                      the data FIFOs in Full Speed mode only. The driver
 309 *                      will automatically detect the value for this if none is
 310 *                      specified.
 311 *                       0 - Address DMA
 312 *                       1 - Descriptor DMA in FS (default, if available)
 313 * @speed:              Specifies the maximum speed of operation in host and
 314 *                      device mode. The actual speed depends on the speed of
 315 *                      the attached device and the value of phy_type.
 316 *                       0 - High Speed
 317 *                           (default when phy_type is UTMI+ or ULPI)
 318 *                       1 - Full Speed
 319 *                           (default when phy_type is Full Speed)
 320 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 321 *                       1 - Allow dynamic FIFO sizing (default, if available)
 322 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 323 *                      are enabled for non-periodic IN endpoints in device
 324 *                      mode.
 325 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 326 *                      dynamic FIFO sizing is enabled
 327 *                       16 to 32768
 328 *                      Actual maximum value is autodetected and also
 329 *                      the default.
 330 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 331 *                      in host mode when dynamic FIFO sizing is enabled
 332 *                       16 to 32768
 333 *                      Actual maximum value is autodetected and also
 334 *                      the default.
 335 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 336 *                      host mode when dynamic FIFO sizing is enabled
 337 *                       16 to 32768
 338 *                      Actual maximum value is autodetected and also
 339 *                      the default.
 340 * @max_transfer_size:  The maximum transfer size supported, in bytes
 341 *                       2047 to 65,535
 342 *                      Actual maximum value is autodetected and also
 343 *                      the default.
 344 * @max_packet_count:   The maximum number of packets in a transfer
 345 *                       15 to 511
 346 *                      Actual maximum value is autodetected and also
 347 *                      the default.
 348 * @host_channels:      The number of host channel registers to use
 349 *                       1 to 16
 350 *                      Actual maximum value is autodetected and also
 351 *                      the default.
 352 * @phy_type:           Specifies the type of PHY interface to use. By default,
 353 *                      the driver will automatically detect the phy_type.
 354 *                       0 - Full Speed Phy
 355 *                       1 - UTMI+ Phy
 356 *                       2 - ULPI Phy
 357 *                      Defaults to best available option (2, 1, then 0)
 358 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 359 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 360 *                      ULPI phy_type, this parameter indicates the data width
 361 *                      between the MAC and the ULPI Wrapper.) Also, this
 362 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 363 *                      parameter was set to "8 and 16 bits", meaning that the
 364 *                      core has been configured to work at either data path
 365 *                      width.
 366 *                       8 or 16 (default 16 if available)
 367 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 368 *                      data rate. This parameter is only applicable if phy_type
 369 *                      is ULPI.
 370 *                       0 - single data rate ULPI interface with 8 bit wide
 371 *                           data bus (default)
 372 *                       1 - double data rate ULPI interface with 4 bit wide
 373 *                           data bus
 374 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 375 *                      external supply to drive the VBus
 376 *                       0 - Internal supply (default)
 377 *                       1 - External supply
 378 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 379 *                      speed PHY. This parameter is only applicable if phy_type
 380 *                      is FS.
 381 *                       0 - No (default)
 382 *                       1 - Yes
 383 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 384 *                       0 - No (default)
 385 *                       1 - Yes
 386 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 387 *                      when attached to a Full Speed or Low Speed device in
 388 *                      host mode.
 389 *                       0 - Don't support low power mode (default)
 390 *                       1 - Support low power mode
 391 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 392 *                      when connected to a Low Speed device in host
 393 *                      mode. This parameter is applicable only if
 394 *                      host_support_fs_ls_low_power is enabled.
 395 *                       0 - 48 MHz
 396 *                           (default when phy_type is UTMI+ or ULPI)
 397 *                       1 - 6 MHz
 398 *                           (default when phy_type is Full Speed)
 399 * @oc_disable:         Flag to disable overcurrent condition.
 400 *                      0 - Allow overcurrent condition to get detected
 401 *                      1 - Disable overcurrent condtion to get detected
 402 * @ts_dline:           Enable Term Select Dline pulsing
 403 *                       0 - No (default)
 404 *                       1 - Yes
 405 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 406 *                       0 - No (default for core < 2.92a)
 407 *                       1 - Yes (default for core >= 2.92a)
 408 * @ahbcfg:             This field allows the default value of the GAHBCFG
 409 *                      register to be overridden
 410 *                       -1         - GAHBCFG value will be set to 0x06
 411 *                                    (INCR4, default)
 412 *                       all others - GAHBCFG value will be overridden with
 413 *                                    this value
 414 *                      Not all bits can be controlled like this, the
 415 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 416 *                      by the driver and are ignored in this
 417 *                      configuration value.
