linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/sched/signal.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/sort.h>
  24#include <linux/rcupdate.h>
  25#include <linux/kthread.h>
  26#include <linux/slab.h>
  27#include <linux/ratelimit.h>
  28#include <linux/percpu_counter.h>
  29#include <linux/lockdep.h>
  30#include "hash.h"
  31#include "tree-log.h"
  32#include "disk-io.h"
  33#include "print-tree.h"
  34#include "volumes.h"
  35#include "raid56.h"
  36#include "locking.h"
  37#include "free-space-cache.h"
  38#include "free-space-tree.h"
  39#include "math.h"
  40#include "sysfs.h"
  41#include "qgroup.h"
  42#include "ref-verify.h"
  43
  44#undef SCRAMBLE_DELAYED_REFS
  45
  46/*
  47 * control flags for do_chunk_alloc's force field
  48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  49 * if we really need one.
  50 *
  51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  52 * if we have very few chunks already allocated.  This is
  53 * used as part of the clustering code to help make sure
  54 * we have a good pool of storage to cluster in, without
  55 * filling the FS with empty chunks
  56 *
  57 * CHUNK_ALLOC_FORCE means it must try to allocate one
  58 *
  59 */
  60enum {
  61        CHUNK_ALLOC_NO_FORCE = 0,
  62        CHUNK_ALLOC_LIMITED = 1,
  63        CHUNK_ALLOC_FORCE = 2,
  64};
  65
  66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  67                               struct btrfs_fs_info *fs_info,
  68                                struct btrfs_delayed_ref_node *node, u64 parent,
  69                                u64 root_objectid, u64 owner_objectid,
  70                                u64 owner_offset, int refs_to_drop,
  71                                struct btrfs_delayed_extent_op *extra_op);
  72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  73                                    struct extent_buffer *leaf,
  74                                    struct btrfs_extent_item *ei);
  75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  76                                      struct btrfs_fs_info *fs_info,
  77                                      u64 parent, u64 root_objectid,
  78                                      u64 flags, u64 owner, u64 offset,
  79                                      struct btrfs_key *ins, int ref_mod);
  80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  81                                     struct btrfs_fs_info *fs_info,
  82                                     u64 parent, u64 root_objectid,
  83                                     u64 flags, struct btrfs_disk_key *key,
  84                                     int level, struct btrfs_key *ins);
  85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  86                          struct btrfs_fs_info *fs_info, u64 flags,
  87                          int force);
  88static int find_next_key(struct btrfs_path *path, int level,
  89                         struct btrfs_key *key);
  90static void dump_space_info(struct btrfs_fs_info *fs_info,
  91                            struct btrfs_space_info *info, u64 bytes,
  92                            int dump_block_groups);
  93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  94                               u64 num_bytes);
  95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
  96                                     struct btrfs_space_info *space_info,
  97                                     u64 num_bytes);
  98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
  99                                     struct btrfs_space_info *space_info,
 100                                     u64 num_bytes);
 101
 102static noinline int
 103block_group_cache_done(struct btrfs_block_group_cache *cache)
 104{
 105        smp_mb();
 106        return cache->cached == BTRFS_CACHE_FINISHED ||
 107                cache->cached == BTRFS_CACHE_ERROR;
 108}
 109
 110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 111{
 112        return (cache->flags & bits) == bits;
 113}
 114
 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 116{
 117        atomic_inc(&cache->count);
 118}
 119
 120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 121{
 122        if (atomic_dec_and_test(&cache->count)) {
 123                WARN_ON(cache->pinned > 0);
 124                WARN_ON(cache->reserved > 0);
 125
 126                /*
 127                 * If not empty, someone is still holding mutex of
 128                 * full_stripe_lock, which can only be released by caller.
 129                 * And it will definitely cause use-after-free when caller
 130                 * tries to release full stripe lock.
 131                 *
 132                 * No better way to resolve, but only to warn.
 133                 */
 134                WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
 135                kfree(cache->free_space_ctl);
 136                kfree(cache);
 137        }
 138}
 139
 140/*
 141 * this adds the block group to the fs_info rb tree for the block group
 142 * cache
 143 */
 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 145                                struct btrfs_block_group_cache *block_group)
 146{
 147        struct rb_node **p;
 148        struct rb_node *parent = NULL;
 149        struct btrfs_block_group_cache *cache;
 150
 151        spin_lock(&info->block_group_cache_lock);
 152        p = &info->block_group_cache_tree.rb_node;
 153
 154        while (*p) {
 155                parent = *p;
 156                cache = rb_entry(parent, struct btrfs_block_group_cache,
 157                                 cache_node);
 158                if (block_group->key.objectid < cache->key.objectid) {
 159                        p = &(*p)->rb_left;
 160                } else if (block_group->key.objectid > cache->key.objectid) {
 161                        p = &(*p)->rb_right;
 162                } else {
 163                        spin_unlock(&info->block_group_cache_lock);
 164                        return -EEXIST;
 165                }
 166        }
 167
 168        rb_link_node(&block_group->cache_node, parent, p);
 169        rb_insert_color(&block_group->cache_node,
 170                        &info->block_group_cache_tree);
 171
 172        if (info->first_logical_byte > block_group->key.objectid)
 173                info->first_logical_byte = block_group->key.objectid;
 174
 175        spin_unlock(&info->block_group_cache_lock);
 176
 177        return 0;
 178}
 179
 180/*
 181 * This will return the block group at or after bytenr if contains is 0, else
 182 * it will return the block group that contains the bytenr
 183 */
 184static struct btrfs_block_group_cache *
 185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 186                              int contains)
 187{
 188        struct btrfs_block_group_cache *cache, *ret = NULL;
 189        struct rb_node *n;
 190        u64 end, start;
 191
 192        spin_lock(&info->block_group_cache_lock);
 193        n = info->block_group_cache_tree.rb_node;
 194
 195        while (n) {
 196                cache = rb_entry(n, struct btrfs_block_group_cache,
 197                                 cache_node);
 198                end = cache->key.objectid + cache->key.offset - 1;
 199                start = cache->key.objectid;
 200
 201                if (bytenr < start) {
 202                        if (!contains && (!ret || start < ret->key.objectid))
 203                                ret = cache;
 204                        n = n->rb_left;
 205                } else if (bytenr > start) {
 206                        if (contains && bytenr <= end) {
 207                                ret = cache;
 208                                break;
 209                        }
 210                        n = n->rb_right;
 211                } else {
 212                        ret = cache;
 213                        break;
 214                }
 215        }
 216        if (ret) {
 217                btrfs_get_block_group(ret);
 218                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 219                        info->first_logical_byte = ret->key.objectid;
 220        }
 221        spin_unlock(&info->block_group_cache_lock);
 222
 223        return ret;
 224}
 225
 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
 227                               u64 start, u64 num_bytes)
 228{
 229        u64 end = start + num_bytes - 1;
 230        set_extent_bits(&fs_info->freed_extents[0],
 231                        start, end, EXTENT_UPTODATE);
 232        set_extent_bits(&fs_info->freed_extents[1],
 233                        start, end, EXTENT_UPTODATE);
 234        return 0;
 235}
 236
 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
 238                                  struct btrfs_block_group_cache *cache)
 239{
 240        u64 start, end;
 241
 242        start = cache->key.objectid;
 243        end = start + cache->key.offset - 1;
 244
 245        clear_extent_bits(&fs_info->freed_extents[0],
 246                          start, end, EXTENT_UPTODATE);
 247        clear_extent_bits(&fs_info->freed_extents[1],
 248                          start, end, EXTENT_UPTODATE);
 249}
 250
 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
 252                                 struct btrfs_block_group_cache *cache)
 253{
 254        u64 bytenr;
 255        u64 *logical;
 256        int stripe_len;
 257        int i, nr, ret;
 258
 259        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 260                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 261                cache->bytes_super += stripe_len;
 262                ret = add_excluded_extent(fs_info, cache->key.objectid,
 263                                          stripe_len);
 264                if (ret)
 265                        return ret;
 266        }
 267
 268        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 269                bytenr = btrfs_sb_offset(i);
 270                ret = btrfs_rmap_block(fs_info, cache->key.objectid,
 271                                       bytenr, 0, &logical, &nr, &stripe_len);
 272                if (ret)
 273                        return ret;
 274
 275                while (nr--) {
 276                        u64 start, len;
 277
 278                        if (logical[nr] > cache->key.objectid +
 279                            cache->key.offset)
 280                                continue;
 281
 282                        if (logical[nr] + stripe_len <= cache->key.objectid)
 283                                continue;
 284
 285                        start = logical[nr];
 286                        if (start < cache->key.objectid) {
 287                                start = cache->key.objectid;
 288                                len = (logical[nr] + stripe_len) - start;
 289                        } else {
 290                                len = min_t(u64, stripe_len,
 291                                            cache->key.objectid +
 292                                            cache->key.offset - start);
 293                        }
 294
 295                        cache->bytes_super += len;
 296                        ret = add_excluded_extent(fs_info, start, len);
 297                        if (ret) {
 298                                kfree(logical);
 299                                return ret;
 300                        }
 301                }
 302
 303                kfree(logical);
 304        }
 305        return 0;
 306}
 307
 308static struct btrfs_caching_control *
 309get_caching_control(struct btrfs_block_group_cache *cache)
 310{
 311        struct btrfs_caching_control *ctl;
 312
 313        spin_lock(&cache->lock);
 314        if (!cache->caching_ctl) {
 315                spin_unlock(&cache->lock);
 316                return NULL;
 317        }
 318
 319        ctl = cache->caching_ctl;
 320        refcount_inc(&ctl->count);
 321        spin_unlock(&cache->lock);
 322        return ctl;
 323}
 324
 325static void put_caching_control(struct btrfs_caching_control *ctl)
 326{
 327        if (refcount_dec_and_test(&ctl->count))
 328                kfree(ctl);
 329}
 330
 331#ifdef CONFIG_BTRFS_DEBUG
 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
 333{
 334        struct btrfs_fs_info *fs_info = block_group->fs_info;
 335        u64 start = block_group->key.objectid;
 336        u64 len = block_group->key.offset;
 337        u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 338                fs_info->nodesize : fs_info->sectorsize;
 339        u64 step = chunk << 1;
 340
 341        while (len > chunk) {
 342                btrfs_remove_free_space(block_group, start, chunk);
 343                start += step;
 344                if (len < step)
 345                        len = 0;
 346                else
 347                        len -= step;
 348        }
 349}
 350#endif
 351
 352/*
 353 * this is only called by cache_block_group, since we could have freed extents
 354 * we need to check the pinned_extents for any extents that can't be used yet
 355 * since their free space will be released as soon as the transaction commits.
 356 */
 357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 358                       struct btrfs_fs_info *info, u64 start, u64 end)
 359{
 360        u64 extent_start, extent_end, size, total_added = 0;
 361        int ret;
 362
 363        while (start < end) {
 364                ret = find_first_extent_bit(info->pinned_extents, start,
 365                                            &extent_start, &extent_end,
 366                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 367                                            NULL);
 368                if (ret)
 369                        break;
 370
 371                if (extent_start <= start) {
 372                        start = extent_end + 1;
 373                } else if (extent_start > start && extent_start < end) {
 374                        size = extent_start - start;
 375                        total_added += size;
 376                        ret = btrfs_add_free_space(block_group, start,
 377                                                   size);
 378                        BUG_ON(ret); /* -ENOMEM or logic error */
 379                        start = extent_end + 1;
 380                } else {
 381                        break;
 382                }
 383        }
 384
 385        if (start < end) {
 386                size = end - start;
 387                total_added += size;
 388                ret = btrfs_add_free_space(block_group, start, size);
 389                BUG_ON(ret); /* -ENOMEM or logic error */
 390        }
 391
 392        return total_added;
 393}
 394
 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 396{
 397        struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
 398        struct btrfs_fs_info *fs_info = block_group->fs_info;
 399        struct btrfs_root *extent_root = fs_info->extent_root;
 400        struct btrfs_path *path;
 401        struct extent_buffer *leaf;
 402        struct btrfs_key key;
 403        u64 total_found = 0;
 404        u64 last = 0;
 405        u32 nritems;
 406        int ret;
 407        bool wakeup = true;
 408
 409        path = btrfs_alloc_path();
 410        if (!path)
 411                return -ENOMEM;
 412
 413        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 414
 415#ifdef CONFIG_BTRFS_DEBUG
 416        /*
 417         * If we're fragmenting we don't want to make anybody think we can
 418         * allocate from this block group until we've had a chance to fragment
 419         * the free space.
 420         */
 421        if (btrfs_should_fragment_free_space(block_group))
 422                wakeup = false;
 423#endif
 424        /*
 425         * We don't want to deadlock with somebody trying to allocate a new
 426         * extent for the extent root while also trying to search the extent
 427         * root to add free space.  So we skip locking and search the commit
 428         * root, since its read-only
 429         */
 430        path->skip_locking = 1;
 431        path->search_commit_root = 1;
 432        path->reada = READA_FORWARD;
 433
 434        key.objectid = last;
 435        key.offset = 0;
 436        key.type = BTRFS_EXTENT_ITEM_KEY;
 437
 438next:
 439        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 440        if (ret < 0)
 441                goto out;
 442
 443        leaf = path->nodes[0];
 444        nritems = btrfs_header_nritems(leaf);
 445
 446        while (1) {
 447                if (btrfs_fs_closing(fs_info) > 1) {
 448                        last = (u64)-1;
 449                        break;
 450                }
 451
 452                if (path->slots[0] < nritems) {
 453                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 454                } else {
 455                        ret = find_next_key(path, 0, &key);
 456                        if (ret)
 457                                break;
 458
 459                        if (need_resched() ||
 460                            rwsem_is_contended(&fs_info->commit_root_sem)) {
 461                                if (wakeup)
 462                                        caching_ctl->progress = last;
 463                                btrfs_release_path(path);
 464                                up_read(&fs_info->commit_root_sem);
 465                                mutex_unlock(&caching_ctl->mutex);
 466                                cond_resched();
 467                                mutex_lock(&caching_ctl->mutex);
 468                                down_read(&fs_info->commit_root_sem);
 469                                goto next;
 470                        }
 471
 472                        ret = btrfs_next_leaf(extent_root, path);
 473                        if (ret < 0)
 474                                goto out;
 475                        if (ret)
 476                                break;
 477                        leaf = path->nodes[0];
 478                        nritems = btrfs_header_nritems(leaf);
 479                        continue;
 480                }
 481
 482                if (key.objectid < last) {
 483                        key.objectid = last;
 484                        key.offset = 0;
 485                        key.type = BTRFS_EXTENT_ITEM_KEY;
 486
 487                        if (wakeup)
 488                                caching_ctl->progress = last;
 489                        btrfs_release_path(path);
 490                        goto next;
 491                }
 492
 493                if (key.objectid < block_group->key.objectid) {
 494                        path->slots[0]++;
 495                        continue;
 496                }
 497
 498                if (key.objectid >= block_group->key.objectid +
 499                    block_group->key.offset)
 500                        break;
 501
 502                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 503                    key.type == BTRFS_METADATA_ITEM_KEY) {
 504                        total_found += add_new_free_space(block_group,
 505                                                          fs_info, last,
 506                                                          key.objectid);
 507                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 508                                last = key.objectid +
 509                                        fs_info->nodesize;
 510                        else
 511                                last = key.objectid + key.offset;
 512
 513                        if (total_found > CACHING_CTL_WAKE_UP) {
 514                                total_found = 0;
 515                                if (wakeup)
 516                                        wake_up(&caching_ctl->wait);
 517                        }
 518                }
 519                path->slots[0]++;
 520        }
 521        ret = 0;
 522
 523        total_found += add_new_free_space(block_group, fs_info, last,
 524                                          block_group->key.objectid +
 525                                          block_group->key.offset);
 526        caching_ctl->progress = (u64)-1;
 527
 528out:
 529        btrfs_free_path(path);
 530        return ret;
 531}
 532
 533static noinline void caching_thread(struct btrfs_work *work)
 534{
 535        struct btrfs_block_group_cache *block_group;
 536        struct btrfs_fs_info *fs_info;
 537        struct btrfs_caching_control *caching_ctl;
 538        struct btrfs_root *extent_root;
 539        int ret;
 540
 541        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 542        block_group = caching_ctl->block_group;
 543        fs_info = block_group->fs_info;
 544        extent_root = fs_info->extent_root;
 545
 546        mutex_lock(&caching_ctl->mutex);
 547        down_read(&fs_info->commit_root_sem);
 548
 549        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 550                ret = load_free_space_tree(caching_ctl);
 551        else
 552                ret = load_extent_tree_free(caching_ctl);
 553
 554        spin_lock(&block_group->lock);
 555        block_group->caching_ctl = NULL;
 556        block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 557        spin_unlock(&block_group->lock);
 558
 559#ifdef CONFIG_BTRFS_DEBUG
 560        if (btrfs_should_fragment_free_space(block_group)) {
 561                u64 bytes_used;
 562
 563                spin_lock(&block_group->space_info->lock);
 564                spin_lock(&block_group->lock);
 565                bytes_used = block_group->key.offset -
 566                        btrfs_block_group_used(&block_group->item);
 567                block_group->space_info->bytes_used += bytes_used >> 1;
 568                spin_unlock(&block_group->lock);
 569                spin_unlock(&block_group->space_info->lock);
 570                fragment_free_space(block_group);
 571        }
 572#endif
 573
 574        caching_ctl->progress = (u64)-1;
 575
 576        up_read(&fs_info->commit_root_sem);
 577        free_excluded_extents(fs_info, block_group);
 578        mutex_unlock(&caching_ctl->mutex);
 579
 580        wake_up(&caching_ctl->wait);
 581
 582        put_caching_control(caching_ctl);
 583        btrfs_put_block_group(block_group);
 584}
 585
 586static int cache_block_group(struct btrfs_block_group_cache *cache,
 587                             int load_cache_only)
 588{
 589        DEFINE_WAIT(wait);
 590        struct btrfs_fs_info *fs_info = cache->fs_info;
 591        struct btrfs_caching_control *caching_ctl;
 592        int ret = 0;
 593
 594        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 595        if (!caching_ctl)
 596                return -ENOMEM;
 597
 598        INIT_LIST_HEAD(&caching_ctl->list);
 599        mutex_init(&caching_ctl->mutex);
 600        init_waitqueue_head(&caching_ctl->wait);
 601        caching_ctl->block_group = cache;
 602        caching_ctl->progress = cache->key.objectid;
 603        refcount_set(&caching_ctl->count, 1);
 604        btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 605                        caching_thread, NULL, NULL);
 606
 607        spin_lock(&cache->lock);
 608        /*
 609         * This should be a rare occasion, but this could happen I think in the
 610         * case where one thread starts to load the space cache info, and then
 611         * some other thread starts a transaction commit which tries to do an
 612         * allocation while the other thread is still loading the space cache
 613         * info.  The previous loop should have kept us from choosing this block
 614         * group, but if we've moved to the state where we will wait on caching
 615         * block groups we need to first check if we're doing a fast load here,
 616         * so we can wait for it to finish, otherwise we could end up allocating
 617         * from a block group who's cache gets evicted for one reason or
 618         * another.
 619         */
 620        while (cache->cached == BTRFS_CACHE_FAST) {
 621                struct btrfs_caching_control *ctl;
 622
 623                ctl = cache->caching_ctl;
 624                refcount_inc(&ctl->count);
 625                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 626                spin_unlock(&cache->lock);
 627
 628                schedule();
 629
 630                finish_wait(&ctl->wait, &wait);
 631                put_caching_control(ctl);
 632                spin_lock(&cache->lock);
 633        }
 634
 635        if (cache->cached != BTRFS_CACHE_NO) {
 636                spin_unlock(&cache->lock);
 637                kfree(caching_ctl);
 638                return 0;
 639        }
 640        WARN_ON(cache->caching_ctl);
 641        cache->caching_ctl = caching_ctl;
 642        cache->cached = BTRFS_CACHE_FAST;
 643        spin_unlock(&cache->lock);
 644
 645        if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
 646                mutex_lock(&caching_ctl->mutex);
 647                ret = load_free_space_cache(fs_info, cache);
 648
 649                spin_lock(&cache->lock);
 650                if (ret == 1) {
 651                        cache->caching_ctl = NULL;
 652                        cache->cached = BTRFS_CACHE_FINISHED;
 653                        cache->last_byte_to_unpin = (u64)-1;
 654                        caching_ctl->progress = (u64)-1;
 655                } else {
 656                        if (load_cache_only) {
 657                                cache->caching_ctl = NULL;
 658                                cache->cached = BTRFS_CACHE_NO;
 659                        } else {
 660                                cache->cached = BTRFS_CACHE_STARTED;
 661                                cache->has_caching_ctl = 1;
 662                        }
 663                }
 664                spin_unlock(&cache->lock);
 665#ifdef CONFIG_BTRFS_DEBUG
 666                if (ret == 1 &&
 667                    btrfs_should_fragment_free_space(cache)) {
 668                        u64 bytes_used;
 669
 670                        spin_lock(&cache->space_info->lock);
 671                        spin_lock(&cache->lock);
 672                        bytes_used = cache->key.offset -
 673                                btrfs_block_group_used(&cache->item);
 674                        cache->space_info->bytes_used += bytes_used >> 1;
 675                        spin_unlock(&cache->lock);
 676                        spin_unlock(&cache->space_info->lock);
 677                        fragment_free_space(cache);
 678                }
 679#endif
 680                mutex_unlock(&caching_ctl->mutex);
 681
 682                wake_up(&caching_ctl->wait);
 683                if (ret == 1) {
 684                        put_caching_control(caching_ctl);
 685                        free_excluded_extents(fs_info, cache);
 686                        return 0;
 687                }
 688        } else {
 689                /*
 690                 * We're either using the free space tree or no caching at all.
 691                 * Set cached to the appropriate value and wakeup any waiters.
 692                 */
 693                spin_lock(&cache->lock);
 694                if (load_cache_only) {
 695                        cache->caching_ctl = NULL;
 696                        cache->cached = BTRFS_CACHE_NO;
 697                } else {
 698                        cache->cached = BTRFS_CACHE_STARTED;
 699                        cache->has_caching_ctl = 1;
 700                }
 701                spin_unlock(&cache->lock);
 702                wake_up(&caching_ctl->wait);
 703        }
 704
 705        if (load_cache_only) {
 706                put_caching_control(caching_ctl);
 707                return 0;
 708        }
 709
 710        down_write(&fs_info->commit_root_sem);
 711        refcount_inc(&caching_ctl->count);
 712        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 713        up_write(&fs_info->commit_root_sem);
 714
 715        btrfs_get_block_group(cache);
 716
 717        btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 718
 719        return ret;
 720}
 721
 722/*
 723 * return the block group that starts at or after bytenr
 724 */
 725static struct btrfs_block_group_cache *
 726btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 727{
 728        return block_group_cache_tree_search(info, bytenr, 0);
 729}
 730
 731/*
 732 * return the block group that contains the given bytenr
 733 */
 734struct btrfs_block_group_cache *btrfs_lookup_block_group(
 735                                                 struct btrfs_fs_info *info,
 736                                                 u64 bytenr)
 737{
 738        return block_group_cache_tree_search(info, bytenr, 1);
 739}
 740
 741static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 742                                                  u64 flags)
 743{
 744        struct list_head *head = &info->space_info;
 745        struct btrfs_space_info *found;
 746
 747        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 748
 749        rcu_read_lock();
 750        list_for_each_entry_rcu(found, head, list) {
 751                if (found->flags & flags) {
 752                        rcu_read_unlock();
 753                        return found;
 754                }
 755        }
 756        rcu_read_unlock();
 757        return NULL;
 758}
 759
 760static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
 761                             u64 owner, u64 root_objectid)
 762{
 763        struct btrfs_space_info *space_info;
 764        u64 flags;
 765
 766        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
 767                if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
 768                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
 769                else
 770                        flags = BTRFS_BLOCK_GROUP_METADATA;
 771        } else {
 772                flags = BTRFS_BLOCK_GROUP_DATA;
 773        }
 774
 775        space_info = __find_space_info(fs_info, flags);
 776        ASSERT(space_info);
 777        percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
 778}
 779
 780/*
 781 * after adding space to the filesystem, we need to clear the full flags
 782 * on all the space infos.
 783 */
 784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 785{
 786        struct list_head *head = &info->space_info;
 787        struct btrfs_space_info *found;
 788
 789        rcu_read_lock();
 790        list_for_each_entry_rcu(found, head, list)
 791                found->full = 0;
 792        rcu_read_unlock();
 793}
 794
 795/* simple helper to search for an existing data extent at a given offset */
 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
 797{
 798        int ret;
 799        struct btrfs_key key;
 800        struct btrfs_path *path;
 801
 802        path = btrfs_alloc_path();
 803        if (!path)
 804                return -ENOMEM;
 805
 806        key.objectid = start;
 807        key.offset = len;
 808        key.type = BTRFS_EXTENT_ITEM_KEY;
 809        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
 810        btrfs_free_path(path);
 811        return ret;
 812}
 813
 814/*
 815 * helper function to lookup reference count and flags of a tree block.
 816 *
 817 * the head node for delayed ref is used to store the sum of all the
 818 * reference count modifications queued up in the rbtree. the head
 819 * node may also store the extent flags to set. This way you can check
 820 * to see what the reference count and extent flags would be if all of
 821 * the delayed refs are not processed.
 822 */
 823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 824                             struct btrfs_fs_info *fs_info, u64 bytenr,
 825                             u64 offset, int metadata, u64 *refs, u64 *flags)
 826{
 827        struct btrfs_delayed_ref_head *head;
 828        struct btrfs_delayed_ref_root *delayed_refs;
 829        struct btrfs_path *path;
 830        struct btrfs_extent_item *ei;
 831        struct extent_buffer *leaf;
 832        struct btrfs_key key;
 833        u32 item_size;
 834        u64 num_refs;
 835        u64 extent_flags;
 836        int ret;
 837
 838        /*
 839         * If we don't have skinny metadata, don't bother doing anything
 840         * different
 841         */
 842        if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
 843                offset = fs_info->nodesize;
 844                metadata = 0;
 845        }
 846
 847        path = btrfs_alloc_path();
 848        if (!path)
 849                return -ENOMEM;
 850
 851        if (!trans) {
 852                path->skip_locking = 1;
 853                path->search_commit_root = 1;
 854        }
 855
 856search_again:
 857        key.objectid = bytenr;
 858        key.offset = offset;
 859        if (metadata)
 860                key.type = BTRFS_METADATA_ITEM_KEY;
 861        else
 862                key.type = BTRFS_EXTENT_ITEM_KEY;
 863
 864        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 865        if (ret < 0)
 866                goto out_free;
 867
 868        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 869                if (path->slots[0]) {
 870                        path->slots[0]--;
 871                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 872                                              path->slots[0]);
 873                        if (key.objectid == bytenr &&
 874                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 875                            key.offset == fs_info->nodesize)
 876                                ret = 0;
 877                }
 878        }
 879
 880        if (ret == 0) {
 881                leaf = path->nodes[0];
 882                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 883                if (item_size >= sizeof(*ei)) {
 884                        ei = btrfs_item_ptr(leaf, path->slots[0],
 885                                            struct btrfs_extent_item);
 886                        num_refs = btrfs_extent_refs(leaf, ei);
 887                        extent_flags = btrfs_extent_flags(leaf, ei);
 888                } else {
 889#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 890                        struct btrfs_extent_item_v0 *ei0;
 891                        BUG_ON(item_size != sizeof(*ei0));
 892                        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 893                                             struct btrfs_extent_item_v0);
 894                        num_refs = btrfs_extent_refs_v0(leaf, ei0);
 895                        /* FIXME: this isn't correct for data */
 896                        extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 897#else
 898                        BUG();
 899#endif
 900                }
 901                BUG_ON(num_refs == 0);
 902        } else {
 903                num_refs = 0;
 904                extent_flags = 0;
 905                ret = 0;
 906        }
 907
 908        if (!trans)
 909                goto out;
 910
 911        delayed_refs = &trans->transaction->delayed_refs;
 912        spin_lock(&delayed_refs->lock);
 913        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
 914        if (head) {
 915                if (!mutex_trylock(&head->mutex)) {
 916                        refcount_inc(&head->refs);
 917                        spin_unlock(&delayed_refs->lock);
 918
 919                        btrfs_release_path(path);
 920
 921                        /*
 922                         * Mutex was contended, block until it's released and try
 923                         * again
 924                         */
 925                        mutex_lock(&head->mutex);
 926                        mutex_unlock(&head->mutex);
 927                        btrfs_put_delayed_ref_head(head);
 928                        goto search_again;
 929                }
 930                spin_lock(&head->lock);
 931                if (head->extent_op && head->extent_op->update_flags)
 932                        extent_flags |= head->extent_op->flags_to_set;
 933                else
 934                        BUG_ON(num_refs == 0);
 935
 936                num_refs += head->ref_mod;
 937                spin_unlock(&head->lock);
 938                mutex_unlock(&head->mutex);
 939        }
 940        spin_unlock(&delayed_refs->lock);
 941out:
 942        WARN_ON(num_refs == 0);
 943        if (refs)
 944                *refs = num_refs;
 945        if (flags)
 946                *flags = extent_flags;
 947out_free:
 948        btrfs_free_path(path);
 949        return ret;
 950}
 951
 952/*
 953 * Back reference rules.  Back refs have three main goals:
 954 *
 955 * 1) differentiate between all holders of references to an extent so that
 956 *    when a reference is dropped we can make sure it was a valid reference
 957 *    before freeing the extent.
 958 *
 959 * 2) Provide enough information to quickly find the holders of an extent
 960 *    if we notice a given block is corrupted or bad.
 961 *
 962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 963 *    maintenance.  This is actually the same as #2, but with a slightly
 964 *    different use case.
 965 *
 966 * There are two kinds of back refs. The implicit back refs is optimized
 967 * for pointers in non-shared tree blocks. For a given pointer in a block,
 968 * back refs of this kind provide information about the block's owner tree
 969 * and the pointer's key. These information allow us to find the block by
 970 * b-tree searching. The full back refs is for pointers in tree blocks not
 971 * referenced by their owner trees. The location of tree block is recorded
 972 * in the back refs. Actually the full back refs is generic, and can be
 973 * used in all cases the implicit back refs is used. The major shortcoming
 974 * of the full back refs is its overhead. Every time a tree block gets
 975 * COWed, we have to update back refs entry for all pointers in it.
 976 *
 977 * For a newly allocated tree block, we use implicit back refs for
 978 * pointers in it. This means most tree related operations only involve
 979 * implicit back refs. For a tree block created in old transaction, the
 980 * only way to drop a reference to it is COW it. So we can detect the
 981 * event that tree block loses its owner tree's reference and do the
 982 * back refs conversion.
 983 *
 984 * When a tree block is COWed through a tree, there are four cases:
 985 *
 986 * The reference count of the block is one and the tree is the block's
 987 * owner tree. Nothing to do in this case.
 988 *
 989 * The reference count of the block is one and the tree is not the
 990 * block's owner tree. In this case, full back refs is used for pointers
 991 * in the block. Remove these full back refs, add implicit back refs for
 992 * every pointers in the new block.
 993 *
 994 * The reference count of the block is greater than one and the tree is
 995 * the block's owner tree. In this case, implicit back refs is used for
 996 * pointers in the block. Add full back refs for every pointers in the
 997 * block, increase lower level extents' reference counts. The original
 998 * implicit back refs are entailed to the new block.
 999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
1017 * The extent ref structure for the implicit back refs has fields for:
1018 *
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1023 *
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
1026 *
1027 * The extent ref structure for the full back refs has field for:
1028 *
1029 * - number of pointers in the tree leaf
1030 *
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
1033 *
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1036 *
1037 *     (root_key.objectid, inode objectid, offset in file, 1)
1038 *
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1041 *
1042 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043 *
1044 * Btree extents can be referenced by:
1045 *
1046 * - Different subvolumes
1047 *
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1052 *
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1056 */
1057
1058#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060                                  struct btrfs_fs_info *fs_info,
1061                                  struct btrfs_path *path,
1062                                  u64 owner, u32 extra_size)
1063{
1064        struct btrfs_root *root = fs_info->extent_root;
1065        struct btrfs_extent_item *item;
1066        struct btrfs_extent_item_v0 *ei0;
1067        struct btrfs_extent_ref_v0 *ref0;
1068        struct btrfs_tree_block_info *bi;
1069        struct extent_buffer *leaf;
1070        struct btrfs_key key;
1071        struct btrfs_key found_key;
1072        u32 new_size = sizeof(*item);
1073        u64 refs;
1074        int ret;
1075
1076        leaf = path->nodes[0];
1077        BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080        ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081                             struct btrfs_extent_item_v0);
1082        refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084        if (owner == (u64)-1) {
1085                while (1) {
1086                        if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087                                ret = btrfs_next_leaf(root, path);
1088                                if (ret < 0)
1089                                        return ret;
1090                                BUG_ON(ret > 0); /* Corruption */
1091                                leaf = path->nodes[0];
1092                        }
1093                        btrfs_item_key_to_cpu(leaf, &found_key,
1094                                              path->slots[0]);
1095                        BUG_ON(key.objectid != found_key.objectid);
1096                        if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097                                path->slots[0]++;
1098                                continue;
1099                        }
1100                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101                                              struct btrfs_extent_ref_v0);
1102                        owner = btrfs_ref_objectid_v0(leaf, ref0);
1103                        break;
1104                }
1105        }
1106        btrfs_release_path(path);
1107
1108        if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109                new_size += sizeof(*bi);
1110
1111        new_size -= sizeof(*ei0);
1112        ret = btrfs_search_slot(trans, root, &key, path,
1113                                new_size + extra_size, 1);
1114        if (ret < 0)
1115                return ret;
1116        BUG_ON(ret); /* Corruption */
1117
1118        btrfs_extend_item(fs_info, path, new_size);
1119
1120        leaf = path->nodes[0];
1121        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122        btrfs_set_extent_refs(leaf, item, refs);
1123        /* FIXME: get real generation */
1124        btrfs_set_extent_generation(leaf, item, 0);
1125        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126                btrfs_set_extent_flags(leaf, item,
1127                                       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128                                       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129                bi = (struct btrfs_tree_block_info *)(item + 1);
1130                /* FIXME: get first key of the block */
1131                memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132                btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133        } else {
1134                btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135        }
1136        btrfs_mark_buffer_dirty(leaf);
1137        return 0;
1138}
1139#endif
1140
1141/*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147                                     struct btrfs_extent_inline_ref *iref,
1148                                     enum btrfs_inline_ref_type is_data)
1149{
1150        int type = btrfs_extent_inline_ref_type(eb, iref);
1151        u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153        if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154            type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155            type == BTRFS_SHARED_DATA_REF_KEY ||
1156            type == BTRFS_EXTENT_DATA_REF_KEY) {
1157                if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158                        if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159                                return type;
1160                        if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161                                ASSERT(eb->fs_info);
1162                                /*
1163                                 * Every shared one has parent tree
1164                                 * block, which must be aligned to
1165                                 * nodesize.
1166                                 */
1167                                if (offset &&
1168                                    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                        return type;
1170                        }
1171                } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172                        if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173                                return type;
1174                        if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175                                ASSERT(eb->fs_info);
1176                                /*
1177                                 * Every shared one has parent tree
1178                                 * block, which must be aligned to
1179                                 * nodesize.
1180                                 */
1181                                if (offset &&
1182                                    IS_ALIGNED(offset, eb->fs_info->nodesize))
1183                                        return type;
1184                        }
1185                } else {
1186                        ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187                        return type;
1188                }
1189        }
1190
1191        btrfs_print_leaf((struct extent_buffer *)eb);
1192        btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193                  eb->start, type);
1194        WARN_ON(1);
1195
1196        return BTRFS_REF_TYPE_INVALID;
1197}
1198
1199static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200{
1201        u32 high_crc = ~(u32)0;
1202        u32 low_crc = ~(u32)0;
1203        __le64 lenum;
1204
1205        lenum = cpu_to_le64(root_objectid);
1206        high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207        lenum = cpu_to_le64(owner);
1208        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209        lenum = cpu_to_le64(offset);
1210        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212        return ((u64)high_crc << 31) ^ (u64)low_crc;
1213}
1214
1215static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216                                     struct btrfs_extent_data_ref *ref)
1217{
1218        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219                                    btrfs_extent_data_ref_objectid(leaf, ref),
1220                                    btrfs_extent_data_ref_offset(leaf, ref));
1221}
1222
1223static int match_extent_data_ref(struct extent_buffer *leaf,
1224                                 struct btrfs_extent_data_ref *ref,
1225                                 u64 root_objectid, u64 owner, u64 offset)
1226{
1227        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230                return 0;
1231        return 1;
1232}
1233
1234static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235                                           struct btrfs_fs_info *fs_info,
1236                                           struct btrfs_path *path,
1237                                           u64 bytenr, u64 parent,
1238                                           u64 root_objectid,
1239                                           u64 owner, u64 offset)
1240{
1241        struct btrfs_root *root = fs_info->extent_root;
1242        struct btrfs_key key;
1243        struct btrfs_extent_data_ref *ref;
1244        struct extent_buffer *leaf;
1245        u32 nritems;
1246        int ret;
1247        int recow;
1248        int err = -ENOENT;
1249
1250        key.objectid = bytenr;
1251        if (parent) {
1252                key.type = BTRFS_SHARED_DATA_REF_KEY;
1253                key.offset = parent;
1254        } else {
1255                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256                key.offset = hash_extent_data_ref(root_objectid,
1257                                                  owner, offset);
1258        }
1259again:
1260        recow = 0;
1261        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262        if (ret < 0) {
1263                err = ret;
1264                goto fail;
1265        }
1266
1267        if (parent) {
1268                if (!ret)
1269                        return 0;
1270#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271                key.type = BTRFS_EXTENT_REF_V0_KEY;
1272                btrfs_release_path(path);
1273                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274                if (ret < 0) {
1275                        err = ret;
1276                        goto fail;
1277                }
1278                if (!ret)
1279                        return 0;
1280#endif
1281                goto fail;
1282        }
1283
1284        leaf = path->nodes[0];
1285        nritems = btrfs_header_nritems(leaf);
1286        while (1) {
1287                if (path->slots[0] >= nritems) {
1288                        ret = btrfs_next_leaf(root, path);
1289                        if (ret < 0)
1290                                err = ret;
1291                        if (ret)
1292                                goto fail;
1293
1294                        leaf = path->nodes[0];
1295                        nritems = btrfs_header_nritems(leaf);
1296                        recow = 1;
1297                }
1298
1299                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300                if (key.objectid != bytenr ||
1301                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302                        goto fail;
1303
1304                ref = btrfs_item_ptr(leaf, path->slots[0],
1305                                     struct btrfs_extent_data_ref);
1306
1307                if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                          owner, offset)) {
1309                        if (recow) {
1310                                btrfs_release_path(path);
1311                                goto again;
1312                        }
1313                        err = 0;
1314                        break;
1315                }
1316                path->slots[0]++;
1317        }
1318fail:
1319        return err;
1320}
1321
1322static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323                                           struct btrfs_fs_info *fs_info,
1324                                           struct btrfs_path *path,
1325                                           u64 bytenr, u64 parent,
1326                                           u64 root_objectid, u64 owner,
1327                                           u64 offset, int refs_to_add)
1328{
1329        struct btrfs_root *root = fs_info->extent_root;
1330        struct btrfs_key key;
1331        struct extent_buffer *leaf;
1332        u32 size;
1333        u32 num_refs;
1334        int ret;
1335
1336        key.objectid = bytenr;
1337        if (parent) {
1338                key.type = BTRFS_SHARED_DATA_REF_KEY;
1339                key.offset = parent;
1340                size = sizeof(struct btrfs_shared_data_ref);
1341        } else {
1342                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343                key.offset = hash_extent_data_ref(root_objectid,
1344                                                  owner, offset);
1345                size = sizeof(struct btrfs_extent_data_ref);
1346        }
1347
1348        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349        if (ret && ret != -EEXIST)
1350                goto fail;
1351
1352        leaf = path->nodes[0];
1353        if (parent) {
1354                struct btrfs_shared_data_ref *ref;
1355                ref = btrfs_item_ptr(leaf, path->slots[0],
1356                                     struct btrfs_shared_data_ref);
1357                if (ret == 0) {
1358                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359                } else {
1360                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361                        num_refs += refs_to_add;
1362                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363                }
1364        } else {
1365                struct btrfs_extent_data_ref *ref;
1366                while (ret == -EEXIST) {
1367                        ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                             struct btrfs_extent_data_ref);
1369                        if (match_extent_data_ref(leaf, ref, root_objectid,
1370                                                  owner, offset))
1371                                break;
1372                        btrfs_release_path(path);
1373                        key.offset++;
1374                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1375                                                      size);
1376                        if (ret && ret != -EEXIST)
1377                                goto fail;
1378
1379                        leaf = path->nodes[0];
1380                }
1381                ref = btrfs_item_ptr(leaf, path->slots[0],
1382                                     struct btrfs_extent_data_ref);
1383                if (ret == 0) {
1384                        btrfs_set_extent_data_ref_root(leaf, ref,
1385                                                       root_objectid);
1386                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389                } else {
1390                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391                        num_refs += refs_to_add;
1392                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393                }
1394        }
1395        btrfs_mark_buffer_dirty(leaf);
1396        ret = 0;
1397fail:
1398        btrfs_release_path(path);
1399        return ret;
1400}
1401
1402static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403                                           struct btrfs_fs_info *fs_info,
1404                                           struct btrfs_path *path,
1405                                           int refs_to_drop, int *last_ref)
1406{
1407        struct btrfs_key key;
1408        struct btrfs_extent_data_ref *ref1 = NULL;
1409        struct btrfs_shared_data_ref *ref2 = NULL;
1410        struct extent_buffer *leaf;
1411        u32 num_refs = 0;
1412        int ret = 0;
1413
1414        leaf = path->nodes[0];
1415        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419                                      struct btrfs_extent_data_ref);
1420                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423                                      struct btrfs_shared_data_ref);
1424                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427                struct btrfs_extent_ref_v0 *ref0;
1428                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429                                      struct btrfs_extent_ref_v0);
1430                num_refs = btrfs_ref_count_v0(leaf, ref0);
1431#endif
1432        } else {
1433                BUG();
1434        }
1435
1436        BUG_ON(num_refs < refs_to_drop);
1437        num_refs -= refs_to_drop;
1438
1439        if (num_refs == 0) {
1440                ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441                *last_ref = 1;
1442        } else {
1443                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448                else {
1449                        struct btrfs_extent_ref_v0 *ref0;
1450                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451                                        struct btrfs_extent_ref_v0);
1452                        btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453                }
1454#endif
1455                btrfs_mark_buffer_dirty(leaf);
1456        }
1457        return ret;
1458}
1459
1460static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461                                          struct btrfs_extent_inline_ref *iref)
1462{
1463        struct btrfs_key key;
1464        struct extent_buffer *leaf;
1465        struct btrfs_extent_data_ref *ref1;
1466        struct btrfs_shared_data_ref *ref2;
1467        u32 num_refs = 0;
1468        int type;
1469
1470        leaf = path->nodes[0];
1471        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472        if (iref) {
1473                /*
1474                 * If type is invalid, we should have bailed out earlier than
1475                 * this call.
