linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   3 * Written by Miao Xie <miaox@cn.fujitsu.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19
  20#include <linux/slab.h>
  21#include "delayed-inode.h"
  22#include "disk-io.h"
  23#include "transaction.h"
  24#include "ctree.h"
  25
  26#define BTRFS_DELAYED_WRITEBACK         512
  27#define BTRFS_DELAYED_BACKGROUND        128
  28#define BTRFS_DELAYED_BATCH             16
  29
  30static struct kmem_cache *delayed_node_cache;
  31
  32int __init btrfs_delayed_inode_init(void)
  33{
  34        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  35                                        sizeof(struct btrfs_delayed_node),
  36                                        0,
  37                                        SLAB_MEM_SPREAD,
  38                                        NULL);
  39        if (!delayed_node_cache)
  40                return -ENOMEM;
  41        return 0;
  42}
  43
  44void btrfs_delayed_inode_exit(void)
  45{
  46        kmem_cache_destroy(delayed_node_cache);
  47}
  48
  49static inline void btrfs_init_delayed_node(
  50                                struct btrfs_delayed_node *delayed_node,
  51                                struct btrfs_root *root, u64 inode_id)
  52{
  53        delayed_node->root = root;
  54        delayed_node->inode_id = inode_id;
  55        refcount_set(&delayed_node->refs, 0);
  56        delayed_node->ins_root = RB_ROOT;
  57        delayed_node->del_root = RB_ROOT;
  58        mutex_init(&delayed_node->mutex);
  59        INIT_LIST_HEAD(&delayed_node->n_list);
  60        INIT_LIST_HEAD(&delayed_node->p_list);
  61}
  62
  63static inline int btrfs_is_continuous_delayed_item(
  64                                        struct btrfs_delayed_item *item1,
  65                                        struct btrfs_delayed_item *item2)
  66{
  67        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  68            item1->key.objectid == item2->key.objectid &&
  69            item1->key.type == item2->key.type &&
  70            item1->key.offset + 1 == item2->key.offset)
  71                return 1;
  72        return 0;
  73}
  74
  75static struct btrfs_delayed_node *btrfs_get_delayed_node(
  76                struct btrfs_inode *btrfs_inode)
  77{
  78        struct btrfs_root *root = btrfs_inode->root;
  79        u64 ino = btrfs_ino(btrfs_inode);
  80        struct btrfs_delayed_node *node;
  81
  82        node = READ_ONCE(btrfs_inode->delayed_node);
  83        if (node) {
  84                refcount_inc(&node->refs);
  85                return node;
  86        }
  87
  88        spin_lock(&root->inode_lock);
  89        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  90
  91        if (node) {
  92                if (btrfs_inode->delayed_node) {
  93                        refcount_inc(&node->refs);      /* can be accessed */
  94                        BUG_ON(btrfs_inode->delayed_node != node);
  95                        spin_unlock(&root->inode_lock);
  96                        return node;
  97                }
  98
  99                /*
 100                 * It's possible that we're racing into the middle of removing
 101                 * this node from the radix tree.  In this case, the refcount
 102                 * was zero and it should never go back to one.  Just return
 103                 * NULL like it was never in the radix at all; our release
 104                 * function is in the process of removing it.
 105                 *
 106                 * Some implementations of refcount_inc refuse to bump the
 107                 * refcount once it has hit zero.  If we don't do this dance
 108                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 109                 * of actually bumping the refcount.
 110                 *
 111                 * If this node is properly in the radix, we want to bump the
 112                 * refcount twice, once for the inode and once for this get
 113                 * operation.
 114                 */
 115                if (refcount_inc_not_zero(&node->refs)) {
 116                        refcount_inc(&node->refs);
 117                        btrfs_inode->delayed_node = node;
 118                } else {
 119                        node = NULL;
 120                }
 121
 122                spin_unlock(&root->inode_lock);
 123                return node;
 124        }
 125        spin_unlock(&root->inode_lock);
 126
 127        return NULL;
 128}
 129
 130/* Will return either the node or PTR_ERR(-ENOMEM) */
 131static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 132                struct btrfs_inode *btrfs_inode)
 133{
 134        struct btrfs_delayed_node *node;
 135        struct btrfs_root *root = btrfs_inode->root;
 136        u64 ino = btrfs_ino(btrfs_inode);
 137        int ret;
 138
 139again:
 140        node = btrfs_get_delayed_node(btrfs_inode);
 141        if (node)
 142                return node;
 143
 144        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 145        if (!node)
 146                return ERR_PTR(-ENOMEM);
 147        btrfs_init_delayed_node(node, root, ino);
 148
 149        /* cached in the btrfs inode and can be accessed */
 150        refcount_set(&node->refs, 2);
 151
 152        ret = radix_tree_preload(GFP_NOFS);
 153        if (ret) {
 154                kmem_cache_free(delayed_node_cache, node);
 155                return ERR_PTR(ret);
 156        }
 157
 158        spin_lock(&root->inode_lock);
 159        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 160        if (ret == -EEXIST) {
 161                spin_unlock(&root->inode_lock);
 162                kmem_cache_free(delayed_node_cache, node);
 163                radix_tree_preload_end();
 164                goto again;
 165        }
 166        btrfs_inode->delayed_node = node;
 167        spin_unlock(&root->inode_lock);
 168        radix_tree_preload_end();
 169
 170        return node;
 171}
 172
 173/*
 174 * Call it when holding delayed_node->mutex
 175 *
 176 * If mod = 1, add this node into the prepared list.
 177 */
 178static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 179                                     struct btrfs_delayed_node *node,
 180                                     int mod)
 181{
 182        spin_lock(&root->lock);
 183        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 184                if (!list_empty(&node->p_list))
 185                        list_move_tail(&node->p_list, &root->prepare_list);
 186                else if (mod)
 187                        list_add_tail(&node->p_list, &root->prepare_list);
 188        } else {
 189                list_add_tail(&node->n_list, &root->node_list);
 190                list_add_tail(&node->p_list, &root->prepare_list);
 191                refcount_inc(&node->refs);      /* inserted into list */
 192                root->nodes++;
 193                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 194        }
 195        spin_unlock(&root->lock);
 196}
 197
 198/* Call it when holding delayed_node->mutex */
 199static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 200                                       struct btrfs_delayed_node *node)
 201{
 202        spin_lock(&root->lock);
 203        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 204                root->nodes--;
 205                refcount_dec(&node->refs);      /* not in the list */
 206                list_del_init(&node->n_list);
 207                if (!list_empty(&node->p_list))
 208                        list_del_init(&node->p_list);
 209                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 210        }
 211        spin_unlock(&root->lock);
 212}
 213
 214static struct btrfs_delayed_node *btrfs_first_delayed_node(
 215                        struct btrfs_delayed_root *delayed_root)
 216{
 217        struct list_head *p;
 218        struct btrfs_delayed_node *node = NULL;
 219
 220        spin_lock(&delayed_root->lock);
 221        if (list_empty(&delayed_root->node_list))
 222                goto out;
 223
 224        p = delayed_root->node_list.next;
 225        node = list_entry(p, struct btrfs_delayed_node, n_list);
 226        refcount_inc(&node->refs);
 227out:
 228        spin_unlock(&delayed_root->lock);
 229
 230        return node;
 231}
 232
 233static struct btrfs_delayed_node *btrfs_next_delayed_node(
 234                                                struct btrfs_delayed_node *node)
 235{
 236        struct btrfs_delayed_root *delayed_root;
 237        struct list_head *p;
 238        struct btrfs_delayed_node *next = NULL;
 239
 240        delayed_root = node->root->fs_info->delayed_root;
 241        spin_lock(&delayed_root->lock);
 242        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 243                /* not in the list */
 244                if (list_empty(&delayed_root->node_list))
 245                        goto out;
 246                p = delayed_root->node_list.next;
 247        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 248                goto out;
 249        else
 250                p = node->n_list.next;
 251
 252        next = list_entry(p, struct btrfs_delayed_node, n_list);
 253        refcount_inc(&next->refs);
 254out:
 255        spin_unlock(&delayed_root->lock);
 256
 257        return next;
 258}
 259
 260static void __btrfs_release_delayed_node(
 261                                struct btrfs_delayed_node *delayed_node,
 262                                int mod)
 263{
 264        struct btrfs_delayed_root *delayed_root;
 265
 266        if (!delayed_node)
 267                return;
 268
 269        delayed_root = delayed_node->root->fs_info->delayed_root;
 270
 271        mutex_lock(&delayed_node->mutex);
 272        if (delayed_node->count)
 273                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 274        else
 275                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 276        mutex_unlock(&delayed_node->mutex);
 277
 278        if (refcount_dec_and_test(&delayed_node->refs)) {
 279                struct btrfs_root *root = delayed_node->root;
 280
 281                spin_lock(&root->inode_lock);
 282                /*
 283                 * Once our refcount goes to zero, nobody is allowed to bump it
 284                 * back up.  We can delete it now.