 418 * @uframe_sched:       True to enable the microframe scheduler
 419 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 420 *                      Disable CONIDSTSCHNG controller interrupt in such
 421 *                      case.
 422 *                      0 - No (default)
 423 *                      1 - Yes
 424 * @hibernation:        Specifies whether the controller support hibernation.
 425 *                      If hibernation is enabled, the controller will enter
 426 *                      hibernation in both peripheral and host mode when
 427 *                      needed.
 428 *                      0 - No (default)
 429 *                      1 - Yes
 430 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 431 *                      register.
 432 *                      0 - Deactivate the transceiver (default)
 433 *                      1 - Activate the transceiver
 434 * @g_dma:              Enables gadget dma usage (default: autodetect).
 435 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 436 * @g_rx_fifo_size:     The periodic rx fifo size for the device, in
 437 *                      DWORDS from 16-32768 (default: 2048 if
 438 *                      possible, otherwise autodetect).
 439 * @g_np_tx_fifo_size:  The non-periodic tx fifo size for the device in
 440 *                      DWORDS from 16-32768 (default: 1024 if
 441 *                      possible, otherwise autodetect).
 442 * @g_tx_fifo_size:     An array of TX fifo sizes in dedicated fifo
 443 *                      mode. Each value corresponds to one EP
 444 *                      starting from EP1 (max 15 values). Sizes are
 445 *                      in DWORDS with possible values from from
 446 *                      16-32768 (default: 256, 256, 256, 256, 768,
 447 *                      768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 448 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 449 *                      while full&low speed device connect. And change speed
 450 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 451 *                      0 - No (default)
 452 *                      1 - Yes
 453 *
 454 * The following parameters may be specified when starting the module. These
 455 * parameters define how the DWC_otg controller should be configured. A
 456 * value of -1 (or any other out of range value) for any parameter means
 457 * to read the value from hardware (if possible) or use the builtin
 458 * default described above.
 459 */
 460struct dwc2_core_params {
 461        u8 otg_cap;
 462#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE          0
 463#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE         1
 464#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE       2
 465
 466        u8 phy_type;
 467#define DWC2_PHY_TYPE_PARAM_FS          0
 468#define DWC2_PHY_TYPE_PARAM_UTMI        1
 469#define DWC2_PHY_TYPE_PARAM_ULPI        2
 470
 471        u8 speed;
 472#define DWC2_SPEED_PARAM_HIGH   0
 473#define DWC2_SPEED_PARAM_FULL   1
 474#define DWC2_SPEED_PARAM_LOW    2
 475
 476        u8 phy_utmi_width;
 477        bool phy_ulpi_ddr;
 478        bool phy_ulpi_ext_vbus;
 479        bool enable_dynamic_fifo;
 480        bool en_multiple_tx_fifo;
 481        bool i2c_enable;
 482        bool ulpi_fs_ls;
 483        bool ts_dline;
 484        bool reload_ctl;
 485        bool uframe_sched;
 486        bool external_id_pin_ctl;
 487        bool hibernation;
 488        bool activate_stm_fs_transceiver;
 489        u16 max_packet_count;
 490        u32 max_transfer_size;
 491        u32 ahbcfg;
 492
 493        /* Host parameters */
 494        bool host_dma;
 495        bool dma_desc_enable;
 496        bool dma_desc_fs_enable;
 497        bool host_support_fs_ls_low_power;
 498        bool host_ls_low_power_phy_clk;
 499        bool oc_disable;
 500
 501        u8 host_channels;
 502        u16 host_rx_fifo_size;
 503        u16 host_nperio_tx_fifo_size;
 504        u16 host_perio_tx_fifo_size;
 505
 506        /* Gadget parameters */
 507        bool g_dma;
 508        bool g_dma_desc;
 509        u32 g_rx_fifo_size;
 510        u32 g_np_tx_fifo_size;
 511        u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 512
 513        bool change_speed_quirk;
 514};
 515
 516/**
 517 * struct dwc2_hw_params - Autodetected parameters.
 518 *
 519 * These parameters are the various parameters read from hardware
 520 * registers during initialization. They typically contain the best
 521 * supported or maximum value that can be configured in the
 522 * corresponding dwc2_core_params value.