1476                 */
1477                type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478                ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482                } else {
1483                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485                }
1486        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488                                      struct btrfs_extent_data_ref);
1489                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492                                      struct btrfs_shared_data_ref);
1493                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496                struct btrfs_extent_ref_v0 *ref0;
1497                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498                                      struct btrfs_extent_ref_v0);
1499                num_refs = btrfs_ref_count_v0(leaf, ref0);
1500#endif
1501        } else {
1502                WARN_ON(1);
1503        }
1504        return num_refs;
1505}
1506
1507static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508                                          struct btrfs_fs_info *fs_info,
1509                                          struct btrfs_path *path,
1510                                          u64 bytenr, u64 parent,
1511                                          u64 root_objectid)
1512{
1513        struct btrfs_root *root = fs_info->extent_root;
1514        struct btrfs_key key;
1515        int ret;
1516
1517        key.objectid = bytenr;
1518        if (parent) {
1519                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520                key.offset = parent;
1521        } else {
1522                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523                key.offset = root_objectid;
1524        }
1525
1526        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527        if (ret > 0)
1528                ret = -ENOENT;
1529#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530        if (ret == -ENOENT && parent) {
1531                btrfs_release_path(path);
1532                key.type = BTRFS_EXTENT_REF_V0_KEY;
1533                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534                if (ret > 0)
1535                        ret = -ENOENT;
1536        }
1537#endif
1538        return ret;
1539}
1540
1541static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542                                          struct btrfs_fs_info *fs_info,
1543                                          struct btrfs_path *path,
1544                                          u64 bytenr, u64 parent,
1545                                          u64 root_objectid)
1546{
1547        struct btrfs_key key;
1548        int ret;
1549
1550        key.objectid = bytenr;
1551        if (parent) {
1552                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553                key.offset = parent;
1554        } else {
1555                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556                key.offset = root_objectid;
1557        }
1558
1559        ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560                                      path, &key, 0);
1561        btrfs_release_path(path);
1562        return ret;
1563}
1564
1565static inline int extent_ref_type(u64 parent, u64 owner)
1566{
1567        int type;
1568        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569                if (parent > 0)
1570                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1571                else
1572                        type = BTRFS_TREE_BLOCK_REF_KEY;
1573        } else {
1574                if (parent > 0)
1575                        type = BTRFS_SHARED_DATA_REF_KEY;
1576                else
1577                        type = BTRFS_EXTENT_DATA_REF_KEY;
1578        }
1579        return type;
1580}
1581
1582static int find_next_key(struct btrfs_path *path, int level,
1583                         struct btrfs_key *key)
1584
1585{
1586        for (; level < BTRFS_MAX_LEVEL; level++) {
1587                if (!path->nodes[level])
1588                        break;
1589                if (path->slots[level] + 1 >=
1590                    btrfs_header_nritems(path->nodes[level]))
1591                        continue;
1592                if (level == 0)
1593                        btrfs_item_key_to_cpu(path->nodes[level], key,
1594                                              path->slots[level] + 1);
1595                else
1596                        btrfs_node_key_to_cpu(path->nodes[level], key,
1597                                              path->slots[level] + 1);
1598                return 0;
1599        }
1600        return 1;
1601}
1602
1603/*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 *       items in the tree are ordered.
1615 */
1616static noinline_for_stack
1617int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618                                 struct btrfs_fs_info *fs_info,
1619                                 struct btrfs_path *path,
1620                                 struct btrfs_extent_inline_ref **ref_ret,
1621                                 u64 bytenr, u64 num_bytes,
1622                                 u64 parent, u64 root_objectid,
1623                                 u64 owner, u64 offset, int insert)
1624{
1625        struct btrfs_root *root = fs_info->extent_root;
1626        struct btrfs_key key;
1627        struct extent_buffer *leaf;
1628        struct btrfs_extent_item *ei;
1629        struct btrfs_extent_inline_ref *iref;
1630        u64 flags;
1631        u64 item_size;
1632        unsigned long ptr;
1633        unsigned long end;
1634        int extra_size;
1635        int type;
1636        int want;
1637        int ret;
1638        int err = 0;
1639        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640        int needed;
1641
1642        key.objectid = bytenr;
1643        key.type = BTRFS_EXTENT_ITEM_KEY;
1644        key.offset = num_bytes;
1645
1646        want = extent_ref_type(parent, owner);
1647        if (insert) {
1648                extra_size = btrfs_extent_inline_ref_size(want);
1649                path->keep_locks = 1;
1650        } else
1651                extra_size = -1;
1652
1653        /*
1654         * Owner is our parent level, so we can just add one to get the level
1655         * for the block we are interested in.
1656         */
1657        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658                key.type = BTRFS_METADATA_ITEM_KEY;
1659                key.offset = owner;
1660        }
1661
1662again:
1663        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664        if (ret < 0) {
1665                err = ret;
1666                goto out;
1667        }
1668
1669        /*
1670         * We may be a newly converted file system which still has the old fat
1671         * extent entries for metadata, so try and see if we have one of those.
1672         */
1673        if (ret > 0 && skinny_metadata) {
1674                skinny_metadata = false;
1675                if (path->slots[0]) {
1676                        path->slots[0]--;
1677                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1678                                              path->slots[0]);
1679                        if (key.objectid == bytenr &&
1680                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1681                            key.offset == num_bytes)
1682                                ret = 0;
1683                }
1684                if (ret) {
1685                        key.objectid = bytenr;
1686                        key.type = BTRFS_EXTENT_ITEM_KEY;
1687                        key.offset = num_bytes;
1688                        btrfs_release_path(path);
1689                        goto again;
1690                }
1691        }
1692
1693        if (ret && !insert) {
1694                err = -ENOENT;
1695                goto out;
1696        } else if (WARN_ON(ret)) {
1697                err = -EIO;
1698                goto out;
1699        }
1700
1701        leaf = path->nodes[0];
1702        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704        if (item_size < sizeof(*ei)) {
1705                if (!insert) {
1706                        err = -ENOENT;
1707                        goto out;
1708                }
1709                ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710                                             extra_size);
1711                if (ret < 0) {
1712                        err = ret;
1713                        goto out;
1714                }
1715                leaf = path->nodes[0];
1716                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717        }
1718#endif
1719        BUG_ON(item_size < sizeof(*ei));
1720
1721        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722        flags = btrfs_extent_flags(leaf, ei);
1723
1724        ptr = (unsigned long)(ei + 1);
1725        end = (unsigned long)ei + item_size;
1726
1727        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728                ptr += sizeof(struct btrfs_tree_block_info);
1729                BUG_ON(ptr > end);
1730        }
1731
1732        if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733                needed = BTRFS_REF_TYPE_DATA;
1734        else
1735                needed = BTRFS_REF_TYPE_BLOCK;
1736
1737        err = -ENOENT;
1738        while (1) {
1739                if (ptr >= end) {
1740                        WARN_ON(ptr > end);
1741                        break;
1742                }
1743                iref = (struct btrfs_extent_inline_ref *)ptr;
1744                type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745                if (type == BTRFS_REF_TYPE_INVALID) {
1746                        err = -EINVAL;
1747                        goto out;
1748                }
1749
1750                if (want < type)
1751                        break;
1752                if (want > type) {
1753                        ptr += btrfs_extent_inline_ref_size(type);
1754                        continue;
1755                }
1756
1757                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758                        struct btrfs_extent_data_ref *dref;
1759                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760                        if (match_extent_data_ref(leaf, dref, root_objectid,
1761                                                  owner, offset)) {
1762                                err = 0;
1763                                break;
1764                        }
1765                        if (hash_extent_data_ref_item(leaf, dref) <
1766                            hash_extent_data_ref(root_objectid, owner, offset))
1767                                break;
1768                } else {
1769                        u64 ref_offset;
1770                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771                        if (parent > 0) {
1772                                if (parent == ref_offset) {
1773                                        err = 0;
1774                                        break;
1775                                }
1776                                if (ref_offset < parent)
1777                                        break;
1778                        } else {
1779                                if (root_objectid == ref_offset) {
1780                                        err = 0;
1781                                        break;
1782                                }
1783                                if (ref_offset < root_objectid)
1784                                        break;
1785                        }
1786                }
1787                ptr += btrfs_extent_inline_ref_size(type);
1788        }
1789        if (err == -ENOENT && insert) {
1790                if (item_size + extra_size >=
1791                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792                        err = -EAGAIN;
1793                        goto out;
1794                }
1795                /*
1796                 * To add new inline back ref, we have to make sure
1797                 * there is no corresponding back ref item.
1798                 * For simplicity, we just do not add new inline back
1799                 * ref if there is any kind of item for this block
1800                 */
1801                if (find_next_key(path, 0, &key) == 0 &&
1802                    key.objectid == bytenr &&
1803                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804                        err = -EAGAIN;
1805                        goto out;
1806                }
1807        }
1808        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809out:
1810        if (insert) {
1811                path->keep_locks = 0;
1812                btrfs_unlock_up_safe(path, 1);
1813        }
1814        return err;
1815}
1816
1817/*
1818 * helper to add new inline back ref
1819 */
1820static noinline_for_stack
1821void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822                                 struct btrfs_path *path,
1823                                 struct btrfs_extent_inline_ref *iref,
1824                                 u64 parent, u64 root_objectid,
1825                                 u64 owner, u64 offset, int refs_to_add,
1826                                 struct btrfs_delayed_extent_op *extent_op)
1827{
1828        struct extent_buffer *leaf;
1829        struct btrfs_extent_item *ei;
1830        unsigned long ptr;
1831        unsigned long end;
1832        unsigned long item_offset;
1833        u64 refs;
1834        int size;
1835        int type;
1836
1837        leaf = path->nodes[0];
1838        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839        item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841        type = extent_ref_type(parent, owner);
1842        size = btrfs_extent_inline_ref_size(type);
1843
1844        btrfs_extend_item(fs_info, path, size);
1845
1846        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847        refs = btrfs_extent_refs(leaf, ei);
1848        refs += refs_to_add;
1849        btrfs_set_extent_refs(leaf, ei, refs);
1850        if (extent_op)
1851                __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853        ptr = (unsigned long)ei + item_offset;
1854        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855        if (ptr < end - size)
1856                memmove_extent_buffer(leaf, ptr + size, ptr,
1857                                      end - size - ptr);
1858
1859        iref = (struct btrfs_extent_inline_ref *)ptr;
1860        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                struct btrfs_extent_data_ref *dref;
1863                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869                struct btrfs_shared_data_ref *sref;
1870                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875        } else {
1876                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877        }
1878        btrfs_mark_buffer_dirty(leaf);
1879}
1880
1881static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882                                 struct btrfs_fs_info *fs_info,
1883                                 struct btrfs_path *path,
1884                                 struct btrfs_extent_inline_ref **ref_ret,
1885                                 u64 bytenr, u64 num_bytes, u64 parent,
1886                                 u64 root_objectid, u64 owner, u64 offset)
1887{
1888        int ret;
1889
1890        ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891                                           bytenr, num_bytes, parent,
1892                                           root_objectid, owner, offset, 0);
1893        if (ret != -ENOENT)
1894                return ret;
1895
1896        btrfs_release_path(path);
1897        *ref_ret = NULL;
1898
1899        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900                ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901                                            parent, root_objectid);
1902        } else {
1903                ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904                                             parent, root_objectid, owner,
1905                                             offset);
1906        }
1907        return ret;
1908}
1909
1910/*
1911 * helper to update/remove inline back ref
1912 */
1913static noinline_for_stack
1914void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915                                  struct btrfs_path *path,
1916                                  struct btrfs_extent_inline_ref *iref,
1917                                  int refs_to_mod,
1918                                  struct btrfs_delayed_extent_op *extent_op,
1919                                  int *last_ref)
1920{
1921        struct extent_buffer *leaf;
1922        struct btrfs_extent_item *ei;
1923        struct btrfs_extent_data_ref *dref = NULL;
1924        struct btrfs_shared_data_ref *sref = NULL;
1925        unsigned long ptr;
1926        unsigned long end;
1927        u32 item_size;
1928        int size;
1929        int type;
1930        u64 refs;
1931
1932        leaf = path->nodes[0];
1933        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934        refs = btrfs_extent_refs(leaf, ei);
1935        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936        refs += refs_to_mod;
1937        btrfs_set_extent_refs(leaf, ei, refs);
1938        if (extent_op)
1939                __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941        /*
1942         * If type is invalid, we should have bailed out after
1943         * lookup_inline_extent_backref().
1944         */
1945        type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946        ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950                refs = btrfs_extent_data_ref_count(leaf, dref);
1951        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953                refs = btrfs_shared_data_ref_count(leaf, sref);
1954        } else {
1955                refs = 1;
1956                BUG_ON(refs_to_mod != -1);
1957        }
1958
1959        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960        refs += refs_to_mod;
1961
1962        if (refs > 0) {
1963                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965                else
1966                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967        } else {
1968                *last_ref = 1;
1969                size =  btrfs_extent_inline_ref_size(type);
1970                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971                ptr = (unsigned long)iref;
1972                end = (unsigned long)ei + item_size;
1973                if (ptr + size < end)
1974                        memmove_extent_buffer(leaf, ptr, ptr + size,
1975                                              end - ptr - size);
1976                item_size -= size;
1977                btrfs_truncate_item(fs_info, path, item_size, 1);
1978        }
1979        btrfs_mark_buffer_dirty(leaf);
1980}
1981
1982static noinline_for_stack
1983int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984                                 struct btrfs_fs_info *fs_info,
1985                                 struct btrfs_path *path,
1986                                 u64 bytenr, u64 num_bytes, u64 parent,
1987                                 u64 root_objectid, u64 owner,
1988                                 u64 offset, int refs_to_add,
1989                                 struct btrfs_delayed_extent_op *extent_op)
1990{
1991        struct btrfs_extent_inline_ref *iref;
1992        int ret;
1993
1994        ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995                                           bytenr, num_bytes, parent,
1996                                           root_objectid, owner, offset, 1);
1997        if (ret == 0) {
1998                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999                update_inline_extent_backref(fs_info, path, iref,
2000                                             refs_to_add, extent_op, NULL);
2001        } else if (ret == -ENOENT) {
2002                setup_inline_extent_backref(fs_info, path, iref, parent,
2003                                            root_objectid, owner, offset,
2004                                            refs_to_add, extent_op);
2005                ret = 0;
2006        }
2007        return ret;
2008}
2009
2010static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011                                 struct btrfs_fs_info *fs_info,
2012                                 struct btrfs_path *path,
2013                                 u64 bytenr, u64 parent, u64 root_objectid,
2014                                 u64 owner, u64 offset, int refs_to_add)
2015{
2016        int ret;
2017        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018                BUG_ON(refs_to_add != 1);
2019                ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020                                            parent, root_objectid);
2021        } else {
2022                ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023                                             parent, root_objectid,
2024                                             owner, offset, refs_to_add);
2025        }
2026        return ret;
2027}
2028
2029static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030                                 struct btrfs_fs_info *fs_info,
2031                                 struct btrfs_path *path,
2032                                 struct btrfs_extent_inline_ref *iref,
2033                                 int refs_to_drop, int is_data, int *last_ref)
2034{
2035        int ret = 0;
2036
2037        BUG_ON(!is_data && refs_to_drop != 1);
2038        if (iref) {
2039                update_inline_extent_backref(fs_info, path, iref,
2040                                             -refs_to_drop, NULL, last_ref);
2041        } else if (is_data) {
2042                ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043                                             last_ref);
2044        } else {
2045                *last_ref = 1;
2046                ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047        }
2048        return ret;
2049}
2050
2051#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053                               u64 *discarded_bytes)
2054{
2055        int j, ret = 0;
2056        u64 bytes_left, end;
2057        u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059        if (WARN_ON(start != aligned_start)) {
2060                len -= aligned_start - start;
2061                len = round_down(len, 1 << 9);
2062                start = aligned_start;
2063        }
2064
2065        *discarded_bytes = 0;
2066
2067        if (!len)
2068                return 0;
2069
2070        end = start + len;
2071        bytes_left = len;
2072
2073        /* Skip any superblocks on this device. */
2074        for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075                u64 sb_start = btrfs_sb_offset(j);
2076                u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077                u64 size = sb_start - start;
2078
2079                if (!in_range(sb_start, start, bytes_left) &&
2080                    !in_range(sb_end, start, bytes_left) &&
2081                    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082                        continue;
2083
2084                /*
2085                 * Superblock spans beginning of range.  Adjust start and
2086                 * try again.
2087                 */
2088                if (sb_start <= start) {
2089                        start += sb_end - start;
2090                        if (start > end) {
2091                                bytes_left = 0;
2092                                break;
2093                        }
2094                        bytes_left = end - start;
2095                        continue;
2096                }
2097
2098                if (size) {
2099                        ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100                                                   GFP_NOFS, 0);
2101                        if (!ret)
2102                                *discarded_bytes += size;
2103                        else if (ret != -EOPNOTSUPP)
2104                                return ret;
2105                }
2106
2107                start = sb_end;
2108                if (start > end) {
2109                        bytes_left = 0;
2110                        break;
2111                }
2112                bytes_left = end - start;
2113        }
2114
2115        if (bytes_left) {
2116                ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117                                           GFP_NOFS, 0);
2118                if (!ret)
2119                        *discarded_bytes += bytes_left;
2120        }
2121        return ret;
2122}
2123
2124int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125                         u64 num_bytes, u64 *actual_bytes)
2126{
2127        int ret;
2128        u64 discarded_bytes = 0;
2129        struct btrfs_bio *bbio = NULL;
2130
2131
2132        /*
2133         * Avoid races with device replace and make sure our bbio has devices
2134         * associated to its stripes that don't go away while we are discarding.
2135         */
2136        btrfs_bio_counter_inc_blocked(fs_info);
2137        /* Tell the block device(s) that the sectors can be discarded */
2138        ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139                              &bbio, 0);
2140        /* Error condition is -ENOMEM */
2141        if (!ret) {
2142                struct btrfs_bio_stripe *stripe = bbio->stripes;
2143                int i;
2144
2145
2146                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147                        u64 bytes;
2148                        if (!stripe->dev->can_discard)
2149                                continue;
2150
2151                        ret = btrfs_issue_discard(stripe->dev->bdev,
2152                                                  stripe->physical,
2153                                                  stripe->length,
2154                                                  &bytes);
2155                        if (!ret)
2156                                discarded_bytes += bytes;
2157                        else if (ret != -EOPNOTSUPP)
2158                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2159
2160                        /*
2161                         * Just in case we get back EOPNOTSUPP for some reason,
2162                         * just ignore the return value so we don't screw up
2163                         * people calling discard_extent.
2164                         */
2165                        ret = 0;
2166                }
2167                btrfs_put_bbio(bbio);
2168        }
2169        btrfs_bio_counter_dec(fs_info);
2170
2171        if (actual_bytes)
2172                *actual_bytes = discarded_bytes;
2173
2174
2175        if (ret == -EOPNOTSUPP)
2176                ret = 0;
2177        return ret;
2178}
2179
2180/* Can return -ENOMEM */
2181int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2182                         struct btrfs_root *root,
2183                         u64 bytenr, u64 num_bytes, u64 parent,
2184                         u64 root_objectid, u64 owner, u64 offset)
2185{
2186        struct btrfs_fs_info *fs_info = root->fs_info;
2187        int old_ref_mod, new_ref_mod;
2188        int ret;
2189
2190        BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191               root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192
2193        btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194                           owner, offset, BTRFS_ADD_DELAYED_REF);
2195
2196        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2197                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2198                                                 num_bytes, parent,
2199                                                 root_objectid, (int)owner,
2200                                                 BTRFS_ADD_DELAYED_REF, NULL,
2201                                                 &old_ref_mod, &new_ref_mod);
2202        } else {
2203                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2204                                                 num_bytes, parent,
2205                                                 root_objectid, owner, offset,
2206                                                 0, BTRFS_ADD_DELAYED_REF,
2207                                                 &old_ref_mod, &new_ref_mod);
2208        }
2209
2210        if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211                add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212
2213        return ret;
2214}
2215
2216static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2217                                  struct btrfs_fs_info *fs_info,
2218                                  struct btrfs_delayed_ref_node *node,
2219                                  u64 parent, u64 root_objectid,
2220                                  u64 owner, u64 offset, int refs_to_add,
2221                                  struct btrfs_delayed_extent_op *extent_op)
2222{
2223        struct btrfs_path *path;
2224        struct extent_buffer *leaf;
2225        struct btrfs_extent_item *item;
2226        struct btrfs_key key;
2227        u64 bytenr = node->bytenr;
2228        u64 num_bytes = node->num_bytes;
2229        u64 refs;
2230        int ret;
2231
2232        path = btrfs_alloc_path();
2233        if (!path)
2234                return -ENOMEM;
2235
2236        path->reada = READA_FORWARD;
2237        path->leave_spinning = 1;
2238        /* this will setup the path even if it fails to insert the back ref */
2239        ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240                                           num_bytes, parent, root_objectid,
2241                                           owner, offset,
2242                                           refs_to_add, extent_op);
2243        if ((ret < 0 && ret != -EAGAIN) || !ret)
2244                goto out;
2245
2246        /*
2247         * Ok we had -EAGAIN which means we didn't have space to insert and
2248         * inline extent ref, so just update the reference count and add a
2249         * normal backref.
2250         */
2251        leaf = path->nodes[0];
2252        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2253        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254        refs = btrfs_extent_refs(leaf, item);
2255        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256        if (extent_op)
2257                __run_delayed_extent_op(extent_op, leaf, item);
2258
2259        btrfs_mark_buffer_dirty(leaf);
2260        btrfs_release_path(path);
2261
2262        path->reada = READA_FORWARD;
2263        path->leave_spinning = 1;
2264        /* now insert the actual backref */
2265        ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266                                    root_objectid, owner, offset, refs_to_add);
2267        if (ret)
2268                btrfs_abort_transaction(trans, ret);
2269out:
2270        btrfs_free_path(path);
2271        return ret;
2272}
2273
2274static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2275                                struct btrfs_fs_info *fs_info,
2276                                struct btrfs_delayed_ref_node *node,
2277                                struct btrfs_delayed_extent_op *extent_op,
2278                                int insert_reserved)
2279{
2280        int ret = 0;
2281        struct btrfs_delayed_data_ref *ref;
2282        struct btrfs_key ins;
2283        u64 parent = 0;
2284        u64 ref_root = 0;
2285        u64 flags = 0;
2286
2287        ins.objectid = node->bytenr;
2288        ins.offset = node->num_bytes;
2289        ins.type = BTRFS_EXTENT_ITEM_KEY;
2290
2291        ref = btrfs_delayed_node_to_data_ref(node);
2292        trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2293
2294        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295                parent = ref->parent;
2296        ref_root = ref->root;
2297
2298        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2299                if (extent_op)
2300                        flags |= extent_op->flags_to_set;
2301                ret = alloc_reserved_file_extent(trans, fs_info,
2302                                                 parent, ref_root, flags,
2303                                                 ref->objectid, ref->offset,
2304                                                 &ins, node->ref_mod);
2305        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2306                ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2307                                             ref_root, ref->objectid,
2308                                             ref->offset, node->ref_mod,
2309                                             extent_op);
2310        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2311                ret = __btrfs_free_extent(trans, fs_info, node, parent,
2312                                          ref_root, ref->objectid,
2313                                          ref->offset, node->ref_mod,
2314                                          extent_op);
2315        } else {
2316                BUG();
2317        }
2318        return ret;
2319}
2320
2321static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322                                    struct extent_buffer *leaf,
2323                                    struct btrfs_extent_item *ei)
2324{
2325        u64 flags = btrfs_extent_flags(leaf, ei);
2326        if (extent_op->update_flags) {
2327                flags |= extent_op->flags_to_set;
2328                btrfs_set_extent_flags(leaf, ei, flags);
2329        }
2330
2331        if (extent_op->update_key) {
2332                struct btrfs_tree_block_info *bi;
2333                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334                bi = (struct btrfs_tree_block_info *)(ei + 1);
2335                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336        }
2337}
2338
2339static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2340                                 struct btrfs_fs_info *fs_info,
2341                                 struct btrfs_delayed_ref_head *head,
2342                                 struct btrfs_delayed_extent_op *extent_op)
2343{
2344        struct btrfs_key key;
2345        struct btrfs_path *path;
2346        struct btrfs_extent_item *ei;
2347        struct extent_buffer *leaf;
2348        u32 item_size;
2349        int ret;
2350        int err = 0;
2351        int metadata = !extent_op->is_data;
2352
2353        if (trans->aborted)
2354                return 0;
2355
2356        if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2357                metadata = 0;
2358
2359        path = btrfs_alloc_path();
2360        if (!path)
2361                return -ENOMEM;
2362
2363        key.objectid = head->bytenr;
2364
2365        if (metadata) {
2366                key.type = BTRFS_METADATA_ITEM_KEY;
2367                key.offset = extent_op->level;
2368        } else {
2369                key.type = BTRFS_EXTENT_ITEM_KEY;
2370                key.offset = head->num_bytes;
2371        }
2372
2373again:
2374        path->reada = READA_FORWARD;
2375        path->leave_spinning = 1;
2376        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2377        if (ret < 0) {
2378                err = ret;
2379                goto out;
2380        }
2381        if (ret > 0) {
2382                if (metadata) {
2383                        if (path->slots[0] > 0) {
2384                                path->slots[0]--;
2385                                btrfs_item_key_to_cpu(path->nodes[0], &key,
2386                                                      path->slots[0]);
2387                                if (key.objectid == head->bytenr &&
2388                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
2389                                    key.offset == head->num_bytes)
2390                                        ret = 0;
2391                        }
2392                        if (ret > 0) {
2393                                btrfs_release_path(path);
2394                                metadata = 0;
2395
2396                                key.objectid = head->bytenr;
2397                                key.offset = head->num_bytes;
2398                                key.type = BTRFS_EXTENT_ITEM_KEY;
2399                                goto again;
2400                        }
2401                } else {
2402                        err = -EIO;
2403                        goto out;
2404                }
2405        }
2406
2407        leaf = path->nodes[0];
2408        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410        if (item_size < sizeof(*ei)) {
2411                ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2412                if (ret < 0) {
2413                        err = ret;
2414                        goto out;
2415                }
2416                leaf = path->nodes[0];
2417                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418        }
2419#endif
2420        BUG_ON(item_size < sizeof(*ei));
2421        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422        __run_delayed_extent_op(extent_op, leaf, ei);
2423
2424        btrfs_mark_buffer_dirty(leaf);
2425out:
2426        btrfs_free_path(path);
2427        return err;
2428}
2429
2430static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2431                                struct btrfs_fs_info *fs_info,
2432                                struct btrfs_delayed_ref_node *node,
2433                                struct btrfs_delayed_extent_op *extent_op,
2434                                int insert_reserved)
2435{
2436        int ret = 0;
2437        struct btrfs_delayed_tree_ref *ref;
2438        struct btrfs_key ins;
2439        u64 parent = 0;
2440        u64 ref_root = 0;
2441        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2442
2443        ref = btrfs_delayed_node_to_tree_ref(node);
2444        trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2445
2446        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447                parent = ref->parent;
2448        ref_root = ref->root;
2449
2450        ins.objectid = node->bytenr;
2451        if (skinny_metadata) {
2452                ins.offset = ref->level;
2453                ins.type = BTRFS_METADATA_ITEM_KEY;
2454        } else {
2455                ins.offset = node->num_bytes;
2456                ins.type = BTRFS_EXTENT_ITEM_KEY;
2457        }
2458
2459        if (node->ref_mod != 1) {
2460                btrfs_err(fs_info,
2461        "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462                          node->bytenr, node->ref_mod, node->action, ref_root,
2463                          parent);
2464                return -EIO;
2465        }
2466        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2467                BUG_ON(!extent_op || !extent_op->update_flags);
2468                ret = alloc_reserved_tree_block(trans, fs_info,
2469                                                parent, ref_root,
2470                                                extent_op->flags_to_set,
2471                                                &extent_op->key,
2472                                                ref->level, &ins);
2473        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2474                ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2475                                             parent, ref_root,
2476                                             ref->level, 0, 1,
2477                                             extent_op);
2478        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2479                ret = __btrfs_free_extent(trans, fs_info, node,
2480                                          parent, ref_root,
2481                                          ref->level, 0, 1, extent_op);
2482        } else {
2483                BUG();
2484        }
2485        return ret;
2486}
2487
2488/* helper function to actually process a single delayed ref entry */
2489static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2490                               struct btrfs_fs_info *fs_info,
2491                               struct btrfs_delayed_ref_node *node,
2492                               struct btrfs_delayed_extent_op *extent_op,
2493                               int insert_reserved)
2494{
2495        int ret = 0;
2496
2497        if (trans->aborted) {
2498                if (insert_reserved)
2499                        btrfs_pin_extent(fs_info, node->bytenr,
2500                                         node->num_bytes, 1);
2501                return 0;
2502        }
2503
2504        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2506                ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2507                                           insert_reserved);
2508        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2510                ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2511                                           insert_reserved);
2512        else
2513                BUG();
2514        return ret;
2515}
2516
2517static inline struct btrfs_delayed_ref_node *
2518select_delayed_ref(struct btrfs_delayed_ref_head *head)
2519{
2520        struct btrfs_delayed_ref_node *ref;
2521
2522        if (RB_EMPTY_ROOT(&head->ref_tree))
2523                return NULL;
2524
2525        /*
2526         * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2527         * This is to prevent a ref count from going down to zero, which deletes
2528         * the extent item from the extent tree, when there still are references
2529         * to add, which would fail because they would not find the extent item.
2530         */
2531        if (!list_empty(&head->ref_add_list))
2532                return list_first_entry(&head->ref_add_list,
2533                                struct btrfs_delayed_ref_node, add_list);
2534
2535        ref = rb_entry(rb_first(&head->ref_tree),
2536                       struct btrfs_delayed_ref_node, ref_node);
2537        ASSERT(list_empty(&ref->add_list));
2538        return ref;
2539}
2540
2541static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2542                                      struct btrfs_delayed_ref_head *head)
2543{
2544        spin_lock(&delayed_refs->lock);
2545        head->processing = 0;
2546        delayed_refs->num_heads_ready++;
2547        spin_unlock(&delayed_refs->lock);
2548        btrfs_delayed_ref_unlock(head);
2549}
2550
2551static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2552                             struct btrfs_fs_info *fs_info,
2553                             struct btrfs_delayed_ref_head *head)
2554{
2555        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2556        int ret;
2557
2558        if (!extent_op)
2559                return 0;
2560        head->extent_op = NULL;
2561        if (head->must_insert_reserved) {
2562                btrfs_free_delayed_extent_op(extent_op);
2563                return 0;
2564        }
2565        spin_unlock(&head->lock);
2566        ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2567        btrfs_free_delayed_extent_op(extent_op);
2568        return ret ? ret : 1;
2569}
2570
2571static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2572                            struct btrfs_fs_info *fs_info,
2573                            struct btrfs_delayed_ref_head *head)
2574{
2575        struct btrfs_delayed_ref_root *delayed_refs;
2576        int ret;
2577
2578        delayed_refs = &trans->transaction->delayed_refs;
2579
2580        ret = cleanup_extent_op(trans, fs_info, head);
2581        if (ret < 0) {
2582                unselect_delayed_ref_head(delayed_refs, head);
2583                btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584                return ret;
2585        } else if (ret) {
2586                return ret;
2587        }
2588
2589        /*
2590         * Need to drop our head ref lock and re-acquire the delayed ref lock
2591         * and then re-check to make sure nobody got added.
2592         */
2593        spin_unlock(&head->lock);
2594        spin_lock(&delayed_refs->lock);
2595        spin_lock(&head->lock);
2596        if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2597                spin_unlock(&head->lock);
2598                spin_unlock(&delayed_refs->lock);
2599                return 1;
2600        }
2601        delayed_refs->num_heads--;
2602        rb_erase(&head->href_node, &delayed_refs->href_root);
2603        RB_CLEAR_NODE(&head->href_node);
2604        spin_unlock(&delayed_refs->lock);
2605        spin_unlock(&head->lock);
2606        atomic_dec(&delayed_refs->num_entries);
2607
2608        trace_run_delayed_ref_head(fs_info, head, 0);
2609
2610        if (head->total_ref_mod < 0) {
2611                struct btrfs_block_group_cache *cache;
2612
2613                cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2614                ASSERT(cache);
2615                percpu_counter_add(&cache->space_info->total_bytes_pinned,
2616                                   -head->num_bytes);
2617                btrfs_put_block_group(cache);
2618
2619                if (head->is_data) {
2620                        spin_lock(&delayed_refs->lock);
2621                        delayed_refs->pending_csums -= head->num_bytes;
2622                        spin_unlock(&delayed_refs->lock);
2623                }
2624        }
2625
2626        if (head->must_insert_reserved) {
2627                btrfs_pin_extent(fs_info, head->bytenr,
2628                                 head->num_bytes, 1);
2629                if (head->is_data) {
2630                        ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2631                                              head->num_bytes);
2632                }
2633        }
2634
2635        /* Also free its reserved qgroup space */
2636        btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2637                                      head->qgroup_reserved);
2638        btrfs_delayed_ref_unlock(head);
2639        btrfs_put_delayed_ref_head(head);
2640        return 0;
2641}
2642
2643/*
2644 * Returns 0 on success or if called with an already aborted transaction.
2645 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2646 */
2647static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2648                                             struct btrfs_fs_info *fs_info,
2649                                             unsigned long nr)
2650{
2651        struct btrfs_delayed_ref_root *delayed_refs;
2652        struct btrfs_delayed_ref_node *ref;
2653        struct btrfs_delayed_ref_head *locked_ref = NULL;
2654        struct btrfs_delayed_extent_op *extent_op;
2655        ktime_t start = ktime_get();
2656        int ret;
2657        unsigned long count = 0;
2658        unsigned long actual_count = 0;
2659        int must_insert_reserved = 0;
2660
2661        delayed_refs = &trans->transaction->delayed_refs;
2662        while (1) {
2663                if (!locked_ref) {
2664                        if (count >= nr)
2665                                break;
2666
2667                        spin_lock(&delayed_refs->lock);
2668                        locked_ref = btrfs_select_ref_head(trans);
2669                        if (!locked_ref) {
2670                                spin_unlock(&delayed_refs->lock);
2671                                break;
2672                        }
2673
2674                        /* grab the lock that says we are going to process
2675                         * all the refs for this head */
2676                        ret = btrfs_delayed_ref_lock(trans, locked_ref);
2677                        spin_unlock(&delayed_refs->lock);
2678                        /*
2679                         * we may have dropped the spin lock to get the head
2680                         * mutex lock, and that might have given someone else
2681                         * time to free the head.  If that's true, it has been
2682                         * removed from our list and we can move on.
2683                         */
2684                        if (ret == -EAGAIN) {
2685                                locked_ref = NULL;
2686                                count++;
2687                                continue;
2688                        }
2689                }
2690
2691                /*
2692                 * We need to try and merge add/drops of the same ref since we
2693                 * can run into issues with relocate dropping the implicit ref
2694                 * and then it being added back again before the drop can
2695                 * finish.  If we merged anything we need to re-loop so we can
2696                 * get a good ref.
2697                 * Or we can get node references of the same type that weren't
2698                 * merged when created due to bumps in the tree mod seq, and
2699                 * we need to merge them to prevent adding an inline extent
2700                 * backref before dropping it (triggering a BUG_ON at
2701                 * insert_inline_extent_backref()).
2702                 */
2703                spin_lock(&locked_ref->lock);
2704                btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2705                                         locked_ref);
2706
2707                /*
2708                 * locked_ref is the head node, so we have to go one
2709                 * node back for any delayed ref updates
2710                 */
2711                ref = select_delayed_ref(locked_ref);
2712
2713                if (ref && ref->seq &&
2714                    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2715                        spin_unlock(&locked_ref->lock);
2716                        unselect_delayed_ref_head(delayed_refs, locked_ref);
2717                        locked_ref = NULL;
2718                        cond_resched();
2719                        count++;
2720                        continue;
2721                }
2722
2723                /*
2724                 * We're done processing refs in this ref_head, clean everything
2725                 * up and move on to the next ref_head.
2726                 */
2727                if (!ref) {
2728                        ret = cleanup_ref_head(trans, fs_info, locked_ref);
2729                        if (ret > 0 ) {
2730                                /* We dropped our lock, we need to loop. */
2731                                ret = 0;
2732                                continue;
2733                        } else if (ret) {
2734                                return ret;
2735                        }
2736                        locked_ref = NULL;
2737                        count++;
2738                        continue;
2739                }
2740
2741                actual_count++;
2742                ref->in_tree = 0;
2743                rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2744                RB_CLEAR_NODE(&ref->ref_node);
2745                if (!list_empty(&ref->add_list))
2746                        list_del(&ref->add_list);
2747                /*
2748                 * When we play the delayed ref, also correct the ref_mod on
2749                 * head
2750                 */
2751                switch (ref->action) {
2752                case BTRFS_ADD_DELAYED_REF:
2753                case BTRFS_ADD_DELAYED_EXTENT:
2754                        locked_ref->ref_mod -= ref->ref_mod;
2755                        break;
2756                case BTRFS_DROP_DELAYED_REF:
2757                        locked_ref->ref_mod += ref->ref_mod;
2758                        break;
2759                default:
2760                        WARN_ON(1);
2761                }
2762                atomic_dec(&delayed_refs->num_entries);
2763
2764                /*
2765                 * Record the must-insert_reserved flag before we drop the spin
2766                 * lock.
2767                 */
2768                must_insert_reserved = locked_ref->must_insert_reserved;
2769                locked_ref->must_insert_reserved = 0;
2770
2771                extent_op = locked_ref->extent_op;
2772                locked_ref->extent_op = NULL;
2773                spin_unlock(&locked_ref->lock);
2774
2775                ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2776                                          must_insert_reserved);
2777
2778                btrfs_free_delayed_extent_op(extent_op);
2779                if (ret) {
2780                        unselect_delayed_ref_head(delayed_refs, locked_ref);
2781                        btrfs_put_delayed_ref(ref);
2782                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2783                                    ret);
2784                        return ret;
2785                }
2786
2787                btrfs_put_delayed_ref(ref);
2788                count++;
2789                cond_resched();
2790        }
2791
2792        /*
2793         * We don't want to include ref heads since we can have empty ref heads
2794         * and those will drastically skew our runtime down since we just do
2795         * accounting, no actual extent tree updates.
2796         */
2797        if (actual_count > 0) {
2798                u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2799                u64 avg;
2800
2801                /*
2802                 * We weigh the current average higher than our current runtime
2803                 * to avoid large swings in the average.
2804                 */
2805                spin_lock(&delayed_refs->lock);
2806                avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2807                fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2808                spin_unlock(&delayed_refs->lock);
2809        }
2810        return 0;
2811}
2812
2813#ifdef SCRAMBLE_DELAYED_REFS
2814/*
2815 * Normally delayed refs get processed in ascending bytenr order. This
2816 * correlates in most cases to the order added. To expose dependencies on this
2817 * order, we start to process the tree in the middle instead of the beginning
2818 */
2819static u64 find_middle(struct rb_root *root)
2820{
2821        struct rb_node *n = root->rb_node;
2822        struct btrfs_delayed_ref_node *entry;
2823        int alt = 1;
2824        u64 middle;
2825        u64 first = 0, last = 0;
2826
2827        n = rb_first(root);
2828        if (n) {
2829                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2830                first = entry->bytenr;
2831        }
2832        n = rb_last(root);
2833        if (n) {
2834                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835                last = entry->bytenr;
2836        }
2837        n = root->rb_node;
2838
2839        while (n) {
2840                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2841                WARN_ON(!entry->in_tree);
2842
2843                middle = entry->bytenr;
2844
2845                if (alt)
2846                        n = n->rb_left;
2847                else
2848                        n = n->rb_right;
2849
2850                alt = 1 - alt;
2851        }
2852        return middle;
2853}
2854#endif
2855
2856static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2857{
2858        u64 num_bytes;
2859
2860        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2861                             sizeof(struct btrfs_extent_inline_ref));
2862        if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2863                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2864
2865        /*
2866         * We don't ever fill up leaves all the way so multiply by 2 just to be
2867         * closer to what we're really going to want to use.
2868         */
2869        return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2870}
2871
2872/*
2873 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2874 * would require to store the csums for that many bytes.
2875 */
2876u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2877{
2878        u64 csum_size;
2879        u64 num_csums_per_leaf;
2880        u64 num_csums;
2881
2882        csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2883        num_csums_per_leaf = div64_u64(csum_size,
2884                        (u64)btrfs_super_csum_size(fs_info->super_copy));
2885        num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2886        num_csums += num_csums_per_leaf - 1;
2887        num_csums = div64_u64(num_csums, num_csums_per_leaf);
2888        return num_csums;
2889}
2890
2891int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2892                                       struct btrfs_fs_info *fs_info)
2893{
2894        struct btrfs_block_rsv *global_rsv;
2895        u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2896        u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2897        u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2898        u64 num_bytes, num_dirty_bgs_bytes;
2899        int ret = 0;
2900
2901        num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2902        num_heads = heads_to_leaves(fs_info, num_heads);
2903        if (num_heads > 1)
2904                num_bytes += (num_heads - 1) * fs_info->nodesize;
2905        num_bytes <<= 1;
2906        num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2907                                                        fs_info->nodesize;
2908        num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2909                                                             num_dirty_bgs);
2910        global_rsv = &fs_info->global_block_rsv;
2911
2912        /*
2913         * If we can't allocate any more chunks lets make sure we have _lots_ of
2914         * wiggle room since running delayed refs can create more delayed refs.
2915         */
2916        if (global_rsv->space_info->full) {
2917                num_dirty_bgs_bytes <<= 1;
2918                num_bytes <<= 1;
2919        }
2920
2921        spin_lock(&global_rsv->lock);
2922        if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2923                ret = 1;
2924        spin_unlock(&global_rsv->lock);
2925        return ret;
2926}
2927
2928int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2929                                       struct btrfs_fs_info *fs_info)
2930{
2931        u64 num_entries =
2932                atomic_read(&trans->transaction->delayed_refs.num_entries);
2933        u64 avg_runtime;
2934        u64 val;
2935
2936        smp_mb();
2937        avg_runtime = fs_info->avg_delayed_ref_runtime;
2938        val = num_entries * avg_runtime;
2939        if (val >= NSEC_PER_SEC)
2940                return 1;
2941        if (val >= NSEC_PER_SEC / 2)
2942                return 2;
2943
2944        return btrfs_check_space_for_delayed_refs(trans, fs_info);
2945}
2946
2947struct async_delayed_refs {
2948        struct btrfs_root *root;
2949        u64 transid;
2950        int count;
2951        int error;
2952        int sync;
2953        struct completion wait;
2954        struct btrfs_work work;
2955};
2956
2957static inline struct async_delayed_refs *
2958to_async_delayed_refs(struct btrfs_work *work)
2959{
2960        return container_of(work, struct async_delayed_refs, work);
2961}
2962
2963static void delayed_ref_async_start(struct btrfs_work *work)
2964{
2965        struct async_delayed_refs *async = to_async_delayed_refs(work);
2966        struct btrfs_trans_handle *trans;
2967        struct btrfs_fs_info *fs_info = async->root->fs_info;
2968        int ret;
2969
2970        /* if the commit is already started, we don't need to wait here */
2971        if (btrfs_transaction_blocked(fs_info))
2972                goto done;
2973
2974        trans = btrfs_join_transaction(async->root);
2975        if (IS_ERR(trans)) {
2976                async->error = PTR_ERR(trans);
2977                goto done;
2978        }
2979
2980        /*
2981         * trans->sync means that when we call end_transaction, we won't
2982         * wait on delayed refs
2983         */
2984        trans->sync = true;
2985
2986        /* Don't bother flushing if we got into a different transaction */
2987        if (trans->transid > async->transid)
2988                goto end;
2989
2990        ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2991        if (ret)
2992                async->error = ret;
2993end:
2994        ret = btrfs_end_transaction(trans);
2995        if (ret && !async->error)
2996                async->error = ret;
2997done:
2998        if (async->sync)
2999                complete(&async->wait);
3000        else
3001                kfree(async);
3002}
3003
3004int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3005                                 unsigned long count, u64 transid, int wait)
3006{
3007        struct async_delayed_refs *async;
3008        int ret;
3009
3010        async = kmalloc(sizeof(*async), GFP_NOFS);
3011        if (!async)
3012                return -ENOMEM;
3013
3014        async->root = fs_info->tree_root;
3015        async->count = count;
3016        async->error = 0;
3017        async->transid = transid;
3018        if (wait)
3019                async->sync = 1;
3020        else
3021                async->sync = 0;
3022        init_completion(&async->wait);
3023
3024        btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3025                        delayed_ref_async_start, NULL, NULL);
3026
3027        btrfs_queue_work(fs_info->extent_workers, &async->work);
3028
3029        if (wait) {
3030                wait_for_completion(&async->wait);
3031                ret = async->error;
3032                kfree(async);
3033                return ret;
3034        }
3035        return 0;
3036}
3037
3038/*
3039 * this starts processing the delayed reference count updates and
3040 * extent insertions we have queued up so far.  count can be
3041 * 0, which means to process everything in the tree at the start
3042 * of the run (but not newly added entries), or it can be some target
3043 * number you'd like to process.