 285                 */
 286                ASSERT(refcount_read(&delayed_node->refs) == 0);
 287                radix_tree_delete(&root->delayed_nodes_tree,
 288                                  delayed_node->inode_id);
 289                spin_unlock(&root->inode_lock);
 290                kmem_cache_free(delayed_node_cache, delayed_node);
 291        }
 292}
 293
 294static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 295{
 296        __btrfs_release_delayed_node(node, 0);
 297}
 298
 299static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 300                                        struct btrfs_delayed_root *delayed_root)
 301{
 302        struct list_head *p;
 303        struct btrfs_delayed_node *node = NULL;
 304
 305        spin_lock(&delayed_root->lock);
 306        if (list_empty(&delayed_root->prepare_list))
 307                goto out;
 308
 309        p = delayed_root->prepare_list.next;
 310        list_del_init(p);
 311        node = list_entry(p, struct btrfs_delayed_node, p_list);
 312        refcount_inc(&node->refs);
 313out:
 314        spin_unlock(&delayed_root->lock);
 315
 316        return node;
 317}
 318
 319static inline void btrfs_release_prepared_delayed_node(
 320                                        struct btrfs_delayed_node *node)
 321{
 322        __btrfs_release_delayed_node(node, 1);
 323}
 324
 325static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 326{
 327        struct btrfs_delayed_item *item;
 328        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 329        if (item) {
 330                item->data_len = data_len;
 331                item->ins_or_del = 0;
 332                item->bytes_reserved = 0;
 333                item->delayed_node = NULL;
 334                refcount_set(&item->refs, 1);
 335        }
 336        return item;
 337}
 338
 339/*
 340 * __btrfs_lookup_delayed_item - look up the delayed item by key
 341 * @delayed_node: pointer to the delayed node
 342 * @key:          the key to look up
 343 * @prev:         used to store the prev item if the right item isn't found
 344 * @next:         used to store the next item if the right item isn't found
 345 *
 346 * Note: if we don't find the right item, we will return the prev item and
 347 * the next item.
 348 */
 349static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 350                                struct rb_root *root,
 351                                struct btrfs_key *key,
 352                                struct btrfs_delayed_item **prev,
 353                                struct btrfs_delayed_item **next)
 354{
 355        struct rb_node *node, *prev_node = NULL;
 356        struct btrfs_delayed_item *delayed_item = NULL;
 357        int ret = 0;
 358
 359        node = root->rb_node;
 360
 361        while (node) {
 362                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 363                                        rb_node);
 364                prev_node = node;
 365                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 366                if (ret < 0)
 367                        node = node->rb_right;
 368                else if (ret > 0)
 369                        node = node->rb_left;
 370                else
 371                        return delayed_item;
 372        }
 373
 374        if (prev) {
 375                if (!prev_node)
 376                        *prev = NULL;
 377                else if (ret < 0)
 378                        *prev = delayed_item;
 379                else if ((node = rb_prev(prev_node)) != NULL) {
 380                        *prev = rb_entry(node, struct btrfs_delayed_item,
 381                                         rb_node);
 382                } else
 383                        *prev = NULL;
 384        }
 385
 386        if (next) {
 387                if (!prev_node)
 388                        *next = NULL;
 389                else if (ret > 0)
 390                        *next = delayed_item;
 391                else if ((node = rb_next(prev_node)) != NULL) {
 392                        *next = rb_entry(node, struct btrfs_delayed_item,
 393                                         rb_node);
 394                } else
 395                        *next = NULL;
 396        }
 397        return NULL;
 398}
 399
 400static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 401                                        struct btrfs_delayed_node *delayed_node,
 402                                        struct btrfs_key *key)
 403{
 404        return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
 405                                           NULL, NULL);
 406}
 407
 408static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 409                                    struct btrfs_delayed_item *ins,
 410                                    int action)
 411{
 412        struct rb_node **p, *node;
 413        struct rb_node *parent_node = NULL;
 414        struct rb_root *root;
 415        struct btrfs_delayed_item *item;
 416        int cmp;
 417
 418        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 419                root = &delayed_node->ins_root;
 420        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 421                root = &delayed_node->del_root;
 422        else
 423                BUG();
 424        p = &root->rb_node;
 425        node = &ins->rb_node;
 426
 427        while (*p) {
 428                parent_node = *p;
 429                item = rb_entry(parent_node, struct btrfs_delayed_item,
 430                                 rb_node);
 431
 432                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 433                if (cmp < 0)
 434                        p = &(*p)->rb_right;
 435                else if (cmp > 0)
 436                        p = &(*p)->rb_left;
 437                else
 438                        return -EEXIST;
 439        }
 440
 441        rb_link_node(node, parent_node, p);
 442        rb_insert_color(node, root);
 443        ins->delayed_node = delayed_node;
 444        ins->ins_or_del = action;
 445
 446        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 447            action == BTRFS_DELAYED_INSERTION_ITEM &&
 448            ins->key.offset >= delayed_node->index_cnt)
 449                        delayed_node->index_cnt = ins->key.offset + 1;
 450
 451        delayed_node->count++;
 452        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 453        return 0;
 454}
 455
 456static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 457                                              struct btrfs_delayed_item *item)
 458{
 459        return __btrfs_add_delayed_item(node, item,
 460                                        BTRFS_DELAYED_INSERTION_ITEM);
 461}
 462
 463static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 464                                             struct btrfs_delayed_item *item)
 465{
 466        return __btrfs_add_delayed_item(node, item,
 467                                        BTRFS_DELAYED_DELETION_ITEM);
 468}
 469
 470static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 471{
 472        int seq = atomic_inc_return(&delayed_root->items_seq);
 473
 474        /*
 475         * atomic_dec_return implies a barrier for waitqueue_active
 476         */
 477        if ((atomic_dec_return(&delayed_root->items) <
 478            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
 479            waitqueue_active(&delayed_root->wait))
 480                wake_up(&delayed_root->wait);
 481}
 482
 483static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 484{
 485        struct rb_root *root;
 486        struct btrfs_delayed_root *delayed_root;
 487
 488        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 489
 490        BUG_ON(!delayed_root);
 491        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 492               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 493
 494        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 495                root = &delayed_item->delayed_node->ins_root;
 496        else
 497                root = &delayed_item->delayed_node->del_root;
 498
 499        rb_erase(&delayed_item->rb_node, root);
 500        delayed_item->delayed_node->count--;
 501
 502        finish_one_item(delayed_root);
 503}
 504
 505static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 506{
 507        if (item) {