 523 *
 524 * The values that are not in dwc2_core_params are documented below.
 525 *
 526 * @op_mode             Mode of Operation
 527 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 528 *                       1 - SRP-Capable OTG (Host & Device)
 529 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 530 *                       3 - SRP-Capable Device
 531 *                       4 - Non-OTG Device
 532 *                       5 - SRP-Capable Host
 533 *                       6 - Non-OTG Host
 534 * @arch                Architecture
 535 *                       0 - Slave only
 536 *                       1 - External DMA
 537 *                       2 - Internal DMA
 538 * @power_optimized     Are power optimizations enabled?
 539 * @num_dev_ep          Number of device endpoints available
 540 * @num_dev_in_eps      Number of device IN endpoints available
 541 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 542 *                      available
 543 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 544 *                      Depth
 545 *                       0 to 30
 546 * @host_perio_tx_q_depth
 547 *                      Host Mode Periodic Request Queue Depth
 548 *                       2, 4 or 8
 549 * @nperio_tx_q_depth
 550 *                      Non-Periodic Request Queue Depth
 551 *                       2, 4 or 8
 552 * @hs_phy_type         High-speed PHY interface type
 553 *                       0 - High-speed interface not supported
 554 *                       1 - UTMI+
 555 *                       2 - ULPI
 556 *                       3 - UTMI+ and ULPI
 557 * @fs_phy_type         Full-speed PHY interface type
 558 *                       0 - Full speed interface not supported
 559 *                       1 - Dedicated full speed interface
 560 *                       2 - FS pins shared with UTMI+ pins
 561 *                       3 - FS pins shared with ULPI pins
 562 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 563 * @utmi_phy_data_width UTMI+ PHY data width
 564 *                       0 - 8 bits
 565 *                       1 - 16 bits
 566 *                       2 - 8 or 16 bits
 567 * @snpsid:             Value from SNPSID register
 568 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 569 * @g_tx_fifo_size[]    Power-on values of TxFIFO sizes
 570 */
 571struct dwc2_hw_params {
 572        unsigned op_mode:3;
 573        unsigned arch:2;
 574        unsigned dma_desc_enable:1;
 575        unsigned enable_dynamic_fifo:1;
 576        unsigned en_multiple_tx_fifo:1;
 577        unsigned rx_fifo_size:16;
 578        unsigned host_nperio_tx_fifo_size:16;
 579        unsigned dev_nperio_tx_fifo_size:16;
 580        unsigned host_perio_tx_fifo_size:16;
 581        unsigned nperio_tx_q_depth:3;
 582        unsigned host_perio_tx_q_depth:3;
 583        unsigned dev_token_q_depth:5;
 584        unsigned max_transfer_size:26;
 585        unsigned max_packet_count:11;
 586        unsigned host_channels:5;
 587        unsigned hs_phy_type:2;
 588        unsigned fs_phy_type:2;
 589        unsigned i2c_enable:1;
 590        unsigned num_dev_ep:4;
 591        unsigned num_dev_in_eps : 4;
 592        unsigned num_dev_perio_in_ep:4;
 593        unsigned total_fifo_size:16;
 594        unsigned power_optimized:1;
 595        unsigned utmi_phy_data_width:2;
 596        u32 snpsid;
 597        u32 dev_ep_dirs;
 598        u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 599};
 600
 601/* Size of control and EP0 buffers */
 602#define DWC2_CTRL_BUFF_SIZE 8
 603
 604/**
 605 * struct dwc2_gregs_backup - Holds global registers state before
 606 * entering partial power down
 607 * @gotgctl:            Backup of GOTGCTL register
 608 * @gintmsk:            Backup of GINTMSK register
 609 * @gahbcfg:            Backup of GAHBCFG register
 610 * @gusbcfg:            Backup of GUSBCFG register
 611 * @grxfsiz:            Backup of GRXFSIZ register
 612 * @gnptxfsiz:          Backup of GNPTXFSIZ register
 613 * @gi2cctl:            Backup of GI2CCTL register
 614 * @hptxfsiz:           Backup of HPTXFSIZ register
 615 * @gdfifocfg:          Backup of GDFIFOCFG register
 616 * @dtxfsiz:            Backup of DTXFSIZ registers for each endpoint
 617 * @gpwrdn:             Backup of GPWRDN register
 618 */
 619struct dwc2_gregs_backup {
 620        u32 gotgctl;
 621        u32 gintmsk;
 622        u32 gahbcfg;