3044 *
3045 * Returns 0 on success or if called with an aborted transaction
3046 * Returns <0 on error and aborts the transaction
3047 */
3048int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3049                           struct btrfs_fs_info *fs_info, unsigned long count)
3050{
3051        struct rb_node *node;
3052        struct btrfs_delayed_ref_root *delayed_refs;
3053        struct btrfs_delayed_ref_head *head;
3054        int ret;
3055        int run_all = count == (unsigned long)-1;
3056        bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057
3058        /* We'll clean this up in btrfs_cleanup_transaction */
3059        if (trans->aborted)
3060                return 0;
3061
3062        if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063                return 0;
3064
3065        delayed_refs = &trans->transaction->delayed_refs;
3066        if (count == 0)
3067                count = atomic_read(&delayed_refs->num_entries) * 2;
3068
3069again:
3070#ifdef SCRAMBLE_DELAYED_REFS
3071        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072#endif
3073        trans->can_flush_pending_bgs = false;
3074        ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3075        if (ret < 0) {
3076                btrfs_abort_transaction(trans, ret);
3077                return ret;
3078        }
3079
3080        if (run_all) {
3081                if (!list_empty(&trans->new_bgs))
3082                        btrfs_create_pending_block_groups(trans, fs_info);
3083
3084                spin_lock(&delayed_refs->lock);
3085                node = rb_first(&delayed_refs->href_root);
3086                if (!node) {
3087                        spin_unlock(&delayed_refs->lock);
3088                        goto out;
3089                }
3090                head = rb_entry(node, struct btrfs_delayed_ref_head,
3091                                href_node);
3092                refcount_inc(&head->refs);
3093                spin_unlock(&delayed_refs->lock);
3094
3095                /* Mutex was contended, block until it's released and retry. */
3096                mutex_lock(&head->mutex);
3097                mutex_unlock(&head->mutex);
3098
3099                btrfs_put_delayed_ref_head(head);
3100                cond_resched();
3101                goto again;
3102        }
3103out:
3104        trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105        return 0;
3106}
3107
3108int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109                                struct btrfs_fs_info *fs_info,
3110                                u64 bytenr, u64 num_bytes, u64 flags,
3111                                int level, int is_data)
3112{
3113        struct btrfs_delayed_extent_op *extent_op;
3114        int ret;
3115
3116        extent_op = btrfs_alloc_delayed_extent_op();
3117        if (!extent_op)
3118                return -ENOMEM;
3119
3120        extent_op->flags_to_set = flags;
3121        extent_op->update_flags = true;
3122        extent_op->update_key = false;
3123        extent_op->is_data = is_data ? true : false;
3124        extent_op->level = level;
3125
3126        ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127                                          num_bytes, extent_op);
3128        if (ret)
3129                btrfs_free_delayed_extent_op(extent_op);
3130        return ret;
3131}
3132
3133static noinline int check_delayed_ref(struct btrfs_root *root,
3134                                      struct btrfs_path *path,
3135                                      u64 objectid, u64 offset, u64 bytenr)
3136{
3137        struct btrfs_delayed_ref_head *head;
3138        struct btrfs_delayed_ref_node *ref;
3139        struct btrfs_delayed_data_ref *data_ref;
3140        struct btrfs_delayed_ref_root *delayed_refs;
3141        struct btrfs_transaction *cur_trans;
3142        struct rb_node *node;
3143        int ret = 0;
3144
3145        cur_trans = root->fs_info->running_transaction;
3146        if (!cur_trans)
3147                return 0;
3148
3149        delayed_refs = &cur_trans->delayed_refs;
3150        spin_lock(&delayed_refs->lock);
3151        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3152        if (!head) {
3153                spin_unlock(&delayed_refs->lock);
3154                return 0;
3155        }
3156
3157        if (!mutex_trylock(&head->mutex)) {
3158                refcount_inc(&head->refs);
3159                spin_unlock(&delayed_refs->lock);
3160
3161                btrfs_release_path(path);
3162
3163                /*
3164                 * Mutex was contended, block until it's released and let
3165                 * caller try again
3166                 */
3167                mutex_lock(&head->mutex);
3168                mutex_unlock(&head->mutex);
3169                btrfs_put_delayed_ref_head(head);
3170                return -EAGAIN;
3171        }
3172        spin_unlock(&delayed_refs->lock);
3173
3174        spin_lock(&head->lock);
3175        /*
3176         * XXX: We should replace this with a proper search function in the
3177         * future.
3178         */
3179        for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3180                ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3181                /* If it's a shared ref we know a cross reference exists */
3182                if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3183                        ret = 1;
3184                        break;
3185                }
3186
3187                data_ref = btrfs_delayed_node_to_data_ref(ref);
3188
3189                /*
3190                 * If our ref doesn't match the one we're currently looking at
3191                 * then we have a cross reference.
3192                 */
3193                if (data_ref->root != root->root_key.objectid ||
3194                    data_ref->objectid != objectid ||
3195                    data_ref->offset != offset) {
3196                        ret = 1;
3197                        break;
3198                }
3199        }
3200        spin_unlock(&head->lock);
3201        mutex_unlock(&head->mutex);
3202        return ret;
3203}
3204
3205static noinline int check_committed_ref(struct btrfs_root *root,
3206                                        struct btrfs_path *path,
3207                                        u64 objectid, u64 offset, u64 bytenr)
3208{
3209        struct btrfs_fs_info *fs_info = root->fs_info;
3210        struct btrfs_root *extent_root = fs_info->extent_root;
3211        struct extent_buffer *leaf;
3212        struct btrfs_extent_data_ref *ref;
3213        struct btrfs_extent_inline_ref *iref;
3214        struct btrfs_extent_item *ei;
3215        struct btrfs_key key;
3216        u32 item_size;
3217        int type;
3218        int ret;
3219
3220        key.objectid = bytenr;
3221        key.offset = (u64)-1;
3222        key.type = BTRFS_EXTENT_ITEM_KEY;
3223
3224        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3225        if (ret < 0)
3226                goto out;
3227        BUG_ON(ret == 0); /* Corruption */
3228
3229        ret = -ENOENT;
3230        if (path->slots[0] == 0)
3231                goto out;
3232
3233        path->slots[0]--;
3234        leaf = path->nodes[0];
3235        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3236
3237        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3238                goto out;
3239
3240        ret = 1;
3241        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3242#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3243        if (item_size < sizeof(*ei)) {
3244                WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3245                goto out;
3246        }
3247#endif
3248        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3249
3250        if (item_size != sizeof(*ei) +
3251            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3252                goto out;
3253
3254        if (btrfs_extent_generation(leaf, ei) <=
3255            btrfs_root_last_snapshot(&root->root_item))
3256                goto out;
3257
3258        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3259
3260        type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3261        if (type != BTRFS_EXTENT_DATA_REF_KEY)
3262                goto out;
3263
3264        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3265        if (btrfs_extent_refs(leaf, ei) !=
3266            btrfs_extent_data_ref_count(leaf, ref) ||
3267            btrfs_extent_data_ref_root(leaf, ref) !=
3268            root->root_key.objectid ||
3269            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3270            btrfs_extent_data_ref_offset(leaf, ref) != offset)
3271                goto out;
3272
3273        ret = 0;
3274out:
3275        return ret;
3276}
3277
3278int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3279                          u64 bytenr)
3280{
3281        struct btrfs_path *path;
3282        int ret;
3283        int ret2;
3284
3285        path = btrfs_alloc_path();
3286        if (!path)
3287                return -ENOENT;
3288
3289        do {
3290                ret = check_committed_ref(root, path, objectid,
3291                                          offset, bytenr);
3292                if (ret && ret != -ENOENT)
3293                        goto out;
3294
3295                ret2 = check_delayed_ref(root, path, objectid,
3296                                         offset, bytenr);
3297        } while (ret2 == -EAGAIN);
3298
3299        if (ret2 && ret2 != -ENOENT) {
3300                ret = ret2;
3301                goto out;
3302        }
3303
3304        if (ret != -ENOENT || ret2 != -ENOENT)
3305                ret = 0;
3306out:
3307        btrfs_free_path(path);
3308        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3309                WARN_ON(ret > 0);
3310        return ret;
3311}
3312
3313static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3314                           struct btrfs_root *root,
3315                           struct extent_buffer *buf,
3316                           int full_backref, int inc)
3317{
3318        struct btrfs_fs_info *fs_info = root->fs_info;
3319        u64 bytenr;
3320        u64 num_bytes;
3321        u64 parent;
3322        u64 ref_root;
3323        u32 nritems;
3324        struct btrfs_key key;
3325        struct btrfs_file_extent_item *fi;
3326        int i;
3327        int level;
3328        int ret = 0;
3329        int (*process_func)(struct btrfs_trans_handle *,
3330                            struct btrfs_root *,
3331                            u64, u64, u64, u64, u64, u64);
3332
3333
3334        if (btrfs_is_testing(fs_info))
3335                return 0;
3336
3337        ref_root = btrfs_header_owner(buf);
3338        nritems = btrfs_header_nritems(buf);
3339        level = btrfs_header_level(buf);
3340
3341        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3342                return 0;
3343
3344        if (inc)
3345                process_func = btrfs_inc_extent_ref;
3346        else
3347                process_func = btrfs_free_extent;
3348
3349        if (full_backref)
3350                parent = buf->start;
3351        else
3352                parent = 0;
3353
3354        for (i = 0; i < nritems; i++) {
3355                if (level == 0) {
3356                        btrfs_item_key_to_cpu(buf, &key, i);
3357                        if (key.type != BTRFS_EXTENT_DATA_KEY)
3358                                continue;
3359                        fi = btrfs_item_ptr(buf, i,
3360                                            struct btrfs_file_extent_item);
3361                        if (btrfs_file_extent_type(buf, fi) ==
3362                            BTRFS_FILE_EXTENT_INLINE)
3363                                continue;
3364                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3365                        if (bytenr == 0)
3366                                continue;
3367
3368                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3369                        key.offset -= btrfs_file_extent_offset(buf, fi);
3370                        ret = process_func(trans, root, bytenr, num_bytes,
3371                                           parent, ref_root, key.objectid,
3372                                           key.offset);
3373                        if (ret)
3374                                goto fail;
3375                } else {
3376                        bytenr = btrfs_node_blockptr(buf, i);
3377                        num_bytes = fs_info->nodesize;
3378                        ret = process_func(trans, root, bytenr, num_bytes,
3379                                           parent, ref_root, level - 1, 0);
3380                        if (ret)
3381                                goto fail;
3382                }
3383        }
3384        return 0;
3385fail:
3386        return ret;
3387}
3388
3389int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3390                  struct extent_buffer *buf, int full_backref)
3391{
3392        return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3393}
3394
3395int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396                  struct extent_buffer *buf, int full_backref)
3397{
3398        return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3399}
3400
3401static int write_one_cache_group(struct btrfs_trans_handle *trans,
3402                                 struct btrfs_fs_info *fs_info,
3403                                 struct btrfs_path *path,
3404                                 struct btrfs_block_group_cache *cache)
3405{
3406        int ret;
3407        struct btrfs_root *extent_root = fs_info->extent_root;
3408        unsigned long bi;
3409        struct extent_buffer *leaf;
3410
3411        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3412        if (ret) {
3413                if (ret > 0)
3414                        ret = -ENOENT;
3415                goto fail;
3416        }
3417
3418        leaf = path->nodes[0];
3419        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3421        btrfs_mark_buffer_dirty(leaf);
3422fail:
3423        btrfs_release_path(path);
3424        return ret;
3425
3426}
3427
3428static struct btrfs_block_group_cache *
3429next_block_group(struct btrfs_fs_info *fs_info,
3430                 struct btrfs_block_group_cache *cache)
3431{
3432        struct rb_node *node;
3433
3434        spin_lock(&fs_info->block_group_cache_lock);
3435
3436        /* If our block group was removed, we need a full search. */
3437        if (RB_EMPTY_NODE(&cache->cache_node)) {
3438                const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439
3440                spin_unlock(&fs_info->block_group_cache_lock);
3441                btrfs_put_block_group(cache);
3442                cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3443        }
3444        node = rb_next(&cache->cache_node);
3445        btrfs_put_block_group(cache);
3446        if (node) {
3447                cache = rb_entry(node, struct btrfs_block_group_cache,
3448                                 cache_node);
3449                btrfs_get_block_group(cache);
3450        } else
3451                cache = NULL;
3452        spin_unlock(&fs_info->block_group_cache_lock);
3453        return cache;
3454}
3455
3456static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3457                            struct btrfs_trans_handle *trans,
3458                            struct btrfs_path *path)
3459{
3460        struct btrfs_fs_info *fs_info = block_group->fs_info;
3461        struct btrfs_root *root = fs_info->tree_root;
3462        struct inode *inode = NULL;
3463        struct extent_changeset *data_reserved = NULL;
3464        u64 alloc_hint = 0;
3465        int dcs = BTRFS_DC_ERROR;
3466        u64 num_pages = 0;
3467        int retries = 0;
3468        int ret = 0;
3469
3470        /*
3471         * If this block group is smaller than 100 megs don't bother caching the
3472         * block group.
3473         */
3474        if (block_group->key.offset < (100 * SZ_1M)) {
3475                spin_lock(&block_group->lock);
3476                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3477                spin_unlock(&block_group->lock);
3478                return 0;
3479        }
3480
3481        if (trans->aborted)
3482                return 0;
3483again:
3484        inode = lookup_free_space_inode(fs_info, block_group, path);
3485        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3486                ret = PTR_ERR(inode);
3487                btrfs_release_path(path);
3488                goto out;
3489        }
3490
3491        if (IS_ERR(inode)) {
3492                BUG_ON(retries);
3493                retries++;
3494
3495                if (block_group->ro)
3496                        goto out_free;
3497
3498                ret = create_free_space_inode(fs_info, trans, block_group,
3499                                              path);
3500                if (ret)
3501                        goto out_free;
3502                goto again;
3503        }
3504
3505        /*
3506         * We want to set the generation to 0, that way if anything goes wrong
3507         * from here on out we know not to trust this cache when we load up next
3508         * time.
3509         */
3510        BTRFS_I(inode)->generation = 0;
3511        ret = btrfs_update_inode(trans, root, inode);
3512        if (ret) {
3513                /*
3514                 * So theoretically we could recover from this, simply set the
3515                 * super cache generation to 0 so we know to invalidate the
3516                 * cache, but then we'd have to keep track of the block groups
3517                 * that fail this way so we know we _have_ to reset this cache
3518                 * before the next commit or risk reading stale cache.  So to
3519                 * limit our exposure to horrible edge cases lets just abort the
3520                 * transaction, this only happens in really bad situations
3521                 * anyway.
3522                 */
3523                btrfs_abort_transaction(trans, ret);
3524                goto out_put;
3525        }
3526        WARN_ON(ret);
3527
3528        /* We've already setup this transaction, go ahead and exit */
3529        if (block_group->cache_generation == trans->transid &&
3530            i_size_read(inode)) {
3531                dcs = BTRFS_DC_SETUP;
3532                goto out_put;
3533        }
3534
3535        if (i_size_read(inode) > 0) {
3536                ret = btrfs_check_trunc_cache_free_space(fs_info,
3537                                        &fs_info->global_block_rsv);
3538                if (ret)
3539                        goto out_put;
3540
3541                ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3542                if (ret)
3543                        goto out_put;
3544        }
3545
3546        spin_lock(&block_group->lock);
3547        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3548            !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3549                /*
3550                 * don't bother trying to write stuff out _if_
3551                 * a) we're not cached,
3552                 * b) we're with nospace_cache mount option,
3553                 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3554                 */
3555                dcs = BTRFS_DC_WRITTEN;
3556                spin_unlock(&block_group->lock);
3557                goto out_put;
3558        }
3559        spin_unlock(&block_group->lock);
3560
3561        /*
3562         * We hit an ENOSPC when setting up the cache in this transaction, just
3563         * skip doing the setup, we've already cleared the cache so we're safe.
3564         */
3565        if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3566                ret = -ENOSPC;
3567                goto out_put;
3568        }
3569
3570        /*
3571         * Try to preallocate enough space based on how big the block group is.
3572         * Keep in mind this has to include any pinned space which could end up
3573         * taking up quite a bit since it's not folded into the other space
3574         * cache.
3575         */
3576        num_pages = div_u64(block_group->key.offset, SZ_256M);
3577        if (!num_pages)
3578                num_pages = 1;
3579
3580        num_pages *= 16;
3581        num_pages *= PAGE_SIZE;
3582
3583        ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3584        if (ret)
3585                goto out_put;
3586
3587        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3588                                              num_pages, num_pages,
3589                                              &alloc_hint);
3590        /*
3591         * Our cache requires contiguous chunks so that we don't modify a bunch
3592         * of metadata or split extents when writing the cache out, which means
3593         * we can enospc if we are heavily fragmented in addition to just normal
3594         * out of space conditions.  So if we hit this just skip setting up any
3595         * other block groups for this transaction, maybe we'll unpin enough
3596         * space the next time around.
3597         */
3598        if (!ret)
3599                dcs = BTRFS_DC_SETUP;
3600        else if (ret == -ENOSPC)
3601                set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3602
3603out_put:
3604        iput(inode);
3605out_free:
3606        btrfs_release_path(path);
3607out:
3608        spin_lock(&block_group->lock);
3609        if (!ret && dcs == BTRFS_DC_SETUP)
3610                block_group->cache_generation = trans->transid;
3611        block_group->disk_cache_state = dcs;
3612        spin_unlock(&block_group->lock);
3613
3614        extent_changeset_free(data_reserved);
3615        return ret;
3616}
3617
3618int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3619                            struct btrfs_fs_info *fs_info)
3620{
3621        struct btrfs_block_group_cache *cache, *tmp;
3622        struct btrfs_transaction *cur_trans = trans->transaction;
3623        struct btrfs_path *path;
3624
3625        if (list_empty(&cur_trans->dirty_bgs) ||
3626            !btrfs_test_opt(fs_info, SPACE_CACHE))
3627                return 0;
3628
3629        path = btrfs_alloc_path();
3630        if (!path)
3631                return -ENOMEM;
3632
3633        /* Could add new block groups, use _safe just in case */
3634        list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3635                                 dirty_list) {
3636                if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3637                        cache_save_setup(cache, trans, path);
3638        }
3639
3640        btrfs_free_path(path);
3641        return 0;
3642}
3643
3644/*
3645 * transaction commit does final block group cache writeback during a
3646 * critical section where nothing is allowed to change the FS.  This is
3647 * required in order for the cache to actually match the block group,
3648 * but can introduce a lot of latency into the commit.
3649 *
3650 * So, btrfs_start_dirty_block_groups is here to kick off block group
3651 * cache IO.  There's a chance we'll have to redo some of it if the
3652 * block group changes again during the commit, but it greatly reduces
3653 * the commit latency by getting rid of the easy block groups while
3654 * we're still allowing others to join the commit.
3655 */
3656int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3657                                   struct btrfs_fs_info *fs_info)
3658{
3659        struct btrfs_block_group_cache *cache;
3660        struct btrfs_transaction *cur_trans = trans->transaction;
3661        int ret = 0;
3662        int should_put;
3663        struct btrfs_path *path = NULL;
3664        LIST_HEAD(dirty);
3665        struct list_head *io = &cur_trans->io_bgs;
3666        int num_started = 0;
3667        int loops = 0;
3668
3669        spin_lock(&cur_trans->dirty_bgs_lock);
3670        if (list_empty(&cur_trans->dirty_bgs)) {
3671                spin_unlock(&cur_trans->dirty_bgs_lock);
3672                return 0;
3673        }
3674        list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675        spin_unlock(&cur_trans->dirty_bgs_lock);
3676
3677again:
3678        /*
3679         * make sure all the block groups on our dirty list actually
3680         * exist
3681         */
3682        btrfs_create_pending_block_groups(trans, fs_info);
3683
3684        if (!path) {
3685                path = btrfs_alloc_path();
3686                if (!path)
3687                        return -ENOMEM;
3688        }
3689
3690        /*
3691         * cache_write_mutex is here only to save us from balance or automatic
3692         * removal of empty block groups deleting this block group while we are
3693         * writing out the cache
3694         */
3695        mutex_lock(&trans->transaction->cache_write_mutex);
3696        while (!list_empty(&dirty)) {
3697                cache = list_first_entry(&dirty,
3698                                         struct btrfs_block_group_cache,
3699                                         dirty_list);
3700                /*
3701                 * this can happen if something re-dirties a block
3702                 * group that is already under IO.  Just wait for it to
3703                 * finish and then do it all again
3704                 */
3705                if (!list_empty(&cache->io_list)) {
3706                        list_del_init(&cache->io_list);
3707                        btrfs_wait_cache_io(trans, cache, path);
3708                        btrfs_put_block_group(cache);
3709                }
3710
3711
3712                /*
3713                 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3714                 * if it should update the cache_state.  Don't delete
3715                 * until after we wait.
3716                 *
3717                 * Since we're not running in the commit critical section
3718                 * we need the dirty_bgs_lock to protect from update_block_group
3719                 */
3720                spin_lock(&cur_trans->dirty_bgs_lock);
3721                list_del_init(&cache->dirty_list);
3722                spin_unlock(&cur_trans->dirty_bgs_lock);
3723
3724                should_put = 1;
3725
3726                cache_save_setup(cache, trans, path);
3727
3728                if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3729                        cache->io_ctl.inode = NULL;
3730                        ret = btrfs_write_out_cache(fs_info, trans,
3731                                                    cache, path);
3732                        if (ret == 0 && cache->io_ctl.inode) {
3733                                num_started++;
3734                                should_put = 0;
3735
3736                                /*
3737                                 * the cache_write_mutex is protecting
3738                                 * the io_list
3739                                 */
3740                                list_add_tail(&cache->io_list, io);
3741                        } else {
3742                                /*
3743                                 * if we failed to write the cache, the
3744                                 * generation will be bad and life goes on
3745                                 */
3746                                ret = 0;
3747                        }
3748                }
3749                if (!ret) {
3750                        ret = write_one_cache_group(trans, fs_info,
3751                                                    path, cache);
3752                        /*
3753                         * Our block group might still be attached to the list
3754                         * of new block groups in the transaction handle of some
3755                         * other task (struct btrfs_trans_handle->new_bgs). This
3756                         * means its block group item isn't yet in the extent
3757                         * tree. If this happens ignore the error, as we will
3758                         * try again later in the critical section of the
3759                         * transaction commit.
3760                         */
3761                        if (ret == -ENOENT) {
3762                                ret = 0;
3763                                spin_lock(&cur_trans->dirty_bgs_lock);
3764                                if (list_empty(&cache->dirty_list)) {
3765                                        list_add_tail(&cache->dirty_list,
3766                                                      &cur_trans->dirty_bgs);
3767                                        btrfs_get_block_group(cache);
3768                                }
3769                                spin_unlock(&cur_trans->dirty_bgs_lock);
3770                        } else if (ret) {
3771                                btrfs_abort_transaction(trans, ret);
3772                        }
3773                }
3774
3775                /* if its not on the io list, we need to put the block group */
3776                if (should_put)
3777                        btrfs_put_block_group(cache);
3778
3779                if (ret)
3780                        break;
3781
3782                /*
3783                 * Avoid blocking other tasks for too long. It might even save
3784                 * us from writing caches for block groups that are going to be
3785                 * removed.
3786                 */
3787                mutex_unlock(&trans->transaction->cache_write_mutex);
3788                mutex_lock(&trans->transaction->cache_write_mutex);
3789        }
3790        mutex_unlock(&trans->transaction->cache_write_mutex);
3791
3792        /*
3793         * go through delayed refs for all the stuff we've just kicked off
3794         * and then loop back (just once)
3795         */
3796        ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3797        if (!ret && loops == 0) {
3798                loops++;
3799                spin_lock(&cur_trans->dirty_bgs_lock);
3800                list_splice_init(&cur_trans->dirty_bgs, &dirty);
3801                /*
3802                 * dirty_bgs_lock protects us from concurrent block group
3803                 * deletes too (not just cache_write_mutex).
3804                 */
3805                if (!list_empty(&dirty)) {
3806                        spin_unlock(&cur_trans->dirty_bgs_lock);
3807                        goto again;
3808                }
3809                spin_unlock(&cur_trans->dirty_bgs_lock);
3810        } else if (ret < 0) {
3811                btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3812        }
3813
3814        btrfs_free_path(path);
3815        return ret;
3816}
3817
3818int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3819                                   struct btrfs_fs_info *fs_info)
3820{
3821        struct btrfs_block_group_cache *cache;
3822        struct btrfs_transaction *cur_trans = trans->transaction;
3823        int ret = 0;
3824        int should_put;
3825        struct btrfs_path *path;
3826        struct list_head *io = &cur_trans->io_bgs;
3827        int num_started = 0;
3828
3829        path = btrfs_alloc_path();
3830        if (!path)
3831                return -ENOMEM;
3832
3833        /*
3834         * Even though we are in the critical section of the transaction commit,
3835         * we can still have concurrent tasks adding elements to this
3836         * transaction's list of dirty block groups. These tasks correspond to
3837         * endio free space workers started when writeback finishes for a
3838         * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3839         * allocate new block groups as a result of COWing nodes of the root
3840         * tree when updating the free space inode. The writeback for the space
3841         * caches is triggered by an earlier call to
3842         * btrfs_start_dirty_block_groups() and iterations of the following
3843         * loop.
3844         * Also we want to do the cache_save_setup first and then run the
3845         * delayed refs to make sure we have the best chance at doing this all
3846         * in one shot.
3847         */
3848        spin_lock(&cur_trans->dirty_bgs_lock);
3849        while (!list_empty(&cur_trans->dirty_bgs)) {
3850                cache = list_first_entry(&cur_trans->dirty_bgs,
3851                                         struct btrfs_block_group_cache,
3852                                         dirty_list);
3853
3854                /*
3855                 * this can happen if cache_save_setup re-dirties a block
3856                 * group that is already under IO.  Just wait for it to
3857                 * finish and then do it all again
3858                 */
3859                if (!list_empty(&cache->io_list)) {
3860                        spin_unlock(&cur_trans->dirty_bgs_lock);
3861                        list_del_init(&cache->io_list);
3862                        btrfs_wait_cache_io(trans, cache, path);
3863                        btrfs_put_block_group(cache);
3864                        spin_lock(&cur_trans->dirty_bgs_lock);
3865                }
3866
3867                /*
3868                 * don't remove from the dirty list until after we've waited
3869                 * on any pending IO
3870                 */
3871                list_del_init(&cache->dirty_list);
3872                spin_unlock(&cur_trans->dirty_bgs_lock);
3873                should_put = 1;
3874
3875                cache_save_setup(cache, trans, path);
3876
3877                if (!ret)
3878                        ret = btrfs_run_delayed_refs(trans, fs_info,
3879                                                     (unsigned long) -1);
3880
3881                if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3882                        cache->io_ctl.inode = NULL;
3883                        ret = btrfs_write_out_cache(fs_info, trans,
3884                                                    cache, path);
3885                        if (ret == 0 && cache->io_ctl.inode) {
3886                                num_started++;
3887                                should_put = 0;
3888                                list_add_tail(&cache->io_list, io);
3889                        } else {
3890                                /*
3891                                 * if we failed to write the cache, the
3892                                 * generation will be bad and life goes on
3893                                 */
3894                                ret = 0;
3895                        }
3896                }
3897                if (!ret) {
3898                        ret = write_one_cache_group(trans, fs_info,
3899                                                    path, cache);
3900                        /*
3901                         * One of the free space endio workers might have
3902                         * created a new block group while updating a free space
3903                         * cache's inode (at inode.c:btrfs_finish_ordered_io())
3904                         * and hasn't released its transaction handle yet, in
3905                         * which case the new block group is still attached to
3906                         * its transaction handle and its creation has not
3907                         * finished yet (no block group item in the extent tree
3908                         * yet, etc). If this is the case, wait for all free
3909                         * space endio workers to finish and retry. This is a
3910                         * a very rare case so no need for a more efficient and
3911                         * complex approach.
3912                         */
3913                        if (ret == -ENOENT) {
3914                                wait_event(cur_trans->writer_wait,
3915                                   atomic_read(&cur_trans->num_writers) == 1);
3916                                ret = write_one_cache_group(trans, fs_info,
3917                                                            path, cache);
3918                        }
3919                        if (ret)
3920                                btrfs_abort_transaction(trans, ret);
3921                }
3922
3923                /* if its not on the io list, we need to put the block group */
3924                if (should_put)
3925                        btrfs_put_block_group(cache);
3926                spin_lock(&cur_trans->dirty_bgs_lock);
3927        }
3928        spin_unlock(&cur_trans->dirty_bgs_lock);
3929
3930        while (!list_empty(io)) {
3931                cache = list_first_entry(io, struct btrfs_block_group_cache,
3932                                         io_list);
3933                list_del_init(&cache->io_list);
3934                btrfs_wait_cache_io(trans, cache, path);
3935                btrfs_put_block_group(cache);
3936        }
3937
3938        btrfs_free_path(path);
3939        return ret;
3940}
3941
3942int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3943{
3944        struct btrfs_block_group_cache *block_group;
3945        int readonly = 0;
3946
3947        block_group = btrfs_lookup_block_group(fs_info, bytenr);
3948        if (!block_group || block_group->ro)
3949                readonly = 1;
3950        if (block_group)
3951                btrfs_put_block_group(block_group);
3952        return readonly;
3953}
3954
3955bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3956{
3957        struct btrfs_block_group_cache *bg;
3958        bool ret = true;
3959
3960        bg = btrfs_lookup_block_group(fs_info, bytenr);
3961        if (!bg)
3962                return false;
3963
3964        spin_lock(&bg->lock);
3965        if (bg->ro)
3966                ret = false;
3967        else
3968                atomic_inc(&bg->nocow_writers);
3969        spin_unlock(&bg->lock);
3970
3971        /* no put on block group, done by btrfs_dec_nocow_writers */
3972        if (!ret)
3973                btrfs_put_block_group(bg);
3974
3975        return ret;
3976
3977}
3978
3979void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3980{
3981        struct btrfs_block_group_cache *bg;
3982
3983        bg = btrfs_lookup_block_group(fs_info, bytenr);
3984        ASSERT(bg);
3985        if (atomic_dec_and_test(&bg->nocow_writers))
3986                wake_up_atomic_t(&bg->nocow_writers);
3987        /*
3988         * Once for our lookup and once for the lookup done by a previous call
3989         * to btrfs_inc_nocow_writers()
3990         */
3991        btrfs_put_block_group(bg);
3992        btrfs_put_block_group(bg);
3993}
3994
3995void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3996{
3997        wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
3998                         TASK_UNINTERRUPTIBLE);
3999}
4000
4001static const char *alloc_name(u64 flags)
4002{
4003        switch (flags) {
4004        case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4005                return "mixed";
4006        case BTRFS_BLOCK_GROUP_METADATA:
4007                return "metadata";
4008        case BTRFS_BLOCK_GROUP_DATA:
4009                return "data";
4010        case BTRFS_BLOCK_GROUP_SYSTEM:
4011                return "system";
4012        default:
4013                WARN_ON(1);
4014                return "invalid-combination";
4015        };
4016}
4017
4018static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4019                             struct btrfs_space_info **new)
4020{
4021
4022        struct btrfs_space_info *space_info;
4023        int i;
4024        int ret;
4025
4026        space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4027        if (!space_info)
4028                return -ENOMEM;
4029
4030        ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4031                                 GFP_KERNEL);
4032        if (ret) {
4033                kfree(space_info);
4034                return ret;
4035        }
4036
4037        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4038                INIT_LIST_HEAD(&space_info->block_groups[i]);
4039        init_rwsem(&space_info->groups_sem);
4040        spin_lock_init(&space_info->lock);
4041        space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4042        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4043        init_waitqueue_head(&space_info->wait);
4044        INIT_LIST_HEAD(&space_info->ro_bgs);
4045        INIT_LIST_HEAD(&space_info->tickets);
4046        INIT_LIST_HEAD(&space_info->priority_tickets);
4047
4048        ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4049                                    info->space_info_kobj, "%s",
4050                                    alloc_name(space_info->flags));
4051        if (ret) {
4052                percpu_counter_destroy(&space_info->total_bytes_pinned);
4053                kfree(space_info);
4054                return ret;
4055        }
4056
4057        *new = space_info;
4058        list_add_rcu(&space_info->list, &info->space_info);
4059        if (flags & BTRFS_BLOCK_GROUP_DATA)
4060                info->data_sinfo = space_info;
4061
4062        return ret;
4063}
4064
4065static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4066                             u64 total_bytes, u64 bytes_used,
4067                             u64 bytes_readonly,
4068                             struct btrfs_space_info **space_info)
4069{
4070        struct btrfs_space_info *found;
4071        int factor;
4072
4073        if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4074                     BTRFS_BLOCK_GROUP_RAID10))
4075                factor = 2;
4076        else
4077                factor = 1;
4078
4079        found = __find_space_info(info, flags);
4080        ASSERT(found);
4081        spin_lock(&found->lock);
4082        found->total_bytes += total_bytes;
4083        found->disk_total += total_bytes * factor;
4084        found->bytes_used += bytes_used;
4085        found->disk_used += bytes_used * factor;
4086        found->bytes_readonly += bytes_readonly;
4087        if (total_bytes > 0)
4088                found->full = 0;
4089        space_info_add_new_bytes(info, found, total_bytes -
4090                                 bytes_used - bytes_readonly);
4091        spin_unlock(&found->lock);
4092        *space_info = found;
4093}
4094
4095static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4096{
4097        u64 extra_flags = chunk_to_extended(flags) &
4098                                BTRFS_EXTENDED_PROFILE_MASK;
4099
4100        write_seqlock(&fs_info->profiles_lock);
4101        if (flags & BTRFS_BLOCK_GROUP_DATA)
4102                fs_info->avail_data_alloc_bits |= extra_flags;
4103        if (flags & BTRFS_BLOCK_GROUP_METADATA)
4104                fs_info->avail_metadata_alloc_bits |= extra_flags;
4105        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4106                fs_info->avail_system_alloc_bits |= extra_flags;
4107        write_sequnlock(&fs_info->profiles_lock);
4108}
4109
4110/*
4111 * returns target flags in extended format or 0 if restripe for this
4112 * chunk_type is not in progress
4113 *
4114 * should be called with either volume_mutex or balance_lock held
4115 */
4116static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4117{
4118        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4119        u64 target = 0;
4120
4121        if (!bctl)
4122                return 0;
4123
4124        if (flags & BTRFS_BLOCK_GROUP_DATA &&
4125            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4126                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4127        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4128                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4130        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4131                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4133        }
4134
4135        return target;
4136}
4137
4138/*
4139 * @flags: available profiles in extended format (see ctree.h)
4140 *
4141 * Returns reduced profile in chunk format.  If profile changing is in
4142 * progress (either running or paused) picks the target profile (if it's
4143 * already available), otherwise falls back to plain reducing.
4144 */
4145static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4146{
4147        u64 num_devices = fs_info->fs_devices->rw_devices;
4148        u64 target;
4149        u64 raid_type;
4150        u64 allowed = 0;
4151
4152        /*
4153         * see if restripe for this chunk_type is in progress, if so
4154         * try to reduce to the target profile
4155         */
4156        spin_lock(&fs_info->balance_lock);
4157        target = get_restripe_target(fs_info, flags);
4158        if (target) {
4159                /* pick target profile only if it's already available */
4160                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4161                        spin_unlock(&fs_info->balance_lock);
4162                        return extended_to_chunk(target);
4163                }
4164        }
4165        spin_unlock(&fs_info->balance_lock);
4166
4167        /* First, mask out the RAID levels which aren't possible */
4168        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4169                if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4170                        allowed |= btrfs_raid_group[raid_type];
4171        }
4172        allowed &= flags;
4173
4174        if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4175                allowed = BTRFS_BLOCK_GROUP_RAID6;
4176        else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4177                allowed = BTRFS_BLOCK_GROUP_RAID5;
4178        else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4179                allowed = BTRFS_BLOCK_GROUP_RAID10;
4180        else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4181                allowed = BTRFS_BLOCK_GROUP_RAID1;
4182        else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4183                allowed = BTRFS_BLOCK_GROUP_RAID0;
4184
4185        flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4186
4187        return extended_to_chunk(flags | allowed);
4188}
4189
4190static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4191{
4192        unsigned seq;
4193        u64 flags;
4194
4195        do {
4196                flags = orig_flags;
4197                seq = read_seqbegin(&fs_info->profiles_lock);
4198
4199                if (flags & BTRFS_BLOCK_GROUP_DATA)
4200                        flags |= fs_info->avail_data_alloc_bits;
4201                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4202                        flags |= fs_info->avail_system_alloc_bits;
4203                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4204                        flags |= fs_info->avail_metadata_alloc_bits;
4205        } while (read_seqretry(&fs_info->profiles_lock, seq));
4206
4207        return btrfs_reduce_alloc_profile(fs_info, flags);
4208}
4209
4210static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4211{
4212        struct btrfs_fs_info *fs_info = root->fs_info;
4213        u64 flags;
4214        u64 ret;
4215
4216        if (data)
4217                flags = BTRFS_BLOCK_GROUP_DATA;
4218        else if (root == fs_info->chunk_root)
4219                flags = BTRFS_BLOCK_GROUP_SYSTEM;
4220        else
4221                flags = BTRFS_BLOCK_GROUP_METADATA;
4222
4223        ret = get_alloc_profile(fs_info, flags);
4224        return ret;
4225}
4226
4227u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4228{
4229        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4230}
4231
4232u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4233{
4234        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4235}
4236
4237u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4238{
4239        return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4240}
4241
4242static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4243                                 bool may_use_included)
4244{
4245        ASSERT(s_info);
4246        return s_info->bytes_used + s_info->bytes_reserved +
4247                s_info->bytes_pinned + s_info->bytes_readonly +
4248                (may_use_included ? s_info->bytes_may_use : 0);
4249}
4250
4251int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4252{
4253        struct btrfs_root *root = inode->root;
4254        struct btrfs_fs_info *fs_info = root->fs_info;
4255        struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4256        u64 used;
4257        int ret = 0;
4258        int need_commit = 2;
4259        int have_pinned_space;
4260
4261        /* make sure bytes are sectorsize aligned */
4262        bytes = ALIGN(bytes, fs_info->sectorsize);
4263
4264        if (btrfs_is_free_space_inode(inode)) {
4265                need_commit = 0;
4266                ASSERT(current->journal_info);
4267        }
4268
4269again:
4270        /* make sure we have enough space to handle the data first */
4271        spin_lock(&data_sinfo->lock);
4272        used = btrfs_space_info_used(data_sinfo, true);
4273
4274        if (used + bytes > data_sinfo->total_bytes) {
4275                struct btrfs_trans_handle *trans;
4276
4277                /*
4278                 * if we don't have enough free bytes in this space then we need
4279                 * to alloc a new chunk.
4280                 */
4281                if (!data_sinfo->full) {
4282                        u64 alloc_target;
4283
4284                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4285                        spin_unlock(&data_sinfo->lock);
4286
4287                        alloc_target = btrfs_data_alloc_profile(fs_info);
4288                        /*
4289                         * It is ugly that we don't call nolock join
4290                         * transaction for the free space inode case here.
4291                         * But it is safe because we only do the data space
4292                         * reservation for the free space cache in the
4293                         * transaction context, the common join transaction
4294                         * just increase the counter of the current transaction
4295                         * handler, doesn't try to acquire the trans_lock of
4296                         * the fs.
4297                         */
4298                        trans = btrfs_join_transaction(root);
4299                        if (IS_ERR(trans))
4300                                return PTR_ERR(trans);
4301
4302                        ret = do_chunk_alloc(trans, fs_info, alloc_target,
4303                                             CHUNK_ALLOC_NO_FORCE);
4304                        btrfs_end_transaction(trans);
4305                        if (ret < 0) {
4306                                if (ret != -ENOSPC)
4307                                        return ret;
4308                                else {
4309                                        have_pinned_space = 1;
4310                                        goto commit_trans;
4311                                }
4312                        }
4313
4314                        goto again;
4315                }
4316
4317                /*
4318                 * If we don't have enough pinned space to deal with this
4319                 * allocation, and no removed chunk in current transaction,
4320                 * don't bother committing the transaction.
4321                 */
4322                have_pinned_space = percpu_counter_compare(
4323                        &data_sinfo->total_bytes_pinned,
4324                        used + bytes - data_sinfo->total_bytes);
4325                spin_unlock(&data_sinfo->lock);
4326
4327                /* commit the current transaction and try again */
4328commit_trans:
4329                if (need_commit &&
4330                    !atomic_read(&fs_info->open_ioctl_trans)) {
4331                        need_commit--;
4332
4333                        if (need_commit > 0) {
4334                                btrfs_start_delalloc_roots(fs_info, 0, -1);
4335                                btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4336                                                         (u64)-1);
4337                        }
4338
4339                        trans = btrfs_join_transaction(root);
4340                        if (IS_ERR(trans))
4341                                return PTR_ERR(trans);
4342                        if (have_pinned_space >= 0 ||
4343                            test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4344                                     &trans->transaction->flags) ||
4345                            need_commit > 0) {
4346                                ret = btrfs_commit_transaction(trans);
4347                                if (ret)
4348                                        return ret;
4349                                /*
4350                                 * The cleaner kthread might still be doing iput
4351                                 * operations. Wait for it to finish so that
4352                                 * more space is released.
4353                                 */
4354                                mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4355                                mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4356                                goto again;
4357                        } else {
4358                                btrfs_end_transaction(trans);
4359                        }
4360                }
4361
4362                trace_btrfs_space_reservation(fs_info,
4363                                              "space_info:enospc",
4364                                              data_sinfo->flags, bytes, 1);
4365                return -ENOSPC;
4366        }
4367        data_sinfo->bytes_may_use += bytes;
4368        trace_btrfs_space_reservation(fs_info, "space_info",
4369                                      data_sinfo->flags, bytes, 1);
4370        spin_unlock(&data_sinfo->lock);
4371
4372        return ret;
4373}
4374
4375int btrfs_check_data_free_space(struct inode *inode,
4376                        struct extent_changeset **reserved, u64 start, u64 len)
4377{
4378        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4379        int ret;
4380
4381        /* align the range */
4382        len = round_up(start + len, fs_info->sectorsize) -
4383              round_down(start, fs_info->sectorsize);
4384        start = round_down(start, fs_info->sectorsize);
4385
4386        ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4387        if (ret < 0)
4388                return ret;
4389
4390        /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4391        ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4392        if (ret < 0)
4393                btrfs_free_reserved_data_space_noquota(inode, start, len);
4394        else
4395                ret = 0;
4396        return ret;
4397}
4398
4399/*
4400 * Called if we need to clear a data reservation for this inode
4401 * Normally in a error case.