 508                __btrfs_remove_delayed_item(item);
 509                if (refcount_dec_and_test(&item->refs))
 510                        kfree(item);
 511        }
 512}
 513
 514static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 515                                        struct btrfs_delayed_node *delayed_node)
 516{
 517        struct rb_node *p;
 518        struct btrfs_delayed_item *item = NULL;
 519
 520        p = rb_first(&delayed_node->ins_root);
 521        if (p)
 522                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 523
 524        return item;
 525}
 526
 527static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 528                                        struct btrfs_delayed_node *delayed_node)
 529{
 530        struct rb_node *p;
 531        struct btrfs_delayed_item *item = NULL;
 532
 533        p = rb_first(&delayed_node->del_root);
 534        if (p)
 535                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 536
 537        return item;
 538}
 539
 540static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 541                                                struct btrfs_delayed_item *item)
 542{
 543        struct rb_node *p;
 544        struct btrfs_delayed_item *next = NULL;
 545
 546        p = rb_next(&item->rb_node);
 547        if (p)
 548                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 549
 550        return next;
 551}
 552
 553static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 554                                               struct btrfs_fs_info *fs_info,
 555                                               struct btrfs_delayed_item *item)
 556{
 557        struct btrfs_block_rsv *src_rsv;
 558        struct btrfs_block_rsv *dst_rsv;
 559        u64 num_bytes;
 560        int ret;
 561
 562        if (!trans->bytes_reserved)
 563                return 0;
 564
 565        src_rsv = trans->block_rsv;
 566        dst_rsv = &fs_info->delayed_block_rsv;
 567
 568        num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 569        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
 570        if (!ret) {
 571                trace_btrfs_space_reservation(fs_info, "delayed_item",
 572                                              item->key.objectid,
 573                                              num_bytes, 1);
 574                item->bytes_reserved = num_bytes;
 575        }
 576
 577        return ret;
 578}
 579
 580static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
 581                                                struct btrfs_delayed_item *item)
 582{
 583        struct btrfs_block_rsv *rsv;
 584
 585        if (!item->bytes_reserved)
 586                return;
 587
 588        rsv = &fs_info->delayed_block_rsv;
 589        trace_btrfs_space_reservation(fs_info, "delayed_item",
 590                                      item->key.objectid, item->bytes_reserved,
 591                                      0);
 592        btrfs_block_rsv_release(fs_info, rsv,
 593                                item->bytes_reserved);
 594}
 595
 596static int btrfs_delayed_inode_reserve_metadata(
 597                                        struct btrfs_trans_handle *trans,
 598                                        struct btrfs_root *root,
 599                                        struct btrfs_inode *inode,
 600                                        struct btrfs_delayed_node *node)
 601{
 602        struct btrfs_fs_info *fs_info = root->fs_info;
 603        struct btrfs_block_rsv *src_rsv;
 604        struct btrfs_block_rsv *dst_rsv;
 605        u64 num_bytes;
 606        int ret;
 607
 608        src_rsv = trans->block_rsv;
 609        dst_rsv = &fs_info->delayed_block_rsv;
 610
 611        num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
 612
 613        /*
 614         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 615         * which doesn't reserve space for speed.  This is a problem since we
 616         * still need to reserve space for this update, so try to reserve the
 617         * space.
 618         *
 619         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 620         * we always reserve enough to update the inode item.
 621         */
 622        if (!src_rsv || (!trans->bytes_reserved &&
 623                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 624                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 625                                          BTRFS_RESERVE_NO_FLUSH);
 626                /*
 627                 * Since we're under a transaction reserve_metadata_bytes could
 628                 * try to commit the transaction which will make it return
 629                 * EAGAIN to make us stop the transaction we have, so return
 630                 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 631                 */
 632                if (ret == -EAGAIN)
 633                        ret = -ENOSPC;
 634                if (!ret) {
 635                        node->bytes_reserved = num_bytes;
 636                        trace_btrfs_space_reservation(fs_info,
 637                                                      "delayed_inode",
 638                                                      btrfs_ino(inode),
 639                                                      num_bytes, 1);
 640                }
 641                return ret;
 642        }
 643
 644        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
 645        if (!ret) {
 646                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 647                                              btrfs_ino(inode), num_bytes, 1);
 648                node->bytes_reserved = num_bytes;
 649        }
 650
 651        return ret;
 652}
 653
 654static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 655                                                struct btrfs_delayed_node *node)
 656{
 657        struct btrfs_block_rsv *rsv;
 658
 659        if (!node->bytes_reserved)
 660                return;
 661
 662        rsv = &fs_info->delayed_block_rsv;
 663        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 664                                      node->inode_id, node->bytes_reserved, 0);
 665        btrfs_block_rsv_release(fs_info, rsv,
 666                                node->bytes_reserved);
 667        node->bytes_reserved = 0;
 668}
 669
 670/*
 671 * This helper will insert some continuous items into the same leaf according
 672 * to the free space of the leaf.
 673 */
 674static int btrfs_batch_insert_items(struct btrfs_root *root,
 675                                    struct btrfs_path *path,
 676                                    struct btrfs_delayed_item *item)
 677{
 678        struct btrfs_fs_info *fs_info = root->fs_info;
 679        struct btrfs_delayed_item *curr, *next;
 680        int free_space;
 681        int total_data_size = 0, total_size = 0;
 682        struct extent_buffer *leaf;
 683        char *data_ptr;
 684        struct btrfs_key *keys;
 685        u32 *data_size;
 686        struct list_head head;
 687        int slot;
 688        int nitems;
 689        int i;
 690        int ret = 0;
 691
 692        BUG_ON(!path->nodes[0]);
 693
 694        leaf = path->nodes[0];
 695        free_space = btrfs_leaf_free_space(fs_info, leaf);
 696        INIT_LIST_HEAD(&head);
 697
 698        next = item;
 699        nitems = 0;
 700
 701        /*
 702         * count the number of the continuous items that we can insert in batch
 703         */
 704        while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 705               free_space) {
 706                total_data_size += next->data_len;
 707                total_size += next->data_len + sizeof(struct btrfs_item);
 708                list_add_tail(&next->tree_list, &head);
 709                nitems++;
 710
 711                curr = next;
 712                next = __btrfs_next_delayed_item(curr);
 713                if (!next)
 714                        break;
 715
 716                if (!btrfs_is_continuous_delayed_item(curr, next))
 717                        break;
 718        }
 719
 720        if (!nitems) {
 721                ret = 0;
 722                goto out;
 723        }
 724
 725        /*
 726         * we need allocate some memory space, but it might cause the task
 727         * to sleep, so we set all locked nodes in the path to blocking locks
 728         * first.