 623        u32 gusbcfg;
 624        u32 grxfsiz;
 625        u32 gnptxfsiz;
 626        u32 gi2cctl;
 627        u32 hptxfsiz;
 628        u32 pcgcctl;
 629        u32 gdfifocfg;
 630        u32 dtxfsiz[MAX_EPS_CHANNELS];
 631        u32 gpwrdn;
 632        bool valid;
 633};
 634
 635/**
 636 * struct dwc2_dregs_backup - Holds device registers state before
 637 * entering partial power down
 638 * @dcfg:               Backup of DCFG register
 639 * @dctl:               Backup of DCTL register
 640 * @daintmsk:           Backup of DAINTMSK register
 641 * @diepmsk:            Backup of DIEPMSK register
 642 * @doepmsk:            Backup of DOEPMSK register
 643 * @diepctl:            Backup of DIEPCTL register
 644 * @dieptsiz:           Backup of DIEPTSIZ register
 645 * @diepdma:            Backup of DIEPDMA register
 646 * @doepctl:            Backup of DOEPCTL register
 647 * @doeptsiz:           Backup of DOEPTSIZ register
 648 * @doepdma:            Backup of DOEPDMA register
 649 */
 650struct dwc2_dregs_backup {
 651        u32 dcfg;
 652        u32 dctl;
 653        u32 daintmsk;
 654        u32 diepmsk;
 655        u32 doepmsk;
 656        u32 diepctl[MAX_EPS_CHANNELS];
 657        u32 dieptsiz[MAX_EPS_CHANNELS];
 658        u32 diepdma[MAX_EPS_CHANNELS];
 659        u32 doepctl[MAX_EPS_CHANNELS];
 660        u32 doeptsiz[MAX_EPS_CHANNELS];
 661        u32 doepdma[MAX_EPS_CHANNELS];
 662        bool valid;
 663};
 664
 665/**
 666 * struct dwc2_hregs_backup - Holds host registers state before
 667 * entering partial power down
 668 * @hcfg:               Backup of HCFG register
 669 * @haintmsk:           Backup of HAINTMSK register
 670 * @hcintmsk:           Backup of HCINTMSK register
 671 * @hptr0:              Backup of HPTR0 register
 672 * @hfir:               Backup of HFIR register
 673 */
 674struct dwc2_hregs_backup {
 675        u32 hcfg;
 676        u32 haintmsk;
 677        u32 hcintmsk[MAX_EPS_CHANNELS];
 678        u32 hprt0;
 679        u32 hfir;
 680        bool valid;
 681};
 682
 683/*
 684 * Constants related to high speed periodic scheduling
 685 *
 686 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 687 * reservation point of view it's assumed that the schedule goes right back to
 688 * the beginning after the end of the schedule.
 689 *
 690 * What does that mean for scheduling things with a long interval?  It means
 691 * we'll reserve time for them in every possible microframe that they could
 692 * ever be scheduled in.  ...but we'll still only actually schedule them as
 693 * often as they were requested.
 694 *
 695 * We keep our schedule in a "bitmap" structure.  This simplifies having
 696 * to keep track of and merge intervals: we just let the bitmap code do most
 697 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 698 *
 699 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 700 * supposed to schedule for periodic transfers).  That's according to spec.
 701 *
 702 * Note that though we only schedule 80% of each microframe, the bitmap that we
 703 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 704 * space for each uFrame).
 705 *
 706 * Requirements:
 707 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 708 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 709 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 710 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 711 */
 712#define DWC2_US_PER_UFRAME              125
 713#define DWC2_HS_PERIODIC_US_PER_UFRAME  100
 714
 715#define DWC2_HS_SCHEDULE_UFRAMES        8
 716#define DWC2_HS_SCHEDULE_US             (DWC2_HS_SCHEDULE_UFRAMES * \
 717                                         DWC2_HS_PERIODIC_US_PER_UFRAME)
 718
 719/*
 720 * Constants related to low speed scheduling
 721 *
 722 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 723 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 724 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 725 * transfers.
 726 *
 727 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 728 * we only schedule 1 frame it means that we'll need to reserve a time every
 729 * frame even for things that only transfer very rarely, so something that runs
 730 * every 2048 frames will get time reserved in every frame.  Our low speed
 731 * schedule can be longer and we'll be able to handle more overlap, but that
 732 * will come at increased memory cost and increased time to schedule.