4402 *
4403 * This one will *NOT* use accurate qgroup reserved space API, just for case
4404 * which we can't sleep and is sure it won't affect qgroup reserved space.
4405 * Like clear_bit_hook().
4406 */
4407void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4408                                            u64 len)
4409{
4410        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4411        struct btrfs_space_info *data_sinfo;
4412
4413        /* Make sure the range is aligned to sectorsize */
4414        len = round_up(start + len, fs_info->sectorsize) -
4415              round_down(start, fs_info->sectorsize);
4416        start = round_down(start, fs_info->sectorsize);
4417
4418        data_sinfo = fs_info->data_sinfo;
4419        spin_lock(&data_sinfo->lock);
4420        if (WARN_ON(data_sinfo->bytes_may_use < len))
4421                data_sinfo->bytes_may_use = 0;
4422        else
4423                data_sinfo->bytes_may_use -= len;
4424        trace_btrfs_space_reservation(fs_info, "space_info",
4425                                      data_sinfo->flags, len, 0);
4426        spin_unlock(&data_sinfo->lock);
4427}
4428
4429/*
4430 * Called if we need to clear a data reservation for this inode
4431 * Normally in a error case.
4432 *
4433 * This one will handle the per-inode data rsv map for accurate reserved
4434 * space framework.
4435 */
4436void btrfs_free_reserved_data_space(struct inode *inode,
4437                        struct extent_changeset *reserved, u64 start, u64 len)
4438{
4439        struct btrfs_root *root = BTRFS_I(inode)->root;
4440
4441        /* Make sure the range is aligned to sectorsize */
4442        len = round_up(start + len, root->fs_info->sectorsize) -
4443              round_down(start, root->fs_info->sectorsize);
4444        start = round_down(start, root->fs_info->sectorsize);
4445
4446        btrfs_free_reserved_data_space_noquota(inode, start, len);
4447        btrfs_qgroup_free_data(inode, reserved, start, len);
4448}
4449
4450static void force_metadata_allocation(struct btrfs_fs_info *info)
4451{
4452        struct list_head *head = &info->space_info;
4453        struct btrfs_space_info *found;
4454
4455        rcu_read_lock();
4456        list_for_each_entry_rcu(found, head, list) {
4457                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4458                        found->force_alloc = CHUNK_ALLOC_FORCE;
4459        }
4460        rcu_read_unlock();
4461}
4462
4463static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4464{
4465        return (global->size << 1);
4466}
4467
4468static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4469                              struct btrfs_space_info *sinfo, int force)
4470{
4471        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4472        u64 bytes_used = btrfs_space_info_used(sinfo, false);
4473        u64 thresh;
4474
4475        if (force == CHUNK_ALLOC_FORCE)
4476                return 1;
4477
4478        /*
4479         * We need to take into account the global rsv because for all intents
4480         * and purposes it's used space.  Don't worry about locking the
4481         * global_rsv, it doesn't change except when the transaction commits.
4482         */
4483        if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4484                bytes_used += calc_global_rsv_need_space(global_rsv);
4485
4486        /*
4487         * in limited mode, we want to have some free space up to
4488         * about 1% of the FS size.
4489         */
4490        if (force == CHUNK_ALLOC_LIMITED) {
4491                thresh = btrfs_super_total_bytes(fs_info->super_copy);
4492                thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4493
4494                if (sinfo->total_bytes - bytes_used < thresh)
4495                        return 1;
4496        }
4497
4498        if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4499                return 0;
4500        return 1;
4501}
4502
4503static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4504{
4505        u64 num_dev;
4506
4507        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4508                    BTRFS_BLOCK_GROUP_RAID0 |
4509                    BTRFS_BLOCK_GROUP_RAID5 |
4510                    BTRFS_BLOCK_GROUP_RAID6))
4511                num_dev = fs_info->fs_devices->rw_devices;
4512        else if (type & BTRFS_BLOCK_GROUP_RAID1)
4513                num_dev = 2;
4514        else
4515                num_dev = 1;    /* DUP or single */
4516
4517        return num_dev;
4518}
4519
4520/*
4521 * If @is_allocation is true, reserve space in the system space info necessary
4522 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4523 * removing a chunk.
4524 */
4525void check_system_chunk(struct btrfs_trans_handle *trans,
4526                        struct btrfs_fs_info *fs_info, u64 type)
4527{
4528        struct btrfs_space_info *info;
4529        u64 left;
4530        u64 thresh;
4531        int ret = 0;
4532        u64 num_devs;
4533
4534        /*
4535         * Needed because we can end up allocating a system chunk and for an
4536         * atomic and race free space reservation in the chunk block reserve.
4537         */
4538        ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4539
4540        info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4541        spin_lock(&info->lock);
4542        left = info->total_bytes - btrfs_space_info_used(info, true);
4543        spin_unlock(&info->lock);
4544
4545        num_devs = get_profile_num_devs(fs_info, type);
4546
4547        /* num_devs device items to update and 1 chunk item to add or remove */
4548        thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4549                btrfs_calc_trans_metadata_size(fs_info, 1);
4550
4551        if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4552                btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4553                           left, thresh, type);
4554                dump_space_info(fs_info, info, 0, 0);
4555        }
4556
4557        if (left < thresh) {
4558                u64 flags = btrfs_system_alloc_profile(fs_info);
4559
4560                /*
4561                 * Ignore failure to create system chunk. We might end up not
4562                 * needing it, as we might not need to COW all nodes/leafs from
4563                 * the paths we visit in the chunk tree (they were already COWed
4564                 * or created in the current transaction for example).
4565                 */
4566                ret = btrfs_alloc_chunk(trans, fs_info, flags);
4567        }
4568
4569        if (!ret) {
4570                ret = btrfs_block_rsv_add(fs_info->chunk_root,
4571                                          &fs_info->chunk_block_rsv,
4572                                          thresh, BTRFS_RESERVE_NO_FLUSH);
4573                if (!ret)
4574                        trans->chunk_bytes_reserved += thresh;
4575        }
4576}
4577
4578/*
4579 * If force is CHUNK_ALLOC_FORCE:
4580 *    - return 1 if it successfully allocates a chunk,
4581 *    - return errors including -ENOSPC otherwise.
4582 * If force is NOT CHUNK_ALLOC_FORCE:
4583 *    - return 0 if it doesn't need to allocate a new chunk,
4584 *    - return 1 if it successfully allocates a chunk,
4585 *    - return errors including -ENOSPC otherwise.
4586 */
4587static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4588                          struct btrfs_fs_info *fs_info, u64 flags, int force)
4589{
4590        struct btrfs_space_info *space_info;
4591        int wait_for_alloc = 0;
4592        int ret = 0;
4593
4594        /* Don't re-enter if we're already allocating a chunk */
4595        if (trans->allocating_chunk)
4596                return -ENOSPC;
4597
4598        space_info = __find_space_info(fs_info, flags);
4599        if (!space_info) {
4600                ret = create_space_info(fs_info, flags, &space_info);
4601                if (ret)
4602                        return ret;
4603        }
4604
4605again:
4606        spin_lock(&space_info->lock);
4607        if (force < space_info->force_alloc)
4608                force = space_info->force_alloc;
4609        if (space_info->full) {
4610                if (should_alloc_chunk(fs_info, space_info, force))
4611                        ret = -ENOSPC;
4612                else
4613                        ret = 0;
4614                spin_unlock(&space_info->lock);
4615                return ret;
4616        }
4617
4618        if (!should_alloc_chunk(fs_info, space_info, force)) {
4619                spin_unlock(&space_info->lock);
4620                return 0;
4621        } else if (space_info->chunk_alloc) {
4622                wait_for_alloc = 1;
4623        } else {
4624                space_info->chunk_alloc = 1;
4625        }
4626
4627        spin_unlock(&space_info->lock);
4628
4629        mutex_lock(&fs_info->chunk_mutex);
4630
4631        /*
4632         * The chunk_mutex is held throughout the entirety of a chunk
4633         * allocation, so once we've acquired the chunk_mutex we know that the
4634         * other guy is done and we need to recheck and see if we should
4635         * allocate.
4636         */
4637        if (wait_for_alloc) {
4638                mutex_unlock(&fs_info->chunk_mutex);
4639                wait_for_alloc = 0;
4640                goto again;
4641        }
4642
4643        trans->allocating_chunk = true;
4644
4645        /*
4646         * If we have mixed data/metadata chunks we want to make sure we keep
4647         * allocating mixed chunks instead of individual chunks.
4648         */
4649        if (btrfs_mixed_space_info(space_info))
4650                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4651
4652        /*
4653         * if we're doing a data chunk, go ahead and make sure that
4654         * we keep a reasonable number of metadata chunks allocated in the
4655         * FS as well.
4656         */
4657        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4658                fs_info->data_chunk_allocations++;
4659                if (!(fs_info->data_chunk_allocations %
4660                      fs_info->metadata_ratio))
4661                        force_metadata_allocation(fs_info);
4662        }
4663
4664        /*
4665         * Check if we have enough space in SYSTEM chunk because we may need
4666         * to update devices.
4667         */
4668        check_system_chunk(trans, fs_info, flags);
4669
4670        ret = btrfs_alloc_chunk(trans, fs_info, flags);
4671        trans->allocating_chunk = false;
4672
4673        spin_lock(&space_info->lock);
4674        if (ret < 0 && ret != -ENOSPC)
4675                goto out;
4676        if (ret)
4677                space_info->full = 1;
4678        else
4679                ret = 1;
4680
4681        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4682out:
4683        space_info->chunk_alloc = 0;
4684        spin_unlock(&space_info->lock);
4685        mutex_unlock(&fs_info->chunk_mutex);
4686        /*
4687         * When we allocate a new chunk we reserve space in the chunk block
4688         * reserve to make sure we can COW nodes/leafs in the chunk tree or
4689         * add new nodes/leafs to it if we end up needing to do it when
4690         * inserting the chunk item and updating device items as part of the
4691         * second phase of chunk allocation, performed by
4692         * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4693         * large number of new block groups to create in our transaction
4694         * handle's new_bgs list to avoid exhausting the chunk block reserve
4695         * in extreme cases - like having a single transaction create many new
4696         * block groups when starting to write out the free space caches of all
4697         * the block groups that were made dirty during the lifetime of the
4698         * transaction.
4699         */
4700        if (trans->can_flush_pending_bgs &&
4701            trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4702                btrfs_create_pending_block_groups(trans, fs_info);
4703                btrfs_trans_release_chunk_metadata(trans);
4704        }
4705        return ret;
4706}
4707
4708static int can_overcommit(struct btrfs_fs_info *fs_info,
4709                          struct btrfs_space_info *space_info, u64 bytes,
4710                          enum btrfs_reserve_flush_enum flush,
4711                          bool system_chunk)
4712{
4713        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4714        u64 profile;
4715        u64 space_size;
4716        u64 avail;
4717        u64 used;
4718
4719        /* Don't overcommit when in mixed mode. */
4720        if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4721                return 0;
4722
4723        if (system_chunk)
4724                profile = btrfs_system_alloc_profile(fs_info);
4725        else
4726                profile = btrfs_metadata_alloc_profile(fs_info);
4727
4728        used = btrfs_space_info_used(space_info, false);
4729
4730        /*
4731         * We only want to allow over committing if we have lots of actual space
4732         * free, but if we don't have enough space to handle the global reserve
4733         * space then we could end up having a real enospc problem when trying
4734         * to allocate a chunk or some other such important allocation.
4735         */
4736        spin_lock(&global_rsv->lock);
4737        space_size = calc_global_rsv_need_space(global_rsv);
4738        spin_unlock(&global_rsv->lock);
4739        if (used + space_size >= space_info->total_bytes)
4740                return 0;
4741
4742        used += space_info->bytes_may_use;
4743
4744        avail = atomic64_read(&fs_info->free_chunk_space);
4745
4746        /*
4747         * If we have dup, raid1 or raid10 then only half of the free
4748         * space is actually useable.  For raid56, the space info used
4749         * doesn't include the parity drive, so we don't have to
4750         * change the math
4751         */
4752        if (profile & (BTRFS_BLOCK_GROUP_DUP |
4753                       BTRFS_BLOCK_GROUP_RAID1 |
4754                       BTRFS_BLOCK_GROUP_RAID10))
4755                avail >>= 1;
4756
4757        /*
4758         * If we aren't flushing all things, let us overcommit up to
4759         * 1/2th of the space. If we can flush, don't let us overcommit
4760         * too much, let it overcommit up to 1/8 of the space.
4761         */
4762        if (flush == BTRFS_RESERVE_FLUSH_ALL)
4763                avail >>= 3;
4764        else
4765                avail >>= 1;
4766
4767        if (used + bytes < space_info->total_bytes + avail)
4768                return 1;
4769        return 0;
4770}
4771
4772static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4773                                         unsigned long nr_pages, int nr_items)
4774{
4775        struct super_block *sb = fs_info->sb;
4776
4777        if (down_read_trylock(&sb->s_umount)) {
4778                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4779                up_read(&sb->s_umount);
4780        } else {
4781                /*
4782                 * We needn't worry the filesystem going from r/w to r/o though
4783                 * we don't acquire ->s_umount mutex, because the filesystem
4784                 * should guarantee the delalloc inodes list be empty after
4785                 * the filesystem is readonly(all dirty pages are written to
4786                 * the disk).
4787                 */
4788                btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4789                if (!current->journal_info)
4790                        btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4791        }
4792}
4793
4794static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4795                                        u64 to_reclaim)
4796{
4797        u64 bytes;
4798        u64 nr;
4799
4800        bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4801        nr = div64_u64(to_reclaim, bytes);
4802        if (!nr)
4803                nr = 1;
4804        return nr;
4805}
4806
4807#define EXTENT_SIZE_PER_ITEM    SZ_256K
4808
4809/*
4810 * shrink metadata reservation for delalloc
4811 */
4812static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4813                            u64 orig, bool wait_ordered)
4814{
4815        struct btrfs_space_info *space_info;
4816        struct btrfs_trans_handle *trans;
4817        u64 delalloc_bytes;
4818        u64 max_reclaim;
4819        u64 items;
4820        long time_left;
4821        unsigned long nr_pages;
4822        int loops;
4823        enum btrfs_reserve_flush_enum flush;
4824
4825        /* Calc the number of the pages we need flush for space reservation */
4826        items = calc_reclaim_items_nr(fs_info, to_reclaim);
4827        to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4828
4829        trans = (struct btrfs_trans_handle *)current->journal_info;
4830        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4831
4832        delalloc_bytes = percpu_counter_sum_positive(
4833                                                &fs_info->delalloc_bytes);
4834        if (delalloc_bytes == 0) {
4835                if (trans)
4836                        return;
4837                if (wait_ordered)
4838                        btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4839                return;
4840        }
4841
4842        loops = 0;
4843        while (delalloc_bytes && loops < 3) {
4844                max_reclaim = min(delalloc_bytes, to_reclaim);
4845                nr_pages = max_reclaim >> PAGE_SHIFT;
4846                btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4847                /*
4848                 * We need to wait for the async pages to actually start before
4849                 * we do anything.
4850                 */
4851                max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4852                if (!max_reclaim)
4853                        goto skip_async;
4854
4855                if (max_reclaim <= nr_pages)
4856                        max_reclaim = 0;
4857                else
4858                        max_reclaim -= nr_pages;
4859
4860                wait_event(fs_info->async_submit_wait,
4861                           atomic_read(&fs_info->async_delalloc_pages) <=
4862                           (int)max_reclaim);
4863skip_async:
4864                if (!trans)
4865                        flush = BTRFS_RESERVE_FLUSH_ALL;
4866                else
4867                        flush = BTRFS_RESERVE_NO_FLUSH;
4868                spin_lock(&space_info->lock);
4869                if (list_empty(&space_info->tickets) &&
4870                    list_empty(&space_info->priority_tickets)) {
4871                        spin_unlock(&space_info->lock);
4872                        break;
4873                }
4874                spin_unlock(&space_info->lock);
4875
4876                loops++;
4877                if (wait_ordered && !trans) {
4878                        btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4879                } else {
4880                        time_left = schedule_timeout_killable(1);
4881                        if (time_left)
4882                                break;
4883                }
4884                delalloc_bytes = percpu_counter_sum_positive(
4885                                                &fs_info->delalloc_bytes);
4886        }
4887}
4888
4889struct reserve_ticket {
4890        u64 bytes;
4891        int error;
4892        struct list_head list;
4893        wait_queue_head_t wait;
4894};
4895
4896/**
4897 * maybe_commit_transaction - possibly commit the transaction if its ok to
4898 * @root - the root we're allocating for
4899 * @bytes - the number of bytes we want to reserve
4900 * @force - force the commit
4901 *
4902 * This will check to make sure that committing the transaction will actually
4903 * get us somewhere and then commit the transaction if it does.  Otherwise it
4904 * will return -ENOSPC.
4905 */
4906static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4907                                  struct btrfs_space_info *space_info)
4908{
4909        struct reserve_ticket *ticket = NULL;
4910        struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4911        struct btrfs_trans_handle *trans;
4912        u64 bytes;
4913
4914        trans = (struct btrfs_trans_handle *)current->journal_info;
4915        if (trans)
4916                return -EAGAIN;
4917
4918        spin_lock(&space_info->lock);
4919        if (!list_empty(&space_info->priority_tickets))
4920                ticket = list_first_entry(&space_info->priority_tickets,
4921                                          struct reserve_ticket, list);
4922        else if (!list_empty(&space_info->tickets))
4923                ticket = list_first_entry(&space_info->tickets,
4924                                          struct reserve_ticket, list);
4925        bytes = (ticket) ? ticket->bytes : 0;
4926        spin_unlock(&space_info->lock);
4927
4928        if (!bytes)
4929                return 0;
4930
4931        /* See if there is enough pinned space to make this reservation */
4932        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4933                                   bytes) >= 0)
4934                goto commit;
4935
4936        /*
4937         * See if there is some space in the delayed insertion reservation for
4938         * this reservation.
4939         */
4940        if (space_info != delayed_rsv->space_info)
4941                return -ENOSPC;
4942
4943        spin_lock(&delayed_rsv->lock);
4944        if (delayed_rsv->size > bytes)
4945                bytes = 0;
4946        else
4947                bytes -= delayed_rsv->size;
4948        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4949                                   bytes) < 0) {
4950                spin_unlock(&delayed_rsv->lock);
4951                return -ENOSPC;
4952        }
4953        spin_unlock(&delayed_rsv->lock);
4954
4955commit:
4956        trans = btrfs_join_transaction(fs_info->extent_root);
4957        if (IS_ERR(trans))
4958                return -ENOSPC;
4959
4960        return btrfs_commit_transaction(trans);
4961}
4962
4963/*
4964 * Try to flush some data based on policy set by @state. This is only advisory
4965 * and may fail for various reasons. The caller is supposed to examine the
4966 * state of @space_info to detect the outcome.
4967 */
4968static void flush_space(struct btrfs_fs_info *fs_info,
4969                       struct btrfs_space_info *space_info, u64 num_bytes,
4970                       int state)
4971{
4972        struct btrfs_root *root = fs_info->extent_root;
4973        struct btrfs_trans_handle *trans;
4974        int nr;
4975        int ret = 0;
4976
4977        switch (state) {
4978        case FLUSH_DELAYED_ITEMS_NR:
4979        case FLUSH_DELAYED_ITEMS:
4980                if (state == FLUSH_DELAYED_ITEMS_NR)
4981                        nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4982                else
4983                        nr = -1;
4984
4985                trans = btrfs_join_transaction(root);
4986                if (IS_ERR(trans)) {
4987                        ret = PTR_ERR(trans);
4988                        break;
4989                }
4990                ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4991                btrfs_end_transaction(trans);
4992                break;
4993        case FLUSH_DELALLOC:
4994        case FLUSH_DELALLOC_WAIT:
4995                shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4996                                state == FLUSH_DELALLOC_WAIT);
4997                break;
4998        case ALLOC_CHUNK:
4999                trans = btrfs_join_transaction(root);
5000                if (IS_ERR(trans)) {
5001                        ret = PTR_ERR(trans);
5002                        break;
5003                }
5004                ret = do_chunk_alloc(trans, fs_info,
5005                                     btrfs_metadata_alloc_profile(fs_info),
5006                                     CHUNK_ALLOC_NO_FORCE);
5007                btrfs_end_transaction(trans);
5008                if (ret > 0 || ret == -ENOSPC)
5009                        ret = 0;
5010                break;
5011        case COMMIT_TRANS:
5012                ret = may_commit_transaction(fs_info, space_info);
5013                break;
5014        default:
5015                ret = -ENOSPC;
5016                break;
5017        }
5018
5019        trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5020                                ret);
5021        return;
5022}
5023
5024static inline u64
5025btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5026                                 struct btrfs_space_info *space_info,
5027                                 bool system_chunk)
5028{
5029        struct reserve_ticket *ticket;
5030        u64 used;
5031        u64 expected;
5032        u64 to_reclaim = 0;
5033
5034        list_for_each_entry(ticket, &space_info->tickets, list)
5035                to_reclaim += ticket->bytes;
5036        list_for_each_entry(ticket, &space_info->priority_tickets, list)
5037                to_reclaim += ticket->bytes;
5038        if (to_reclaim)
5039                return to_reclaim;
5040
5041        to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5042        if (can_overcommit(fs_info, space_info, to_reclaim,
5043                           BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5044                return 0;
5045
5046        used = btrfs_space_info_used(space_info, true);
5047
5048        if (can_overcommit(fs_info, space_info, SZ_1M,
5049                           BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050                expected = div_factor_fine(space_info->total_bytes, 95);
5051        else
5052                expected = div_factor_fine(space_info->total_bytes, 90);
5053
5054        if (used > expected)
5055                to_reclaim = used - expected;
5056        else
5057                to_reclaim = 0;
5058        to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5059                                     space_info->bytes_reserved);
5060        return to_reclaim;
5061}
5062
5063static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5064                                        struct btrfs_space_info *space_info,
5065                                        u64 used, bool system_chunk)
5066{
5067        u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5068
5069        /* If we're just plain full then async reclaim just slows us down. */
5070        if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5071                return 0;
5072
5073        if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5074                                              system_chunk))
5075                return 0;
5076
5077        return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5078                !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5079}
5080
5081static void wake_all_tickets(struct list_head *head)
5082{
5083        struct reserve_ticket *ticket;
5084
5085        while (!list_empty(head)) {
5086                ticket = list_first_entry(head, struct reserve_ticket, list);
5087                list_del_init(&ticket->list);
5088                ticket->error = -ENOSPC;
5089                wake_up(&ticket->wait);
5090        }
5091}
5092
5093/*
5094 * This is for normal flushers, we can wait all goddamned day if we want to.  We
5095 * will loop and continuously try to flush as long as we are making progress.
5096 * We count progress as clearing off tickets each time we have to loop.
5097 */
5098static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5099{
5100        struct btrfs_fs_info *fs_info;
5101        struct btrfs_space_info *space_info;
5102        u64 to_reclaim;
5103        int flush_state;
5104        int commit_cycles = 0;
5105        u64 last_tickets_id;
5106
5107        fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5108        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5109
5110        spin_lock(&space_info->lock);
5111        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5112                                                      false);
5113        if (!to_reclaim) {
5114                space_info->flush = 0;
5115                spin_unlock(&space_info->lock);
5116                return;
5117        }
5118        last_tickets_id = space_info->tickets_id;
5119        spin_unlock(&space_info->lock);
5120
5121        flush_state = FLUSH_DELAYED_ITEMS_NR;
5122        do {
5123                flush_space(fs_info, space_info, to_reclaim, flush_state);
5124                spin_lock(&space_info->lock);
5125                if (list_empty(&space_info->tickets)) {
5126                        space_info->flush = 0;
5127                        spin_unlock(&space_info->lock);
5128                        return;
5129                }
5130                to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5131                                                              space_info,
5132                                                              false);
5133                if (last_tickets_id == space_info->tickets_id) {
5134                        flush_state++;
5135                } else {
5136                        last_tickets_id = space_info->tickets_id;
5137                        flush_state = FLUSH_DELAYED_ITEMS_NR;
5138                        if (commit_cycles)
5139                                commit_cycles--;
5140                }
5141
5142                if (flush_state > COMMIT_TRANS) {
5143                        commit_cycles++;
5144                        if (commit_cycles > 2) {
5145                                wake_all_tickets(&space_info->tickets);
5146                                space_info->flush = 0;
5147                        } else {
5148                                flush_state = FLUSH_DELAYED_ITEMS_NR;
5149                        }
5150                }
5151                spin_unlock(&space_info->lock);
5152        } while (flush_state <= COMMIT_TRANS);
5153}
5154
5155void btrfs_init_async_reclaim_work(struct work_struct *work)
5156{
5157        INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5158}
5159
5160static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5161                                            struct btrfs_space_info *space_info,
5162                                            struct reserve_ticket *ticket)
5163{
5164        u64 to_reclaim;
5165        int flush_state = FLUSH_DELAYED_ITEMS_NR;
5166
5167        spin_lock(&space_info->lock);
5168        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5169                                                      false);
5170        if (!to_reclaim) {
5171                spin_unlock(&space_info->lock);
5172                return;
5173        }
5174        spin_unlock(&space_info->lock);
5175
5176        do {
5177                flush_space(fs_info, space_info, to_reclaim, flush_state);
5178                flush_state++;
5179                spin_lock(&space_info->lock);
5180                if (ticket->bytes == 0) {
5181                        spin_unlock(&space_info->lock);
5182                        return;
5183                }
5184                spin_unlock(&space_info->lock);
5185
5186                /*
5187                 * Priority flushers can't wait on delalloc without
5188                 * deadlocking.
5189                 */
5190                if (flush_state == FLUSH_DELALLOC ||
5191                    flush_state == FLUSH_DELALLOC_WAIT)
5192                        flush_state = ALLOC_CHUNK;
5193        } while (flush_state < COMMIT_TRANS);
5194}
5195
5196static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5197                               struct btrfs_space_info *space_info,
5198                               struct reserve_ticket *ticket, u64 orig_bytes)
5199
5200{
5201        DEFINE_WAIT(wait);
5202        int ret = 0;
5203
5204        spin_lock(&space_info->lock);
5205        while (ticket->bytes > 0 && ticket->error == 0) {
5206                ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5207                if (ret) {
5208                        ret = -EINTR;
5209                        break;
5210                }
5211                spin_unlock(&space_info->lock);
5212
5213                schedule();
5214
5215                finish_wait(&ticket->wait, &wait);
5216                spin_lock(&space_info->lock);
5217        }
5218        if (!ret)
5219                ret = ticket->error;
5220        if (!list_empty(&ticket->list))
5221                list_del_init(&ticket->list);
5222        if (ticket->bytes && ticket->bytes < orig_bytes) {
5223                u64 num_bytes = orig_bytes - ticket->bytes;
5224                space_info->bytes_may_use -= num_bytes;
5225                trace_btrfs_space_reservation(fs_info, "space_info",
5226                                              space_info->flags, num_bytes, 0);
5227        }
5228        spin_unlock(&space_info->lock);
5229
5230        return ret;
5231}
5232
5233/**
5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235 * @root - the root we're allocating for
5236 * @space_info - the space info we want to allocate from
5237 * @orig_bytes - the number of bytes we want
5238 * @flush - whether or not we can flush to make our reservation
5239 *
5240 * This will reserve orig_bytes number of bytes from the space info associated
5241 * with the block_rsv.  If there is not enough space it will make an attempt to
5242 * flush out space to make room.  It will do this by flushing delalloc if
5243 * possible or committing the transaction.  If flush is 0 then no attempts to
5244 * regain reservations will be made and this will fail if there is not enough
5245 * space already.
5246 */
5247static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5248                                    struct btrfs_space_info *space_info,
5249                                    u64 orig_bytes,
5250                                    enum btrfs_reserve_flush_enum flush,
5251                                    bool system_chunk)
5252{
5253        struct reserve_ticket ticket;
5254        u64 used;
5255        int ret = 0;
5256
5257        ASSERT(orig_bytes);
5258        ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5259
5260        spin_lock(&space_info->lock);
5261        ret = -ENOSPC;
5262        used = btrfs_space_info_used(space_info, true);
5263
5264        /*
5265         * If we have enough space then hooray, make our reservation and carry
5266         * on.  If not see if we can overcommit, and if we can, hooray carry on.
5267         * If not things get more complicated.
5268         */
5269        if (used + orig_bytes <= space_info->total_bytes) {
5270                space_info->bytes_may_use += orig_bytes;
5271                trace_btrfs_space_reservation(fs_info, "space_info",
5272                                              space_info->flags, orig_bytes, 1);
5273                ret = 0;
5274        } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5275                                  system_chunk)) {
5276                space_info->bytes_may_use += orig_bytes;
5277                trace_btrfs_space_reservation(fs_info, "space_info",
5278                                              space_info->flags, orig_bytes, 1);
5279                ret = 0;
5280        }
5281
5282        /*
5283         * If we couldn't make a reservation then setup our reservation ticket
5284         * and kick the async worker if it's not already running.
5285         *
5286         * If we are a priority flusher then we just need to add our ticket to
5287         * the list and we will do our own flushing further down.
5288         */
5289        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5290                ticket.bytes = orig_bytes;
5291                ticket.error = 0;
5292                init_waitqueue_head(&ticket.wait);
5293                if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5294                        list_add_tail(&ticket.list, &space_info->tickets);
5295                        if (!space_info->flush) {
5296                                space_info->flush = 1;
5297                                trace_btrfs_trigger_flush(fs_info,
5298                                                          space_info->flags,
5299                                                          orig_bytes, flush,
5300                                                          "enospc");
5301                                queue_work(system_unbound_wq,
5302                                           &fs_info->async_reclaim_work);
5303                        }
5304                } else {
5305                        list_add_tail(&ticket.list,
5306                                      &space_info->priority_tickets);
5307                }
5308        } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5309                used += orig_bytes;
5310                /*
5311                 * We will do the space reservation dance during log replay,
5312                 * which means we won't have fs_info->fs_root set, so don't do
5313                 * the async reclaim as we will panic.
5314                 */
5315                if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5316                    need_do_async_reclaim(fs_info, space_info,
5317                                          used, system_chunk) &&
5318                    !work_busy(&fs_info->async_reclaim_work)) {
5319                        trace_btrfs_trigger_flush(fs_info, space_info->flags,
5320                                                  orig_bytes, flush, "preempt");
5321                        queue_work(system_unbound_wq,
5322                                   &fs_info->async_reclaim_work);
5323                }
5324        }
5325        spin_unlock(&space_info->lock);
5326        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5327                return ret;
5328
5329        if (flush == BTRFS_RESERVE_FLUSH_ALL)
5330                return wait_reserve_ticket(fs_info, space_info, &ticket,
5331                                           orig_bytes);
5332
5333        ret = 0;
5334        priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5335        spin_lock(&space_info->lock);
5336        if (ticket.bytes) {
5337                if (ticket.bytes < orig_bytes) {
5338                        u64 num_bytes = orig_bytes - ticket.bytes;
5339                        space_info->bytes_may_use -= num_bytes;
5340                        trace_btrfs_space_reservation(fs_info, "space_info",
5341                                                      space_info->flags,
5342                                                      num_bytes, 0);
5343
5344                }
5345                list_del_init(&ticket.list);
5346                ret = -ENOSPC;
5347        }
5348        spin_unlock(&space_info->lock);
5349        ASSERT(list_empty(&ticket.list));
5350        return ret;
5351}
5352
5353/**
5354 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5355 * @root - the root we're allocating for
5356 * @block_rsv - the block_rsv we're allocating for
5357 * @orig_bytes - the number of bytes we want
5358 * @flush - whether or not we can flush to make our reservation
5359 *
5360 * This will reserve orgi_bytes number of bytes from the space info associated
5361 * with the block_rsv.  If there is not enough space it will make an attempt to
5362 * flush out space to make room.  It will do this by flushing delalloc if
5363 * possible or committing the transaction.  If flush is 0 then no attempts to
5364 * regain reservations will be made and this will fail if there is not enough
5365 * space already.
5366 */
5367static int reserve_metadata_bytes(struct btrfs_root *root,
5368                                  struct btrfs_block_rsv *block_rsv,
5369                                  u64 orig_bytes,
5370                                  enum btrfs_reserve_flush_enum flush)
5371{
5372        struct btrfs_fs_info *fs_info = root->fs_info;
5373        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5374        int ret;
5375        bool system_chunk = (root == fs_info->chunk_root);
5376
5377        ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5378                                       orig_bytes, flush, system_chunk);
5379        if (ret == -ENOSPC &&
5380            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5381                if (block_rsv != global_rsv &&
5382                    !block_rsv_use_bytes(global_rsv, orig_bytes))
5383                        ret = 0;
5384        }
5385        if (ret == -ENOSPC)
5386                trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5387                                              block_rsv->space_info->flags,
5388                                              orig_bytes, 1);
5389        return ret;
5390}
5391
5392static struct btrfs_block_rsv *get_block_rsv(
5393                                        const struct btrfs_trans_handle *trans,
5394                                        const struct btrfs_root *root)
5395{
5396        struct btrfs_fs_info *fs_info = root->fs_info;
5397        struct btrfs_block_rsv *block_rsv = NULL;
5398
5399        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5400            (root == fs_info->csum_root && trans->adding_csums) ||
5401            (root == fs_info->uuid_root))
5402                block_rsv = trans->block_rsv;
5403
5404        if (!block_rsv)
5405                block_rsv = root->block_rsv;
5406
5407        if (!block_rsv)
5408                block_rsv = &fs_info->empty_block_rsv;
5409
5410        return block_rsv;
5411}
5412
5413static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5414                               u64 num_bytes)
5415{
5416        int ret = -ENOSPC;
5417        spin_lock(&block_rsv->lock);
5418        if (block_rsv->reserved >= num_bytes) {
5419                block_rsv->reserved -= num_bytes;
5420                if (block_rsv->reserved < block_rsv->size)
5421                        block_rsv->full = 0;
5422                ret = 0;
5423        }
5424        spin_unlock(&block_rsv->lock);
5425        return ret;
5426}
5427
5428static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5429                                u64 num_bytes, int update_size)
5430{
5431        spin_lock(&block_rsv->lock);
5432        block_rsv->reserved += num_bytes;
5433        if (update_size)
5434                block_rsv->size += num_bytes;
5435        else if (block_rsv->reserved >= block_rsv->size)
5436                block_rsv->full = 1;
5437        spin_unlock(&block_rsv->lock);
5438}
5439
5440int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5441                             struct btrfs_block_rsv *dest, u64 num_bytes,
5442                             int min_factor)
5443{
5444        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5445        u64 min_bytes;
5446
5447        if (global_rsv->space_info != dest->space_info)
5448                return -ENOSPC;
5449
5450        spin_lock(&global_rsv->lock);
5451        min_bytes = div_factor(global_rsv->size, min_factor);
5452        if (global_rsv->reserved < min_bytes + num_bytes) {
5453                spin_unlock(&global_rsv->lock);
5454                return -ENOSPC;
5455        }
5456        global_rsv->reserved -= num_bytes;
5457        if (global_rsv->reserved < global_rsv->size)
5458                global_rsv->full = 0;
5459        spin_unlock(&global_rsv->lock);
5460
5461        block_rsv_add_bytes(dest, num_bytes, 1);
5462        return 0;
5463}
5464
5465/*
5466 * This is for space we already have accounted in space_info->bytes_may_use, so
5467 * basically when we're returning space from block_rsv's.
5468 */
5469static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5470                                     struct btrfs_space_info *space_info,
5471                                     u64 num_bytes)
5472{
5473        struct reserve_ticket *ticket;
5474        struct list_head *head;
5475        u64 used;
5476        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5477        bool check_overcommit = false;
5478
5479        spin_lock(&space_info->lock);
5480        head = &space_info->priority_tickets;
5481
5482        /*
5483         * If we are over our limit then we need to check and see if we can
5484         * overcommit, and if we can't then we just need to free up our space
5485         * and not satisfy any requests.
5486         */
5487        used = btrfs_space_info_used(space_info, true);
5488        if (used - num_bytes >= space_info->total_bytes)
5489                check_overcommit = true;
5490again:
5491        while (!list_empty(head) && num_bytes) {
5492                ticket = list_first_entry(head, struct reserve_ticket,
5493                                          list);
5494                /*
5495                 * We use 0 bytes because this space is already reserved, so
5496                 * adding the ticket space would be a double count.
5497                 */
5498                if (check_overcommit &&
5499                    !can_overcommit(fs_info, space_info, 0, flush, false))
5500                        break;
5501                if (num_bytes >= ticket->bytes) {
5502                        list_del_init(&ticket->list);
5503                        num_bytes -= ticket->bytes;
5504                        ticket->bytes = 0;
5505                        space_info->tickets_id++;
5506                        wake_up(&ticket->wait);
5507                } else {
5508                        ticket->bytes -= num_bytes;
5509                        num_bytes = 0;
5510                }
5511        }
5512
5513        if (num_bytes && head == &space_info->priority_tickets) {
5514                head = &space_info->tickets;
5515                flush = BTRFS_RESERVE_FLUSH_ALL;
5516                goto again;
5517        }
5518        space_info->bytes_may_use -= num_bytes;
5519        trace_btrfs_space_reservation(fs_info, "space_info",
5520                                      space_info->flags, num_bytes, 0);
5521        spin_unlock(&space_info->lock);
5522}
5523
5524/*
5525 * This is for newly allocated space that isn't accounted in
5526 * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5527 * we use this helper.
5528 */
5529static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5530                                     struct btrfs_space_info *space_info,
5531                                     u64 num_bytes)
5532{
5533        struct reserve_ticket *ticket;
5534        struct list_head *head = &space_info->priority_tickets;
5535
5536again:
5537        while (!list_empty(head) && num_bytes) {
5538                ticket = list_first_entry(head, struct reserve_ticket,
5539                                          list);
5540                if (num_bytes >= ticket->bytes) {
5541                        trace_btrfs_space_reservation(fs_info, "space_info",
5542                                                      space_info->flags,
5543                                                      ticket->bytes, 1);
5544                        list_del_init(&ticket->list);
5545                        num_bytes -= ticket->bytes;
5546                        space_info->bytes_may_use += ticket->bytes;
5547                        ticket->bytes = 0;
5548                        space_info->tickets_id++;
5549                        wake_up(&ticket->wait);
5550                } else {
5551                        trace_btrfs_space_reservation(fs_info, "space_info",
5552                                                      space_info->flags,
5553                                                      num_bytes, 1);
5554                        space_info->bytes_may_use += num_bytes;
5555                        ticket->bytes -= num_bytes;
5556                        num_bytes = 0;
5557                }
5558        }
5559
5560        if (num_bytes && head == &space_info->priority_tickets) {
5561                head = &space_info->tickets;
5562                goto again;
5563        }
5564}
5565
5566static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5567                                    struct btrfs_block_rsv *block_rsv,
5568                                    struct btrfs_block_rsv *dest, u64 num_bytes)
5569{
5570        struct btrfs_space_info *space_info = block_rsv->space_info;
5571        u64 ret;
5572
5573        spin_lock(&block_rsv->lock);
5574        if (num_bytes == (u64)-1)
5575                num_bytes = block_rsv->size;
5576        block_rsv->size -= num_bytes;
5577        if (block_rsv->reserved >= block_rsv->size) {
5578                num_bytes = block_rsv->reserved - block_rsv->size;
5579                block_rsv->reserved = block_rsv->size;
5580                block_rsv->full = 1;
5581        } else {
5582                num_bytes = 0;
5583        }
5584        spin_unlock(&block_rsv->lock);
5585
5586        ret = num_bytes;
5587        if (num_bytes > 0) {
5588                if (dest) {
5589                        spin_lock(&dest->lock);
5590                        if (!dest->full) {
5591                                u64 bytes_to_add;
5592
5593                                bytes_to_add = dest->size - dest->reserved;
5594                                bytes_to_add = min(num_bytes, bytes_to_add);
5595                                dest->reserved += bytes_to_add;
5596                                if (dest->reserved >= dest->size)
5597                                        dest->full = 1;
5598                                num_bytes -= bytes_to_add;
5599                        }
5600                        spin_unlock(&dest->lock);
5601                }
5602                if (num_bytes)
5603                        space_info_add_old_bytes(fs_info, space_info,
5604                                                 num_bytes);
5605        }
5606        return ret;
5607}
5608
5609int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5610                            struct btrfs_block_rsv *dst, u64 num_bytes,
5611                            int update_size)
5612{
5613        int ret;
5614
5615        ret = block_rsv_use_bytes(src, num_bytes);
5616        if (ret)
5617                return ret;
5618
5619        block_rsv_add_bytes(dst, num_bytes, update_size);
5620        return 0;
5621}
5622
5623void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5624{
5625        memset(rsv, 0, sizeof(*rsv));
5626        spin_lock_init(&rsv->lock);
5627        rsv->type = type;
5628}
5629
5630void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5631                                   struct btrfs_block_rsv *rsv,
5632                                   unsigned short type)
5633{
5634        btrfs_init_block_rsv(rsv, type);
5635        rsv->space_info = __find_space_info(fs_info,
5636                                            BTRFS_BLOCK_GROUP_METADATA);
5637}
5638
5639struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5640                                              unsigned short type)
5641{
5642        struct btrfs_block_rsv *block_rsv;
5643
5644        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5645        if (!block_rsv)
5646                return NULL;
5647
5648        btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5649        return block_rsv;
5650}
5651
5652void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5653                          struct btrfs_block_rsv *rsv)
5654{
5655        if (!rsv)
5656                return;
5657        btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5658        kfree(rsv);
5659}
5660
5661void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5662{
5663        kfree(rsv);
5664}
5665
5666int btrfs_block_rsv_add(struct btrfs_root *root,
5667                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5668                        enum btrfs_reserve_flush_enum flush)
5669{
5670        int ret;
5671
5672        if (num_bytes == 0)
5673                return 0;
5674
5675        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5676        if (!ret) {
5677                block_rsv_add_bytes(block_rsv, num_bytes, 1);
5678                return 0;
5679        }
5680
5681        return ret;
5682}
5683
5684int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5685{
5686        u64 num_bytes = 0;
5687        int ret = -ENOSPC;
5688
5689        if (!block_rsv)
5690                return 0;
5691
5692        spin_lock(&block_rsv->lock);
5693        num_bytes = div_factor(block_rsv->size, min_factor);
5694        if (block_rsv->reserved >= num_bytes)
5695                ret = 0;
5696        spin_unlock(&block_rsv->lock);
5697
5698        return ret;
5699}
5700
5701int btrfs_block_rsv_refill(struct btrfs_root *root,
5702                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5703                           enum btrfs_reserve_flush_enum flush)
5704{
5705        u64 num_bytes = 0;
5706        int ret = -ENOSPC;
5707
5708        if (!block_rsv)
5709                return 0;
5710
5711        spin_lock(&block_rsv->lock);
5712        num_bytes = min_reserved;
5713        if (block_rsv->reserved >= num_bytes)
5714                ret = 0;
5715        else
5716                num_bytes -= block_rsv->reserved;
5717        spin_unlock(&block_rsv->lock);
5718
5719        if (!ret)
5720                return 0;
5721
5722        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5723        if (!ret) {
5724                block_rsv_add_bytes(block_rsv, num_bytes, 0);
5725                return 0;
5726        }
5727
5728        return ret;
5729}
5730
5731/**
5732 * btrfs_inode_rsv_refill - refill the inode block rsv.