 729         */
 730        btrfs_set_path_blocking(path);
 731
 732        keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 733        if (!keys) {
 734                ret = -ENOMEM;
 735                goto out;
 736        }
 737
 738        data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 739        if (!data_size) {
 740                ret = -ENOMEM;
 741                goto error;
 742        }
 743
 744        /* get keys of all the delayed items */
 745        i = 0;
 746        list_for_each_entry(next, &head, tree_list) {
 747                keys[i] = next->key;
 748                data_size[i] = next->data_len;
 749                i++;
 750        }
 751
 752        /* reset all the locked nodes in the patch to spinning locks. */
 753        btrfs_clear_path_blocking(path, NULL, 0);
 754
 755        /* insert the keys of the items */
 756        setup_items_for_insert(root, path, keys, data_size,
 757                               total_data_size, total_size, nitems);
 758
 759        /* insert the dir index items */
 760        slot = path->slots[0];
 761        list_for_each_entry_safe(curr, next, &head, tree_list) {
 762                data_ptr = btrfs_item_ptr(leaf, slot, char);
 763                write_extent_buffer(leaf, &curr->data,
 764                                    (unsigned long)data_ptr,
 765                                    curr->data_len);
 766                slot++;
 767
 768                btrfs_delayed_item_release_metadata(fs_info, curr);
 769
 770                list_del(&curr->tree_list);
 771                btrfs_release_delayed_item(curr);
 772        }
 773
 774error:
 775        kfree(data_size);
 776        kfree(keys);
 777out:
 778        return ret;
 779}
 780
 781/*
 782 * This helper can just do simple insertion that needn't extend item for new
 783 * data, such as directory name index insertion, inode insertion.
 784 */
 785static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 786                                     struct btrfs_root *root,
 787                                     struct btrfs_path *path,
 788                                     struct btrfs_delayed_item *delayed_item)
 789{
 790        struct btrfs_fs_info *fs_info = root->fs_info;
 791        struct extent_buffer *leaf;
 792        char *ptr;
 793        int ret;
 794
 795        ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 796                                      delayed_item->data_len);
 797        if (ret < 0 && ret != -EEXIST)
 798                return ret;
 799
 800        leaf = path->nodes[0];
 801
 802        ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 803
 804        write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 805                            delayed_item->data_len);
 806        btrfs_mark_buffer_dirty(leaf);
 807
 808        btrfs_delayed_item_release_metadata(fs_info, delayed_item);
 809        return 0;
 810}
 811
 812/*
 813 * we insert an item first, then if there are some continuous items, we try
 814 * to insert those items into the same leaf.
 815 */
 816static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 817                                      struct btrfs_path *path,
 818                                      struct btrfs_root *root,
 819                                      struct btrfs_delayed_node *node)
 820{
 821        struct btrfs_delayed_item *curr, *prev;
 822        int ret = 0;
 823
 824do_again:
 825        mutex_lock(&node->mutex);
 826        curr = __btrfs_first_delayed_insertion_item(node);
 827        if (!curr)
 828                goto insert_end;
 829
 830        ret = btrfs_insert_delayed_item(trans, root, path, curr);
 831        if (ret < 0) {
 832                btrfs_release_path(path);
 833                goto insert_end;
 834        }
 835
 836        prev = curr;
 837        curr = __btrfs_next_delayed_item(prev);
 838        if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 839                /* insert the continuous items into the same leaf */
 840                path->slots[0]++;
 841                btrfs_batch_insert_items(root, path, curr);
 842        }
 843        btrfs_release_delayed_item(prev);
 844        btrfs_mark_buffer_dirty(path->nodes[0]);
 845
 846        btrfs_release_path(path);
 847        mutex_unlock(&node->mutex);
 848        goto do_again;
 849
 850insert_end:
 851        mutex_unlock(&node->mutex);
 852        return ret;
 853}
 854
 855static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 856                                    struct btrfs_root *root,
 857                                    struct btrfs_path *path,
 858                                    struct btrfs_delayed_item *item)
 859{
 860        struct btrfs_fs_info *fs_info = root->fs_info;
 861        struct btrfs_delayed_item *curr, *next;
 862        struct extent_buffer *leaf;
 863        struct btrfs_key key;
 864        struct list_head head;
 865        int nitems, i, last_item;
 866        int ret = 0;
 867
 868        BUG_ON(!path->nodes[0]);
 869
 870        leaf = path->nodes[0];
 871
 872        i = path->slots[0];
 873        last_item = btrfs_header_nritems(leaf) - 1;
 874        if (i > last_item)
 875                return -ENOENT; /* FIXME: Is errno suitable? */
 876
 877        next = item;
 878        INIT_LIST_HEAD(&head);
 879        btrfs_item_key_to_cpu(leaf, &key, i);
 880        nitems = 0;
 881        /*
 882         * count the number of the dir index items that we can delete in batch
 883         */
 884        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 885                list_add_tail(&next->tree_list, &head);
 886                nitems++;
 887
 888                curr = next;
 889                next = __btrfs_next_delayed_item(curr);
 890                if (!next)
 891                        break;
 892
 893                if (!btrfs_is_continuous_delayed_item(curr, next))
 894                        break;
 895
 896                i++;
 897                if (i > last_item)
 898                        break;
 899                btrfs_item_key_to_cpu(leaf, &key, i);
 900        }
 901
 902        if (!nitems)
 903                return 0;
 904
 905        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 906        if (ret)
 907                goto out;
 908
 909        list_for_each_entry_safe(curr, next, &head, tree_list) {
 910                btrfs_delayed_item_release_metadata(fs_info, curr);
 911                list_del(&curr->tree_list);
 912                btrfs_release_delayed_item(curr);
 913        }
 914
 915out:
 916        return ret;
 917}
 918
 919static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 920                                      struct btrfs_path *path,
 921                                      struct btrfs_root *root,
 922                                      struct btrfs_delayed_node *node)
 923{
 924        struct btrfs_delayed_item *curr, *prev;
 925        int ret = 0;
 926
 927do_again:
 928        mutex_lock(&node->mutex);
 929        curr = __btrfs_first_delayed_deletion_item(node);
 930        if (!curr)
 931                goto delete_fail;
 932
 933        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 934        if (ret < 0)
 935                goto delete_fail;
 936        else if (ret > 0) {
 937                /*
 938                 * can't find the item which the node points to, so this node
 939                 * is invalid, just drop it.