 733 *
 734 * Note: one other advantage of a short low speed schedule is that if we mess
 735 * up and miss scheduling we can jump in and use any of the slots that we
 736 * happened to reserve.
 737 *
 738 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 739 * the schedule.  There will be one schedule per TT.
 740 *
 741 * Requirements:
 742 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 743 */
 744#define DWC2_US_PER_SLICE       25
 745#define DWC2_SLICES_PER_UFRAME  (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 746
 747#define DWC2_ROUND_US_TO_SLICE(us) \
 748                                (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 749                                 DWC2_US_PER_SLICE)
 750
 751#define DWC2_LS_PERIODIC_US_PER_FRAME \
 752                                900
 753#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 754                                (DWC2_LS_PERIODIC_US_PER_FRAME / \
 755                                 DWC2_US_PER_SLICE)
 756
 757#define DWC2_LS_SCHEDULE_FRAMES 1
 758#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
 759                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 760
 761/**
 762 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 763 * and periodic schedules
 764 *
 765 * These are common for both host and peripheral modes:
 766 *
 767 * @dev:                The struct device pointer
 768 * @regs:               Pointer to controller regs
 769 * @hw_params:          Parameters that were autodetected from the
 770 *                      hardware registers
 771 * @core_params:        Parameters that define how the core should be configured
 772 * @op_state:           The operational State, during transitions (a_host=>
 773 *                      a_peripheral and b_device=>b_host) this may not match
 774 *                      the core, but allows the software to determine
 775 *                      transitions
 776 * @dr_mode:            Requested mode of operation, one of following:
 777 *                      - USB_DR_MODE_PERIPHERAL
 778 *                      - USB_DR_MODE_HOST
 779 *                      - USB_DR_MODE_OTG
 780 * @hcd_enabled         Host mode sub-driver initialization indicator.
 781 * @gadget_enabled      Peripheral mode sub-driver initialization indicator.
 782 * @ll_hw_enabled       Status of low-level hardware resources.
 783 * @phy:                The otg phy transceiver structure for phy control.
 784 * @uphy:               The otg phy transceiver structure for old USB phy
 785 *                      control.
 786 * @plat:               The platform specific configuration data. This can be
 787 *                      removed once all SoCs support usb transceiver.
 788 * @supplies:           Definition of USB power supplies
 789 * @phyif:              PHY interface width
 790 * @lock:               Spinlock that protects all the driver data structures
 791 * @priv:               Stores a pointer to the struct usb_hcd
 792 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 793 *                      transfer are in process of being queued
 794 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 795 *                      with an I2C interface
 796 * @wq_otg:             Workqueue object used for handling of some interrupts
 797 * @wf_otg:             Work object for handling Connector ID Status Change
 798 *                      interrupt
 799 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 800 * @lx_state:           Lx state of connected device
 801 * @gregs_backup: Backup of global registers during suspend
 802 * @dregs_backup: Backup of device registers during suspend
 803 * @hregs_backup: Backup of host registers during suspend
 804 *
 805 * These are for host mode:
 806 *
 807 * @flags:              Flags for handling root port state changes
 808 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 809 *                      Transfers associated with these QHs are not currently
 810 *                      assigned to a host channel.
 811 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 812 *                      Transfers associated with these QHs are currently
 813 *                      assigned to a host channel.
 814 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 815 *                      non-periodic schedule
 816 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 817 *                      list of QHs for periodic transfers that are _not_
 818 *                      scheduled for the next frame. Each QH in the list has an
 819 *                      interval counter that determines when it needs to be
 820 *                      scheduled for execution. This scheduling mechanism
 821 *                      allows only a simple calculation for periodic bandwidth
 822 *                      used (i.e. must assume that all periodic transfers may
 823 *                      need to execute in the same frame). However, it greatly
 824 *                      simplifies scheduling and should be sufficient for the
 825 *                      vast majority of OTG hosts, which need to connect to a
 826 *                      small number of peripherals at one time. Items move from
 827 *                      this list to periodic_sched_ready when the QH interval
 828 *                      counter is 0 at SOF.
 829 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 830 *                      the next frame, but have not yet been assigned to host
 831 *                      channels. Items move from this list to
 832 *                      periodic_sched_assigned as host channels become
 833 *                      available during the current frame.
 834 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 835 *                      frame that are assigned to host channels. Items move
 836 *                      from this list to periodic_sched_queued as the
 837 *                      transactions for the QH are queued to the DWC_otg
 838 *                      controller.