5733 * @inode - the inode we are refilling.
5734 * @flush - the flusing restriction.
5735 *
5736 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5737 * block_rsv->size as the minimum size.  We'll either refill the missing amount
5738 * or return if we already have enough space.  This will also handle the resreve
5739 * tracepoint for the reserved amount.
5740 */
5741int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5742                           enum btrfs_reserve_flush_enum flush)
5743{
5744        struct btrfs_root *root = inode->root;
5745        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5746        u64 num_bytes = 0;
5747        int ret = -ENOSPC;
5748
5749        spin_lock(&block_rsv->lock);
5750        if (block_rsv->reserved < block_rsv->size)
5751                num_bytes = block_rsv->size - block_rsv->reserved;
5752        spin_unlock(&block_rsv->lock);
5753
5754        if (num_bytes == 0)
5755                return 0;
5756
5757        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5758        if (!ret) {
5759                block_rsv_add_bytes(block_rsv, num_bytes, 0);
5760                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5761                                              btrfs_ino(inode), num_bytes, 1);
5762        }
5763        return ret;
5764}
5765
5766/**
5767 * btrfs_inode_rsv_release - release any excessive reservation.
5768 * @inode - the inode we need to release from.
5769 *
5770 * This is the same as btrfs_block_rsv_release, except that it handles the
5771 * tracepoint for the reservation.
5772 */
5773void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5774{
5775        struct btrfs_fs_info *fs_info = inode->root->fs_info;
5776        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5777        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5778        u64 released = 0;
5779
5780        /*
5781         * Since we statically set the block_rsv->size we just want to say we
5782         * are releasing 0 bytes, and then we'll just get the reservation over
5783         * the size free'd.
5784         */
5785        released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5786        if (released > 0)
5787                trace_btrfs_space_reservation(fs_info, "delalloc",
5788                                              btrfs_ino(inode), released, 0);
5789}
5790
5791void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5792                             struct btrfs_block_rsv *block_rsv,
5793                             u64 num_bytes)
5794{
5795        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5796
5797        if (global_rsv == block_rsv ||
5798            block_rsv->space_info != global_rsv->space_info)
5799                global_rsv = NULL;
5800        block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5801}
5802
5803static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5804{
5805        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5806        struct btrfs_space_info *sinfo = block_rsv->space_info;
5807        u64 num_bytes;
5808
5809        /*
5810         * The global block rsv is based on the size of the extent tree, the
5811         * checksum tree and the root tree.  If the fs is empty we want to set
5812         * it to a minimal amount for safety.
5813         */
5814        num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5815                btrfs_root_used(&fs_info->csum_root->root_item) +
5816                btrfs_root_used(&fs_info->tree_root->root_item);
5817        num_bytes = max_t(u64, num_bytes, SZ_16M);
5818
5819        spin_lock(&sinfo->lock);
5820        spin_lock(&block_rsv->lock);
5821
5822        block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5823
5824        if (block_rsv->reserved < block_rsv->size) {
5825                num_bytes = btrfs_space_info_used(sinfo, true);
5826                if (sinfo->total_bytes > num_bytes) {
5827                        num_bytes = sinfo->total_bytes - num_bytes;
5828                        num_bytes = min(num_bytes,
5829                                        block_rsv->size - block_rsv->reserved);
5830                        block_rsv->reserved += num_bytes;
5831                        sinfo->bytes_may_use += num_bytes;
5832                        trace_btrfs_space_reservation(fs_info, "space_info",
5833                                                      sinfo->flags, num_bytes,
5834                                                      1);
5835                }
5836        } else if (block_rsv->reserved > block_rsv->size) {
5837                num_bytes = block_rsv->reserved - block_rsv->size;
5838                sinfo->bytes_may_use -= num_bytes;
5839                trace_btrfs_space_reservation(fs_info, "space_info",
5840                                      sinfo->flags, num_bytes, 0);
5841                block_rsv->reserved = block_rsv->size;
5842        }
5843
5844        if (block_rsv->reserved == block_rsv->size)
5845                block_rsv->full = 1;
5846        else
5847                block_rsv->full = 0;
5848
5849        spin_unlock(&block_rsv->lock);
5850        spin_unlock(&sinfo->lock);
5851}
5852
5853static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5854{
5855        struct btrfs_space_info *space_info;
5856
5857        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5858        fs_info->chunk_block_rsv.space_info = space_info;
5859
5860        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5861        fs_info->global_block_rsv.space_info = space_info;
5862        fs_info->trans_block_rsv.space_info = space_info;
5863        fs_info->empty_block_rsv.space_info = space_info;
5864        fs_info->delayed_block_rsv.space_info = space_info;
5865
5866        fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5867        fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5868        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5869        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5870        if (fs_info->quota_root)
5871                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5872        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5873
5874        update_global_block_rsv(fs_info);
5875}
5876
5877static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5878{
5879        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5880                                (u64)-1);
5881        WARN_ON(fs_info->trans_block_rsv.size > 0);
5882        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5883        WARN_ON(fs_info->chunk_block_rsv.size > 0);
5884        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5885        WARN_ON(fs_info->delayed_block_rsv.size > 0);
5886        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5887}
5888
5889void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5890                                  struct btrfs_fs_info *fs_info)
5891{
5892        if (!trans->block_rsv) {
5893                ASSERT(!trans->bytes_reserved);
5894                return;
5895        }
5896
5897        if (!trans->bytes_reserved)
5898                return;
5899
5900        ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5901        trace_btrfs_space_reservation(fs_info, "transaction",
5902                                      trans->transid, trans->bytes_reserved, 0);
5903        btrfs_block_rsv_release(fs_info, trans->block_rsv,
5904                                trans->bytes_reserved);
5905        trans->bytes_reserved = 0;
5906}
5907
5908/*
5909 * To be called after all the new block groups attached to the transaction
5910 * handle have been created (btrfs_create_pending_block_groups()).
5911 */
5912void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5913{
5914        struct btrfs_fs_info *fs_info = trans->fs_info;
5915
5916        if (!trans->chunk_bytes_reserved)
5917                return;
5918
5919        WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5920
5921        block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5922                                trans->chunk_bytes_reserved);
5923        trans->chunk_bytes_reserved = 0;
5924}
5925
5926/* Can only return 0 or -ENOSPC */
5927int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5928                                  struct btrfs_inode *inode)
5929{
5930        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5931        struct btrfs_root *root = inode->root;
5932        /*
5933         * We always use trans->block_rsv here as we will have reserved space
5934         * for our orphan when starting the transaction, using get_block_rsv()
5935         * here will sometimes make us choose the wrong block rsv as we could be
5936         * doing a reloc inode for a non refcounted root.
5937         */
5938        struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5939        struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5940
5941        /*
5942         * We need to hold space in order to delete our orphan item once we've
5943         * added it, so this takes the reservation so we can release it later
5944         * when we are truly done with the orphan item.
5945         */
5946        u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5947
5948        trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5949                        num_bytes, 1);
5950        return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5951}
5952
5953void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5954{
5955        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5956        struct btrfs_root *root = inode->root;
5957        u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5958
5959        trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5960                        num_bytes, 0);
5961        btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5962}
5963
5964/*
5965 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5966 * root: the root of the parent directory
5967 * rsv: block reservation
5968 * items: the number of items that we need do reservation
5969 * qgroup_reserved: used to return the reserved size in qgroup
5970 *
5971 * This function is used to reserve the space for snapshot/subvolume
5972 * creation and deletion. Those operations are different with the
5973 * common file/directory operations, they change two fs/file trees
5974 * and root tree, the number of items that the qgroup reserves is
5975 * different with the free space reservation. So we can not use
5976 * the space reservation mechanism in start_transaction().
5977 */
5978int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5979                                     struct btrfs_block_rsv *rsv,
5980                                     int items,
5981                                     u64 *qgroup_reserved,
5982                                     bool use_global_rsv)
5983{
5984        u64 num_bytes;
5985        int ret;
5986        struct btrfs_fs_info *fs_info = root->fs_info;
5987        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5988
5989        if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5990                /* One for parent inode, two for dir entries */
5991                num_bytes = 3 * fs_info->nodesize;
5992                ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5993                if (ret)
5994                        return ret;
5995        } else {
5996                num_bytes = 0;
5997        }
5998
5999        *qgroup_reserved = num_bytes;
6000
6001        num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6002        rsv->space_info = __find_space_info(fs_info,
6003                                            BTRFS_BLOCK_GROUP_METADATA);
6004        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6005                                  BTRFS_RESERVE_FLUSH_ALL);
6006
6007        if (ret == -ENOSPC && use_global_rsv)
6008                ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6009
6010        if (ret && *qgroup_reserved)
6011                btrfs_qgroup_free_meta(root, *qgroup_reserved);
6012
6013        return ret;
6014}
6015
6016void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6017                                      struct btrfs_block_rsv *rsv)
6018{
6019        btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6020}
6021
6022static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6023                                                 struct btrfs_inode *inode)
6024{
6025        struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6026        u64 reserve_size = 0;
6027        u64 csum_leaves;
6028        unsigned outstanding_extents;
6029
6030        lockdep_assert_held(&inode->lock);
6031        outstanding_extents = inode->outstanding_extents;
6032        if (outstanding_extents)
6033                reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6034                                                outstanding_extents + 1);
6035        csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6036                                                 inode->csum_bytes);
6037        reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6038                                                       csum_leaves);
6039
6040        spin_lock(&block_rsv->lock);
6041        block_rsv->size = reserve_size;
6042        spin_unlock(&block_rsv->lock);
6043}
6044
6045int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6046{
6047        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6048        struct btrfs_root *root = inode->root;
6049        unsigned nr_extents;
6050        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6051        int ret = 0;
6052        bool delalloc_lock = true;
6053
6054        /* If we are a free space inode we need to not flush since we will be in
6055         * the middle of a transaction commit.  We also don't need the delalloc
6056         * mutex since we won't race with anybody.  We need this mostly to make
6057         * lockdep shut its filthy mouth.
6058         *
6059         * If we have a transaction open (can happen if we call truncate_block
6060         * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6061         */
6062        if (btrfs_is_free_space_inode(inode)) {
6063                flush = BTRFS_RESERVE_NO_FLUSH;
6064                delalloc_lock = false;
6065        } else if (current->journal_info) {
6066                flush = BTRFS_RESERVE_FLUSH_LIMIT;
6067        }
6068
6069        if (flush != BTRFS_RESERVE_NO_FLUSH &&
6070            btrfs_transaction_in_commit(fs_info))
6071                schedule_timeout(1);
6072
6073        if (delalloc_lock)
6074                mutex_lock(&inode->delalloc_mutex);
6075
6076        num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6077
6078        /* Add our new extents and calculate the new rsv size. */
6079        spin_lock(&inode->lock);
6080        nr_extents = count_max_extents(num_bytes);
6081        btrfs_mod_outstanding_extents(inode, nr_extents);
6082        inode->csum_bytes += num_bytes;
6083        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6084        spin_unlock(&inode->lock);
6085
6086        if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6087                ret = btrfs_qgroup_reserve_meta(root,
6088                                nr_extents * fs_info->nodesize, true);
6089                if (ret)
6090                        goto out_fail;
6091        }
6092
6093        ret = btrfs_inode_rsv_refill(inode, flush);
6094        if (unlikely(ret)) {
6095                btrfs_qgroup_free_meta(root,
6096                                       nr_extents * fs_info->nodesize);
6097                goto out_fail;
6098        }
6099
6100        if (delalloc_lock)
6101                mutex_unlock(&inode->delalloc_mutex);
6102        return 0;
6103
6104out_fail:
6105        spin_lock(&inode->lock);
6106        nr_extents = count_max_extents(num_bytes);
6107        btrfs_mod_outstanding_extents(inode, -nr_extents);
6108        inode->csum_bytes -= num_bytes;
6109        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6110        spin_unlock(&inode->lock);
6111
6112        btrfs_inode_rsv_release(inode);
6113        if (delalloc_lock)
6114                mutex_unlock(&inode->delalloc_mutex);
6115        return ret;
6116}
6117
6118/**
6119 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6120 * @inode: the inode to release the reservation for.
6121 * @num_bytes: the number of bytes we are releasing.
6122 *
6123 * This will release the metadata reservation for an inode.  This can be called
6124 * once we complete IO for a given set of bytes to release their metadata
6125 * reservations, or on error for the same reason.
6126 */
6127void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6128{
6129        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6130
6131        num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6132        spin_lock(&inode->lock);
6133        inode->csum_bytes -= num_bytes;
6134        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6135        spin_unlock(&inode->lock);
6136
6137        if (btrfs_is_testing(fs_info))
6138                return;
6139
6140        btrfs_inode_rsv_release(inode);
6141}
6142
6143/**
6144 * btrfs_delalloc_release_extents - release our outstanding_extents
6145 * @inode: the inode to balance the reservation for.
6146 * @num_bytes: the number of bytes we originally reserved with
6147 *
6148 * When we reserve space we increase outstanding_extents for the extents we may
6149 * add.  Once we've set the range as delalloc or created our ordered extents we
6150 * have outstanding_extents to track the real usage, so we use this to free our
6151 * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6152 * with btrfs_delalloc_reserve_metadata.
6153 */
6154void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6155{
6156        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6157        unsigned num_extents;
6158
6159        spin_lock(&inode->lock);
6160        num_extents = count_max_extents(num_bytes);
6161        btrfs_mod_outstanding_extents(inode, -num_extents);
6162        btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6163        spin_unlock(&inode->lock);
6164
6165        if (btrfs_is_testing(fs_info))
6166                return;
6167
6168        btrfs_inode_rsv_release(inode);
6169}
6170
6171/**
6172 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6173 * delalloc
6174 * @inode: inode we're writing to
6175 * @start: start range we are writing to
6176 * @len: how long the range we are writing to
6177 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6178 *            current reservation.
6179 *
6180 * This will do the following things
6181 *
6182 * o reserve space in data space info for num bytes
6183 *   and reserve precious corresponding qgroup space
6184 *   (Done in check_data_free_space)
6185 *
6186 * o reserve space for metadata space, based on the number of outstanding
6187 *   extents and how much csums will be needed
6188 *   also reserve metadata space in a per root over-reserve method.
6189 * o add to the inodes->delalloc_bytes
6190 * o add it to the fs_info's delalloc inodes list.
6191 *   (Above 3 all done in delalloc_reserve_metadata)
6192 *
6193 * Return 0 for success
6194 * Return <0 for error(-ENOSPC or -EQUOT)
6195 */
6196int btrfs_delalloc_reserve_space(struct inode *inode,
6197                        struct extent_changeset **reserved, u64 start, u64 len)
6198{
6199        int ret;
6200
6201        ret = btrfs_check_data_free_space(inode, reserved, start, len);
6202        if (ret < 0)
6203                return ret;
6204        ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6205        if (ret < 0)
6206                btrfs_free_reserved_data_space(inode, *reserved, start, len);
6207        return ret;
6208}
6209
6210/**
6211 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6212 * @inode: inode we're releasing space for
6213 * @start: start position of the space already reserved
6214 * @len: the len of the space already reserved
6215 * @release_bytes: the len of the space we consumed or didn't use
6216 *
6217 * This function will release the metadata space that was not used and will
6218 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6219 * list if there are no delalloc bytes left.
6220 * Also it will handle the qgroup reserved space.
6221 */
6222void btrfs_delalloc_release_space(struct inode *inode,
6223                                  struct extent_changeset *reserved,
6224                                  u64 start, u64 len)
6225{
6226        btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6227        btrfs_free_reserved_data_space(inode, reserved, start, len);
6228}
6229
6230static int update_block_group(struct btrfs_trans_handle *trans,
6231                              struct btrfs_fs_info *info, u64 bytenr,
6232                              u64 num_bytes, int alloc)
6233{
6234        struct btrfs_block_group_cache *cache = NULL;
6235        u64 total = num_bytes;
6236        u64 old_val;
6237        u64 byte_in_group;
6238        int factor;
6239
6240        /* block accounting for super block */
6241        spin_lock(&info->delalloc_root_lock);
6242        old_val = btrfs_super_bytes_used(info->super_copy);
6243        if (alloc)
6244                old_val += num_bytes;
6245        else
6246                old_val -= num_bytes;
6247        btrfs_set_super_bytes_used(info->super_copy, old_val);
6248        spin_unlock(&info->delalloc_root_lock);
6249
6250        while (total) {
6251                cache = btrfs_lookup_block_group(info, bytenr);
6252                if (!cache)
6253                        return -ENOENT;
6254                if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6255                                    BTRFS_BLOCK_GROUP_RAID1 |
6256                                    BTRFS_BLOCK_GROUP_RAID10))
6257                        factor = 2;
6258                else
6259                        factor = 1;
6260                /*
6261                 * If this block group has free space cache written out, we
6262                 * need to make sure to load it if we are removing space.  This
6263                 * is because we need the unpinning stage to actually add the
6264                 * space back to the block group, otherwise we will leak space.
6265                 */
6266                if (!alloc && cache->cached == BTRFS_CACHE_NO)
6267                        cache_block_group(cache, 1);
6268
6269                byte_in_group = bytenr - cache->key.objectid;
6270                WARN_ON(byte_in_group > cache->key.offset);
6271
6272                spin_lock(&cache->space_info->lock);
6273                spin_lock(&cache->lock);
6274
6275                if (btrfs_test_opt(info, SPACE_CACHE) &&
6276                    cache->disk_cache_state < BTRFS_DC_CLEAR)
6277                        cache->disk_cache_state = BTRFS_DC_CLEAR;
6278
6279                old_val = btrfs_block_group_used(&cache->item);
6280                num_bytes = min(total, cache->key.offset - byte_in_group);
6281                if (alloc) {
6282                        old_val += num_bytes;
6283                        btrfs_set_block_group_used(&cache->item, old_val);
6284                        cache->reserved -= num_bytes;
6285                        cache->space_info->bytes_reserved -= num_bytes;
6286                        cache->space_info->bytes_used += num_bytes;
6287                        cache->space_info->disk_used += num_bytes * factor;
6288                        spin_unlock(&cache->lock);
6289                        spin_unlock(&cache->space_info->lock);
6290                } else {
6291                        old_val -= num_bytes;
6292                        btrfs_set_block_group_used(&cache->item, old_val);
6293                        cache->pinned += num_bytes;
6294                        cache->space_info->bytes_pinned += num_bytes;
6295                        cache->space_info->bytes_used -= num_bytes;
6296                        cache->space_info->disk_used -= num_bytes * factor;
6297                        spin_unlock(&cache->lock);
6298                        spin_unlock(&cache->space_info->lock);
6299
6300                        trace_btrfs_space_reservation(info, "pinned",
6301                                                      cache->space_info->flags,
6302                                                      num_bytes, 1);
6303                        percpu_counter_add(&cache->space_info->total_bytes_pinned,
6304                                           num_bytes);
6305                        set_extent_dirty(info->pinned_extents,
6306                                         bytenr, bytenr + num_bytes - 1,
6307                                         GFP_NOFS | __GFP_NOFAIL);
6308                }
6309
6310                spin_lock(&trans->transaction->dirty_bgs_lock);
6311                if (list_empty(&cache->dirty_list)) {
6312                        list_add_tail(&cache->dirty_list,
6313                                      &trans->transaction->dirty_bgs);
6314                                trans->transaction->num_dirty_bgs++;
6315                        btrfs_get_block_group(cache);
6316                }
6317                spin_unlock(&trans->transaction->dirty_bgs_lock);
6318
6319                /*
6320                 * No longer have used bytes in this block group, queue it for
6321                 * deletion. We do this after adding the block group to the
6322                 * dirty list to avoid races between cleaner kthread and space
6323                 * cache writeout.
6324                 */
6325                if (!alloc && old_val == 0) {
6326                        spin_lock(&info->unused_bgs_lock);
6327                        if (list_empty(&cache->bg_list)) {
6328                                btrfs_get_block_group(cache);
6329                                list_add_tail(&cache->bg_list,
6330                                              &info->unused_bgs);
6331                        }
6332                        spin_unlock(&info->unused_bgs_lock);
6333                }
6334
6335                btrfs_put_block_group(cache);
6336                total -= num_bytes;
6337                bytenr += num_bytes;
6338        }
6339        return 0;
6340}
6341
6342static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6343{
6344        struct btrfs_block_group_cache *cache;
6345        u64 bytenr;
6346
6347        spin_lock(&fs_info->block_group_cache_lock);
6348        bytenr = fs_info->first_logical_byte;
6349        spin_unlock(&fs_info->block_group_cache_lock);
6350
6351        if (bytenr < (u64)-1)
6352                return bytenr;
6353
6354        cache = btrfs_lookup_first_block_group(fs_info, search_start);
6355        if (!cache)
6356                return 0;
6357
6358        bytenr = cache->key.objectid;
6359        btrfs_put_block_group(cache);
6360
6361        return bytenr;
6362}
6363
6364static int pin_down_extent(struct btrfs_fs_info *fs_info,
6365                           struct btrfs_block_group_cache *cache,
6366                           u64 bytenr, u64 num_bytes, int reserved)
6367{
6368        spin_lock(&cache->space_info->lock);
6369        spin_lock(&cache->lock);
6370        cache->pinned += num_bytes;
6371        cache->space_info->bytes_pinned += num_bytes;
6372        if (reserved) {
6373                cache->reserved -= num_bytes;
6374                cache->space_info->bytes_reserved -= num_bytes;
6375        }
6376        spin_unlock(&cache->lock);
6377        spin_unlock(&cache->space_info->lock);
6378
6379        trace_btrfs_space_reservation(fs_info, "pinned",
6380                                      cache->space_info->flags, num_bytes, 1);
6381        percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6382        set_extent_dirty(fs_info->pinned_extents, bytenr,
6383                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6384        return 0;
6385}
6386
6387/*
6388 * this function must be called within transaction
6389 */
6390int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6391                     u64 bytenr, u64 num_bytes, int reserved)
6392{
6393        struct btrfs_block_group_cache *cache;
6394
6395        cache = btrfs_lookup_block_group(fs_info, bytenr);
6396        BUG_ON(!cache); /* Logic error */
6397
6398        pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6399
6400        btrfs_put_block_group(cache);
6401        return 0;
6402}
6403
6404/*
6405 * this function must be called within transaction
6406 */
6407int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6408                                    u64 bytenr, u64 num_bytes)
6409{
6410        struct btrfs_block_group_cache *cache;
6411        int ret;
6412
6413        cache = btrfs_lookup_block_group(fs_info, bytenr);
6414        if (!cache)
6415                return -EINVAL;
6416
6417        /*
6418         * pull in the free space cache (if any) so that our pin
6419         * removes the free space from the cache.  We have load_only set
6420         * to one because the slow code to read in the free extents does check
6421         * the pinned extents.
6422         */
6423        cache_block_group(cache, 1);
6424
6425        pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6426
6427        /* remove us from the free space cache (if we're there at all) */
6428        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6429        btrfs_put_block_group(cache);
6430        return ret;
6431}
6432
6433static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6434                                   u64 start, u64 num_bytes)
6435{
6436        int ret;
6437        struct btrfs_block_group_cache *block_group;
6438        struct btrfs_caching_control *caching_ctl;
6439
6440        block_group = btrfs_lookup_block_group(fs_info, start);
6441        if (!block_group)
6442                return -EINVAL;
6443
6444        cache_block_group(block_group, 0);
6445        caching_ctl = get_caching_control(block_group);
6446
6447        if (!caching_ctl) {
6448                /* Logic error */
6449                BUG_ON(!block_group_cache_done(block_group));
6450                ret = btrfs_remove_free_space(block_group, start, num_bytes);
6451        } else {
6452                mutex_lock(&caching_ctl->mutex);
6453
6454                if (start >= caching_ctl->progress) {
6455                        ret = add_excluded_extent(fs_info, start, num_bytes);
6456                } else if (start + num_bytes <= caching_ctl->progress) {
6457                        ret = btrfs_remove_free_space(block_group,
6458                                                      start, num_bytes);
6459                } else {
6460                        num_bytes = caching_ctl->progress - start;
6461                        ret = btrfs_remove_free_space(block_group,
6462                                                      start, num_bytes);
6463                        if (ret)
6464                                goto out_lock;
6465
6466                        num_bytes = (start + num_bytes) -
6467                                caching_ctl->progress;
6468                        start = caching_ctl->progress;
6469                        ret = add_excluded_extent(fs_info, start, num_bytes);
6470                }
6471out_lock:
6472                mutex_unlock(&caching_ctl->mutex);
6473                put_caching_control(caching_ctl);
6474        }
6475        btrfs_put_block_group(block_group);
6476        return ret;
6477}
6478
6479int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6480                                 struct extent_buffer *eb)
6481{
6482        struct btrfs_file_extent_item *item;
6483        struct btrfs_key key;
6484        int found_type;
6485        int i;
6486
6487        if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6488                return 0;
6489
6490        for (i = 0; i < btrfs_header_nritems(eb); i++) {
6491                btrfs_item_key_to_cpu(eb, &key, i);
6492                if (key.type != BTRFS_EXTENT_DATA_KEY)
6493                        continue;
6494                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6495                found_type = btrfs_file_extent_type(eb, item);
6496                if (found_type == BTRFS_FILE_EXTENT_INLINE)
6497                        continue;
6498                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6499                        continue;
6500                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6501                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6502                __exclude_logged_extent(fs_info, key.objectid, key.offset);
6503        }
6504
6505        return 0;
6506}
6507
6508static void
6509btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6510{
6511        atomic_inc(&bg->reservations);
6512}
6513
6514void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6515                                        const u64 start)
6516{
6517        struct btrfs_block_group_cache *bg;
6518
6519        bg = btrfs_lookup_block_group(fs_info, start);
6520        ASSERT(bg);
6521        if (atomic_dec_and_test(&bg->reservations))
6522                wake_up_atomic_t(&bg->reservations);
6523        btrfs_put_block_group(bg);
6524}
6525
6526void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6527{
6528        struct btrfs_space_info *space_info = bg->space_info;
6529
6530        ASSERT(bg->ro);
6531
6532        if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6533                return;
6534
6535        /*
6536         * Our block group is read only but before we set it to read only,
6537         * some task might have had allocated an extent from it already, but it
6538         * has not yet created a respective ordered extent (and added it to a
6539         * root's list of ordered extents).
6540         * Therefore wait for any task currently allocating extents, since the
6541         * block group's reservations counter is incremented while a read lock
6542         * on the groups' semaphore is held and decremented after releasing
6543         * the read access on that semaphore and creating the ordered extent.
6544         */
6545        down_write(&space_info->groups_sem);
6546        up_write(&space_info->groups_sem);
6547
6548        wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6549                         TASK_UNINTERRUPTIBLE);
6550}
6551
6552/**
6553 * btrfs_add_reserved_bytes - update the block_group and space info counters
6554 * @cache:      The cache we are manipulating
6555 * @ram_bytes:  The number of bytes of file content, and will be same to
6556 *              @num_bytes except for the compress path.
6557 * @num_bytes:  The number of bytes in question
6558 * @delalloc:   The blocks are allocated for the delalloc write
6559 *
6560 * This is called by the allocator when it reserves space. If this is a
6561 * reservation and the block group has become read only we cannot make the
6562 * reservation and return -EAGAIN, otherwise this function always succeeds.
6563 */
6564static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6565                                    u64 ram_bytes, u64 num_bytes, int delalloc)
6566{
6567        struct btrfs_space_info *space_info = cache->space_info;
6568        int ret = 0;
6569
6570        spin_lock(&space_info->lock);
6571        spin_lock(&cache->lock);
6572        if (cache->ro) {
6573                ret = -EAGAIN;
6574        } else {
6575                cache->reserved += num_bytes;
6576                space_info->bytes_reserved += num_bytes;
6577
6578                trace_btrfs_space_reservation(cache->fs_info,
6579                                "space_info", space_info->flags,
6580                                ram_bytes, 0);
6581                space_info->bytes_may_use -= ram_bytes;
6582                if (delalloc)
6583                        cache->delalloc_bytes += num_bytes;
6584        }
6585        spin_unlock(&cache->lock);
6586        spin_unlock(&space_info->lock);
6587        return ret;
6588}
6589
6590/**
6591 * btrfs_free_reserved_bytes - update the block_group and space info counters
6592 * @cache:      The cache we are manipulating
6593 * @num_bytes:  The number of bytes in question
6594 * @delalloc:   The blocks are allocated for the delalloc write
6595 *
6596 * This is called by somebody who is freeing space that was never actually used
6597 * on disk.  For example if you reserve some space for a new leaf in transaction
6598 * A and before transaction A commits you free that leaf, you call this with
6599 * reserve set to 0 in order to clear the reservation.
6600 */
6601
6602static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6603                                     u64 num_bytes, int delalloc)
6604{
6605        struct btrfs_space_info *space_info = cache->space_info;
6606        int ret = 0;
6607
6608        spin_lock(&space_info->lock);
6609        spin_lock(&cache->lock);
6610        if (cache->ro)
6611                space_info->bytes_readonly += num_bytes;
6612        cache->reserved -= num_bytes;
6613        space_info->bytes_reserved -= num_bytes;
6614
6615        if (delalloc)
6616                cache->delalloc_bytes -= num_bytes;
6617        spin_unlock(&cache->lock);
6618        spin_unlock(&space_info->lock);
6619        return ret;
6620}
6621void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6622{
6623        struct btrfs_caching_control *next;
6624        struct btrfs_caching_control *caching_ctl;
6625        struct btrfs_block_group_cache *cache;
6626
6627        down_write(&fs_info->commit_root_sem);
6628
6629        list_for_each_entry_safe(caching_ctl, next,
6630                                 &fs_info->caching_block_groups, list) {
6631                cache = caching_ctl->block_group;
6632                if (block_group_cache_done(cache)) {
6633                        cache->last_byte_to_unpin = (u64)-1;
6634                        list_del_init(&caching_ctl->list);
6635                        put_caching_control(caching_ctl);
6636                } else {
6637                        cache->last_byte_to_unpin = caching_ctl->progress;
6638                }
6639        }
6640
6641        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6642                fs_info->pinned_extents = &fs_info->freed_extents[1];
6643        else
6644                fs_info->pinned_extents = &fs_info->freed_extents[0];
6645
6646        up_write(&fs_info->commit_root_sem);
6647
6648        update_global_block_rsv(fs_info);
6649}
6650
6651/*
6652 * Returns the free cluster for the given space info and sets empty_cluster to
6653 * what it should be based on the mount options.
6654 */
6655static struct btrfs_free_cluster *
6656fetch_cluster_info(struct btrfs_fs_info *fs_info,
6657                   struct btrfs_space_info *space_info, u64 *empty_cluster)
6658{
6659        struct btrfs_free_cluster *ret = NULL;
6660
6661        *empty_cluster = 0;
6662        if (btrfs_mixed_space_info(space_info))
6663                return ret;
6664
6665        if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6666                ret = &fs_info->meta_alloc_cluster;
6667                if (btrfs_test_opt(fs_info, SSD))
6668                        *empty_cluster = SZ_2M;
6669                else
6670                        *empty_cluster = SZ_64K;
6671        } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6672                   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6673                *empty_cluster = SZ_2M;
6674                ret = &fs_info->data_alloc_cluster;
6675        }
6676
6677        return ret;
6678}
6679
6680static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6681                              u64 start, u64 end,
6682                              const bool return_free_space)
6683{
6684        struct btrfs_block_group_cache *cache = NULL;
6685        struct btrfs_space_info *space_info;
6686        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6687        struct btrfs_free_cluster *cluster = NULL;
6688        u64 len;
6689        u64 total_unpinned = 0;
6690        u64 empty_cluster = 0;
6691        bool readonly;
6692
6693        while (start <= end) {
6694                readonly = false;
6695                if (!cache ||
6696                    start >= cache->key.objectid + cache->key.offset) {
6697                        if (cache)
6698                                btrfs_put_block_group(cache);
6699                        total_unpinned = 0;
6700                        cache = btrfs_lookup_block_group(fs_info, start);
6701                        BUG_ON(!cache); /* Logic error */
6702
6703                        cluster = fetch_cluster_info(fs_info,
6704                                                     cache->space_info,
6705                                                     &empty_cluster);
6706                        empty_cluster <<= 1;
6707                }
6708
6709                len = cache->key.objectid + cache->key.offset - start;
6710                len = min(len, end + 1 - start);
6711
6712                if (start < cache->last_byte_to_unpin) {
6713                        len = min(len, cache->last_byte_to_unpin - start);
6714                        if (return_free_space)
6715                                btrfs_add_free_space(cache, start, len);
6716                }
6717
6718                start += len;
6719                total_unpinned += len;
6720                space_info = cache->space_info;
6721
6722                /*
6723                 * If this space cluster has been marked as fragmented and we've
6724                 * unpinned enough in this block group to potentially allow a
6725                 * cluster to be created inside of it go ahead and clear the
6726                 * fragmented check.
6727                 */
6728                if (cluster && cluster->fragmented &&
6729                    total_unpinned > empty_cluster) {
6730                        spin_lock(&cluster->lock);
6731                        cluster->fragmented = 0;
6732                        spin_unlock(&cluster->lock);
6733                }
6734
6735                spin_lock(&space_info->lock);
6736                spin_lock(&cache->lock);
6737                cache->pinned -= len;
6738                space_info->bytes_pinned -= len;
6739
6740                trace_btrfs_space_reservation(fs_info, "pinned",
6741                                              space_info->flags, len, 0);
6742                space_info->max_extent_size = 0;
6743                percpu_counter_add(&space_info->total_bytes_pinned, -len);
6744                if (cache->ro) {
6745                        space_info->bytes_readonly += len;
6746                        readonly = true;
6747                }
6748                spin_unlock(&cache->lock);
6749                if (!readonly && return_free_space &&
6750                    global_rsv->space_info == space_info) {
6751                        u64 to_add = len;
6752
6753                        spin_lock(&global_rsv->lock);
6754                        if (!global_rsv->full) {
6755                                to_add = min(len, global_rsv->size -
6756                                             global_rsv->reserved);
6757                                global_rsv->reserved += to_add;
6758                                space_info->bytes_may_use += to_add;
6759                                if (global_rsv->reserved >= global_rsv->size)
6760                                        global_rsv->full = 1;
6761                                trace_btrfs_space_reservation(fs_info,
6762                                                              "space_info",
6763                                                              space_info->flags,
6764                                                              to_add, 1);
6765                                len -= to_add;
6766                        }
6767                        spin_unlock(&global_rsv->lock);
6768                        /* Add to any tickets we may have */
6769                        if (len)
6770                                space_info_add_new_bytes(fs_info, space_info,
6771                                                         len);
6772                }
6773                spin_unlock(&space_info->lock);
6774        }
6775
6776        if (cache)
6777                btrfs_put_block_group(cache);
6778        return 0;
6779}
6780
6781int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6782                               struct btrfs_fs_info *fs_info)
6783{
6784        struct btrfs_block_group_cache *block_group, *tmp;
6785        struct list_head *deleted_bgs;
6786        struct extent_io_tree *unpin;
6787        u64 start;
6788        u64 end;
6789        int ret;
6790
6791        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6792                unpin = &fs_info->freed_extents[1];
6793        else
6794                unpin = &fs_info->freed_extents[0];
6795
6796        while (!trans->aborted) {
6797                mutex_lock(&fs_info->unused_bg_unpin_mutex);
6798                ret = find_first_extent_bit(unpin, 0, &start, &end,
6799                                            EXTENT_DIRTY, NULL);
6800                if (ret) {
6801                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6802                        break;
6803                }
6804
6805                if (btrfs_test_opt(fs_info, DISCARD))
6806                        ret = btrfs_discard_extent(fs_info, start,
6807                                                   end + 1 - start, NULL);
6808
6809                clear_extent_dirty(unpin, start, end);
6810                unpin_extent_range(fs_info, start, end, true);
6811                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6812                cond_resched();
6813        }
6814
6815        /*
6816         * Transaction is finished.  We don't need the lock anymore.  We
6817         * do need to clean up the block groups in case of a transaction
6818         * abort.
6819         */
6820        deleted_bgs = &trans->transaction->deleted_bgs;
6821        list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6822                u64 trimmed = 0;
6823
6824                ret = -EROFS;
6825                if (!trans->aborted)
6826                        ret = btrfs_discard_extent(fs_info,
6827                                                   block_group->key.objectid,
6828                                                   block_group->key.offset,
6829                                                   &trimmed);
6830
6831                list_del_init(&block_group->bg_list);
6832                btrfs_put_block_group_trimming(block_group);
6833                btrfs_put_block_group(block_group);
6834
6835                if (ret) {
6836                        const char *errstr = btrfs_decode_error(ret);
6837                        btrfs_warn(fs_info,
6838                           "discard failed while removing blockgroup: errno=%d %s",
6839                                   ret, errstr);
6840                }
6841        }
6842
6843        return 0;
6844}
6845
6846static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6847                                struct btrfs_fs_info *info,
6848                                struct btrfs_delayed_ref_node *node, u64 parent,
6849                                u64 root_objectid, u64 owner_objectid,
6850                                u64 owner_offset, int refs_to_drop,
6851                                struct btrfs_delayed_extent_op *extent_op)
6852{
6853        struct btrfs_key key;
6854        struct btrfs_path *path;
6855        struct btrfs_root *extent_root = info->extent_root;
6856        struct extent_buffer *leaf;
6857        struct btrfs_extent_item *ei;
6858        struct btrfs_extent_inline_ref *iref;
6859        int ret;
6860        int is_data;
6861        int extent_slot = 0;
6862        int found_extent = 0;
6863        int num_to_del = 1;
6864        u32 item_size;
6865        u64 refs;
6866        u64 bytenr = node->bytenr;
6867        u64 num_bytes = node->num_bytes;
6868        int last_ref = 0;
6869        bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6870
6871        path = btrfs_alloc_path();
6872        if (!path)
6873                return -ENOMEM;
6874
6875        path->reada = READA_FORWARD;
6876        path->leave_spinning = 1;
6877
6878        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6879        BUG_ON(!is_data && refs_to_drop != 1);
6880
6881        if (is_data)
6882                skinny_metadata = false;
6883
6884        ret = lookup_extent_backref(trans, info, path, &iref,
6885                                    bytenr, num_bytes, parent,
6886                                    root_objectid, owner_objectid,
6887                                    owner_offset);
6888        if (ret == 0) {
6889                extent_slot = path->slots[0];
6890                while (extent_slot >= 0) {
6891                        btrfs_item_key_to_cpu(path->nodes[0], &key,
6892                                              extent_slot);
6893                        if (key.objectid != bytenr)
6894                                break;
6895                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6896                            key.offset == num_bytes) {
6897                                found_extent = 1;
6898                                break;
6899                        }
6900                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
6901                            key.offset == owner_objectid) {
6902                                found_extent = 1;
6903                                break;
6904                        }
6905                        if (path->slots[0] - extent_slot > 5)
6906                                break;
6907                        extent_slot--;
6908                }
6909#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6910                item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6911                if (found_extent && item_size < sizeof(*ei))
6912                        found_extent = 0;
6913#endif
6914                if (!found_extent) {
6915                        BUG_ON(iref);
6916                        ret = remove_extent_backref(trans, info, path, NULL,
6917                                                    refs_to_drop,
6918                                                    is_data, &last_ref);
6919                        if (ret) {
6920                                btrfs_abort_transaction(trans, ret);
6921                                goto out;
6922                        }
6923                        btrfs_release_path(path);
6924                        path->leave_spinning = 1;
6925
6926                        key.objectid = bytenr;
6927                        key.type = BTRFS_EXTENT_ITEM_KEY;
6928                        key.offset = num_bytes;
6929
6930                        if (!is_data && skinny_metadata) {
6931                                key.type = BTRFS_METADATA_ITEM_KEY;
6932                                key.offset = owner_objectid;
6933                        }
6934
6935                        ret = btrfs_search_slot(trans, extent_root,
6936                                                &key, path, -1, 1);
6937                        if (ret > 0 && skinny_metadata && path->slots[0]) {
6938                                /*
6939                                 * Couldn't find our skinny metadata item,
6940                                 * see if we have ye olde extent item.
6941                                 */
6942                                path->slots[0]--;
6943                                btrfs_item_key_to_cpu(path->nodes[0], &key,
6944                                                      path->slots[0]);
6945                                if (key.objectid == bytenr &&
6946                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
6947                                    key.offset == num_bytes)
6948                                        ret = 0;
6949                        }
6950
6951                        if (ret > 0 && skinny_metadata) {
6952                                skinny_metadata = false;
6953                                key.objectid = bytenr;
6954                                key.type = BTRFS_EXTENT_ITEM_KEY;
6955                                key.offset = num_bytes;
6956                                btrfs_release_path(path);
6957                                ret = btrfs_search_slot(trans, extent_root,
6958                                                        &key, path, -1, 1);
6959                        }
6960
6961                        if (ret) {
6962                                btrfs_err(info,
6963                                          "umm, got %d back from search, was looking for %llu",
6964                                          ret, bytenr);
6965                                if (ret > 0)
6966                                        btrfs_print_leaf(path->nodes[0]);
6967                        }
6968                        if (ret < 0) {
6969                                btrfs_abort_transaction(trans, ret);
6970                                goto out;
6971                        }
6972                        extent_slot = path->slots[0];
6973                }
6974        } else if (WARN_ON(ret == -ENOENT)) {
6975                btrfs_print_leaf(path->nodes[0]);
6976                btrfs_err(info,
6977                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6978                        bytenr, parent, root_objectid, owner_objectid,
6979                        owner_offset);
6980                btrfs_abort_transaction(trans, ret);
6981                goto out;
6982        } else {
6983                btrfs_abort_transaction(trans, ret);
6984                goto out;
6985        }
6986
6987        leaf = path->nodes[0];
6988        item_size = btrfs_item_size_nr(leaf, extent_slot);
6989#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6990        if (item_size < sizeof(*ei)) {
6991                BUG_ON(found_extent || extent_slot != path->slots[0]);
6992                ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6993                                             0);
6994                if (ret < 0) {
6995                        btrfs_abort_transaction(trans, ret);
6996                        goto out;
6997                }
6998
6999                btrfs_release_path(path);
7000                path->leave_spinning = 1;
7001
7002                key.objectid = bytenr;
7003                key.type = BTRFS_EXTENT_ITEM_KEY;
7004                key.offset = num_bytes;
7005
7006                ret = btrfs_search_slot(trans, extent_root, &key, path,
7007                                        -1, 1);
7008                if (ret) {
7009                        btrfs_err(info,
7010                                  "umm, got %d back from search, was looking for %llu",
7011                                ret, bytenr);
7012                        btrfs_print_leaf(path->nodes[0]);
7013                }
7014                if (ret < 0) {
7015                        btrfs_abort_transaction(trans, ret);
7016                        goto out;
7017                }
7018
7019                extent_slot = path->slots[0];
7020                leaf = path->nodes[0];
7021                item_size = btrfs_item_size_nr(leaf, extent_slot);
7022        }
7023#endif
7024        BUG_ON(item_size < sizeof(*ei));
7025        ei = btrfs_item_ptr(leaf, extent_slot,
7026                            struct btrfs_extent_item);
7027        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7028            key.type == BTRFS_EXTENT_ITEM_KEY) {
7029                struct btrfs_tree_block_info *bi;
7030                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7031                bi = (struct btrfs_tree_block_info *)(ei + 1);
7032                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7033        }
7034
7035        refs = btrfs_extent_refs(leaf, ei);
7036        if (refs < refs_to_drop) {
7037                btrfs_err(info,
7038                          "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7039                          refs_to_drop, refs, bytenr);
7040                ret = -EINVAL;
7041                btrfs_abort_transaction(trans, ret);
7042                goto out;
7043        }
7044        refs -= refs_to_drop;
7045
7046        if (refs > 0) {
7047                if (extent_op)
7048                        __run_delayed_extent_op(extent_op, leaf, ei);
7049                /*
7050                 * In the case of inline back ref, reference count will
7051                 * be updated by remove_extent_backref
7052                 */
7053                if (iref) {
7054                        BUG_ON(!found_extent);
7055                } else {
7056                        btrfs_set_extent_refs(leaf, ei, refs);
7057                        btrfs_mark_buffer_dirty(leaf);
7058                }
7059                if (found_extent) {
7060                        ret = remove_extent_backref(trans, info, path,
7061                                                    iref, refs_to_drop,
7062                                                    is_data, &last_ref);
7063                        if (ret) {
7064                                btrfs_abort_transaction(trans, ret);
7065                                goto out;
7066                        }
7067                }
7068        } else {
7069                if (found_extent) {
7070                        BUG_ON(is_data && refs_to_drop !=
7071                               extent_data_ref_count(path, iref));
7072                        if (iref) {
7073                                BUG_ON(path->slots[0] != extent_slot);
7074                        } else {
7075                                BUG_ON(path->slots[0] != extent_slot + 1);
7076                                path->slots[0] = extent_slot;
7077                                num_to_del = 2;
7078                        }
7079                }
7080
7081                last_ref = 1;
7082                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7083                                      num_to_del);
7084                if (ret) {
7085                        btrfs_abort_transaction(trans, ret);
7086                        goto out;
7087                }
7088                btrfs_release_path(path);
7089
7090                if (is_data) {
7091                        ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7092                        if (ret) {
7093                                btrfs_abort_transaction(trans, ret);
7094                                goto out;
7095                        }
7096                }
7097
7098                ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7099                if (ret) {
7100                        btrfs_abort_transaction(trans, ret);
7101                        goto out;
7102                }
7103
7104                ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7105                if (ret) {
7106                        btrfs_abort_transaction(trans, ret);
7107                        goto out;
7108                }
7109        }
7110        btrfs_release_path(path);
7111
7112out:
7113        btrfs_free_path(path);
7114        return ret;
7115}
7116
7117/*
7118 * when we free an block, it is possible (and likely) that we free the last
7119 * delayed ref for that extent as well.  This searches the delayed ref tree for
7120 * a given extent, and if there are no other delayed refs to be processed, it
7121 * removes it from the tree.