 940                 */
 941                prev = curr;
 942                curr = __btrfs_next_delayed_item(prev);
 943                btrfs_release_delayed_item(prev);
 944                ret = 0;
 945                btrfs_release_path(path);
 946                if (curr) {
 947                        mutex_unlock(&node->mutex);
 948                        goto do_again;
 949                } else
 950                        goto delete_fail;
 951        }
 952
 953        btrfs_batch_delete_items(trans, root, path, curr);
 954        btrfs_release_path(path);
 955        mutex_unlock(&node->mutex);
 956        goto do_again;
 957
 958delete_fail:
 959        btrfs_release_path(path);
 960        mutex_unlock(&node->mutex);
 961        return ret;
 962}
 963
 964static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 965{
 966        struct btrfs_delayed_root *delayed_root;
 967
 968        if (delayed_node &&
 969            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 970                BUG_ON(!delayed_node->root);
 971                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 972                delayed_node->count--;
 973
 974                delayed_root = delayed_node->root->fs_info->delayed_root;
 975                finish_one_item(delayed_root);
 976        }
 977}
 978
 979static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 980{
 981        struct btrfs_delayed_root *delayed_root;
 982
 983        ASSERT(delayed_node->root);
 984        clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
 985        delayed_node->count--;
 986
 987        delayed_root = delayed_node->root->fs_info->delayed_root;
 988        finish_one_item(delayed_root);
 989}
 990
 991static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
 992                                        struct btrfs_root *root,
 993                                        struct btrfs_path *path,
 994                                        struct btrfs_delayed_node *node)
 995{
 996        struct btrfs_fs_info *fs_info = root->fs_info;
 997        struct btrfs_key key;
 998        struct btrfs_inode_item *inode_item;
 999        struct extent_buffer *leaf;
1000        int mod;
1001        int ret;
1002
1003        key.objectid = node->inode_id;
1004        key.type = BTRFS_INODE_ITEM_KEY;
1005        key.offset = 0;
1006
1007        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1008                mod = -1;
1009        else
1010                mod = 1;
1011
1012        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1013        if (ret > 0) {
1014                btrfs_release_path(path);
1015                return -ENOENT;
1016        } else if (ret < 0) {
1017                return ret;
1018        }
1019
1020        leaf = path->nodes[0];
1021        inode_item = btrfs_item_ptr(leaf, path->slots[0],
1022                                    struct btrfs_inode_item);
1023        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1024                            sizeof(struct btrfs_inode_item));
1025        btrfs_mark_buffer_dirty(leaf);
1026
1027        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1028                goto no_iref;
1029
1030        path->slots[0]++;
1031        if (path->slots[0] >= btrfs_header_nritems(leaf))
1032                goto search;
1033again:
1034        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1035        if (key.objectid != node->inode_id)
1036                goto out;
1037
1038        if (key.type != BTRFS_INODE_REF_KEY &&
1039            key.type != BTRFS_INODE_EXTREF_KEY)
1040                goto out;
1041
1042        /*
1043         * Delayed iref deletion is for the inode who has only one link,
1044         * so there is only one iref. The case that several irefs are
1045         * in the same item doesn't exist.
1046         */
1047        btrfs_del_item(trans, root, path);
1048out:
1049        btrfs_release_delayed_iref(node);
1050no_iref:
1051        btrfs_release_path(path);
1052err_out:
1053        btrfs_delayed_inode_release_metadata(fs_info, node);
1054        btrfs_release_delayed_inode(node);
1055
1056        return ret;
1057
1058search:
1059        btrfs_release_path(path);
1060
1061        key.type = BTRFS_INODE_EXTREF_KEY;
1062        key.offset = -1;
1063        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1064        if (ret < 0)
1065                goto err_out;
1066        ASSERT(ret);
1067
1068        ret = 0;
1069        leaf = path->nodes[0];
1070        path->slots[0]--;
1071        goto again;
1072}
1073
1074static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1075                                             struct btrfs_root *root,
1076                                             struct btrfs_path *path,
1077                                             struct btrfs_delayed_node *node)
1078{
1079        int ret;
1080
1081        mutex_lock(&node->mutex);
1082        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1083                mutex_unlock(&node->mutex);
1084                return 0;
1085        }
1086
1087        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1088        mutex_unlock(&node->mutex);
1089        return ret;
1090}
1091
1092static inline int
1093__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1094                                   struct btrfs_path *path,
1095                                   struct btrfs_delayed_node *node)
1096{
1097        int ret;
1098
1099        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1100        if (ret)
1101                return ret;
1102
1103        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1104        if (ret)
1105                return ret;
1106
1107        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1108        return ret;
1109}
1110
1111/*
1112 * Called when committing the transaction.
1113 * Returns 0 on success.
1114 * Returns < 0 on error and returns with an aborted transaction with any
1115 * outstanding delayed items cleaned up.
1116 */
1117static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1118                                     struct btrfs_fs_info *fs_info, int nr)
1119{
1120        struct btrfs_delayed_root *delayed_root;
1121        struct btrfs_delayed_node *curr_node, *prev_node;
1122        struct btrfs_path *path;
1123        struct btrfs_block_rsv *block_rsv;
1124        int ret = 0;
1125        bool count = (nr > 0);
1126
1127        if (trans->aborted)
1128                return -EIO;
1129
1130        path = btrfs_alloc_path();
1131        if (!path)
1132                return -ENOMEM;
1133        path->leave_spinning = 1;
1134
1135        block_rsv = trans->block_rsv;
1136        trans->block_rsv = &fs_info->delayed_block_rsv;
1137
1138        delayed_root = fs_info->delayed_root;
1139
1140        curr_node = btrfs_first_delayed_node(delayed_root);
1141        while (curr_node && (!count || (count && nr--))) {
1142                ret = __btrfs_commit_inode_delayed_items(trans, path,
1143                                                         curr_node);
1144                if (ret) {
1145                        btrfs_release_delayed_node(curr_node);
1146                        curr_node = NULL;
1147                        btrfs_abort_transaction(trans, ret);
1148                        break;
1149                }
1150
1151                prev_node = curr_node;
1152                curr_node = btrfs_next_delayed_node(curr_node);
1153                btrfs_release_delayed_node(prev_node);
1154        }
1155
1156        if (curr_node)
1157                btrfs_release_delayed_node(curr_node);
1158        btrfs_free_path(path);
1159        trans->block_rsv = block_rsv;
1160
1161        return ret;
1162}
1163
1164int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1165                            struct btrfs_fs_info *fs_info)
1166{
1167        return __btrfs_run_delayed_items(trans, fs_info, -1);
1168}
1169
1170int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1171                               struct btrfs_fs_info *fs_info, int nr)
1172{
1173        return __btrfs_run_delayed_items(trans, fs_info, nr);
1174}
1175
1176int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1177                                     struct btrfs_inode *inode)
1178{
1179        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1180        struct btrfs_path *path;
1181        struct btrfs_block_rsv *block_rsv;
1182        int ret;
1183
1184        if (!delayed_node)
1185                return 0;
1186
1187        mutex_lock(&delayed_node->mutex);
1188        if (!delayed_node->count) {
1189                mutex_unlock(&delayed_node->mutex);
1190                btrfs_release_delayed_node(delayed_node);
1191                return 0;
1192        }
1193        mutex_unlock(&delayed_node->mutex);
1194
1195        path = btrfs_alloc_path();
1196        if (!path) {
1197                btrfs_release_delayed_node(delayed_node);
1198                return -ENOMEM;
1199        }
1200        path->leave_spinning = 1;
1201
1202        block_rsv = trans->block_rsv;
1203        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1204
1205        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1206
1207        btrfs_release_delayed_node(delayed_node);
1208        btrfs_free_path(path);
1209        trans->block_rsv = block_rsv;
1210
1211        return ret;
1212}
1213
1214int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1215{
1216        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1217        struct btrfs_trans_handle *trans;
1218        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1219        struct btrfs_path *path;
1220        struct btrfs_block_rsv *block_rsv;
1221        int ret;
1222
1223        if (!delayed_node)
1224                return 0;
1225
1226        mutex_lock(&delayed_node->mutex);
1227        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1228                mutex_unlock(&delayed_node->mutex);
1229                btrfs_release_delayed_node(delayed_node);