 839 * @periodic_sched_queued: List of periodic QHs that have been queued for
 840 *                      execution. Items move from this list to either
 841 *                      periodic_sched_inactive or periodic_sched_ready when the
 842 *                      channel associated with the transfer is released. If the
 843 *                      interval for the QH is 1, the item moves to
 844 *                      periodic_sched_ready because it must be rescheduled for
 845 *                      the next frame. Otherwise, the item moves to
 846 *                      periodic_sched_inactive.
 847 * @split_order:        List keeping track of channels doing splits, in order.
 848 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 849 *                      This value is in microseconds per (micro)frame. The
 850 *                      assumption is that all periodic transfers may occur in
 851 *                      the same (micro)frame.
 852 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 853 *                      host is in high speed mode; low speed schedules are
 854 *                      stored elsewhere since we need one per TT.
 855 * @frame_number:       Frame number read from the core at SOF. The value ranges
 856 *                      from 0 to HFNUM_MAX_FRNUM.
 857 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 858 *                      SOF enable/disable.
 859 * @free_hc_list:       Free host channels in the controller. This is a list of
 860 *                      struct dwc2_host_chan items.
 861 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 862 *                      Currently assuming that there is a dedicated host
 863 *                      channel for each periodic transaction and at least one
 864 *                      host channel is available for non-periodic transactions.
 865 * @non_periodic_channels: Number of host channels assigned to non-periodic
 866 *                      transfers
 867 * @available_host_channels Number of host channels available for the microframe
 868 *                      scheduler to use
 869 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 870 *                      Allows accessing a host channel descriptor given the
 871 *                      host channel number. This is useful in interrupt
 872 *                      handlers.
 873 * @status_buf:         Buffer used for data received during the status phase of
 874 *                      a control transfer.
 875 * @status_buf_dma:     DMA address for status_buf
 876 * @start_work:         Delayed work for handling host A-cable connection
 877 * @reset_work:         Delayed work for handling a port reset
 878 * @otg_port:           OTG port number
 879 * @frame_list:         Frame list
 880 * @frame_list_dma:     Frame list DMA address
 881 * @frame_list_sz:      Frame list size
 882 * @desc_gen_cache:     Kmem cache for generic descriptors
 883 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 884 *
 885 * These are for peripheral mode:
 886 *
 887 * @driver:             USB gadget driver
 888 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 889 * @num_of_eps:         Number of available EPs (excluding EP0)
 890 * @debug_root:         Root directrory for debugfs.
 891 * @debug_file:         Main status file for debugfs.
 892 * @debug_testmode:     Testmode status file for debugfs.
 893 * @debug_fifo:         FIFO status file for debugfs.
 894 * @ep0_reply:          Request used for ep0 reply.
 895 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 896 * @ctrl_buff:          Buffer for EP0 control requests.
 897 * @ctrl_req:           Request for EP0 control packets.
 898 * @ep0_state:          EP0 control transfers state
 899 * @test_mode:          USB test mode requested by the host
 900 * @setup_desc_dma:     EP0 setup stage desc chain DMA address
 901 * @setup_desc:         EP0 setup stage desc chain pointer
 902 * @ctrl_in_desc_dma:   EP0 IN data phase desc chain DMA address
 903 * @ctrl_in_desc:       EP0 IN data phase desc chain pointer
 904 * @ctrl_out_desc_dma:  EP0 OUT data phase desc chain DMA address
 905 * @ctrl_out_desc:      EP0 OUT data phase desc chain pointer
 906 * @eps:                The endpoints being supplied to the gadget framework
 907 */
 908struct dwc2_hsotg {
 909        struct device *dev;
 910        void __iomem *regs;
 911        /** Params detected from hardware */
 912        struct dwc2_hw_params hw_params;
 913        /** Params to actually use */
 914        struct dwc2_core_params params;
 915        enum usb_otg_state op_state;
 916        enum usb_dr_mode dr_mode;
 917        unsigned int hcd_enabled:1;
 918        unsigned int gadget_enabled:1;
 919        unsigned int ll_hw_enabled:1;
 920
 921        struct phy *phy;
 922        struct usb_phy *uphy;
 923        struct dwc2_hsotg_plat *plat;
 924        struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
 925        u32 phyif;
 926
 927        spinlock_t lock;
 928        void *priv;
 929        int     irq;
 930        struct clk *clk;
 931        struct reset_control *reset;
 932
 933        unsigned int queuing_high_bandwidth:1;
 934        unsigned int srp_success:1;
 935
 936        struct workqueue_struct *wq_otg;
 937        struct work_struct wf_otg;
 938        struct timer_list wkp_timer;
 939        enum dwc2_lx_state lx_state;
 940        struct dwc2_gregs_backup gr_backup;
 941        struct dwc2_dregs_backup dr_backup;
 942        struct dwc2_hregs_backup hr_backup;
 943
 944        struct dentry *debug_root;
 945        struct debugfs_regset32 *regset;
 946
 947        /* DWC OTG HW Release versions */
 948#define DWC2_CORE_REV_2_71a     0x4f54271a
 949#define DWC2_CORE_REV_2_90a     0x4f54290a
 950#define DWC2_CORE_REV_2_91a     0x4f54291a
 951#define DWC2_CORE_REV_2_92a     0x4f54292a