7122 */
7123static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7124                                      u64 bytenr)
7125{
7126        struct btrfs_delayed_ref_head *head;
7127        struct btrfs_delayed_ref_root *delayed_refs;
7128        int ret = 0;
7129
7130        delayed_refs = &trans->transaction->delayed_refs;
7131        spin_lock(&delayed_refs->lock);
7132        head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7133        if (!head)
7134                goto out_delayed_unlock;
7135
7136        spin_lock(&head->lock);
7137        if (!RB_EMPTY_ROOT(&head->ref_tree))
7138                goto out;
7139
7140        if (head->extent_op) {
7141                if (!head->must_insert_reserved)
7142                        goto out;
7143                btrfs_free_delayed_extent_op(head->extent_op);
7144                head->extent_op = NULL;
7145        }
7146
7147        /*
7148         * waiting for the lock here would deadlock.  If someone else has it
7149         * locked they are already in the process of dropping it anyway
7150         */
7151        if (!mutex_trylock(&head->mutex))
7152                goto out;
7153
7154        /*
7155         * at this point we have a head with no other entries.  Go
7156         * ahead and process it.
7157         */
7158        rb_erase(&head->href_node, &delayed_refs->href_root);
7159        RB_CLEAR_NODE(&head->href_node);
7160        atomic_dec(&delayed_refs->num_entries);
7161
7162        /*
7163         * we don't take a ref on the node because we're removing it from the
7164         * tree, so we just steal the ref the tree was holding.
7165         */
7166        delayed_refs->num_heads--;
7167        if (head->processing == 0)
7168                delayed_refs->num_heads_ready--;
7169        head->processing = 0;
7170        spin_unlock(&head->lock);
7171        spin_unlock(&delayed_refs->lock);
7172
7173        BUG_ON(head->extent_op);
7174        if (head->must_insert_reserved)
7175                ret = 1;
7176
7177        mutex_unlock(&head->mutex);
7178        btrfs_put_delayed_ref_head(head);
7179        return ret;
7180out:
7181        spin_unlock(&head->lock);
7182
7183out_delayed_unlock:
7184        spin_unlock(&delayed_refs->lock);
7185        return 0;
7186}
7187
7188void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7189                           struct btrfs_root *root,
7190                           struct extent_buffer *buf,
7191                           u64 parent, int last_ref)
7192{
7193        struct btrfs_fs_info *fs_info = root->fs_info;
7194        int pin = 1;
7195        int ret;
7196
7197        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7198                int old_ref_mod, new_ref_mod;
7199
7200                btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7201                                   root->root_key.objectid,
7202                                   btrfs_header_level(buf), 0,
7203                                   BTRFS_DROP_DELAYED_REF);
7204                ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7205                                                 buf->len, parent,
7206                                                 root->root_key.objectid,
7207                                                 btrfs_header_level(buf),
7208                                                 BTRFS_DROP_DELAYED_REF, NULL,
7209                                                 &old_ref_mod, &new_ref_mod);
7210                BUG_ON(ret); /* -ENOMEM */
7211                pin = old_ref_mod >= 0 && new_ref_mod < 0;
7212        }
7213
7214        if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7215                struct btrfs_block_group_cache *cache;
7216
7217                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7218                        ret = check_ref_cleanup(trans, buf->start);
7219                        if (!ret)
7220                                goto out;
7221                }
7222
7223                pin = 0;
7224                cache = btrfs_lookup_block_group(fs_info, buf->start);
7225
7226                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7227                        pin_down_extent(fs_info, cache, buf->start,
7228                                        buf->len, 1);
7229                        btrfs_put_block_group(cache);
7230                        goto out;
7231                }
7232
7233                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7234
7235                btrfs_add_free_space(cache, buf->start, buf->len);
7236                btrfs_free_reserved_bytes(cache, buf->len, 0);
7237                btrfs_put_block_group(cache);
7238                trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7239        }
7240out:
7241        if (pin)
7242                add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7243                                 root->root_key.objectid);
7244
7245        if (last_ref) {
7246                /*
7247                 * Deleting the buffer, clear the corrupt flag since it doesn't
7248                 * matter anymore.
7249                 */
7250                clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7251        }
7252}
7253
7254/* Can return -ENOMEM */
7255int btrfs_free_extent(struct btrfs_trans_handle *trans,
7256                      struct btrfs_root *root,
7257                      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7258                      u64 owner, u64 offset)
7259{
7260        struct btrfs_fs_info *fs_info = root->fs_info;
7261        int old_ref_mod, new_ref_mod;
7262        int ret;
7263
7264        if (btrfs_is_testing(fs_info))
7265                return 0;
7266
7267        if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7268                btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7269                                   root_objectid, owner, offset,
7270                                   BTRFS_DROP_DELAYED_REF);
7271
7272        /*
7273         * tree log blocks never actually go into the extent allocation
7274         * tree, just update pinning info and exit early.
7275         */
7276        if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7277                WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7278                /* unlocks the pinned mutex */
7279                btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7280                old_ref_mod = new_ref_mod = 0;
7281                ret = 0;
7282        } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7283                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7284                                                 num_bytes, parent,
7285                                                 root_objectid, (int)owner,
7286                                                 BTRFS_DROP_DELAYED_REF, NULL,
7287                                                 &old_ref_mod, &new_ref_mod);
7288        } else {
7289                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7290                                                 num_bytes, parent,
7291                                                 root_objectid, owner, offset,
7292                                                 0, BTRFS_DROP_DELAYED_REF,
7293                                                 &old_ref_mod, &new_ref_mod);
7294        }
7295
7296        if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7297                add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7298
7299        return ret;
7300}
7301
7302/*
7303 * when we wait for progress in the block group caching, its because
7304 * our allocation attempt failed at least once.  So, we must sleep
7305 * and let some progress happen before we try again.
7306 *
7307 * This function will sleep at least once waiting for new free space to
7308 * show up, and then it will check the block group free space numbers
7309 * for our min num_bytes.  Another option is to have it go ahead
7310 * and look in the rbtree for a free extent of a given size, but this
7311 * is a good start.
7312 *
7313 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7314 * any of the information in this block group.
7315 */
7316static noinline void
7317wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7318                                u64 num_bytes)
7319{
7320        struct btrfs_caching_control *caching_ctl;
7321
7322        caching_ctl = get_caching_control(cache);
7323        if (!caching_ctl)
7324                return;
7325
7326        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7327                   (cache->free_space_ctl->free_space >= num_bytes));
7328
7329        put_caching_control(caching_ctl);
7330}
7331
7332static noinline int
7333wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7334{
7335        struct btrfs_caching_control *caching_ctl;
7336        int ret = 0;
7337
7338        caching_ctl = get_caching_control(cache);
7339        if (!caching_ctl)
7340                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7341
7342        wait_event(caching_ctl->wait, block_group_cache_done(cache));
7343        if (cache->cached == BTRFS_CACHE_ERROR)
7344                ret = -EIO;
7345        put_caching_control(caching_ctl);
7346        return ret;
7347}
7348
7349int __get_raid_index(u64 flags)
7350{
7351        if (flags & BTRFS_BLOCK_GROUP_RAID10)
7352                return BTRFS_RAID_RAID10;
7353        else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7354                return BTRFS_RAID_RAID1;
7355        else if (flags & BTRFS_BLOCK_GROUP_DUP)
7356                return BTRFS_RAID_DUP;
7357        else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7358                return BTRFS_RAID_RAID0;
7359        else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7360                return BTRFS_RAID_RAID5;
7361        else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7362                return BTRFS_RAID_RAID6;
7363
7364        return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7365}
7366
7367int get_block_group_index(struct btrfs_block_group_cache *cache)
7368{
7369        return __get_raid_index(cache->flags);
7370}
7371
7372static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7373        [BTRFS_RAID_RAID10]     = "raid10",
7374        [BTRFS_RAID_RAID1]      = "raid1",
7375        [BTRFS_RAID_DUP]        = "dup",
7376        [BTRFS_RAID_RAID0]      = "raid0",
7377        [BTRFS_RAID_SINGLE]     = "single",
7378        [BTRFS_RAID_RAID5]      = "raid5",
7379        [BTRFS_RAID_RAID6]      = "raid6",
7380};
7381
7382static const char *get_raid_name(enum btrfs_raid_types type)
7383{
7384        if (type >= BTRFS_NR_RAID_TYPES)
7385                return NULL;
7386
7387        return btrfs_raid_type_names[type];
7388}
7389
7390enum btrfs_loop_type {
7391        LOOP_CACHING_NOWAIT = 0,
7392        LOOP_CACHING_WAIT = 1,
7393        LOOP_ALLOC_CHUNK = 2,
7394        LOOP_NO_EMPTY_SIZE = 3,
7395};
7396
7397static inline void
7398btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7399                       int delalloc)
7400{
7401        if (delalloc)
7402                down_read(&cache->data_rwsem);
7403}
7404
7405static inline void
7406btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7407                       int delalloc)
7408{
7409        btrfs_get_block_group(cache);
7410        if (delalloc)
7411                down_read(&cache->data_rwsem);
7412}
7413
7414static struct btrfs_block_group_cache *
7415btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7416                   struct btrfs_free_cluster *cluster,
7417                   int delalloc)
7418{
7419        struct btrfs_block_group_cache *used_bg = NULL;
7420
7421        spin_lock(&cluster->refill_lock);
7422        while (1) {
7423                used_bg = cluster->block_group;
7424                if (!used_bg)
7425                        return NULL;
7426
7427                if (used_bg == block_group)
7428                        return used_bg;
7429
7430                btrfs_get_block_group(used_bg);
7431
7432                if (!delalloc)
7433                        return used_bg;
7434
7435                if (down_read_trylock(&used_bg->data_rwsem))
7436                        return used_bg;
7437
7438                spin_unlock(&cluster->refill_lock);
7439
7440                /* We should only have one-level nested. */
7441                down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7442
7443                spin_lock(&cluster->refill_lock);
7444                if (used_bg == cluster->block_group)
7445                        return used_bg;
7446
7447                up_read(&used_bg->data_rwsem);
7448                btrfs_put_block_group(used_bg);
7449        }
7450}
7451
7452static inline void
7453btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7454                         int delalloc)
7455{
7456        if (delalloc)
7457                up_read(&cache->data_rwsem);
7458        btrfs_put_block_group(cache);
7459}
7460
7461/*
7462 * walks the btree of allocated extents and find a hole of a given size.
7463 * The key ins is changed to record the hole:
7464 * ins->objectid == start position
7465 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7466 * ins->offset == the size of the hole.
7467 * Any available blocks before search_start are skipped.
7468 *
7469 * If there is no suitable free space, we will record the max size of
7470 * the free space extent currently.
7471 */
7472static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7473                                u64 ram_bytes, u64 num_bytes, u64 empty_size,
7474                                u64 hint_byte, struct btrfs_key *ins,
7475                                u64 flags, int delalloc)
7476{
7477        int ret = 0;
7478        struct btrfs_root *root = fs_info->extent_root;
7479        struct btrfs_free_cluster *last_ptr = NULL;
7480        struct btrfs_block_group_cache *block_group = NULL;
7481        u64 search_start = 0;
7482        u64 max_extent_size = 0;
7483        u64 empty_cluster = 0;
7484        struct btrfs_space_info *space_info;
7485        int loop = 0;
7486        int index = __get_raid_index(flags);
7487        bool failed_cluster_refill = false;
7488        bool failed_alloc = false;
7489        bool use_cluster = true;
7490        bool have_caching_bg = false;
7491        bool orig_have_caching_bg = false;
7492        bool full_search = false;
7493
7494        WARN_ON(num_bytes < fs_info->sectorsize);
7495        ins->type = BTRFS_EXTENT_ITEM_KEY;
7496        ins->objectid = 0;
7497        ins->offset = 0;
7498
7499        trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7500
7501        space_info = __find_space_info(fs_info, flags);
7502        if (!space_info) {
7503                btrfs_err(fs_info, "No space info for %llu", flags);
7504                return -ENOSPC;
7505        }
7506
7507        /*
7508         * If our free space is heavily fragmented we may not be able to make
7509         * big contiguous allocations, so instead of doing the expensive search
7510         * for free space, simply return ENOSPC with our max_extent_size so we
7511         * can go ahead and search for a more manageable chunk.
7512         *
7513         * If our max_extent_size is large enough for our allocation simply
7514         * disable clustering since we will likely not be able to find enough
7515         * space to create a cluster and induce latency trying.
7516         */
7517        if (unlikely(space_info->max_extent_size)) {
7518                spin_lock(&space_info->lock);
7519                if (space_info->max_extent_size &&
7520                    num_bytes > space_info->max_extent_size) {
7521                        ins->offset = space_info->max_extent_size;
7522                        spin_unlock(&space_info->lock);
7523                        return -ENOSPC;
7524                } else if (space_info->max_extent_size) {
7525                        use_cluster = false;
7526                }
7527                spin_unlock(&space_info->lock);
7528        }
7529
7530        last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7531        if (last_ptr) {
7532                spin_lock(&last_ptr->lock);
7533                if (last_ptr->block_group)
7534                        hint_byte = last_ptr->window_start;
7535                if (last_ptr->fragmented) {
7536                        /*
7537                         * We still set window_start so we can keep track of the
7538                         * last place we found an allocation to try and save
7539                         * some time.
7540                         */
7541                        hint_byte = last_ptr->window_start;
7542                        use_cluster = false;
7543                }
7544                spin_unlock(&last_ptr->lock);
7545        }
7546
7547        search_start = max(search_start, first_logical_byte(fs_info, 0));
7548        search_start = max(search_start, hint_byte);
7549        if (search_start == hint_byte) {
7550                block_group = btrfs_lookup_block_group(fs_info, search_start);
7551                /*
7552                 * we don't want to use the block group if it doesn't match our
7553                 * allocation bits, or if its not cached.
7554                 *
7555                 * However if we are re-searching with an ideal block group
7556                 * picked out then we don't care that the block group is cached.
7557                 */
7558                if (block_group && block_group_bits(block_group, flags) &&
7559                    block_group->cached != BTRFS_CACHE_NO) {
7560                        down_read(&space_info->groups_sem);
7561                        if (list_empty(&block_group->list) ||
7562                            block_group->ro) {
7563                                /*
7564                                 * someone is removing this block group,
7565                                 * we can't jump into the have_block_group
7566                                 * target because our list pointers are not
7567                                 * valid
7568                                 */
7569                                btrfs_put_block_group(block_group);
7570                                up_read(&space_info->groups_sem);
7571                        } else {
7572                                index = get_block_group_index(block_group);
7573                                btrfs_lock_block_group(block_group, delalloc);
7574                                goto have_block_group;
7575                        }
7576                } else if (block_group) {
7577                        btrfs_put_block_group(block_group);
7578                }
7579        }
7580search:
7581        have_caching_bg = false;
7582        if (index == 0 || index == __get_raid_index(flags))
7583                full_search = true;
7584        down_read(&space_info->groups_sem);
7585        list_for_each_entry(block_group, &space_info->block_groups[index],
7586                            list) {
7587                u64 offset;
7588                int cached;
7589
7590                /* If the block group is read-only, we can skip it entirely. */
7591                if (unlikely(block_group->ro))
7592                        continue;
7593
7594                btrfs_grab_block_group(block_group, delalloc);
7595                search_start = block_group->key.objectid;
7596
7597                /*
7598                 * this can happen if we end up cycling through all the
7599                 * raid types, but we want to make sure we only allocate
7600                 * for the proper type.
7601                 */
7602                if (!block_group_bits(block_group, flags)) {
7603                    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7604                                BTRFS_BLOCK_GROUP_RAID1 |
7605                                BTRFS_BLOCK_GROUP_RAID5 |
7606                                BTRFS_BLOCK_GROUP_RAID6 |
7607                                BTRFS_BLOCK_GROUP_RAID10;
7608
7609                        /*
7610                         * if they asked for extra copies and this block group
7611                         * doesn't provide them, bail.  This does allow us to
7612                         * fill raid0 from raid1.
7613                         */
7614                        if ((flags & extra) && !(block_group->flags & extra))
7615                                goto loop;
7616                }
7617
7618have_block_group:
7619                cached = block_group_cache_done(block_group);
7620                if (unlikely(!cached)) {
7621                        have_caching_bg = true;
7622                        ret = cache_block_group(block_group, 0);
7623                        BUG_ON(ret < 0);
7624                        ret = 0;
7625                }
7626
7627                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7628                        goto loop;
7629
7630                /*
7631                 * Ok we want to try and use the cluster allocator, so
7632                 * lets look there
7633                 */
7634                if (last_ptr && use_cluster) {
7635                        struct btrfs_block_group_cache *used_block_group;
7636                        unsigned long aligned_cluster;
7637                        /*
7638                         * the refill lock keeps out other
7639                         * people trying to start a new cluster
7640                         */
7641                        used_block_group = btrfs_lock_cluster(block_group,
7642                                                              last_ptr,
7643                                                              delalloc);
7644                        if (!used_block_group)
7645                                goto refill_cluster;
7646
7647                        if (used_block_group != block_group &&
7648                            (used_block_group->ro ||
7649                             !block_group_bits(used_block_group, flags)))
7650                                goto release_cluster;
7651
7652                        offset = btrfs_alloc_from_cluster(used_block_group,
7653                                                last_ptr,
7654                                                num_bytes,
7655                                                used_block_group->key.objectid,
7656                                                &max_extent_size);
7657                        if (offset) {
7658                                /* we have a block, we're done */
7659                                spin_unlock(&last_ptr->refill_lock);
7660                                trace_btrfs_reserve_extent_cluster(fs_info,
7661                                                used_block_group,
7662                                                search_start, num_bytes);
7663                                if (used_block_group != block_group) {
7664                                        btrfs_release_block_group(block_group,
7665                                                                  delalloc);
7666                                        block_group = used_block_group;
7667                                }
7668                                goto checks;
7669                        }
7670
7671                        WARN_ON(last_ptr->block_group != used_block_group);
7672release_cluster:
7673                        /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674                         * set up a new clusters, so lets just skip it
7675                         * and let the allocator find whatever block
7676                         * it can find.  If we reach this point, we
7677                         * will have tried the cluster allocator
7678                         * plenty of times and not have found
7679                         * anything, so we are likely way too
7680                         * fragmented for the clustering stuff to find
7681                         * anything.
7682                         *
7683                         * However, if the cluster is taken from the
7684                         * current block group, release the cluster
7685                         * first, so that we stand a better chance of
7686                         * succeeding in the unclustered
7687                         * allocation.  */
7688                        if (loop >= LOOP_NO_EMPTY_SIZE &&
7689                            used_block_group != block_group) {
7690                                spin_unlock(&last_ptr->refill_lock);
7691                                btrfs_release_block_group(used_block_group,
7692                                                          delalloc);
7693                                goto unclustered_alloc;
7694                        }
7695
7696                        /*
7697                         * this cluster didn't work out, free it and
7698                         * start over
7699                         */
7700                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701
7702                        if (used_block_group != block_group)
7703                                btrfs_release_block_group(used_block_group,
7704                                                          delalloc);
7705refill_cluster:
7706                        if (loop >= LOOP_NO_EMPTY_SIZE) {
7707                                spin_unlock(&last_ptr->refill_lock);
7708                                goto unclustered_alloc;
7709                        }
7710
7711                        aligned_cluster = max_t(unsigned long,
7712                                                empty_cluster + empty_size,
7713                                              block_group->full_stripe_len);
7714
7715                        /* allocate a cluster in this block group */
7716                        ret = btrfs_find_space_cluster(fs_info, block_group,
7717                                                       last_ptr, search_start,
7718                                                       num_bytes,
7719                                                       aligned_cluster);
7720                        if (ret == 0) {
7721                                /*
7722                                 * now pull our allocation out of this
7723                                 * cluster
7724                                 */
7725                                offset = btrfs_alloc_from_cluster(block_group,
7726                                                        last_ptr,
7727                                                        num_bytes,
7728                                                        search_start,
7729                                                        &max_extent_size);
7730                                if (offset) {
7731                                        /* we found one, proceed */
7732                                        spin_unlock(&last_ptr->refill_lock);
7733                                        trace_btrfs_reserve_extent_cluster(fs_info,
7734                                                block_group, search_start,
7735                                                num_bytes);
7736                                        goto checks;
7737                                }
7738                        } else if (!cached && loop > LOOP_CACHING_NOWAIT
7739                                   && !failed_cluster_refill) {
7740                                spin_unlock(&last_ptr->refill_lock);
7741
7742                                failed_cluster_refill = true;
7743                                wait_block_group_cache_progress(block_group,
7744                                       num_bytes + empty_cluster + empty_size);
7745                                goto have_block_group;
7746                        }
7747
7748                        /*
7749                         * at this point we either didn't find a cluster
7750                         * or we weren't able to allocate a block from our
7751                         * cluster.  Free the cluster we've been trying
7752                         * to use, and go to the next block group
7753                         */
7754                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7755                        spin_unlock(&last_ptr->refill_lock);
7756                        goto loop;
7757                }
7758
7759unclustered_alloc:
7760                /*
7761                 * We are doing an unclustered alloc, set the fragmented flag so
7762                 * we don't bother trying to setup a cluster again until we get
7763                 * more space.
7764                 */
7765                if (unlikely(last_ptr)) {
7766                        spin_lock(&last_ptr->lock);
7767                        last_ptr->fragmented = 1;
7768                        spin_unlock(&last_ptr->lock);
7769                }
7770                if (cached) {
7771                        struct btrfs_free_space_ctl *ctl =
7772                                block_group->free_space_ctl;
7773
7774                        spin_lock(&ctl->tree_lock);
7775                        if (ctl->free_space <
7776                            num_bytes + empty_cluster + empty_size) {
7777                                if (ctl->free_space > max_extent_size)
7778                                        max_extent_size = ctl->free_space;
7779                                spin_unlock(&ctl->tree_lock);
7780                                goto loop;
7781                        }
7782                        spin_unlock(&ctl->tree_lock);
7783                }
7784
7785                offset = btrfs_find_space_for_alloc(block_group, search_start,
7786                                                    num_bytes, empty_size,
7787                                                    &max_extent_size);
7788                /*
7789                 * If we didn't find a chunk, and we haven't failed on this
7790                 * block group before, and this block group is in the middle of
7791                 * caching and we are ok with waiting, then go ahead and wait
7792                 * for progress to be made, and set failed_alloc to true.
7793                 *
7794                 * If failed_alloc is true then we've already waited on this
7795                 * block group once and should move on to the next block group.
7796                 */
7797                if (!offset && !failed_alloc && !cached &&
7798                    loop > LOOP_CACHING_NOWAIT) {
7799                        wait_block_group_cache_progress(block_group,
7800                                                num_bytes + empty_size);
7801                        failed_alloc = true;
7802                        goto have_block_group;
7803                } else if (!offset) {
7804                        goto loop;
7805                }
7806checks:
7807                search_start = ALIGN(offset, fs_info->stripesize);
7808
7809                /* move on to the next group */
7810                if (search_start + num_bytes >
7811                    block_group->key.objectid + block_group->key.offset) {
7812                        btrfs_add_free_space(block_group, offset, num_bytes);
7813                        goto loop;
7814                }
7815
7816                if (offset < search_start)
7817                        btrfs_add_free_space(block_group, offset,
7818                                             search_start - offset);
7819                BUG_ON(offset > search_start);
7820
7821                ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7822                                num_bytes, delalloc);
7823                if (ret == -EAGAIN) {
7824                        btrfs_add_free_space(block_group, offset, num_bytes);
7825                        goto loop;
7826                }
7827                btrfs_inc_block_group_reservations(block_group);
7828
7829                /* we are all good, lets return */
7830                ins->objectid = search_start;
7831                ins->offset = num_bytes;
7832
7833                trace_btrfs_reserve_extent(fs_info, block_group,
7834                                           search_start, num_bytes);
7835                btrfs_release_block_group(block_group, delalloc);
7836                break;
7837loop:
7838                failed_cluster_refill = false;
7839                failed_alloc = false;
7840                BUG_ON(index != get_block_group_index(block_group));
7841                btrfs_release_block_group(block_group, delalloc);
7842                cond_resched();
7843        }
7844        up_read(&space_info->groups_sem);
7845
7846        if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7847                && !orig_have_caching_bg)
7848                orig_have_caching_bg = true;
7849
7850        if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7851                goto search;
7852
7853        if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7854                goto search;
7855
7856        /*
7857         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7858         *                      caching kthreads as we move along
7859         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7860         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7861         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7862         *                      again
7863         */
7864        if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7865                index = 0;
7866                if (loop == LOOP_CACHING_NOWAIT) {
7867                        /*
7868                         * We want to skip the LOOP_CACHING_WAIT step if we
7869                         * don't have any uncached bgs and we've already done a
7870                         * full search through.
7871                         */
7872                        if (orig_have_caching_bg || !full_search)
7873                                loop = LOOP_CACHING_WAIT;
7874                        else
7875                                loop = LOOP_ALLOC_CHUNK;
7876                } else {
7877                        loop++;
7878                }
7879
7880                if (loop == LOOP_ALLOC_CHUNK) {
7881                        struct btrfs_trans_handle *trans;
7882                        int exist = 0;
7883
7884                        trans = current->journal_info;
7885                        if (trans)
7886                                exist = 1;
7887                        else
7888                                trans = btrfs_join_transaction(root);
7889
7890                        if (IS_ERR(trans)) {
7891                                ret = PTR_ERR(trans);
7892                                goto out;
7893                        }
7894
7895                        ret = do_chunk_alloc(trans, fs_info, flags,
7896                                             CHUNK_ALLOC_FORCE);
7897
7898                        /*
7899                         * If we can't allocate a new chunk we've already looped
7900                         * through at least once, move on to the NO_EMPTY_SIZE
7901                         * case.
7902                         */
7903                        if (ret == -ENOSPC)
7904                                loop = LOOP_NO_EMPTY_SIZE;
7905
7906                        /*
7907                         * Do not bail out on ENOSPC since we
7908                         * can do more things.
7909                         */
7910                        if (ret < 0 && ret != -ENOSPC)
7911                                btrfs_abort_transaction(trans, ret);
7912                        else
7913                                ret = 0;
7914                        if (!exist)
7915                                btrfs_end_transaction(trans);
7916                        if (ret)
7917                                goto out;
7918                }
7919
7920                if (loop == LOOP_NO_EMPTY_SIZE) {
7921                        /*
7922                         * Don't loop again if we already have no empty_size and
7923                         * no empty_cluster.
7924                         */
7925                        if (empty_size == 0 &&
7926                            empty_cluster == 0) {
7927                                ret = -ENOSPC;
7928                                goto out;
7929                        }
7930                        empty_size = 0;
7931                        empty_cluster = 0;
7932                }
7933
7934                goto search;
7935        } else if (!ins->objectid) {
7936                ret = -ENOSPC;
7937        } else if (ins->objectid) {
7938                if (!use_cluster && last_ptr) {
7939                        spin_lock(&last_ptr->lock);
7940                        last_ptr->window_start = ins->objectid;
7941                        spin_unlock(&last_ptr->lock);
7942                }
7943                ret = 0;
7944        }
7945out:
7946        if (ret == -ENOSPC) {
7947                spin_lock(&space_info->lock);
7948                space_info->max_extent_size = max_extent_size;
7949                spin_unlock(&space_info->lock);
7950                ins->offset = max_extent_size;
7951        }
7952        return ret;
7953}
7954
7955static void dump_space_info(struct btrfs_fs_info *fs_info,
7956                            struct btrfs_space_info *info, u64 bytes,
7957                            int dump_block_groups)
7958{
7959        struct btrfs_block_group_cache *cache;
7960        int index = 0;
7961
7962        spin_lock(&info->lock);
7963        btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7964                   info->flags,
7965                   info->total_bytes - btrfs_space_info_used(info, true),
7966                   info->full ? "" : "not ");
7967        btrfs_info(fs_info,
7968                "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7969                info->total_bytes, info->bytes_used, info->bytes_pinned,
7970                info->bytes_reserved, info->bytes_may_use,
7971                info->bytes_readonly);
7972        spin_unlock(&info->lock);
7973
7974        if (!dump_block_groups)
7975                return;
7976
7977        down_read(&info->groups_sem);
7978again:
7979        list_for_each_entry(cache, &info->block_groups[index], list) {
7980                spin_lock(&cache->lock);
7981                btrfs_info(fs_info,
7982                        "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7983                        cache->key.objectid, cache->key.offset,
7984                        btrfs_block_group_used(&cache->item), cache->pinned,
7985                        cache->reserved, cache->ro ? "[readonly]" : "");
7986                btrfs_dump_free_space(cache, bytes);
7987                spin_unlock(&cache->lock);
7988        }
7989        if (++index < BTRFS_NR_RAID_TYPES)
7990                goto again;
7991        up_read(&info->groups_sem);
7992}
7993
7994int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7995                         u64 num_bytes, u64 min_alloc_size,
7996                         u64 empty_size, u64 hint_byte,
7997                         struct btrfs_key *ins, int is_data, int delalloc)
7998{
7999        struct btrfs_fs_info *fs_info = root->fs_info;
8000        bool final_tried = num_bytes == min_alloc_size;
8001        u64 flags;
8002        int ret;
8003
8004        flags = get_alloc_profile_by_root(root, is_data);
8005again:
8006        WARN_ON(num_bytes < fs_info->sectorsize);
8007        ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8008                               hint_byte, ins, flags, delalloc);
8009        if (!ret && !is_data) {
8010                btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8011        } else if (ret == -ENOSPC) {
8012                if (!final_tried && ins->offset) {
8013                        num_bytes = min(num_bytes >> 1, ins->offset);
8014                        num_bytes = round_down(num_bytes,
8015                                               fs_info->sectorsize);
8016                        num_bytes = max(num_bytes, min_alloc_size);
8017                        ram_bytes = num_bytes;
8018                        if (num_bytes == min_alloc_size)
8019                                final_tried = true;
8020                        goto again;
8021                } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8022                        struct btrfs_space_info *sinfo;
8023
8024                        sinfo = __find_space_info(fs_info, flags);
8025                        btrfs_err(fs_info,
8026                                  "allocation failed flags %llu, wanted %llu",
8027                                  flags, num_bytes);
8028                        if (sinfo)
8029                                dump_space_info(fs_info, sinfo, num_bytes, 1);
8030                }
8031        }
8032
8033        return ret;
8034}
8035
8036static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8037                                        u64 start, u64 len,
8038                                        int pin, int delalloc)
8039{
8040        struct btrfs_block_group_cache *cache;
8041        int ret = 0;
8042
8043        cache = btrfs_lookup_block_group(fs_info, start);
8044        if (!cache) {
8045                btrfs_err(fs_info, "Unable to find block group for %llu",
8046                          start);
8047                return -ENOSPC;
8048        }
8049
8050        if (pin)
8051                pin_down_extent(fs_info, cache, start, len, 1);
8052        else {
8053                if (btrfs_test_opt(fs_info, DISCARD))
8054                        ret = btrfs_discard_extent(fs_info, start, len, NULL);
8055                btrfs_add_free_space(cache, start, len);
8056                btrfs_free_reserved_bytes(cache, len, delalloc);
8057                trace_btrfs_reserved_extent_free(fs_info, start, len);
8058        }
8059
8060        btrfs_put_block_group(cache);
8061        return ret;
8062}
8063
8064int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8065                               u64 start, u64 len, int delalloc)
8066{
8067        return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8068}
8069
8070int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8071                                       u64 start, u64 len)
8072{
8073        return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8074}
8075
8076static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8077                                      struct btrfs_fs_info *fs_info,
8078                                      u64 parent, u64 root_objectid,
8079                                      u64 flags, u64 owner, u64 offset,
8080                                      struct btrfs_key *ins, int ref_mod)
8081{
8082        int ret;
8083        struct btrfs_extent_item *extent_item;
8084        struct btrfs_extent_inline_ref *iref;
8085        struct btrfs_path *path;
8086        struct extent_buffer *leaf;
8087        int type;
8088        u32 size;
8089
8090        if (parent > 0)
8091                type = BTRFS_SHARED_DATA_REF_KEY;
8092        else
8093                type = BTRFS_EXTENT_DATA_REF_KEY;
8094
8095        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8096
8097        path = btrfs_alloc_path();
8098        if (!path)
8099                return -ENOMEM;
8100
8101        path->leave_spinning = 1;
8102        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8103                                      ins, size);
8104        if (ret) {
8105                btrfs_free_path(path);
8106                return ret;
8107        }
8108
8109        leaf = path->nodes[0];
8110        extent_item = btrfs_item_ptr(leaf, path->slots[0],
8111                                     struct btrfs_extent_item);
8112        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8113        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8114        btrfs_set_extent_flags(leaf, extent_item,
8115                               flags | BTRFS_EXTENT_FLAG_DATA);
8116
8117        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8118        btrfs_set_extent_inline_ref_type(leaf, iref, type);
8119        if (parent > 0) {
8120                struct btrfs_shared_data_ref *ref;
8121                ref = (struct btrfs_shared_data_ref *)(iref + 1);
8122                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8123                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8124        } else {
8125                struct btrfs_extent_data_ref *ref;
8126                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8127                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8128                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8129                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8130                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8131        }
8132
8133        btrfs_mark_buffer_dirty(path->nodes[0]);
8134        btrfs_free_path(path);
8135
8136        ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8137                                          ins->offset);
8138        if (ret)
8139                return ret;
8140
8141        ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8142        if (ret) { /* -ENOENT, logic error */
8143                btrfs_err(fs_info, "update block group failed for %llu %llu",
8144                        ins->objectid, ins->offset);
8145                BUG();
8146        }
8147        trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8148        return ret;
8149}
8150
8151static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8152                                     struct btrfs_fs_info *fs_info,
8153                                     u64 parent, u64 root_objectid,
8154                                     u64 flags, struct btrfs_disk_key *key,
8155                                     int level, struct btrfs_key *ins)
8156{
8157        int ret;
8158        struct btrfs_extent_item *extent_item;
8159        struct btrfs_tree_block_info *block_info;
8160        struct btrfs_extent_inline_ref *iref;
8161        struct btrfs_path *path;
8162        struct extent_buffer *leaf;
8163        u32 size = sizeof(*extent_item) + sizeof(*iref);
8164        u64 num_bytes = ins->offset;
8165        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8166
8167        if (!skinny_metadata)
8168                size += sizeof(*block_info);
8169
8170        path = btrfs_alloc_path();
8171        if (!path) {
8172                btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8173                                                   fs_info->nodesize);
8174                return -ENOMEM;
8175        }
8176
8177        path->leave_spinning = 1;
8178        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8179                                      ins, size);
8180        if (ret) {
8181                btrfs_free_path(path);
8182                btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8183                                                   fs_info->nodesize);
8184                return ret;
8185        }
8186
8187        leaf = path->nodes[0];
8188        extent_item = btrfs_item_ptr(leaf, path->slots[0],
8189                                     struct btrfs_extent_item);
8190        btrfs_set_extent_refs(leaf, extent_item, 1);
8191        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8192        btrfs_set_extent_flags(leaf, extent_item,
8193                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8194
8195        if (skinny_metadata) {
8196                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8197                num_bytes = fs_info->nodesize;
8198        } else {
8199                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8200                btrfs_set_tree_block_key(leaf, block_info, key);
8201                btrfs_set_tree_block_level(leaf, block_info, level);
8202                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8203        }
8204
8205        if (parent > 0) {
8206                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8207                btrfs_set_extent_inline_ref_type(leaf, iref,
8208                                                 BTRFS_SHARED_BLOCK_REF_KEY);
8209                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8210        } else {
8211                btrfs_set_extent_inline_ref_type(leaf, iref,
8212                                                 BTRFS_TREE_BLOCK_REF_KEY);
8213                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8214        }
8215
8216        btrfs_mark_buffer_dirty(leaf);
8217        btrfs_free_path(path);
8218
8219        ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8220                                          num_bytes);
8221        if (ret)
8222                return ret;
8223
8224        ret = update_block_group(trans, fs_info, ins->objectid,
8225                                 fs_info->nodesize, 1);
8226        if (ret) { /* -ENOENT, logic error */
8227                btrfs_err(fs_info, "update block group failed for %llu %llu",
8228                        ins->objectid, ins->offset);
8229                BUG();
8230        }
8231
8232        trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8233                                          fs_info->nodesize);
8234        return ret;
8235}
8236
8237int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8238                                     struct btrfs_root *root, u64 owner,
8239                                     u64 offset, u64 ram_bytes,
8240                                     struct btrfs_key *ins)
8241{
8242        struct btrfs_fs_info *fs_info = root->fs_info;
8243        int ret;
8244
8245        BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8246
8247        btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8248                           root->root_key.objectid, owner, offset,
8249                           BTRFS_ADD_DELAYED_EXTENT);
8250
8251        ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8252                                         ins->offset, 0,
8253                                         root->root_key.objectid, owner,
8254                                         offset, ram_bytes,
8255                                         BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8256        return ret;
8257}
8258
8259/*
8260 * this is used by the tree logging recovery code.  It records that
8261 * an extent has been allocated and makes sure to clear the free
8262 * space cache bits as well
8263 */
8264int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8265                                   struct btrfs_fs_info *fs_info,
8266                                   u64 root_objectid, u64 owner, u64 offset,
8267                                   struct btrfs_key *ins)
8268{
8269        int ret;
8270        struct btrfs_block_group_cache *block_group;
8271        struct btrfs_space_info *space_info;
8272
8273        /*
8274         * Mixed block groups will exclude before processing the log so we only
8275         * need to do the exclude dance if this fs isn't mixed.
8276         */
8277        if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8278                ret = __exclude_logged_extent(fs_info, ins->objectid,
8279                                              ins->offset);
8280                if (ret)
8281                        return ret;
8282        }
8283
8284        block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8285        if (!block_group)
8286                return -EINVAL;
8287
8288        space_info = block_group->space_info;
8289        spin_lock(&space_info->lock);
8290        spin_lock(&block_group->lock);
8291        space_info->bytes_reserved += ins->offset;
8292        block_group->reserved += ins->offset;
8293        spin_unlock(&block_group->lock);
8294        spin_unlock(&space_info->lock);
8295
8296        ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8297                                         0, owner, offset, ins, 1);
8298        btrfs_put_block_group(block_group);
8299        return ret;
8300}
8301
8302static struct extent_buffer *
8303btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8304                      u64 bytenr, int level)
8305{
8306        struct btrfs_fs_info *fs_info = root->fs_info;
8307        struct extent_buffer *buf;
8308
8309        buf = btrfs_find_create_tree_block(fs_info, bytenr);
8310        if (IS_ERR(buf))
8311                return buf;
8312
8313        btrfs_set_header_generation(buf, trans->transid);
8314        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8315        btrfs_tree_lock(buf);
8316        clean_tree_block(fs_info, buf);
8317        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8318
8319        btrfs_set_lock_blocking(buf);
8320        set_extent_buffer_uptodate(buf);
8321
8322        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8323                buf->log_index = root->log_transid % 2;
8324                /*
8325                 * we allow two log transactions at a time, use different
8326                 * EXENT bit to differentiate dirty pages.
8327                 */
8328                if (buf->log_index == 0)
8329                        set_extent_dirty(&root->dirty_log_pages, buf->start,
8330                                        buf->start + buf->len - 1, GFP_NOFS);
8331                else
8332                        set_extent_new(&root->dirty_log_pages, buf->start,
8333                                        buf->start + buf->len - 1);
8334        } else {
8335                buf->log_index = -1;
8336                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8337                         buf->start + buf->len - 1, GFP_NOFS);
8338        }
8339        trans->dirty = true;
8340        /* this returns a buffer locked for blocking */
8341        return buf;
8342}
8343
8344static struct btrfs_block_rsv *
8345use_block_rsv(struct btrfs_trans_handle *trans,
8346              struct btrfs_root *root, u32 blocksize)
8347{
8348        struct btrfs_fs_info *fs_info = root->fs_info;
8349        struct btrfs_block_rsv *block_rsv;
8350        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8351        int ret;
8352        bool global_updated = false;
8353
8354        block_rsv = get_block_rsv(trans, root);
8355
8356        if (unlikely(block_rsv->size == 0))
8357                goto try_reserve;
8358again:
8359        ret = block_rsv_use_bytes(block_rsv, blocksize);
8360        if (!ret)
8361                return block_rsv;
8362
8363        if (block_rsv->failfast)
8364                return ERR_PTR(ret);
8365
8366        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8367                global_updated = true;
8368                update_global_block_rsv(fs_info);
8369                goto again;
8370        }
8371
8372        if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8373                static DEFINE_RATELIMIT_STATE(_rs,
8374                                DEFAULT_RATELIMIT_INTERVAL * 10,
8375                                /*DEFAULT_RATELIMIT_BURST*/ 1);
8376                if (__ratelimit(&_rs))
8377                        WARN(1, KERN_DEBUG
8378                                "BTRFS: block rsv returned %d\n", ret);
8379        }
8380try_reserve:
8381        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8382                                     BTRFS_RESERVE_NO_FLUSH);
8383        if (!ret)
8384                return block_rsv;
8385        /*
8386         * If we couldn't reserve metadata bytes try and use some from
8387         * the global reserve if its space type is the same as the global
8388         * reservation.