1230                return 0;
1231        }
1232        mutex_unlock(&delayed_node->mutex);
1233
1234        trans = btrfs_join_transaction(delayed_node->root);
1235        if (IS_ERR(trans)) {
1236                ret = PTR_ERR(trans);
1237                goto out;
1238        }
1239
1240        path = btrfs_alloc_path();
1241        if (!path) {
1242                ret = -ENOMEM;
1243                goto trans_out;
1244        }
1245        path->leave_spinning = 1;
1246
1247        block_rsv = trans->block_rsv;
1248        trans->block_rsv = &fs_info->delayed_block_rsv;
1249
1250        mutex_lock(&delayed_node->mutex);
1251        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1252                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1253                                                   path, delayed_node);
1254        else
1255                ret = 0;
1256        mutex_unlock(&delayed_node->mutex);
1257
1258        btrfs_free_path(path);
1259        trans->block_rsv = block_rsv;
1260trans_out:
1261        btrfs_end_transaction(trans);
1262        btrfs_btree_balance_dirty(fs_info);
1263out:
1264        btrfs_release_delayed_node(delayed_node);
1265
1266        return ret;
1267}
1268
1269void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1270{
1271        struct btrfs_delayed_node *delayed_node;
1272
1273        delayed_node = READ_ONCE(inode->delayed_node);
1274        if (!delayed_node)
1275                return;
1276
1277        inode->delayed_node = NULL;
1278        btrfs_release_delayed_node(delayed_node);
1279}
1280
1281struct btrfs_async_delayed_work {
1282        struct btrfs_delayed_root *delayed_root;
1283        int nr;
1284        struct btrfs_work work;
1285};
1286
1287static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1288{
1289        struct btrfs_async_delayed_work *async_work;
1290        struct btrfs_delayed_root *delayed_root;
1291        struct btrfs_trans_handle *trans;
1292        struct btrfs_path *path;
1293        struct btrfs_delayed_node *delayed_node = NULL;
1294        struct btrfs_root *root;
1295        struct btrfs_block_rsv *block_rsv;
1296        int total_done = 0;
1297
1298        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1299        delayed_root = async_work->delayed_root;
1300
1301        path = btrfs_alloc_path();
1302        if (!path)
1303                goto out;
1304
1305again:
1306        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1307                goto free_path;
1308
1309        delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1310        if (!delayed_node)
1311                goto free_path;
1312
1313        path->leave_spinning = 1;
1314        root = delayed_node->root;
1315
1316        trans = btrfs_join_transaction(root);
1317        if (IS_ERR(trans))
1318                goto release_path;
1319
1320        block_rsv = trans->block_rsv;
1321        trans->block_rsv = &root->fs_info->delayed_block_rsv;
1322
1323        __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1324
1325        trans->block_rsv = block_rsv;
1326        btrfs_end_transaction(trans);
1327        btrfs_btree_balance_dirty_nodelay(root->fs_info);
1328
1329release_path:
1330        btrfs_release_path(path);
1331        total_done++;
1332
1333        btrfs_release_prepared_delayed_node(delayed_node);
1334        if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1335            total_done < async_work->nr)
1336                goto again;
1337
1338free_path:
1339        btrfs_free_path(path);
1340out:
1341        wake_up(&delayed_root->wait);
1342        kfree(async_work);
1343}
1344
1345
1346static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1347                                     struct btrfs_fs_info *fs_info, int nr)
1348{
1349        struct btrfs_async_delayed_work *async_work;
1350
1351        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1352            btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1353                return 0;
1354
1355        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356        if (!async_work)
1357                return -ENOMEM;
1358
1359        async_work->delayed_root = delayed_root;
1360        btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1361                        btrfs_async_run_delayed_root, NULL, NULL);
1362        async_work->nr = nr;
1363
1364        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365        return 0;
1366}
1367
1368void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369{
1370        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1371}
1372
1373static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374{
1375        int val = atomic_read(&delayed_root->items_seq);
1376
1377        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378                return 1;
1379
1380        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381                return 1;
1382
1383        return 0;
1384}
1385
1386void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387{
1388        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389
1390        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391                return;
1392
1393        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1394                int seq;
1395                int ret;
1396
1397                seq = atomic_read(&delayed_root->items_seq);
1398
1399                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1400                if (ret)
1401                        return;
1402
1403                wait_event_interruptible(delayed_root->wait,
1404                                         could_end_wait(delayed_root, seq));
1405                return;
1406        }
1407
1408        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1409}
1410
1411/* Will return 0 or -ENOMEM */
1412int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1413                                   struct btrfs_fs_info *fs_info,
1414                                   const char *name, int name_len,
1415                                   struct btrfs_inode *dir,
1416                                   struct btrfs_disk_key *disk_key, u8 type,
1417                                   u64 index)
1418{
1419        struct btrfs_delayed_node *delayed_node;
1420        struct btrfs_delayed_item *delayed_item;
1421        struct btrfs_dir_item *dir_item;
1422        int ret;
1423
1424        delayed_node = btrfs_get_or_create_delayed_node(dir);
1425        if (IS_ERR(delayed_node))
1426                return PTR_ERR(delayed_node);
1427
1428        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429        if (!delayed_item) {
1430                ret = -ENOMEM;
1431                goto release_node;
1432        }
1433
1434        delayed_item->key.objectid = btrfs_ino(dir);
1435        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436        delayed_item->key.offset = index;
1437
1438        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439        dir_item->location = *disk_key;
1440        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441        btrfs_set_stack_dir_data_len(dir_item, 0);
1442        btrfs_set_stack_dir_name_len(dir_item, name_len);
1443        btrfs_set_stack_dir_type(dir_item, type);
1444        memcpy((char *)(dir_item + 1), name, name_len);
1445
1446        ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1447        /*
1448         * we have reserved enough space when we start a new transaction,
1449         * so reserving metadata failure is impossible
1450         */
1451        BUG_ON(ret);
1452
1453
1454        mutex_lock(&delayed_node->mutex);
1455        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1456        if (unlikely(ret)) {
1457                btrfs_err(fs_info,
1458                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1459                          name_len, name, delayed_node->root->objectid,
1460                          delayed_node->inode_id, ret);
1461                BUG();
1462        }
1463        mutex_unlock(&delayed_node->mutex);
1464
1465release_node:
1466        btrfs_release_delayed_node(delayed_node);
1467        return ret;
1468}
1469
1470static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1471                                               struct btrfs_delayed_node *node,
1472                                               struct btrfs_key *key)
1473{
1474        struct btrfs_delayed_item *item;
1475
1476        mutex_lock(&node->mutex);
1477        item = __btrfs_lookup_delayed_insertion_item(node, key);
1478        if (!item) {
1479                mutex_unlock(&node->mutex);
1480                return 1;
1481        }
1482
1483        btrfs_delayed_item_release_metadata(fs_info, item);
1484        btrfs_release_delayed_item(item);
1485        mutex_unlock(&node->mutex);
1486        return 0;
1487}
1488
1489int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1490                                   struct btrfs_fs_info *fs_info,
1491                                   struct btrfs_inode *dir, u64 index)
1492{
1493        struct btrfs_delayed_node *node;
1494        struct btrfs_delayed_item *item;
1495        struct btrfs_key item_key;
1496        int ret;
1497
1498        node = btrfs_get_or_create_delayed_node(dir);
1499        if (IS_ERR(node))
1500                return PTR_ERR(node);
1501
1502        item_key.objectid = btrfs_ino(dir);
1503        item_key.type = BTRFS_DIR_INDEX_KEY;
1504        item_key.offset = index;
1505
1506        ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1507        if (!ret)
1508                goto end;
1509
1510        item = btrfs_alloc_delayed_item(0);
1511        if (!item) {
1512                ret = -ENOMEM;
1513                goto end;
1514        }
1515
1516        item->key = item_key;
1517
1518        ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1519        /*
1520         * we have reserved enough space when we start a new transaction,
1521         * so reserving metadata failure is impossible.