 952#define DWC2_CORE_REV_2_94a     0x4f54294a
 953#define DWC2_CORE_REV_3_00a     0x4f54300a
 954#define DWC2_CORE_REV_3_10a     0x4f54310a
 955#define DWC2_FS_IOT_REV_1_00a   0x5531100a
 956#define DWC2_HS_IOT_REV_1_00a   0x5532100a
 957
 958#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 959        union dwc2_hcd_internal_flags {
 960                u32 d32;
 961                struct {
 962                        unsigned port_connect_status_change:1;
 963                        unsigned port_connect_status:1;
 964                        unsigned port_reset_change:1;
 965                        unsigned port_enable_change:1;
 966                        unsigned port_suspend_change:1;
 967                        unsigned port_over_current_change:1;
 968                        unsigned port_l1_change:1;
 969                        unsigned reserved:25;
 970                } b;
 971        } flags;
 972
 973        struct list_head non_periodic_sched_inactive;
 974        struct list_head non_periodic_sched_active;
 975        struct list_head *non_periodic_qh_ptr;
 976        struct list_head periodic_sched_inactive;
 977        struct list_head periodic_sched_ready;
 978        struct list_head periodic_sched_assigned;
 979        struct list_head periodic_sched_queued;
 980        struct list_head split_order;
 981        u16 periodic_usecs;
 982        unsigned long hs_periodic_bitmap[
 983                DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
 984        u16 frame_number;
 985        u16 periodic_qh_count;
 986        bool bus_suspended;
 987        bool new_connection;
 988
 989        u16 last_frame_num;
 990
 991#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
 992#define FRAME_NUM_ARRAY_SIZE 1000
 993        u16 *frame_num_array;
 994        u16 *last_frame_num_array;
 995        int frame_num_idx;
 996        int dumped_frame_num_array;
 997#endif
 998
 999        struct list_head free_hc_list;
1000        int periodic_channels;
1001        int non_periodic_channels;
1002        int available_host_channels;
1003        struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1004        u8 *status_buf;
1005        dma_addr_t status_buf_dma;
1006#define DWC2_HCD_STATUS_BUF_SIZE 64
1007
1008        struct delayed_work start_work;
1009        struct delayed_work reset_work;
1010        u8 otg_port;
1011        u32 *frame_list;
1012        dma_addr_t frame_list_dma;
1013        u32 frame_list_sz;
1014        struct kmem_cache *desc_gen_cache;
1015        struct kmem_cache *desc_hsisoc_cache;
1016
1017#ifdef DEBUG
1018        u32 frrem_samples;
1019        u64 frrem_accum;
1020
1021        u32 hfnum_7_samples_a;
1022        u64 hfnum_7_frrem_accum_a;
1023        u32 hfnum_0_samples_a;
1024        u64 hfnum_0_frrem_accum_a;
1025        u32 hfnum_other_samples_a;
1026        u64 hfnum_other_frrem_accum_a;
1027
1028        u32 hfnum_7_samples_b;
1029        u64 hfnum_7_frrem_accum_b;
1030        u32 hfnum_0_samples_b;
1031        u64 hfnum_0_frrem_accum_b;
1032        u32 hfnum_other_samples_b;
1033        u64 hfnum_other_frrem_accum_b;
1034#endif
1035#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1036
1037#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1038        IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1039        /* Gadget structures */
1040        struct usb_gadget_driver *driver;
1041        int fifo_mem;
1042        unsigned int dedicated_fifos:1;
1043        unsigned char num_of_eps;
1044        u32 fifo_map;
1045
1046        struct usb_request *ep0_reply;
1047        struct usb_request *ctrl_req;
1048        void *ep0_buff;
1049        void *ctrl_buff;
1050        enum dwc2_ep0_state ep0_state;
1051        u8 test_mode;
1052
1053        dma_addr_t setup_desc_dma[2];
1054        struct dwc2_dma_desc *setup_desc[2];
1055        dma_addr_t ctrl_in_desc_dma;
1056        struct dwc2_dma_desc *ctrl_in_desc;
1057        dma_addr_t ctrl_out_desc_dma;
1058        struct dwc2_dma_desc *ctrl_out_desc;
1059
1060        struct usb_gadget gadget;
1061        unsigned int enabled:1;
1062        unsigned int connected:1;
1063        struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1064        struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1065#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1066};
1067
1068/* Reasons for halting a host channel */
1069enum dwc2_halt_status {
1070        DWC2_HC_XFER_NO_HALT_STATUS,
1071        DWC2_HC_XFER_COMPLETE,
1072        DWC2_HC_XFER_URB_COMPLETE,
1073        DWC2_HC_XFER_ACK,
1074        DWC2_HC_XFER_NAK,
1075        DWC2_HC_XFER_NYET,
1076        DWC2_HC_XFER_STALL,
1077        DWC2_HC_XFER_XACT_ERR,
1078        DWC2_HC_XFER_FRAME_OVERRUN,
1079        DWC2_HC_XFER_BABBLE_ERR,
1080        DWC2_HC_XFER_DATA_TOGGLE_ERR,
1081        DWC2_HC_XFER_AHB_ERR,
1082        DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1083        DWC2_HC_XFER_URB_DEQUEUE,
1084};
1085
1086/* Core version information */
1087static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1088{
1089        return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1090}
1091
1092static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1093{
1094        return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1095}
1096
1097static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1098{
1099        return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1100}
1101
1102/*
1103 * The following functions support initialization of the core driver component
1104 * and the DWC_otg controller
1105 */
1106int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1107int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1108int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1109int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1110