8389         */
8390        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8391            block_rsv->space_info == global_rsv->space_info) {
8392                ret = block_rsv_use_bytes(global_rsv, blocksize);
8393                if (!ret)
8394                        return global_rsv;
8395        }
8396        return ERR_PTR(ret);
8397}
8398
8399static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8400                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
8401{
8402        block_rsv_add_bytes(block_rsv, blocksize, 0);
8403        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8404}
8405
8406/*
8407 * finds a free extent and does all the dirty work required for allocation
8408 * returns the tree buffer or an ERR_PTR on error.
8409 */
8410struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8411                                             struct btrfs_root *root,
8412                                             u64 parent, u64 root_objectid,
8413                                             const struct btrfs_disk_key *key,
8414                                             int level, u64 hint,
8415                                             u64 empty_size)
8416{
8417        struct btrfs_fs_info *fs_info = root->fs_info;
8418        struct btrfs_key ins;
8419        struct btrfs_block_rsv *block_rsv;
8420        struct extent_buffer *buf;
8421        struct btrfs_delayed_extent_op *extent_op;
8422        u64 flags = 0;
8423        int ret;
8424        u32 blocksize = fs_info->nodesize;
8425        bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8426
8427#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8428        if (btrfs_is_testing(fs_info)) {
8429                buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8430                                            level);
8431                if (!IS_ERR(buf))
8432                        root->alloc_bytenr += blocksize;
8433                return buf;
8434        }
8435#endif
8436
8437        block_rsv = use_block_rsv(trans, root, blocksize);
8438        if (IS_ERR(block_rsv))
8439                return ERR_CAST(block_rsv);
8440
8441        ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8442                                   empty_size, hint, &ins, 0, 0);
8443        if (ret)
8444                goto out_unuse;
8445
8446        buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8447        if (IS_ERR(buf)) {
8448                ret = PTR_ERR(buf);
8449                goto out_free_reserved;
8450        }
8451
8452        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8453                if (parent == 0)
8454                        parent = ins.objectid;
8455                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8456        } else
8457                BUG_ON(parent > 0);
8458
8459        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8460                extent_op = btrfs_alloc_delayed_extent_op();
8461                if (!extent_op) {
8462                        ret = -ENOMEM;
8463                        goto out_free_buf;
8464                }
8465                if (key)
8466                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
8467                else
8468                        memset(&extent_op->key, 0, sizeof(extent_op->key));
8469                extent_op->flags_to_set = flags;
8470                extent_op->update_key = skinny_metadata ? false : true;
8471                extent_op->update_flags = true;
8472                extent_op->is_data = false;
8473                extent_op->level = level;
8474
8475                btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8476                                   root_objectid, level, 0,
8477                                   BTRFS_ADD_DELAYED_EXTENT);
8478                ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8479                                                 ins.offset, parent,
8480                                                 root_objectid, level,
8481                                                 BTRFS_ADD_DELAYED_EXTENT,
8482                                                 extent_op, NULL, NULL);
8483                if (ret)
8484                        goto out_free_delayed;
8485        }
8486        return buf;
8487
8488out_free_delayed:
8489        btrfs_free_delayed_extent_op(extent_op);
8490out_free_buf:
8491        free_extent_buffer(buf);
8492out_free_reserved:
8493        btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8494out_unuse:
8495        unuse_block_rsv(fs_info, block_rsv, blocksize);
8496        return ERR_PTR(ret);
8497}
8498
8499struct walk_control {
8500        u64 refs[BTRFS_MAX_LEVEL];
8501        u64 flags[BTRFS_MAX_LEVEL];
8502        struct btrfs_key update_progress;
8503        int stage;
8504        int level;
8505        int shared_level;
8506        int update_ref;
8507        int keep_locks;
8508        int reada_slot;
8509        int reada_count;
8510        int for_reloc;
8511};
8512
8513#define DROP_REFERENCE  1
8514#define UPDATE_BACKREF  2
8515
8516static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8517                                     struct btrfs_root *root,
8518                                     struct walk_control *wc,
8519                                     struct btrfs_path *path)
8520{
8521        struct btrfs_fs_info *fs_info = root->fs_info;
8522        u64 bytenr;
8523        u64 generation;
8524        u64 refs;
8525        u64 flags;
8526        u32 nritems;
8527        struct btrfs_key key;
8528        struct extent_buffer *eb;
8529        int ret;
8530        int slot;
8531        int nread = 0;
8532
8533        if (path->slots[wc->level] < wc->reada_slot) {
8534                wc->reada_count = wc->reada_count * 2 / 3;
8535                wc->reada_count = max(wc->reada_count, 2);
8536        } else {
8537                wc->reada_count = wc->reada_count * 3 / 2;
8538                wc->reada_count = min_t(int, wc->reada_count,
8539                                        BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8540        }
8541
8542        eb = path->nodes[wc->level];
8543        nritems = btrfs_header_nritems(eb);
8544
8545        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8546                if (nread >= wc->reada_count)
8547                        break;
8548
8549                cond_resched();
8550                bytenr = btrfs_node_blockptr(eb, slot);
8551                generation = btrfs_node_ptr_generation(eb, slot);
8552
8553                if (slot == path->slots[wc->level])
8554                        goto reada;
8555
8556                if (wc->stage == UPDATE_BACKREF &&
8557                    generation <= root->root_key.offset)
8558                        continue;
8559
8560                /* We don't lock the tree block, it's OK to be racy here */
8561                ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8562                                               wc->level - 1, 1, &refs,
8563                                               &flags);
8564                /* We don't care about errors in readahead. */
8565                if (ret < 0)
8566                        continue;
8567                BUG_ON(refs == 0);
8568
8569                if (wc->stage == DROP_REFERENCE) {
8570                        if (refs == 1)
8571                                goto reada;
8572
8573                        if (wc->level == 1 &&
8574                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8575                                continue;
8576                        if (!wc->update_ref ||
8577                            generation <= root->root_key.offset)
8578                                continue;
8579                        btrfs_node_key_to_cpu(eb, &key, slot);
8580                        ret = btrfs_comp_cpu_keys(&key,
8581                                                  &wc->update_progress);
8582                        if (ret < 0)
8583                                continue;
8584                } else {
8585                        if (wc->level == 1 &&
8586                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587                                continue;
8588                }
8589reada:
8590                readahead_tree_block(fs_info, bytenr);
8591                nread++;
8592        }
8593        wc->reada_slot = slot;
8594}
8595
8596/*
8597 * helper to process tree block while walking down the tree.
8598 *
8599 * when wc->stage == UPDATE_BACKREF, this function updates
8600 * back refs for pointers in the block.
8601 *
8602 * NOTE: return value 1 means we should stop walking down.
8603 */
8604static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8605                                   struct btrfs_root *root,
8606                                   struct btrfs_path *path,
8607                                   struct walk_control *wc, int lookup_info)
8608{
8609        struct btrfs_fs_info *fs_info = root->fs_info;
8610        int level = wc->level;
8611        struct extent_buffer *eb = path->nodes[level];
8612        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8613        int ret;
8614
8615        if (wc->stage == UPDATE_BACKREF &&
8616            btrfs_header_owner(eb) != root->root_key.objectid)
8617                return 1;
8618
8619        /*
8620         * when reference count of tree block is 1, it won't increase
8621         * again. once full backref flag is set, we never clear it.
8622         */
8623        if (lookup_info &&
8624            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8625             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8626                BUG_ON(!path->locks[level]);
8627                ret = btrfs_lookup_extent_info(trans, fs_info,
8628                                               eb->start, level, 1,
8629                                               &wc->refs[level],
8630                                               &wc->flags[level]);
8631                BUG_ON(ret == -ENOMEM);
8632                if (ret)
8633                        return ret;
8634                BUG_ON(wc->refs[level] == 0);
8635        }
8636
8637        if (wc->stage == DROP_REFERENCE) {
8638                if (wc->refs[level] > 1)
8639                        return 1;
8640
8641                if (path->locks[level] && !wc->keep_locks) {
8642                        btrfs_tree_unlock_rw(eb, path->locks[level]);
8643                        path->locks[level] = 0;
8644                }
8645                return 0;
8646        }
8647
8648        /* wc->stage == UPDATE_BACKREF */
8649        if (!(wc->flags[level] & flag)) {
8650                BUG_ON(!path->locks[level]);
8651                ret = btrfs_inc_ref(trans, root, eb, 1);
8652                BUG_ON(ret); /* -ENOMEM */
8653                ret = btrfs_dec_ref(trans, root, eb, 0);
8654                BUG_ON(ret); /* -ENOMEM */
8655                ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8656                                                  eb->len, flag,
8657                                                  btrfs_header_level(eb), 0);
8658                BUG_ON(ret); /* -ENOMEM */
8659                wc->flags[level] |= flag;
8660        }
8661
8662        /*
8663         * the block is shared by multiple trees, so it's not good to
8664         * keep the tree lock
8665         */
8666        if (path->locks[level] && level > 0) {
8667                btrfs_tree_unlock_rw(eb, path->locks[level]);
8668                path->locks[level] = 0;
8669        }
8670        return 0;
8671}
8672
8673/*
8674 * helper to process tree block pointer.
8675 *
8676 * when wc->stage == DROP_REFERENCE, this function checks
8677 * reference count of the block pointed to. if the block
8678 * is shared and we need update back refs for the subtree
8679 * rooted at the block, this function changes wc->stage to
8680 * UPDATE_BACKREF. if the block is shared and there is no
8681 * need to update back, this function drops the reference
8682 * to the block.
8683 *
8684 * NOTE: return value 1 means we should stop walking down.
8685 */
8686static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8687                                 struct btrfs_root *root,
8688                                 struct btrfs_path *path,
8689                                 struct walk_control *wc, int *lookup_info)
8690{
8691        struct btrfs_fs_info *fs_info = root->fs_info;
8692        u64 bytenr;
8693        u64 generation;
8694        u64 parent;
8695        u32 blocksize;
8696        struct btrfs_key key;
8697        struct extent_buffer *next;
8698        int level = wc->level;
8699        int reada = 0;
8700        int ret = 0;
8701        bool need_account = false;
8702
8703        generation = btrfs_node_ptr_generation(path->nodes[level],
8704                                               path->slots[level]);
8705        /*
8706         * if the lower level block was created before the snapshot
8707         * was created, we know there is no need to update back refs
8708         * for the subtree
8709         */
8710        if (wc->stage == UPDATE_BACKREF &&
8711            generation <= root->root_key.offset) {
8712                *lookup_info = 1;
8713                return 1;
8714        }
8715
8716        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8717        blocksize = fs_info->nodesize;
8718
8719        next = find_extent_buffer(fs_info, bytenr);
8720        if (!next) {
8721                next = btrfs_find_create_tree_block(fs_info, bytenr);
8722                if (IS_ERR(next))
8723                        return PTR_ERR(next);
8724
8725                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8726                                               level - 1);
8727                reada = 1;
8728        }
8729        btrfs_tree_lock(next);
8730        btrfs_set_lock_blocking(next);
8731
8732        ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8733                                       &wc->refs[level - 1],
8734                                       &wc->flags[level - 1]);
8735        if (ret < 0)
8736                goto out_unlock;
8737
8738        if (unlikely(wc->refs[level - 1] == 0)) {
8739                btrfs_err(fs_info, "Missing references.");
8740                ret = -EIO;
8741                goto out_unlock;
8742        }
8743        *lookup_info = 0;
8744
8745        if (wc->stage == DROP_REFERENCE) {
8746                if (wc->refs[level - 1] > 1) {
8747                        need_account = true;
8748                        if (level == 1 &&
8749                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8750                                goto skip;
8751
8752                        if (!wc->update_ref ||
8753                            generation <= root->root_key.offset)
8754                                goto skip;
8755
8756                        btrfs_node_key_to_cpu(path->nodes[level], &key,
8757                                              path->slots[level]);
8758                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8759                        if (ret < 0)
8760                                goto skip;
8761
8762                        wc->stage = UPDATE_BACKREF;
8763                        wc->shared_level = level - 1;
8764                }
8765        } else {
8766                if (level == 1 &&
8767                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8768                        goto skip;
8769        }
8770
8771        if (!btrfs_buffer_uptodate(next, generation, 0)) {
8772                btrfs_tree_unlock(next);
8773                free_extent_buffer(next);
8774                next = NULL;
8775                *lookup_info = 1;
8776        }
8777
8778        if (!next) {
8779                if (reada && level == 1)
8780                        reada_walk_down(trans, root, wc, path);
8781                next = read_tree_block(fs_info, bytenr, generation);
8782                if (IS_ERR(next)) {
8783                        return PTR_ERR(next);
8784                } else if (!extent_buffer_uptodate(next)) {
8785                        free_extent_buffer(next);
8786                        return -EIO;
8787                }
8788                btrfs_tree_lock(next);
8789                btrfs_set_lock_blocking(next);
8790        }
8791
8792        level--;
8793        ASSERT(level == btrfs_header_level(next));
8794        if (level != btrfs_header_level(next)) {
8795                btrfs_err(root->fs_info, "mismatched level");
8796                ret = -EIO;
8797                goto out_unlock;
8798        }
8799        path->nodes[level] = next;
8800        path->slots[level] = 0;
8801        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8802        wc->level = level;
8803        if (wc->level == 1)
8804                wc->reada_slot = 0;
8805        return 0;
8806skip:
8807        wc->refs[level - 1] = 0;
8808        wc->flags[level - 1] = 0;
8809        if (wc->stage == DROP_REFERENCE) {
8810                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8811                        parent = path->nodes[level]->start;
8812                } else {
8813                        ASSERT(root->root_key.objectid ==
8814                               btrfs_header_owner(path->nodes[level]));
8815                        if (root->root_key.objectid !=
8816                            btrfs_header_owner(path->nodes[level])) {
8817                                btrfs_err(root->fs_info,
8818                                                "mismatched block owner");
8819                                ret = -EIO;
8820                                goto out_unlock;
8821                        }
8822                        parent = 0;
8823                }
8824
8825                if (need_account) {
8826                        ret = btrfs_qgroup_trace_subtree(trans, root, next,
8827                                                         generation, level - 1);
8828                        if (ret) {
8829                                btrfs_err_rl(fs_info,
8830                                             "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8831                                             ret);
8832                        }
8833                }
8834                ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8835                                        parent, root->root_key.objectid,
8836                                        level - 1, 0);
8837                if (ret)
8838                        goto out_unlock;
8839        }
8840
8841        *lookup_info = 1;
8842        ret = 1;
8843
8844out_unlock:
8845        btrfs_tree_unlock(next);
8846        free_extent_buffer(next);
8847
8848        return ret;
8849}
8850
8851/*
8852 * helper to process tree block while walking up the tree.
8853 *
8854 * when wc->stage == DROP_REFERENCE, this function drops
8855 * reference count on the block.
8856 *
8857 * when wc->stage == UPDATE_BACKREF, this function changes
8858 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8859 * to UPDATE_BACKREF previously while processing the block.
8860 *
8861 * NOTE: return value 1 means we should stop walking up.
8862 */
8863static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8864                                 struct btrfs_root *root,
8865                                 struct btrfs_path *path,
8866                                 struct walk_control *wc)
8867{
8868        struct btrfs_fs_info *fs_info = root->fs_info;
8869        int ret;
8870        int level = wc->level;
8871        struct extent_buffer *eb = path->nodes[level];
8872        u64 parent = 0;
8873
8874        if (wc->stage == UPDATE_BACKREF) {
8875                BUG_ON(wc->shared_level < level);
8876                if (level < wc->shared_level)
8877                        goto out;
8878
8879                ret = find_next_key(path, level + 1, &wc->update_progress);
8880                if (ret > 0)
8881                        wc->update_ref = 0;
8882
8883                wc->stage = DROP_REFERENCE;
8884                wc->shared_level = -1;
8885                path->slots[level] = 0;
8886
8887                /*
8888                 * check reference count again if the block isn't locked.
8889                 * we should start walking down the tree again if reference
8890                 * count is one.
8891                 */
8892                if (!path->locks[level]) {
8893                        BUG_ON(level == 0);
8894                        btrfs_tree_lock(eb);
8895                        btrfs_set_lock_blocking(eb);
8896                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8897
8898                        ret = btrfs_lookup_extent_info(trans, fs_info,
8899                                                       eb->start, level, 1,
8900                                                       &wc->refs[level],
8901                                                       &wc->flags[level]);
8902                        if (ret < 0) {
8903                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8904                                path->locks[level] = 0;
8905                                return ret;
8906                        }
8907                        BUG_ON(wc->refs[level] == 0);
8908                        if (wc->refs[level] == 1) {
8909                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8910                                path->locks[level] = 0;
8911                                return 1;
8912                        }
8913                }
8914        }
8915
8916        /* wc->stage == DROP_REFERENCE */
8917        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8918
8919        if (wc->refs[level] == 1) {
8920                if (level == 0) {
8921                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8922                                ret = btrfs_dec_ref(trans, root, eb, 1);
8923                        else
8924                                ret = btrfs_dec_ref(trans, root, eb, 0);
8925                        BUG_ON(ret); /* -ENOMEM */
8926                        ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8927                        if (ret) {
8928                                btrfs_err_rl(fs_info,
8929                                             "error %d accounting leaf items. Quota is out of sync, rescan required.",
8930                                             ret);
8931                        }
8932                }
8933                /* make block locked assertion in clean_tree_block happy */
8934                if (!path->locks[level] &&
8935                    btrfs_header_generation(eb) == trans->transid) {
8936                        btrfs_tree_lock(eb);
8937                        btrfs_set_lock_blocking(eb);
8938                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8939                }
8940                clean_tree_block(fs_info, eb);
8941        }
8942
8943        if (eb == root->node) {
8944                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8945                        parent = eb->start;
8946                else
8947                        BUG_ON(root->root_key.objectid !=
8948                               btrfs_header_owner(eb));
8949        } else {
8950                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8951                        parent = path->nodes[level + 1]->start;
8952                else
8953                        BUG_ON(root->root_key.objectid !=
8954                               btrfs_header_owner(path->nodes[level + 1]));
8955        }
8956
8957        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8958out:
8959        wc->refs[level] = 0;
8960        wc->flags[level] = 0;
8961        return 0;
8962}
8963
8964static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8965                                   struct btrfs_root *root,
8966                                   struct btrfs_path *path,
8967                                   struct walk_control *wc)
8968{
8969        int level = wc->level;
8970        int lookup_info = 1;
8971        int ret;
8972
8973        while (level >= 0) {
8974                ret = walk_down_proc(trans, root, path, wc, lookup_info);
8975                if (ret > 0)
8976                        break;
8977
8978                if (level == 0)
8979                        break;
8980
8981                if (path->slots[level] >=
8982                    btrfs_header_nritems(path->nodes[level]))
8983                        break;
8984
8985                ret = do_walk_down(trans, root, path, wc, &lookup_info);
8986                if (ret > 0) {
8987                        path->slots[level]++;
8988                        continue;
8989                } else if (ret < 0)
8990                        return ret;
8991                level = wc->level;
8992        }
8993        return 0;
8994}
8995
8996static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8997                                 struct btrfs_root *root,
8998                                 struct btrfs_path *path,
8999                                 struct walk_control *wc, int max_level)
9000{
9001        int level = wc->level;
9002        int ret;
9003
9004        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9005        while (level < max_level && path->nodes[level]) {
9006                wc->level = level;
9007                if (path->slots[level] + 1 <
9008                    btrfs_header_nritems(path->nodes[level])) {
9009                        path->slots[level]++;
9010                        return 0;
9011                } else {
9012                        ret = walk_up_proc(trans, root, path, wc);
9013                        if (ret > 0)
9014                                return 0;
9015
9016                        if (path->locks[level]) {
9017                                btrfs_tree_unlock_rw(path->nodes[level],
9018                                                     path->locks[level]);
9019                                path->locks[level] = 0;
9020                        }
9021                        free_extent_buffer(path->nodes[level]);
9022                        path->nodes[level] = NULL;
9023                        level++;
9024                }
9025        }
9026        return 1;
9027}
9028
9029/*
9030 * drop a subvolume tree.
9031 *
9032 * this function traverses the tree freeing any blocks that only
9033 * referenced by the tree.
9034 *
9035 * when a shared tree block is found. this function decreases its
9036 * reference count by one. if update_ref is true, this function
9037 * also make sure backrefs for the shared block and all lower level
9038 * blocks are properly updated.
9039 *
9040 * If called with for_reloc == 0, may exit early with -EAGAIN
9041 */
9042int btrfs_drop_snapshot(struct btrfs_root *root,
9043                         struct btrfs_block_rsv *block_rsv, int update_ref,
9044                         int for_reloc)
9045{
9046        struct btrfs_fs_info *fs_info = root->fs_info;
9047        struct btrfs_path *path;
9048        struct btrfs_trans_handle *trans;
9049        struct btrfs_root *tree_root = fs_info->tree_root;
9050        struct btrfs_root_item *root_item = &root->root_item;
9051        struct walk_control *wc;
9052        struct btrfs_key key;
9053        int err = 0;
9054        int ret;
9055        int level;
9056        bool root_dropped = false;
9057
9058        btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9059
9060        path = btrfs_alloc_path();
9061        if (!path) {
9062                err = -ENOMEM;
9063                goto out;
9064        }
9065
9066        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9067        if (!wc) {
9068                btrfs_free_path(path);
9069                err = -ENOMEM;
9070                goto out;
9071        }
9072
9073        trans = btrfs_start_transaction(tree_root, 0);
9074        if (IS_ERR(trans)) {
9075                err = PTR_ERR(trans);
9076                goto out_free;
9077        }
9078
9079        if (block_rsv)
9080                trans->block_rsv = block_rsv;
9081
9082        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9083                level = btrfs_header_level(root->node);
9084                path->nodes[level] = btrfs_lock_root_node(root);
9085                btrfs_set_lock_blocking(path->nodes[level]);
9086                path->slots[level] = 0;
9087                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9088                memset(&wc->update_progress, 0,
9089                       sizeof(wc->update_progress));
9090        } else {
9091                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9092                memcpy(&wc->update_progress, &key,
9093                       sizeof(wc->update_progress));
9094
9095                level = root_item->drop_level;
9096                BUG_ON(level == 0);
9097                path->lowest_level = level;
9098                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9099                path->lowest_level = 0;
9100                if (ret < 0) {
9101                        err = ret;
9102                        goto out_end_trans;
9103                }
9104                WARN_ON(ret > 0);
9105
9106                /*
9107                 * unlock our path, this is safe because only this
9108                 * function is allowed to delete this snapshot
9109                 */
9110                btrfs_unlock_up_safe(path, 0);
9111
9112                level = btrfs_header_level(root->node);
9113                while (1) {
9114                        btrfs_tree_lock(path->nodes[level]);
9115                        btrfs_set_lock_blocking(path->nodes[level]);
9116                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9117
9118                        ret = btrfs_lookup_extent_info(trans, fs_info,
9119                                                path->nodes[level]->start,
9120                                                level, 1, &wc->refs[level],
9121                                                &wc->flags[level]);
9122                        if (ret < 0) {
9123                                err = ret;
9124                                goto out_end_trans;
9125                        }
9126                        BUG_ON(wc->refs[level] == 0);
9127
9128                        if (level == root_item->drop_level)
9129                                break;
9130
9131                        btrfs_tree_unlock(path->nodes[level]);
9132                        path->locks[level] = 0;
9133                        WARN_ON(wc->refs[level] != 1);
9134                        level--;
9135                }
9136        }
9137
9138        wc->level = level;
9139        wc->shared_level = -1;
9140        wc->stage = DROP_REFERENCE;
9141        wc->update_ref = update_ref;
9142        wc->keep_locks = 0;
9143        wc->for_reloc = for_reloc;
9144        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9145
9146        while (1) {
9147
9148                ret = walk_down_tree(trans, root, path, wc);
9149                if (ret < 0) {
9150                        err = ret;
9151                        break;
9152                }
9153
9154                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9155                if (ret < 0) {
9156                        err = ret;
9157                        break;
9158                }
9159
9160                if (ret > 0) {
9161                        BUG_ON(wc->stage != DROP_REFERENCE);
9162                        break;
9163                }
9164
9165                if (wc->stage == DROP_REFERENCE) {
9166                        level = wc->level;
9167                        btrfs_node_key(path->nodes[level],
9168                                       &root_item->drop_progress,
9169                                       path->slots[level]);
9170                        root_item->drop_level = level;
9171                }
9172
9173                BUG_ON(wc->level == 0);
9174                if (btrfs_should_end_transaction(trans) ||
9175                    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9176                        ret = btrfs_update_root(trans, tree_root,
9177                                                &root->root_key,
9178                                                root_item);
9179                        if (ret) {
9180                                btrfs_abort_transaction(trans, ret);
9181                                err = ret;
9182                                goto out_end_trans;
9183                        }
9184
9185                        btrfs_end_transaction_throttle(trans);
9186                        if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9187                                btrfs_debug(fs_info,
9188                                            "drop snapshot early exit");
9189                                err = -EAGAIN;
9190                                goto out_free;
9191                        }
9192
9193                        trans = btrfs_start_transaction(tree_root, 0);
9194                        if (IS_ERR(trans)) {
9195                                err = PTR_ERR(trans);
9196                                goto out_free;
9197                        }
9198                        if (block_rsv)
9199                                trans->block_rsv = block_rsv;
9200                }
9201        }
9202        btrfs_release_path(path);
9203        if (err)
9204                goto out_end_trans;
9205
9206        ret = btrfs_del_root(trans, fs_info, &root->root_key);
9207        if (ret) {
9208                btrfs_abort_transaction(trans, ret);
9209                err = ret;
9210                goto out_end_trans;
9211        }
9212
9213        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9214                ret = btrfs_find_root(tree_root, &root->root_key, path,
9215                                      NULL, NULL);
9216                if (ret < 0) {
9217                        btrfs_abort_transaction(trans, ret);
9218                        err = ret;
9219                        goto out_end_trans;
9220                } else if (ret > 0) {
9221                        /* if we fail to delete the orphan item this time
9222                         * around, it'll get picked up the next time.
9223                         *
9224                         * The most common failure here is just -ENOENT.
9225                         */
9226                        btrfs_del_orphan_item(trans, tree_root,
9227                                              root->root_key.objectid);
9228                }
9229        }
9230
9231        if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9232                btrfs_add_dropped_root(trans, root);
9233        } else {
9234                free_extent_buffer(root->node);
9235                free_extent_buffer(root->commit_root);
9236                btrfs_put_fs_root(root);
9237        }
9238        root_dropped = true;
9239out_end_trans:
9240        btrfs_end_transaction_throttle(trans);
9241out_free:
9242        kfree(wc);
9243        btrfs_free_path(path);
9244out:
9245        /*
9246         * So if we need to stop dropping the snapshot for whatever reason we
9247         * need to make sure to add it back to the dead root list so that we
9248         * keep trying to do the work later.  This also cleans up roots if we
9249         * don't have it in the radix (like when we recover after a power fail
9250         * or unmount) so we don't leak memory.
9251         */
9252        if (!for_reloc && !root_dropped)
9253                btrfs_add_dead_root(root);
9254        if (err && err != -EAGAIN)
9255                btrfs_handle_fs_error(fs_info, err, NULL);
9256        return err;
9257}
9258
9259/*
9260 * drop subtree rooted at tree block 'node'.
9261 *
9262 * NOTE: this function will unlock and release tree block 'node'
9263 * only used by relocation code
9264 */
9265int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9266                        struct btrfs_root *root,
9267                        struct extent_buffer *node,
9268                        struct extent_buffer *parent)
9269{
9270        struct btrfs_fs_info *fs_info = root->fs_info;
9271        struct btrfs_path *path;
9272        struct walk_control *wc;
9273        int level;
9274        int parent_level;
9275        int ret = 0;
9276        int wret;
9277
9278        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9279
9280        path = btrfs_alloc_path();
9281        if (!path)
9282                return -ENOMEM;
9283
9284        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9285        if (!wc) {
9286                btrfs_free_path(path);
9287                return -ENOMEM;
9288        }
9289
9290        btrfs_assert_tree_locked(parent);
9291        parent_level = btrfs_header_level(parent);
9292        extent_buffer_get(parent);
9293        path->nodes[parent_level] = parent;
9294        path->slots[parent_level] = btrfs_header_nritems(parent);
9295
9296        btrfs_assert_tree_locked(node);
9297        level = btrfs_header_level(node);
9298        path->nodes[level] = node;
9299        path->slots[level] = 0;
9300        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9301
9302        wc->refs[parent_level] = 1;
9303        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9304        wc->level = level;
9305        wc->shared_level = -1;
9306        wc->stage = DROP_REFERENCE;
9307        wc->update_ref = 0;
9308        wc->keep_locks = 1;
9309        wc->for_reloc = 1;
9310        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9311
9312        while (1) {
9313                wret = walk_down_tree(trans, root, path, wc);
9314                if (wret < 0) {
9315                        ret = wret;
9316                        break;
9317                }
9318
9319                wret = walk_up_tree(trans, root, path, wc, parent_level);
9320                if (wret < 0)
9321                        ret = wret;
9322                if (wret != 0)
9323                        break;
9324        }
9325
9326        kfree(wc);
9327        btrfs_free_path(path);
9328        return ret;
9329}
9330
9331static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9332{
9333        u64 num_devices;
9334        u64 stripped;
9335
9336        /*
9337         * if restripe for this chunk_type is on pick target profile and
9338         * return, otherwise do the usual balance
9339         */
9340        stripped = get_restripe_target(fs_info, flags);
9341        if (stripped)
9342                return extended_to_chunk(stripped);
9343
9344        num_devices = fs_info->fs_devices->rw_devices;
9345
9346        stripped = BTRFS_BLOCK_GROUP_RAID0 |
9347                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9348                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9349
9350        if (num_devices == 1) {
9351                stripped |= BTRFS_BLOCK_GROUP_DUP;
9352                stripped = flags & ~stripped;
9353
9354                /* turn raid0 into single device chunks */
9355                if (flags & BTRFS_BLOCK_GROUP_RAID0)
9356                        return stripped;
9357
9358                /* turn mirroring into duplication */
9359                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9360                             BTRFS_BLOCK_GROUP_RAID10))
9361                        return stripped | BTRFS_BLOCK_GROUP_DUP;
9362        } else {
9363                /* they already had raid on here, just return */
9364                if (flags & stripped)
9365                        return flags;
9366
9367                stripped |= BTRFS_BLOCK_GROUP_DUP;
9368                stripped = flags & ~stripped;
9369
9370                /* switch duplicated blocks with raid1 */
9371                if (flags & BTRFS_BLOCK_GROUP_DUP)
9372                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
9373
9374                /* this is drive concat, leave it alone */
9375        }
9376
9377        return flags;
9378}
9379
9380static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9381{
9382        struct btrfs_space_info *sinfo = cache->space_info;
9383        u64 num_bytes;
9384        u64 min_allocable_bytes;
9385        int ret = -ENOSPC;
9386
9387        /*
9388         * We need some metadata space and system metadata space for
9389         * allocating chunks in some corner cases until we force to set
9390         * it to be readonly.
9391         */
9392        if ((sinfo->flags &
9393             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9394            !force)
9395                min_allocable_bytes = SZ_1M;
9396        else
9397                min_allocable_bytes = 0;
9398
9399        spin_lock(&sinfo->lock);
9400        spin_lock(&cache->lock);
9401
9402        if (cache->ro) {
9403                cache->ro++;
9404                ret = 0;
9405                goto out;
9406        }
9407
9408        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9409                    cache->bytes_super - btrfs_block_group_used(&cache->item);
9410
9411        if (btrfs_space_info_used(sinfo, true) + num_bytes +
9412            min_allocable_bytes <= sinfo->total_bytes) {
9413                sinfo->bytes_readonly += num_bytes;
9414                cache->ro++;
9415                list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9416                ret = 0;
9417        }
9418out:
9419        spin_unlock(&cache->lock);
9420        spin_unlock(&sinfo->lock);
9421        return ret;
9422}
9423
9424int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9425                             struct btrfs_block_group_cache *cache)
9426
9427{
9428        struct btrfs_trans_handle *trans;
9429        u64 alloc_flags;
9430        int ret;
9431
9432again:
9433        trans = btrfs_join_transaction(fs_info->extent_root);
9434        if (IS_ERR(trans))
9435                return PTR_ERR(trans);
9436
9437        /*
9438         * we're not allowed to set block groups readonly after the dirty
9439         * block groups cache has started writing.  If it already started,
9440         * back off and let this transaction commit
9441         */
9442        mutex_lock(&fs_info->ro_block_group_mutex);
9443        if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9444                u64 transid = trans->transid;
9445
9446                mutex_unlock(&fs_info->ro_block_group_mutex);
9447                btrfs_end_transaction(trans);
9448
9449                ret = btrfs_wait_for_commit(fs_info, transid);
9450                if (ret)
9451                        return ret;
9452                goto again;
9453        }
9454
9455        /*
9456         * if we are changing raid levels, try to allocate a corresponding
9457         * block group with the new raid level.
9458         */
9459        alloc_flags = update_block_group_flags(fs_info, cache->flags);
9460        if (alloc_flags != cache->flags) {
9461                ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9462                                     CHUNK_ALLOC_FORCE);
9463                /*
9464                 * ENOSPC is allowed here, we may have enough space
9465                 * already allocated at the new raid level to
9466                 * carry on
9467                 */
9468                if (ret == -ENOSPC)
9469                        ret = 0;
9470                if (ret < 0)
9471                        goto out;
9472        }
9473
9474        ret = inc_block_group_ro(cache, 0);
9475        if (!ret)
9476                goto out;
9477        alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9478        ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9479                             CHUNK_ALLOC_FORCE);
9480        if (ret < 0)
9481                goto out;
9482        ret = inc_block_group_ro(cache, 0);
9483out:
9484        if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9485                alloc_flags = update_block_group_flags(fs_info, cache->flags);
9486                mutex_lock(&fs_info->chunk_mutex);
9487                check_system_chunk(trans, fs_info, alloc_flags);
9488                mutex_unlock(&fs_info->chunk_mutex);
9489        }
9490        mutex_unlock(&fs_info->ro_block_group_mutex);
9491
9492        btrfs_end_transaction(trans);
9493        return ret;
9494}
9495
9496int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9497                            struct btrfs_fs_info *fs_info, u64 type)
9498{
9499        u64 alloc_flags = get_alloc_profile(fs_info, type);
9500
9501        return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9502}
9503
9504/*
9505 * helper to account the unused space of all the readonly block group in the
9506 * space_info. takes mirrors into account.
9507 */
9508u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9509{
9510        struct btrfs_block_group_cache *block_group;
9511        u64 free_bytes = 0;
9512        int factor;
9513
9514        /* It's df, we don't care if it's racy */
9515        if (list_empty(&sinfo->ro_bgs))
9516                return 0;
9517
9518        spin_lock(&sinfo->lock);
9519        list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9520                spin_lock(&block_group->lock);
9521
9522                if (!block_group->ro) {
9523                        spin_unlock(&block_group->lock);
9524                        continue;
9525                }
9526
9527                if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9528                                          BTRFS_BLOCK_GROUP_RAID10 |
9529                                          BTRFS_BLOCK_GROUP_DUP))
9530                        factor = 2;
9531                else
9532                        factor = 1;
9533
9534                free_bytes += (block_group->key.offset -
9535                               btrfs_block_group_used(&block_group->item)) *
9536                               factor;
9537
9538                spin_unlock(&block_group->lock);
9539        }
9540        spin_unlock(&sinfo->lock);
9541
9542        return free_bytes;
9543}
9544
9545void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9546{
9547        struct btrfs_space_info *sinfo = cache->space_info;
9548        u64 num_bytes;
9549
9550        BUG_ON(!cache->ro);
9551
9552        spin_lock(&sinfo->lock);
9553        spin_lock(&cache->lock);
9554        if (!--cache->ro) {
9555                num_bytes = cache->key.offset - cache->reserved -
9556                            cache->pinned - cache->bytes_super -
9557                            btrfs_block_group_used(&cache->item);
9558                sinfo->bytes_readonly -= num_bytes;
9559                list_del_init(&cache->ro_list);
9560        }
9561        spin_unlock(&cache->lock);
9562        spin_unlock(&sinfo->lock);
9563}
9564
9565/*
9566 * checks to see if its even possible to relocate this block group.
9567 *
9568 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9569 * ok to go ahead and try.
9570 */
9571int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9572{
9573        struct btrfs_root *root = fs_info->extent_root;
9574        struct btrfs_block_group_cache *block_group;
9575        struct btrfs_space_info *space_info;
9576        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9577        struct btrfs_device *device;
9578        struct btrfs_trans_handle *trans;
9579        u64 min_free;
9580        u64 dev_min = 1;
9581        u64 dev_nr = 0;
9582        u64 target;
9583        int debug;
9584        int index;
9585        int full = 0;
9586        int ret = 0;
9587
9588        debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9589
9590        block_group = btrfs_lookup_block_group(fs_info, bytenr);
9591
9592        /* odd, couldn't find the block group, leave it alone */
9593        if (!block_group) {
9594                if (debug)
9595                        btrfs_warn(fs_info,
9596                                   "can't find block group for bytenr %llu",
9597                                   bytenr);
9598                return -1;
9599        }
9600
9601        min_free = btrfs_block_group_used(&block_group->item);
9602
9603        /* no bytes used, we're good */
9604        if (!min_free)
9605                goto out;
9606
9607        space_info = block_group->space_info;
9608        spin_lock(&space_info->lock);
9609
9610        full = space_info->full;
9611
9612        /*
9613         * if this is the last block group we have in this space, we can't
9614         * relocate it unless we're able to allocate a new chunk below.
9615         *
9616         * Otherwise, we need to make sure we have room in the space to handle
9617         * all of the extents from this block group.  If we can, we're good
9618         */
9619        if ((space_info->total_bytes != block_group->key.offset) &&
9620            (btrfs_space_info_used(space_info, false) + min_free <
9621             space_info->total_bytes)) {
9622                spin_unlock(&space_info->lock);
9623                goto out;
9624        }
9625        spin_unlock(&space_info->lock);
9626
9627        /*
9628         * ok we don't have enough space, but maybe we have free space on our
9629         * devices to allocate new chunks for relocation, so loop through our
9630         * alloc devices and guess if we have enough space.  if this block
9631         * group is going to be restriped, run checks against the target
9632         * profile instead of the current one.
9633         */
9634        ret = -1;
9635
9636        /*
9637         * index:
9638         *      0: raid10
9639         *      1: raid1
9640         *      2: dup
9641         *      3: raid0
9642         *      4: single
9643         */
9644        target = get_restripe_target(fs_info, block_group->flags);
9645        if (target) {
9646                index = __get_raid_index(extended_to_chunk(target));
9647        } else {
9648                /*
9649                 * this is just a balance, so if we were marked as full
9650                 * we know there is no space for a new chunk
9651                 */
9652                if (full) {
9653                        if (debug)
9654                                btrfs_warn(fs_info,
9655                                           "no space to alloc new chunk for block group %llu",
9656                                           block_group->key.objectid);
9657                        goto out;
9658                }
9659
9660                index = get_block_group_index(block_group);
9661        }
9662
9663        if (index == BTRFS_RAID_RAID10) {
9664                dev_min = 4;
9665                /* Divide by 2 */
9666                min_free >>= 1;
9667        } else if (index == BTRFS_RAID_RAID1) {
9668                dev_min = 2;
9669        } else if (index == BTRFS_RAID_DUP) {
9670                /* Multiply by 2 */
9671                min_free <<= 1;
9672        } else if (index == BTRFS_RAID_RAID0) {
9673                dev_min = fs_devices->rw_devices;
9674                min_free = div64_u64(min_free, dev_min);
9675        }
9676
9677        /* We need to do this so that we can look at pending chunks */
9678        trans = btrfs_join_transaction(root);
9679        if (IS_ERR(trans)) {
9680                ret = PTR_ERR(trans);
9681                goto out;
9682        }
9683
9684        mutex_lock(&fs_info->chunk_mutex);
9685        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9686                u64 dev_offset;
9687
9688                /*
9689                 * check to make sure we can actually find a chunk with enough
9690                 * space to fit our block group in.
9691                 */
9692                if (device->total_bytes > device->bytes_used + min_free &&
9693                    !device->is_tgtdev_for_dev_replace) {
9694                        ret = find_free_dev_extent(trans, device, min_free,
9695                                                   &dev_offset, NULL);
9696                        if (!ret)
9697                                dev_nr++;
9698
9699                        if (dev_nr >= dev_min)
9700                                break;
9701
9702                        ret = -1;
9703                }
9704        }
9705        if (debug && ret == -1)
9706                btrfs_warn(fs_info,
9707                           "no space to allocate a new chunk for block group %llu",
9708                           block_group->key.objectid);
9709        mutex_unlock(&fs_info->chunk_mutex);
9710        btrfs_end_transaction(trans);
9711out:
9712        btrfs_put_block_group(block_group);
9713        return ret;
9714}
9715
9716static int find_first_block_group(struct btrfs_fs_info *fs_info,
9717                                  struct btrfs_path *path,
9718                                  struct btrfs_key *key)
9719{
9720        struct btrfs_root *root = fs_info->extent_root;
9721        int ret = 0;
9722        struct btrfs_key found_key;
9723        struct extent_buffer *leaf;
9724        int slot;
9725
9726        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9727        if (ret < 0)
9728                goto out;
9729
9730        while (1) {
9731                slot = path->slots[0];
9732                leaf = path->nodes[0];
9733                if (slot >= btrfs_header_nritems(leaf)) {
9734                        ret = btrfs_next_leaf(root, path);
9735                        if (ret == 0)
9736                                continue;
9737                        if (ret < 0)
9738                                goto out;
9739                        break;
9740                }
9741                btrfs_item_key_to_cpu(leaf, &found_key, slot);
9742
9743                if (found_key.objectid >= key->objectid &&
9744                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9745                        struct extent_map_tree *em_tree;
9746                        struct extent_map *em;
9747
9748                        em_tree = &root->fs_info->mapping_tree.map_tree;
9749                        read_lock(&em_tree->lock);
9750                        em = lookup_extent_mapping(em_tree, found_key.objectid,
9751                                                   found_key.offset);
9752                        read_unlock(&em_tree->lock);
9753                        if (!em) {
9754                                btrfs_err(fs_info,
9755                        "logical %llu len %llu found bg but no related chunk",
9756                                          found_key.objectid, found_key.offset);
9757                                ret = -ENOENT;
9758                        } else {
9759                                ret = 0;
9760                        }
9761                        free_extent_map(em);
9762                        goto out;
9763                }
9764                path->slots[0]++;
9765        }
9766out:
9767        return ret;
9768}
9769
9770void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9771{
9772        struct btrfs_block_group_cache *block_group;
9773        u64 last = 0;
9774
9775        while (1) {
9776                struct inode *inode;
9777
9778                block_group = btrfs_lookup_first_block_group(info, last);
9779                while (block_group) {
9780                        spin_lock(&block_group->lock);
9781                        if (block_group->iref)
9782                                break;
9783                        spin_unlock(&block_group->lock);
9784                        block_group = next_block_group(info, block_group);
9785                }
9786                if (!block_group) {
9787                        if (last == 0)
9788                                break;
9789                        last = 0;
9790                        continue;
9791                }
9792
9793                inode = block_group->inode;
9794                block_group->iref = 0;
9795                block_group->inode = NULL;
9796                spin_unlock(&block_group->lock);
9797                ASSERT(block_group->io_ctl.inode == NULL);
9798                iput(inode);
9799                last = block_group->key.objectid + block_group->key.offset;
9800                btrfs_put_block_group(block_group);
9801        }
9802}
9803
9804/*
9805 * Must be called only after stopping all workers, since we could have block
9806 * group caching kthreads running, and therefore they could race with us if we
9807 * freed the block groups before stopping them.