1522         */
1523        BUG_ON(ret);
1524
1525        mutex_lock(&node->mutex);
1526        ret = __btrfs_add_delayed_deletion_item(node, item);
1527        if (unlikely(ret)) {
1528                btrfs_err(fs_info,
1529                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1530                          index, node->root->objectid, node->inode_id, ret);
1531                BUG();
1532        }
1533        mutex_unlock(&node->mutex);
1534end:
1535        btrfs_release_delayed_node(node);
1536        return ret;
1537}
1538
1539int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1540{
1541        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1542
1543        if (!delayed_node)
1544                return -ENOENT;
1545
1546        /*
1547         * Since we have held i_mutex of this directory, it is impossible that
1548         * a new directory index is added into the delayed node and index_cnt
1549         * is updated now. So we needn't lock the delayed node.
1550         */
1551        if (!delayed_node->index_cnt) {
1552                btrfs_release_delayed_node(delayed_node);
1553                return -EINVAL;
1554        }
1555
1556        inode->index_cnt = delayed_node->index_cnt;
1557        btrfs_release_delayed_node(delayed_node);
1558        return 0;
1559}
1560
1561bool btrfs_readdir_get_delayed_items(struct inode *inode,
1562                                     struct list_head *ins_list,
1563                                     struct list_head *del_list)
1564{
1565        struct btrfs_delayed_node *delayed_node;
1566        struct btrfs_delayed_item *item;
1567
1568        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1569        if (!delayed_node)
1570                return false;
1571
1572        /*
1573         * We can only do one readdir with delayed items at a time because of
1574         * item->readdir_list.
1575         */
1576        inode_unlock_shared(inode);
1577        inode_lock(inode);
1578
1579        mutex_lock(&delayed_node->mutex);
1580        item = __btrfs_first_delayed_insertion_item(delayed_node);
1581        while (item) {
1582                refcount_inc(&item->refs);
1583                list_add_tail(&item->readdir_list, ins_list);
1584                item = __btrfs_next_delayed_item(item);
1585        }
1586
1587        item = __btrfs_first_delayed_deletion_item(delayed_node);
1588        while (item) {
1589                refcount_inc(&item->refs);
1590                list_add_tail(&item->readdir_list, del_list);
1591                item = __btrfs_next_delayed_item(item);
1592        }
1593        mutex_unlock(&delayed_node->mutex);
1594        /*
1595         * This delayed node is still cached in the btrfs inode, so refs
1596         * must be > 1 now, and we needn't check it is going to be freed
1597         * or not.
1598         *
1599         * Besides that, this function is used to read dir, we do not
1600         * insert/delete delayed items in this period. So we also needn't
1601         * requeue or dequeue this delayed node.
1602         */
1603        refcount_dec(&delayed_node->refs);
1604
1605        return true;
1606}
1607
1608void btrfs_readdir_put_delayed_items(struct inode *inode,
1609                                     struct list_head *ins_list,
1610                                     struct list_head *del_list)
1611{
1612        struct btrfs_delayed_item *curr, *next;
1613
1614        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1615                list_del(&curr->readdir_list);
1616                if (refcount_dec_and_test(&curr->refs))
1617                        kfree(curr);
1618        }
1619
1620        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621                list_del(&curr->readdir_list);
1622                if (refcount_dec_and_test(&curr->refs))
1623                        kfree(curr);
1624        }
1625
1626        /*
1627         * The VFS is going to do up_read(), so we need to downgrade back to a
1628         * read lock.
1629         */
1630        downgrade_write(&inode->i_rwsem);
1631}
1632
1633int btrfs_should_delete_dir_index(struct list_head *del_list,
1634                                  u64 index)
1635{
1636        struct btrfs_delayed_item *curr;
1637        int ret = 0;
1638
1639        list_for_each_entry(curr, del_list, readdir_list) {
1640                if (curr->key.offset > index)
1641                        break;
1642                if (curr->key.offset == index) {
1643                        ret = 1;
1644                        break;
1645                }
1646        }
1647        return ret;
1648}
1649
1650/*
1651 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1652 *
1653 */
1654int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1655                                    struct list_head *ins_list)
1656{
1657        struct btrfs_dir_item *di;
1658        struct btrfs_delayed_item *curr, *next;
1659        struct btrfs_key location;
1660        char *name;
1661        int name_len;
1662        int over = 0;
1663        unsigned char d_type;
1664
1665        if (list_empty(ins_list))
1666                return 0;
1667
1668        /*
1669         * Changing the data of the delayed item is impossible. So
1670         * we needn't lock them. And we have held i_mutex of the
1671         * directory, nobody can delete any directory indexes now.