1111bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1112void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1113void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1114
1115bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1116
1117/*
1118 * Common core Functions.
1119 * The following functions support managing the DWC_otg controller in either
1120 * device or host mode.
1121 */
1122void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1123void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1124void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1125
1126void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1127void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1128
1129/* This function should be called on every hardware interrupt. */
1130irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1131
1132/* The device ID match table */
1133extern const struct of_device_id dwc2_of_match_table[];
1134
1135int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1136int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1137
1138/* Parameters */
1139int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1140int dwc2_init_params(struct dwc2_hsotg *hsotg);
1141
1142/*
1143 * The following functions check the controller's OTG operation mode
1144 * capability (GHWCFG2.OTG_MODE).
1145 *
1146 * These functions can be used before the internal hsotg->hw_params
1147 * are read in and cached so they always read directly from the
1148 * GHWCFG2 register.
1149 */
1150unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1151bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1152bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1153bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1154
1155/*
1156 * Returns the mode of operation, host or device
1157 */
1158static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1159{
1160        return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1161}
1162
1163static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1164{
1165        return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1166}
1167
1168/*
1169 * Dump core registers and SPRAM
1170 */
1171void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1172void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1173void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1174
1175/* Gadget defines */
1176#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1177        IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1178int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1179int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1180int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1181int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1182void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1183                                       bool reset);
1184void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1185void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1186int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1187#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1188int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1189int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1190int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1191int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1192int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1193#else
1194static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1195{ return 0; }
1196static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1197{ return 0; }
1198static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1199{ return 0; }
1200static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1201{ return 0; }
1202static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1203                                                     bool reset) {}
1204static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1205static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1206static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1207                                           int testmode)
1208{ return 0; }
1209#define dwc2_is_device_connected(hsotg) (0)
1210static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1211{ return 0; }
1212static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1213{ return 0; }
1214static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1215{ return 0; }
1216static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1217{ return 0; }
1218static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1219{ return 0; }
1220#endif
1221
1222#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1223int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1224int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1225void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1226void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1227void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1228int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1229int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1230#else
1231static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1232{ return 0; }
1233static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1234                                                   int us)
1235{ return 0; }
1236static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1237static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1238static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1239static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1240static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1241{ return 0; }
1242static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1243{ return 0; }
1244static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1245{ return 0; }
1246
1247#endif
1248
1249#endif /* __DWC2_CORE_H__ */
1250