9808 */
9809int btrfs_free_block_groups(struct btrfs_fs_info *info)
9810{
9811        struct btrfs_block_group_cache *block_group;
9812        struct btrfs_space_info *space_info;
9813        struct btrfs_caching_control *caching_ctl;
9814        struct rb_node *n;
9815
9816        down_write(&info->commit_root_sem);
9817        while (!list_empty(&info->caching_block_groups)) {
9818                caching_ctl = list_entry(info->caching_block_groups.next,
9819                                         struct btrfs_caching_control, list);
9820                list_del(&caching_ctl->list);
9821                put_caching_control(caching_ctl);
9822        }
9823        up_write(&info->commit_root_sem);
9824
9825        spin_lock(&info->unused_bgs_lock);
9826        while (!list_empty(&info->unused_bgs)) {
9827                block_group = list_first_entry(&info->unused_bgs,
9828                                               struct btrfs_block_group_cache,
9829                                               bg_list);
9830                list_del_init(&block_group->bg_list);
9831                btrfs_put_block_group(block_group);
9832        }
9833        spin_unlock(&info->unused_bgs_lock);
9834
9835        spin_lock(&info->block_group_cache_lock);
9836        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9837                block_group = rb_entry(n, struct btrfs_block_group_cache,
9838                                       cache_node);
9839                rb_erase(&block_group->cache_node,
9840                         &info->block_group_cache_tree);
9841                RB_CLEAR_NODE(&block_group->cache_node);
9842                spin_unlock(&info->block_group_cache_lock);
9843
9844                down_write(&block_group->space_info->groups_sem);
9845                list_del(&block_group->list);
9846                up_write(&block_group->space_info->groups_sem);
9847
9848                /*
9849                 * We haven't cached this block group, which means we could
9850                 * possibly have excluded extents on this block group.
9851                 */
9852                if (block_group->cached == BTRFS_CACHE_NO ||
9853                    block_group->cached == BTRFS_CACHE_ERROR)
9854                        free_excluded_extents(info, block_group);
9855
9856                btrfs_remove_free_space_cache(block_group);
9857                ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9858                ASSERT(list_empty(&block_group->dirty_list));
9859                ASSERT(list_empty(&block_group->io_list));
9860                ASSERT(list_empty(&block_group->bg_list));
9861                ASSERT(atomic_read(&block_group->count) == 1);
9862                btrfs_put_block_group(block_group);
9863
9864                spin_lock(&info->block_group_cache_lock);
9865        }
9866        spin_unlock(&info->block_group_cache_lock);
9867
9868        /* now that all the block groups are freed, go through and
9869         * free all the space_info structs.  This is only called during
9870         * the final stages of unmount, and so we know nobody is
9871         * using them.  We call synchronize_rcu() once before we start,
9872         * just to be on the safe side.
9873         */
9874        synchronize_rcu();
9875
9876        release_global_block_rsv(info);
9877
9878        while (!list_empty(&info->space_info)) {
9879                int i;
9880
9881                space_info = list_entry(info->space_info.next,
9882                                        struct btrfs_space_info,
9883                                        list);
9884
9885                /*
9886                 * Do not hide this behind enospc_debug, this is actually
9887                 * important and indicates a real bug if this happens.
9888                 */
9889                if (WARN_ON(space_info->bytes_pinned > 0 ||
9890                            space_info->bytes_reserved > 0 ||
9891                            space_info->bytes_may_use > 0))
9892                        dump_space_info(info, space_info, 0, 0);
9893                list_del(&space_info->list);
9894                for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9895                        struct kobject *kobj;
9896                        kobj = space_info->block_group_kobjs[i];
9897                        space_info->block_group_kobjs[i] = NULL;
9898                        if (kobj) {
9899                                kobject_del(kobj);
9900                                kobject_put(kobj);
9901                        }
9902                }
9903                kobject_del(&space_info->kobj);
9904                kobject_put(&space_info->kobj);
9905        }
9906        return 0;
9907}
9908
9909static void link_block_group(struct btrfs_block_group_cache *cache)
9910{
9911        struct btrfs_space_info *space_info = cache->space_info;
9912        int index = get_block_group_index(cache);
9913        bool first = false;
9914
9915        down_write(&space_info->groups_sem);
9916        if (list_empty(&space_info->block_groups[index]))
9917                first = true;
9918        list_add_tail(&cache->list, &space_info->block_groups[index]);
9919        up_write(&space_info->groups_sem);
9920
9921        if (first) {
9922                struct raid_kobject *rkobj;
9923                int ret;
9924
9925                rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9926                if (!rkobj)
9927                        goto out_err;
9928                rkobj->raid_type = index;
9929                kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9930                ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9931                                  "%s", get_raid_name(index));
9932                if (ret) {
9933                        kobject_put(&rkobj->kobj);
9934                        goto out_err;
9935                }
9936                space_info->block_group_kobjs[index] = &rkobj->kobj;
9937        }
9938
9939        return;
9940out_err:
9941        btrfs_warn(cache->fs_info,
9942                   "failed to add kobject for block cache, ignoring");
9943}
9944
9945static struct btrfs_block_group_cache *
9946btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9947                               u64 start, u64 size)
9948{
9949        struct btrfs_block_group_cache *cache;
9950
9951        cache = kzalloc(sizeof(*cache), GFP_NOFS);
9952        if (!cache)
9953                return NULL;
9954
9955        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9956                                        GFP_NOFS);
9957        if (!cache->free_space_ctl) {
9958                kfree(cache);
9959                return NULL;
9960        }
9961
9962        cache->key.objectid = start;
9963        cache->key.offset = size;
9964        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9965
9966        cache->fs_info = fs_info;
9967        cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9968        set_free_space_tree_thresholds(cache);
9969
9970        atomic_set(&cache->count, 1);
9971        spin_lock_init(&cache->lock);
9972        init_rwsem(&cache->data_rwsem);
9973        INIT_LIST_HEAD(&cache->list);
9974        INIT_LIST_HEAD(&cache->cluster_list);
9975        INIT_LIST_HEAD(&cache->bg_list);
9976        INIT_LIST_HEAD(&cache->ro_list);
9977        INIT_LIST_HEAD(&cache->dirty_list);
9978        INIT_LIST_HEAD(&cache->io_list);
9979        btrfs_init_free_space_ctl(cache);
9980        atomic_set(&cache->trimming, 0);
9981        mutex_init(&cache->free_space_lock);
9982        btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9983
9984        return cache;
9985}
9986
9987int btrfs_read_block_groups(struct btrfs_fs_info *info)
9988{
9989        struct btrfs_path *path;
9990        int ret;
9991        struct btrfs_block_group_cache *cache;
9992        struct btrfs_space_info *space_info;
9993        struct btrfs_key key;
9994        struct btrfs_key found_key;
9995        struct extent_buffer *leaf;
9996        int need_clear = 0;
9997        u64 cache_gen;
9998        u64 feature;
9999        int mixed;
10000
10001        feature = btrfs_super_incompat_flags(info->super_copy);
10002        mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10003
10004        key.objectid = 0;
10005        key.offset = 0;
10006        key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10007        path = btrfs_alloc_path();
10008        if (!path)
10009                return -ENOMEM;
10010        path->reada = READA_FORWARD;
10011
10012        cache_gen = btrfs_super_cache_generation(info->super_copy);
10013        if (btrfs_test_opt(info, SPACE_CACHE) &&
10014            btrfs_super_generation(info->super_copy) != cache_gen)
10015                need_clear = 1;
10016        if (btrfs_test_opt(info, CLEAR_CACHE))
10017                need_clear = 1;
10018
10019        while (1) {
10020                ret = find_first_block_group(info, path, &key);
10021                if (ret > 0)
10022                        break;
10023                if (ret != 0)
10024                        goto error;
10025
10026                leaf = path->nodes[0];
10027                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10028
10029                cache = btrfs_create_block_group_cache(info, found_key.objectid,
10030                                                       found_key.offset);
10031                if (!cache) {
10032                        ret = -ENOMEM;
10033                        goto error;
10034                }
10035
10036                if (need_clear) {
10037                        /*
10038                         * When we mount with old space cache, we need to
10039                         * set BTRFS_DC_CLEAR and set dirty flag.
10040                         *
10041                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10042                         *    truncate the old free space cache inode and
10043                         *    setup a new one.
10044                         * b) Setting 'dirty flag' makes sure that we flush
10045                         *    the new space cache info onto disk.
10046                         */
10047                        if (btrfs_test_opt(info, SPACE_CACHE))
10048                                cache->disk_cache_state = BTRFS_DC_CLEAR;
10049                }
10050
10051                read_extent_buffer(leaf, &cache->item,
10052                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
10053                                   sizeof(cache->item));
10054                cache->flags = btrfs_block_group_flags(&cache->item);
10055                if (!mixed &&
10056                    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10057                    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10058                        btrfs_err(info,
10059"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10060                                  cache->key.objectid);
10061                        ret = -EINVAL;
10062                        goto error;
10063                }
10064
10065                key.objectid = found_key.objectid + found_key.offset;
10066                btrfs_release_path(path);
10067
10068                /*
10069                 * We need to exclude the super stripes now so that the space
10070                 * info has super bytes accounted for, otherwise we'll think
10071                 * we have more space than we actually do.
10072                 */
10073                ret = exclude_super_stripes(info, cache);
10074                if (ret) {
10075                        /*
10076                         * We may have excluded something, so call this just in
10077                         * case.
10078                         */
10079                        free_excluded_extents(info, cache);
10080                        btrfs_put_block_group(cache);
10081                        goto error;
10082                }
10083
10084                /*
10085                 * check for two cases, either we are full, and therefore
10086                 * don't need to bother with the caching work since we won't
10087                 * find any space, or we are empty, and we can just add all
10088                 * the space in and be done with it.  This saves us _alot_ of
10089                 * time, particularly in the full case.
10090                 */
10091                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10092                        cache->last_byte_to_unpin = (u64)-1;
10093                        cache->cached = BTRFS_CACHE_FINISHED;
10094                        free_excluded_extents(info, cache);
10095                } else if (btrfs_block_group_used(&cache->item) == 0) {
10096                        cache->last_byte_to_unpin = (u64)-1;
10097                        cache->cached = BTRFS_CACHE_FINISHED;
10098                        add_new_free_space(cache, info,
10099                                           found_key.objectid,
10100                                           found_key.objectid +
10101                                           found_key.offset);
10102                        free_excluded_extents(info, cache);
10103                }
10104
10105                ret = btrfs_add_block_group_cache(info, cache);
10106                if (ret) {
10107                        btrfs_remove_free_space_cache(cache);
10108                        btrfs_put_block_group(cache);
10109                        goto error;
10110                }
10111
10112                trace_btrfs_add_block_group(info, cache, 0);
10113                update_space_info(info, cache->flags, found_key.offset,
10114                                  btrfs_block_group_used(&cache->item),
10115                                  cache->bytes_super, &space_info);
10116
10117                cache->space_info = space_info;
10118
10119                link_block_group(cache);
10120
10121                set_avail_alloc_bits(info, cache->flags);
10122                if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10123                        inc_block_group_ro(cache, 1);
10124                } else if (btrfs_block_group_used(&cache->item) == 0) {
10125                        spin_lock(&info->unused_bgs_lock);
10126                        /* Should always be true but just in case. */
10127                        if (list_empty(&cache->bg_list)) {
10128                                btrfs_get_block_group(cache);
10129                                list_add_tail(&cache->bg_list,
10130                                              &info->unused_bgs);
10131                        }
10132                        spin_unlock(&info->unused_bgs_lock);
10133                }
10134        }
10135
10136        list_for_each_entry_rcu(space_info, &info->space_info, list) {
10137                if (!(get_alloc_profile(info, space_info->flags) &
10138                      (BTRFS_BLOCK_GROUP_RAID10 |
10139                       BTRFS_BLOCK_GROUP_RAID1 |
10140                       BTRFS_BLOCK_GROUP_RAID5 |
10141                       BTRFS_BLOCK_GROUP_RAID6 |
10142                       BTRFS_BLOCK_GROUP_DUP)))
10143                        continue;
10144                /*
10145                 * avoid allocating from un-mirrored block group if there are
10146                 * mirrored block groups.
10147                 */
10148                list_for_each_entry(cache,
10149                                &space_info->block_groups[BTRFS_RAID_RAID0],
10150                                list)
10151                        inc_block_group_ro(cache, 1);
10152                list_for_each_entry(cache,
10153                                &space_info->block_groups[BTRFS_RAID_SINGLE],
10154                                list)
10155                        inc_block_group_ro(cache, 1);
10156        }
10157
10158        init_global_block_rsv(info);
10159        ret = 0;
10160error:
10161        btrfs_free_path(path);
10162        return ret;
10163}
10164
10165void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10166                                       struct btrfs_fs_info *fs_info)
10167{
10168        struct btrfs_block_group_cache *block_group, *tmp;
10169        struct btrfs_root *extent_root = fs_info->extent_root;
10170        struct btrfs_block_group_item item;
10171        struct btrfs_key key;
10172        int ret = 0;
10173        bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10174
10175        trans->can_flush_pending_bgs = false;
10176        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10177                if (ret)
10178                        goto next;
10179
10180                spin_lock(&block_group->lock);
10181                memcpy(&item, &block_group->item, sizeof(item));
10182                memcpy(&key, &block_group->key, sizeof(key));
10183                spin_unlock(&block_group->lock);
10184
10185                ret = btrfs_insert_item(trans, extent_root, &key, &item,
10186                                        sizeof(item));
10187                if (ret)
10188                        btrfs_abort_transaction(trans, ret);
10189                ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10190                                               key.offset);
10191                if (ret)
10192                        btrfs_abort_transaction(trans, ret);
10193                add_block_group_free_space(trans, fs_info, block_group);
10194                /* already aborted the transaction if it failed. */
10195next:
10196                list_del_init(&block_group->bg_list);
10197        }
10198        trans->can_flush_pending_bgs = can_flush_pending_bgs;
10199}
10200
10201int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10202                           struct btrfs_fs_info *fs_info, u64 bytes_used,
10203                           u64 type, u64 chunk_offset, u64 size)
10204{
10205        struct btrfs_block_group_cache *cache;
10206        int ret;
10207
10208        btrfs_set_log_full_commit(fs_info, trans);
10209
10210        cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10211        if (!cache)
10212                return -ENOMEM;
10213
10214        btrfs_set_block_group_used(&cache->item, bytes_used);
10215        btrfs_set_block_group_chunk_objectid(&cache->item,
10216                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10217        btrfs_set_block_group_flags(&cache->item, type);
10218
10219        cache->flags = type;
10220        cache->last_byte_to_unpin = (u64)-1;
10221        cache->cached = BTRFS_CACHE_FINISHED;
10222        cache->needs_free_space = 1;
10223        ret = exclude_super_stripes(fs_info, cache);
10224        if (ret) {
10225                /*
10226                 * We may have excluded something, so call this just in
10227                 * case.
10228                 */
10229                free_excluded_extents(fs_info, cache);
10230                btrfs_put_block_group(cache);
10231                return ret;
10232        }
10233
10234        add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10235
10236        free_excluded_extents(fs_info, cache);
10237
10238#ifdef CONFIG_BTRFS_DEBUG
10239        if (btrfs_should_fragment_free_space(cache)) {
10240                u64 new_bytes_used = size - bytes_used;
10241
10242                bytes_used += new_bytes_used >> 1;
10243                fragment_free_space(cache);
10244        }
10245#endif
10246        /*
10247         * Ensure the corresponding space_info object is created and
10248         * assigned to our block group. We want our bg to be added to the rbtree
10249         * with its ->space_info set.
10250         */
10251        cache->space_info = __find_space_info(fs_info, cache->flags);
10252        if (!cache->space_info) {
10253                ret = create_space_info(fs_info, cache->flags,
10254                                       &cache->space_info);
10255                if (ret) {
10256                        btrfs_remove_free_space_cache(cache);
10257                        btrfs_put_block_group(cache);
10258                        return ret;
10259                }
10260        }
10261
10262        ret = btrfs_add_block_group_cache(fs_info, cache);
10263        if (ret) {
10264                btrfs_remove_free_space_cache(cache);
10265                btrfs_put_block_group(cache);
10266                return ret;
10267        }
10268
10269        /*
10270         * Now that our block group has its ->space_info set and is inserted in
10271         * the rbtree, update the space info's counters.
10272         */
10273        trace_btrfs_add_block_group(fs_info, cache, 1);
10274        update_space_info(fs_info, cache->flags, size, bytes_used,
10275                                cache->bytes_super, &cache->space_info);
10276        update_global_block_rsv(fs_info);
10277
10278        link_block_group(cache);
10279
10280        list_add_tail(&cache->bg_list, &trans->new_bgs);
10281
10282        set_avail_alloc_bits(fs_info, type);
10283        return 0;
10284}
10285
10286static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10287{
10288        u64 extra_flags = chunk_to_extended(flags) &
10289                                BTRFS_EXTENDED_PROFILE_MASK;
10290
10291        write_seqlock(&fs_info->profiles_lock);
10292        if (flags & BTRFS_BLOCK_GROUP_DATA)
10293                fs_info->avail_data_alloc_bits &= ~extra_flags;
10294        if (flags & BTRFS_BLOCK_GROUP_METADATA)
10295                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10296        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10297                fs_info->avail_system_alloc_bits &= ~extra_flags;
10298        write_sequnlock(&fs_info->profiles_lock);
10299}
10300
10301int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10302                             struct btrfs_fs_info *fs_info, u64 group_start,
10303                             struct extent_map *em)
10304{
10305        struct btrfs_root *root = fs_info->extent_root;
10306        struct btrfs_path *path;
10307        struct btrfs_block_group_cache *block_group;
10308        struct btrfs_free_cluster *cluster;
10309        struct btrfs_root *tree_root = fs_info->tree_root;
10310        struct btrfs_key key;
10311        struct inode *inode;
10312        struct kobject *kobj = NULL;
10313        int ret;
10314        int index;
10315        int factor;
10316        struct btrfs_caching_control *caching_ctl = NULL;
10317        bool remove_em;
10318
10319        block_group = btrfs_lookup_block_group(fs_info, group_start);
10320        BUG_ON(!block_group);
10321        BUG_ON(!block_group->ro);
10322
10323        /*
10324         * Free the reserved super bytes from this block group before
10325         * remove it.
10326         */
10327        free_excluded_extents(fs_info, block_group);
10328        btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10329                                  block_group->key.offset);
10330
10331        memcpy(&key, &block_group->key, sizeof(key));
10332        index = get_block_group_index(block_group);
10333        if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10334                                  BTRFS_BLOCK_GROUP_RAID1 |
10335                                  BTRFS_BLOCK_GROUP_RAID10))
10336                factor = 2;
10337        else
10338                factor = 1;
10339
10340        /* make sure this block group isn't part of an allocation cluster */
10341        cluster = &fs_info->data_alloc_cluster;
10342        spin_lock(&cluster->refill_lock);
10343        btrfs_return_cluster_to_free_space(block_group, cluster);
10344        spin_unlock(&cluster->refill_lock);
10345
10346        /*
10347         * make sure this block group isn't part of a metadata
10348         * allocation cluster
10349         */
10350        cluster = &fs_info->meta_alloc_cluster;
10351        spin_lock(&cluster->refill_lock);
10352        btrfs_return_cluster_to_free_space(block_group, cluster);
10353        spin_unlock(&cluster->refill_lock);
10354
10355        path = btrfs_alloc_path();
10356        if (!path) {
10357                ret = -ENOMEM;
10358                goto out;
10359        }
10360
10361        /*
10362         * get the inode first so any iput calls done for the io_list
10363         * aren't the final iput (no unlinks allowed now)
10364         */
10365        inode = lookup_free_space_inode(fs_info, block_group, path);
10366
10367        mutex_lock(&trans->transaction->cache_write_mutex);
10368        /*
10369         * make sure our free spache cache IO is done before remove the
10370         * free space inode
10371         */
10372        spin_lock(&trans->transaction->dirty_bgs_lock);
10373        if (!list_empty(&block_group->io_list)) {
10374                list_del_init(&block_group->io_list);
10375
10376                WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10377
10378                spin_unlock(&trans->transaction->dirty_bgs_lock);
10379                btrfs_wait_cache_io(trans, block_group, path);
10380                btrfs_put_block_group(block_group);
10381                spin_lock(&trans->transaction->dirty_bgs_lock);
10382        }
10383
10384        if (!list_empty(&block_group->dirty_list)) {
10385                list_del_init(&block_group->dirty_list);
10386                btrfs_put_block_group(block_group);
10387        }
10388        spin_unlock(&trans->transaction->dirty_bgs_lock);
10389        mutex_unlock(&trans->transaction->cache_write_mutex);
10390
10391        if (!IS_ERR(inode)) {
10392                ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10393                if (ret) {
10394                        btrfs_add_delayed_iput(inode);
10395                        goto out;
10396                }
10397                clear_nlink(inode);
10398                /* One for the block groups ref */
10399                spin_lock(&block_group->lock);
10400                if (block_group->iref) {
10401                        block_group->iref = 0;
10402                        block_group->inode = NULL;
10403                        spin_unlock(&block_group->lock);
10404                        iput(inode);
10405                } else {
10406                        spin_unlock(&block_group->lock);
10407                }
10408                /* One for our lookup ref */
10409                btrfs_add_delayed_iput(inode);
10410        }
10411
10412        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10413        key.offset = block_group->key.objectid;
10414        key.type = 0;
10415
10416        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10417        if (ret < 0)
10418                goto out;
10419        if (ret > 0)
10420                btrfs_release_path(path);
10421        if (ret == 0) {
10422                ret = btrfs_del_item(trans, tree_root, path);
10423                if (ret)
10424                        goto out;
10425                btrfs_release_path(path);
10426        }
10427
10428        spin_lock(&fs_info->block_group_cache_lock);
10429        rb_erase(&block_group->cache_node,
10430                 &fs_info->block_group_cache_tree);
10431        RB_CLEAR_NODE(&block_group->cache_node);
10432
10433        if (fs_info->first_logical_byte == block_group->key.objectid)
10434                fs_info->first_logical_byte = (u64)-1;
10435        spin_unlock(&fs_info->block_group_cache_lock);
10436
10437        down_write(&block_group->space_info->groups_sem);
10438        /*
10439         * we must use list_del_init so people can check to see if they
10440         * are still on the list after taking the semaphore
10441         */
10442        list_del_init(&block_group->list);
10443        if (list_empty(&block_group->space_info->block_groups[index])) {
10444                kobj = block_group->space_info->block_group_kobjs[index];
10445                block_group->space_info->block_group_kobjs[index] = NULL;
10446                clear_avail_alloc_bits(fs_info, block_group->flags);
10447        }
10448        up_write(&block_group->space_info->groups_sem);
10449        if (kobj) {
10450                kobject_del(kobj);
10451                kobject_put(kobj);
10452        }
10453
10454        if (block_group->has_caching_ctl)
10455                caching_ctl = get_caching_control(block_group);
10456        if (block_group->cached == BTRFS_CACHE_STARTED)
10457                wait_block_group_cache_done(block_group);
10458        if (block_group->has_caching_ctl) {
10459                down_write(&fs_info->commit_root_sem);
10460                if (!caching_ctl) {
10461                        struct btrfs_caching_control *ctl;
10462
10463                        list_for_each_entry(ctl,
10464                                    &fs_info->caching_block_groups, list)
10465                                if (ctl->block_group == block_group) {
10466                                        caching_ctl = ctl;
10467                                        refcount_inc(&caching_ctl->count);
10468                                        break;
10469                                }
10470                }
10471                if (caching_ctl)
10472                        list_del_init(&caching_ctl->list);
10473                up_write(&fs_info->commit_root_sem);
10474                if (caching_ctl) {
10475                        /* Once for the caching bgs list and once for us. */
10476                        put_caching_control(caching_ctl);
10477                        put_caching_control(caching_ctl);
10478                }
10479        }
10480
10481        spin_lock(&trans->transaction->dirty_bgs_lock);
10482        if (!list_empty(&block_group->dirty_list)) {
10483                WARN_ON(1);
10484        }
10485        if (!list_empty(&block_group->io_list)) {
10486                WARN_ON(1);
10487        }
10488        spin_unlock(&trans->transaction->dirty_bgs_lock);
10489        btrfs_remove_free_space_cache(block_group);
10490
10491        spin_lock(&block_group->space_info->lock);
10492        list_del_init(&block_group->ro_list);
10493
10494        if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10495                WARN_ON(block_group->space_info->total_bytes
10496                        < block_group->key.offset);
10497                WARN_ON(block_group->space_info->bytes_readonly
10498                        < block_group->key.offset);
10499                WARN_ON(block_group->space_info->disk_total
10500                        < block_group->key.offset * factor);
10501        }
10502        block_group->space_info->total_bytes -= block_group->key.offset;
10503        block_group->space_info->bytes_readonly -= block_group->key.offset;
10504        block_group->space_info->disk_total -= block_group->key.offset * factor;
10505
10506        spin_unlock(&block_group->space_info->lock);
10507
10508        memcpy(&key, &block_group->key, sizeof(key));
10509
10510        mutex_lock(&fs_info->chunk_mutex);
10511        if (!list_empty(&em->list)) {
10512                /* We're in the transaction->pending_chunks list. */
10513                free_extent_map(em);
10514        }
10515        spin_lock(&block_group->lock);
10516        block_group->removed = 1;
10517        /*
10518         * At this point trimming can't start on this block group, because we
10519         * removed the block group from the tree fs_info->block_group_cache_tree
10520         * so no one can't find it anymore and even if someone already got this
10521         * block group before we removed it from the rbtree, they have already
10522         * incremented block_group->trimming - if they didn't, they won't find
10523         * any free space entries because we already removed them all when we
10524         * called btrfs_remove_free_space_cache().
10525         *
10526         * And we must not remove the extent map from the fs_info->mapping_tree
10527         * to prevent the same logical address range and physical device space
10528         * ranges from being reused for a new block group. This is because our
10529         * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10530         * completely transactionless, so while it is trimming a range the
10531         * currently running transaction might finish and a new one start,
10532         * allowing for new block groups to be created that can reuse the same
10533         * physical device locations unless we take this special care.
10534         *
10535         * There may also be an implicit trim operation if the file system
10536         * is mounted with -odiscard. The same protections must remain
10537         * in place until the extents have been discarded completely when
10538         * the transaction commit has completed.
10539         */
10540        remove_em = (atomic_read(&block_group->trimming) == 0);
10541        /*
10542         * Make sure a trimmer task always sees the em in the pinned_chunks list
10543         * if it sees block_group->removed == 1 (needs to lock block_group->lock
10544         * before checking block_group->removed).
10545         */
10546        if (!remove_em) {
10547                /*
10548                 * Our em might be in trans->transaction->pending_chunks which
10549                 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10550                 * and so is the fs_info->pinned_chunks list.
10551                 *
10552                 * So at this point we must be holding the chunk_mutex to avoid
10553                 * any races with chunk allocation (more specifically at
10554                 * volumes.c:contains_pending_extent()), to ensure it always
10555                 * sees the em, either in the pending_chunks list or in the
10556                 * pinned_chunks list.
10557                 */
10558                list_move_tail(&em->list, &fs_info->pinned_chunks);
10559        }
10560        spin_unlock(&block_group->lock);
10561
10562        if (remove_em) {
10563                struct extent_map_tree *em_tree;
10564
10565                em_tree = &fs_info->mapping_tree.map_tree;
10566                write_lock(&em_tree->lock);
10567                /*
10568                 * The em might be in the pending_chunks list, so make sure the
10569                 * chunk mutex is locked, since remove_extent_mapping() will
10570                 * delete us from that list.
10571                 */
10572                remove_extent_mapping(em_tree, em);
10573                write_unlock(&em_tree->lock);
10574                /* once for the tree */
10575                free_extent_map(em);
10576        }
10577
10578        mutex_unlock(&fs_info->chunk_mutex);
10579
10580        ret = remove_block_group_free_space(trans, fs_info, block_group);
10581        if (ret)
10582                goto out;
10583
10584        btrfs_put_block_group(block_group);
10585        btrfs_put_block_group(block_group);
10586
10587        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10588        if (ret > 0)
10589                ret = -EIO;
10590        if (ret < 0)
10591                goto out;
10592
10593        ret = btrfs_del_item(trans, root, path);
10594out:
10595        btrfs_free_path(path);
10596        return ret;
10597}
10598
10599struct btrfs_trans_handle *
10600btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10601                                     const u64 chunk_offset)
10602{
10603        struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10604        struct extent_map *em;
10605        struct map_lookup *map;
10606        unsigned int num_items;
10607
10608        read_lock(&em_tree->lock);
10609        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10610        read_unlock(&em_tree->lock);
10611        ASSERT(em && em->start == chunk_offset);
10612
10613        /*
10614         * We need to reserve 3 + N units from the metadata space info in order
10615         * to remove a block group (done at btrfs_remove_chunk() and at
10616         * btrfs_remove_block_group()), which are used for:
10617         *
10618         * 1 unit for adding the free space inode's orphan (located in the tree
10619         * of tree roots).
10620         * 1 unit for deleting the block group item (located in the extent
10621         * tree).
10622         * 1 unit for deleting the free space item (located in tree of tree
10623         * roots).
10624         * N units for deleting N device extent items corresponding to each
10625         * stripe (located in the device tree).
10626         *
10627         * In order to remove a block group we also need to reserve units in the
10628         * system space info in order to update the chunk tree (update one or
10629         * more device items and remove one chunk item), but this is done at
10630         * btrfs_remove_chunk() through a call to check_system_chunk().
10631         */
10632        map = em->map_lookup;
10633        num_items = 3 + map->num_stripes;
10634        free_extent_map(em);
10635
10636        return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10637                                                           num_items, 1);
10638}
10639
10640/*
10641 * Process the unused_bgs list and remove any that don't have any allocated
10642 * space inside of them.
10643 */
10644void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10645{
10646        struct btrfs_block_group_cache *block_group;
10647        struct btrfs_space_info *space_info;
10648        struct btrfs_trans_handle *trans;
10649        int ret = 0;
10650
10651        if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10652                return;
10653
10654        spin_lock(&fs_info->unused_bgs_lock);
10655        while (!list_empty(&fs_info->unused_bgs)) {
10656                u64 start, end;
10657                int trimming;
10658
10659                block_group = list_first_entry(&fs_info->unused_bgs,
10660                                               struct btrfs_block_group_cache,
10661                                               bg_list);
10662                list_del_init(&block_group->bg_list);
10663
10664                space_info = block_group->space_info;
10665
10666                if (ret || btrfs_mixed_space_info(space_info)) {
10667                        btrfs_put_block_group(block_group);
10668                        continue;
10669                }
10670                spin_unlock(&fs_info->unused_bgs_lock);
10671
10672                mutex_lock(&fs_info->delete_unused_bgs_mutex);
10673
10674                /* Don't want to race with allocators so take the groups_sem */
10675                down_write(&space_info->groups_sem);
10676                spin_lock(&block_group->lock);
10677                if (block_group->reserved ||
10678                    btrfs_block_group_used(&block_group->item) ||
10679                    block_group->ro ||
10680                    list_is_singular(&block_group->list)) {
10681                        /*
10682                         * We want to bail if we made new allocations or have
10683                         * outstanding allocations in this block group.  We do
10684                         * the ro check in case balance is currently acting on
10685                         * this block group.
10686                         */
10687                        spin_unlock(&block_group->lock);
10688                        up_write(&space_info->groups_sem);
10689                        goto next;
10690                }
10691                spin_unlock(&block_group->lock);
10692
10693                /* We don't want to force the issue, only flip if it's ok. */
10694                ret = inc_block_group_ro(block_group, 0);
10695                up_write(&space_info->groups_sem);
10696                if (ret < 0) {
10697                        ret = 0;
10698                        goto next;
10699                }
10700
10701                /*
10702                 * Want to do this before we do anything else so we can recover
10703                 * properly if we fail to join the transaction.
10704                 */
10705                trans = btrfs_start_trans_remove_block_group(fs_info,
10706                                                     block_group->key.objectid);
10707                if (IS_ERR(trans)) {
10708                        btrfs_dec_block_group_ro(block_group);
10709                        ret = PTR_ERR(trans);
10710                        goto next;
10711                }
10712
10713                /*
10714                 * We could have pending pinned extents for this block group,
10715                 * just delete them, we don't care about them anymore.
10716                 */
10717                start = block_group->key.objectid;
10718                end = start + block_group->key.offset - 1;
10719                /*
10720                 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10721                 * btrfs_finish_extent_commit(). If we are at transaction N,
10722                 * another task might be running finish_extent_commit() for the
10723                 * previous transaction N - 1, and have seen a range belonging
10724                 * to the block group in freed_extents[] before we were able to
10725                 * clear the whole block group range from freed_extents[]. This
10726                 * means that task can lookup for the block group after we
10727                 * unpinned it from freed_extents[] and removed it, leading to
10728                 * a BUG_ON() at btrfs_unpin_extent_range().
10729                 */
10730                mutex_lock(&fs_info->unused_bg_unpin_mutex);
10731                ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10732                                  EXTENT_DIRTY);
10733                if (ret) {
10734                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10735                        btrfs_dec_block_group_ro(block_group);
10736                        goto end_trans;
10737                }
10738                ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10739                                  EXTENT_DIRTY);
10740                if (ret) {
10741                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10742                        btrfs_dec_block_group_ro(block_group);
10743                        goto end_trans;
10744                }
10745                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10746
10747                /* Reset pinned so btrfs_put_block_group doesn't complain */
10748                spin_lock(&space_info->lock);
10749                spin_lock(&block_group->lock);
10750
10751                space_info->bytes_pinned -= block_group->pinned;
10752                space_info->bytes_readonly += block_group->pinned;
10753                percpu_counter_add(&space_info->total_bytes_pinned,
10754                                   -block_group->pinned);
10755                block_group->pinned = 0;
10756
10757                spin_unlock(&block_group->lock);
10758                spin_unlock(&space_info->lock);
10759
10760                /* DISCARD can flip during remount */
10761                trimming = btrfs_test_opt(fs_info, DISCARD);
10762
10763                /* Implicit trim during transaction commit. */
10764                if (trimming)
10765                        btrfs_get_block_group_trimming(block_group);
10766
10767                /*
10768                 * Btrfs_remove_chunk will abort the transaction if things go
10769                 * horribly wrong.
10770                 */
10771                ret = btrfs_remove_chunk(trans, fs_info,
10772                                         block_group->key.objectid);
10773
10774                if (ret) {
10775                        if (trimming)
10776                                btrfs_put_block_group_trimming(block_group);
10777                        goto end_trans;
10778                }
10779
10780                /*
10781                 * If we're not mounted with -odiscard, we can just forget
10782                 * about this block group. Otherwise we'll need to wait
10783                 * until transaction commit to do the actual discard.
10784                 */
10785                if (trimming) {
10786                        spin_lock(&fs_info->unused_bgs_lock);
10787                        /*
10788                         * A concurrent scrub might have added us to the list
10789                         * fs_info->unused_bgs, so use a list_move operation
10790                         * to add the block group to the deleted_bgs list.
10791                         */
10792                        list_move(&block_group->bg_list,
10793                                  &trans->transaction->deleted_bgs);
10794                        spin_unlock(&fs_info->unused_bgs_lock);
10795                        btrfs_get_block_group(block_group);
10796                }
10797end_trans:
10798                btrfs_end_transaction(trans);
10799next:
10800                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10801                btrfs_put_block_group(block_group);
10802                spin_lock(&fs_info->unused_bgs_lock);
10803        }
10804        spin_unlock(&fs_info->unused_bgs_lock);
10805}
10806
10807int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10808{
10809        struct btrfs_space_info *space_info;
10810        struct btrfs_super_block *disk_super;
10811        u64 features;
10812        u64 flags;
10813        int mixed = 0;
10814        int ret;
10815
10816        disk_super = fs_info->super_copy;
10817        if (!btrfs_super_root(disk_super))
10818                return -EINVAL;
10819
10820        features = btrfs_super_incompat_flags(disk_super);
10821        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10822                mixed = 1;
10823
10824        flags = BTRFS_BLOCK_GROUP_SYSTEM;
10825        ret = create_space_info(fs_info, flags, &space_info);
10826        if (ret)
10827                goto out;
10828
10829        if (mixed) {
10830                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10831                ret = create_space_info(fs_info, flags, &space_info);
10832        } else {
10833                flags = BTRFS_BLOCK_GROUP_METADATA;
10834                ret = create_space_info(fs_info, flags, &space_info);
10835                if (ret)
10836                        goto out;
10837
10838                flags = BTRFS_BLOCK_GROUP_DATA;
10839                ret = create_space_info(fs_info, flags, &space_info);
10840        }
10841out:
10842        return ret;
10843}
10844
10845int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10846                                   u64 start, u64 end)
10847{
10848        return unpin_extent_range(fs_info, start, end, false);
10849}
10850
10851/*
10852 * It used to be that old block groups would be left around forever.
10853 * Iterating over them would be enough to trim unused space.  Since we
10854 * now automatically remove them, we also need to iterate over unallocated
10855 * space.
10856 *
10857 * We don't want a transaction for this since the discard may take a
10858 * substantial amount of time.  We don't require that a transaction be
10859 * running, but we do need to take a running transaction into account
10860 * to ensure that we're not discarding chunks that were released in
10861 * the current transaction.
10862 *
10863 * Holding the chunks lock will prevent other threads from allocating
10864 * or releasing chunks, but it won't prevent a running transaction
10865 * from committing and releasing the memory that the pending chunks
10866 * list head uses.  For that, we need to take a reference to the
10867 * transaction.
10868 */
10869static int btrfs_trim_free_extents(struct btrfs_device *device,
10870                                   u64 minlen, u64 *trimmed)
10871{
10872        u64 start = 0, len = 0;
10873        int ret;
10874
10875        *trimmed = 0;
10876
10877        /* Not writeable = nothing to do. */
10878        if (!device->writeable)
10879                return 0;
10880
10881        /* No free space = nothing to do. */
10882        if (device->total_bytes <= device->bytes_used)
10883                return 0;
10884
10885        ret = 0;
10886
10887        while (1) {
10888                struct btrfs_fs_info *fs_info = device->fs_info;
10889                struct btrfs_transaction *trans;
10890                u64 bytes;
10891
10892                ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10893                if (ret)
10894                        return ret;
10895
10896                down_read(&fs_info->commit_root_sem);
10897
10898                spin_lock(&fs_info->trans_lock);
10899                trans = fs_info->running_transaction;
10900                if (trans)
10901                        refcount_inc(&trans->use_count);
10902                spin_unlock(&fs_info->trans_lock);
10903
10904                ret = find_free_dev_extent_start(trans, device, minlen, start,
10905                                                 &start, &len);
10906                if (trans)
10907                        btrfs_put_transaction(trans);
10908
10909                if (ret) {
10910                        up_read(&fs_info->commit_root_sem);
10911                        mutex_unlock(&fs_info->chunk_mutex);
10912                        if (ret == -ENOSPC)
10913                                ret = 0;
10914                        break;
10915                }
10916
10917                ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10918                up_read(&fs_info->commit_root_sem);
10919                mutex_unlock(&fs_info->chunk_mutex);
10920
10921                if (ret)
10922                        break;
10923
10924                start += len;
10925                *trimmed += bytes;
10926
10927                if (fatal_signal_pending(current)) {
10928                        ret = -ERESTARTSYS;
10929                        break;
10930                }
10931
10932                cond_resched();
10933        }
10934
10935        return ret;
10936}
10937
10938int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10939{
10940        struct btrfs_block_group_cache *cache = NULL;
10941        struct btrfs_device *device;
10942        struct list_head *devices;
10943        u64 group_trimmed;
10944        u64 start;
10945        u64 end;
10946        u64 trimmed = 0;
10947        u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10948        int ret = 0;
10949
10950        /*
10951         * try to trim all FS space, our block group may start from non-zero.
10952         */
10953        if (range->len == total_bytes)
10954                cache = btrfs_lookup_first_block_group(fs_info, range->start);
10955        else
10956                cache = btrfs_lookup_block_group(fs_info, range->start);
10957
10958        while (cache) {
10959                if (cache->key.objectid >= (range->start + range->len)) {
10960                        btrfs_put_block_group(cache);
10961                        break;
10962                }
10963
10964                start = max(range->start, cache->key.objectid);
10965                end = min(range->start + range->len,
10966                                cache->key.objectid + cache->key.offset);
10967
10968                if (end - start >= range->minlen) {
10969                        if (!block_group_cache_done(cache)) {
10970                                ret = cache_block_group(cache, 0);
10971                                if (ret) {
10972                                        btrfs_put_block_group(cache);
10973                                        break;
10974                                }
10975                                ret = wait_block_group_cache_done(cache);
10976                                if (ret) {
10977                                        btrfs_put_block_group(cache);
10978                                        break;
10979                                }
10980                        }
10981                        ret = btrfs_trim_block_group(cache,
10982                                                     &group_trimmed,
10983                                                     start,
10984                                                     end,
10985                                                     range->minlen);
10986
10987                        trimmed += group_trimmed;
10988                        if (ret) {
10989                                btrfs_put_block_group(cache);
10990                                break;
10991                        }
10992                }
10993
10994                cache = next_block_group(fs_info, cache);
10995        }
10996
10997        mutex_lock(&fs_info->fs_devices->device_list_mutex);
10998        devices = &fs_info->fs_devices->alloc_list;
10999        list_for_each_entry(device, devices, dev_alloc_list) {
11000                ret = btrfs_trim_free_extents(device, range->minlen,
11001                                              &group_trimmed);
11002                if (ret)
11003                        break;
11004
11005                trimmed += group_trimmed;
11006        }
11007        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11008
11009        range->len = trimmed;
11010        return ret;
11011}
11012
11013/*
11014 * btrfs_{start,end}_write_no_snapshotting() are similar to
11015 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11016 * data into the page cache through nocow before the subvolume is snapshoted,
11017 * but flush the data into disk after the snapshot creation, or to prevent
11018 * operations while snapshotting is ongoing and that cause the snapshot to be
11019 * inconsistent (writes followed by expanding truncates for example).
11020 */
11021void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11022{
11023        percpu_counter_dec(&root->subv_writers->counter);
11024        /*
11025         * Make sure counter is updated before we wake up waiters.
11026         */
11027        smp_mb();
11028        if (waitqueue_active(&root->subv_writers->wait))
11029                wake_up(&root->subv_writers->wait);
11030}
11031
11032int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11033{
11034        if (atomic_read(&root->will_be_snapshotted))
11035                return 0;
11036
11037        percpu_counter_inc(&root->subv_writers->counter);
11038        /*
11039         * Make sure counter is updated before we check for snapshot creation.
11040         */
11041        smp_mb();
11042        if (atomic_read(&root->will_be_snapshotted)) {
11043                btrfs_end_write_no_snapshotting(root);
11044                return 0;
11045        }
11046        return 1;
11047}
11048
11049void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11050{
11051        while (true) {
11052                int ret;
11053
11054                ret = btrfs_start_write_no_snapshotting(root);
11055                if (ret)
11056                        break;
11057                wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11058                                 TASK_UNINTERRUPTIBLE);
11059        }
11060}
11061