1672         */
1673        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1674                list_del(&curr->readdir_list);
1675
1676                if (curr->key.offset < ctx->pos) {
1677                        if (refcount_dec_and_test(&curr->refs))
1678                                kfree(curr);
1679                        continue;
1680                }
1681
1682                ctx->pos = curr->key.offset;
1683
1684                di = (struct btrfs_dir_item *)curr->data;
1685                name = (char *)(di + 1);
1686                name_len = btrfs_stack_dir_name_len(di);
1687
1688                d_type = btrfs_filetype_table[di->type];
1689                btrfs_disk_key_to_cpu(&location, &di->location);
1690
1691                over = !dir_emit(ctx, name, name_len,
1692                               location.objectid, d_type);
1693
1694                if (refcount_dec_and_test(&curr->refs))
1695                        kfree(curr);
1696
1697                if (over)
1698                        return 1;
1699                ctx->pos++;
1700        }
1701        return 0;
1702}
1703
1704static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1705                                  struct btrfs_inode_item *inode_item,
1706                                  struct inode *inode)
1707{
1708        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1709        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1710        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1711        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1712        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1713        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1714        btrfs_set_stack_inode_generation(inode_item,
1715                                         BTRFS_I(inode)->generation);
1716        btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1717        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1718        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1719        btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1720        btrfs_set_stack_inode_block_group(inode_item, 0);
1721
1722        btrfs_set_stack_timespec_sec(&inode_item->atime,
1723                                     inode->i_atime.tv_sec);
1724        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1725                                      inode->i_atime.tv_nsec);
1726
1727        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1728                                     inode->i_mtime.tv_sec);
1729        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1730                                      inode->i_mtime.tv_nsec);
1731
1732        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1733                                     inode->i_ctime.tv_sec);
1734        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1735                                      inode->i_ctime.tv_nsec);
1736
1737        btrfs_set_stack_timespec_sec(&inode_item->otime,
1738                                     BTRFS_I(inode)->i_otime.tv_sec);
1739        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1740                                     BTRFS_I(inode)->i_otime.tv_nsec);
1741}
1742
1743int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1744{
1745        struct btrfs_delayed_node *delayed_node;
1746        struct btrfs_inode_item *inode_item;
1747
1748        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1749        if (!delayed_node)
1750                return -ENOENT;
1751
1752        mutex_lock(&delayed_node->mutex);
1753        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1754                mutex_unlock(&delayed_node->mutex);
1755                btrfs_release_delayed_node(delayed_node);
1756                return -ENOENT;
1757        }
1758
1759        inode_item = &delayed_node->inode_item;
1760
1761        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1762        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1763        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1764        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1765        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1766        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1767        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1768        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1769
1770        inode->i_version = btrfs_stack_inode_sequence(inode_item);
1771        inode->i_rdev = 0;
1772        *rdev = btrfs_stack_inode_rdev(inode_item);
1773        BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1774
1775        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1776        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1777
1778        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1779        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1780
1781        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1782        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1783
1784        BTRFS_I(inode)->i_otime.tv_sec =
1785                btrfs_stack_timespec_sec(&inode_item->otime);
1786        BTRFS_I(inode)->i_otime.tv_nsec =
1787                btrfs_stack_timespec_nsec(&inode_item->otime);
1788
1789        inode->i_generation = BTRFS_I(inode)->generation;
1790        BTRFS_I(inode)->index_cnt = (u64)-1;
1791
1792        mutex_unlock(&delayed_node->mutex);
1793        btrfs_release_delayed_node(delayed_node);
1794        return 0;
1795}
1796
1797int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1798                               struct btrfs_root *root, struct inode *inode)
1799{
1800        struct btrfs_delayed_node *delayed_node;
1801        int ret = 0;
1802
1803        delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1804        if (IS_ERR(delayed_node))
1805                return PTR_ERR(delayed_node);
1806
1807        mutex_lock(&delayed_node->mutex);
1808        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1809                fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1810                goto release_node;
1811        }
1812
1813        ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1814                                                   delayed_node);
1815        if (ret)
1816                goto release_node;
1817
1818        fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1819        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1820        delayed_node->count++;
1821        atomic_inc(&root->fs_info->delayed_root->items);
1822release_node:
1823        mutex_unlock(&delayed_node->mutex);
1824        btrfs_release_delayed_node(delayed_node);
1825        return ret;
1826}
1827
1828int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1829{
1830        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1831        struct btrfs_delayed_node *delayed_node;
1832
1833        /*
1834         * we don't do delayed inode updates during log recovery because it
1835         * leads to enospc problems.  This means we also can't do
1836         * delayed inode refs
1837         */
1838        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1839                return -EAGAIN;
1840
1841        delayed_node = btrfs_get_or_create_delayed_node(inode);
1842        if (IS_ERR(delayed_node))
1843                return PTR_ERR(delayed_node);
1844
1845        /*
1846         * We don't reserve space for inode ref deletion is because:
1847         * - We ONLY do async inode ref deletion for the inode who has only
1848         *   one link(i_nlink == 1), it means there is only one inode ref.
1849         *   And in most case, the inode ref and the inode item are in the
1850         *   same leaf, and we will deal with them at the same time.
1851         *   Since we are sure we will reserve the space for the inode item,
1852         *   it is unnecessary to reserve space for inode ref deletion.
1853         * - If the inode ref and the inode item are not in the same leaf,
1854         *   We also needn't worry about enospc problem, because we reserve
1855         *   much more space for the inode update than it needs.
1856         * - At the worst, we can steal some space from the global reservation.
1857         *   It is very rare.
1858         */
1859        mutex_lock(&delayed_node->mutex);
1860        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1861                goto release_node;
1862
1863        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1864        delayed_node->count++;
1865        atomic_inc(&fs_info->delayed_root->items);
1866release_node:
1867        mutex_unlock(&delayed_node->mutex);
1868        btrfs_release_delayed_node(delayed_node);
1869        return 0;
1870}
1871
1872static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1873{
1874        struct btrfs_root *root = delayed_node->root;
1875        struct btrfs_fs_info *fs_info = root->fs_info;
1876        struct btrfs_delayed_item *curr_item, *prev_item;
1877
1878        mutex_lock(&delayed_node->mutex);
1879        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1880        while (curr_item) {
1881                btrfs_delayed_item_release_metadata(fs_info, curr_item);
1882                prev_item = curr_item;
1883                curr_item = __btrfs_next_delayed_item(prev_item);
1884                btrfs_release_delayed_item(prev_item);
1885        }
1886
1887        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1888        while (curr_item) {
1889                btrfs_delayed_item_release_metadata(fs_info, curr_item);
1890                prev_item = curr_item;
1891                curr_item = __btrfs_next_delayed_item(prev_item);
1892                btrfs_release_delayed_item(prev_item);
1893        }
1894
1895        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1896                btrfs_release_delayed_iref(delayed_node);
1897
1898        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1899                btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1900                btrfs_release_delayed_inode(delayed_node);
1901        }
1902        mutex_unlock(&delayed_node->mutex);
1903}
1904
1905void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1906{
1907        struct btrfs_delayed_node *delayed_node;
1908
1909        delayed_node = btrfs_get_delayed_node(inode);
1910        if (!delayed_node)
1911                return;
1912
1913        __btrfs_kill_delayed_node(delayed_node);
1914        btrfs_release_delayed_node(delayed_node);
1915}
1916
1917void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1918{
1919        u64 inode_id = 0;
1920        struct btrfs_delayed_node *delayed_nodes[8];
1921        int i, n;
1922
1923        while (1) {
1924                spin_lock(&root->inode_lock);
1925                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1926                                           (void **)delayed_nodes, inode_id,
1927                                           ARRAY_SIZE(delayed_nodes));
1928                if (!n) {
1929                        spin_unlock(&root->inode_lock);
1930                        break;
1931                }
1932
1933                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1934
1935                for (i = 0; i < n; i++)
1936                        refcount_inc(&delayed_nodes[i]->refs);
1937                spin_unlock(&root->inode_lock);
1938
1939                for (i = 0; i < n; i++) {
1940                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1941                        btrfs_release_delayed_node(delayed_nodes[i]);
1942                }
1943        }
1944}
1945
1946void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1947{
1948        struct btrfs_delayed_node *curr_node, *prev_node;
1949
1950        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1951        while (curr_node) {
1952                __btrfs_kill_delayed_node(curr_node);
1953
1954                prev_node = curr_node;
1955                curr_node = btrfs_next_delayed_node(curr_node);
1956                btrfs_release_delayed_node(prev_node);
1957        }
1958}
1959
1960