linux/fs/btrfs/file.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/pagemap.h>
  21#include <linux/highmem.h>
  22#include <linux/time.h>
  23#include <linux/init.h>
  24#include <linux/string.h>
  25#include <linux/backing-dev.h>
  26#include <linux/mpage.h>
  27#include <linux/falloc.h>
  28#include <linux/swap.h>
  29#include <linux/writeback.h>
  30#include <linux/compat.h>
  31#include <linux/slab.h>
  32#include <linux/btrfs.h>
  33#include <linux/uio.h>
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "transaction.h"
  37#include "btrfs_inode.h"
  38#include "print-tree.h"
  39#include "tree-log.h"
  40#include "locking.h"
  41#include "volumes.h"
  42#include "qgroup.h"
  43#include "compression.h"
  44
  45static struct kmem_cache *btrfs_inode_defrag_cachep;
  46/*
  47 * when auto defrag is enabled we
  48 * queue up these defrag structs to remember which
  49 * inodes need defragging passes
  50 */
  51struct inode_defrag {
  52        struct rb_node rb_node;
  53        /* objectid */
  54        u64 ino;
  55        /*
  56         * transid where the defrag was added, we search for
  57         * extents newer than this
  58         */
  59        u64 transid;
  60
  61        /* root objectid */
  62        u64 root;
  63
  64        /* last offset we were able to defrag */
  65        u64 last_offset;
  66
  67        /* if we've wrapped around back to zero once already */
  68        int cycled;
  69};
  70
  71static int __compare_inode_defrag(struct inode_defrag *defrag1,
  72                                  struct inode_defrag *defrag2)
  73{
  74        if (defrag1->root > defrag2->root)
  75                return 1;
  76        else if (defrag1->root < defrag2->root)
  77                return -1;
  78        else if (defrag1->ino > defrag2->ino)
  79                return 1;
  80        else if (defrag1->ino < defrag2->ino)
  81                return -1;
  82        else
  83                return 0;
  84}
  85
  86/* pop a record for an inode into the defrag tree.  The lock
  87 * must be held already
  88 *
  89 * If you're inserting a record for an older transid than an
  90 * existing record, the transid already in the tree is lowered
  91 *
  92 * If an existing record is found the defrag item you
  93 * pass in is freed
  94 */
  95static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
  96                                    struct inode_defrag *defrag)
  97{
  98        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  99        struct inode_defrag *entry;
 100        struct rb_node **p;
 101        struct rb_node *parent = NULL;
 102        int ret;
 103
 104        p = &fs_info->defrag_inodes.rb_node;
 105        while (*p) {
 106                parent = *p;
 107                entry = rb_entry(parent, struct inode_defrag, rb_node);
 108
 109                ret = __compare_inode_defrag(defrag, entry);
 110                if (ret < 0)
 111                        p = &parent->rb_left;
 112                else if (ret > 0)
 113                        p = &parent->rb_right;
 114                else {
 115                        /* if we're reinserting an entry for
 116                         * an old defrag run, make sure to
 117                         * lower the transid of our existing record
 118                         */
 119                        if (defrag->transid < entry->transid)
 120                                entry->transid = defrag->transid;
 121                        if (defrag->last_offset > entry->last_offset)
 122                                entry->last_offset = defrag->last_offset;
 123                        return -EEXIST;
 124                }
 125        }
 126        set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
 127        rb_link_node(&defrag->rb_node, parent, p);
 128        rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
 129        return 0;
 130}
 131
 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
 133{
 134        if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
 135                return 0;
 136
 137        if (btrfs_fs_closing(fs_info))
 138                return 0;
 139
 140        return 1;
 141}
 142
 143/*
 144 * insert a defrag record for this inode if auto defrag is
 145 * enabled
 146 */
 147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
 148                           struct btrfs_inode *inode)
 149{
 150        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 151        struct btrfs_root *root = inode->root;
 152        struct inode_defrag *defrag;
 153        u64 transid;
 154        int ret;
 155
 156        if (!__need_auto_defrag(fs_info))
 157                return 0;
 158
 159        if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
 160                return 0;
 161
 162        if (trans)
 163                transid = trans->transid;
 164        else
 165                transid = inode->root->last_trans;
 166
 167        defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
 168        if (!defrag)
 169                return -ENOMEM;
 170
 171        defrag->ino = btrfs_ino(inode);
 172        defrag->transid = transid;
 173        defrag->root = root->root_key.objectid;
 174
 175        spin_lock(&fs_info->defrag_inodes_lock);
 176        if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
 177                /*
 178                 * If we set IN_DEFRAG flag and evict the inode from memory,
 179                 * and then re-read this inode, this new inode doesn't have
 180                 * IN_DEFRAG flag. At the case, we may find the existed defrag.
 181                 */
 182                ret = __btrfs_add_inode_defrag(inode, defrag);
 183                if (ret)
 184                        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 185        } else {
 186                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 187        }
 188        spin_unlock(&fs_info->defrag_inodes_lock);
 189        return 0;
 190}
 191
 192/*
 193 * Requeue the defrag object. If there is a defrag object that points to
 194 * the same inode in the tree, we will merge them together (by
 195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
 196 */
 197static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
 198                                       struct inode_defrag *defrag)
 199{
 200        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
 201        int ret;
 202
 203        if (!__need_auto_defrag(fs_info))
 204                goto out;
 205
 206        /*
 207         * Here we don't check the IN_DEFRAG flag, because we need merge
 208         * them together.
 209         */
 210        spin_lock(&fs_info->defrag_inodes_lock);
 211        ret = __btrfs_add_inode_defrag(inode, defrag);
 212        spin_unlock(&fs_info->defrag_inodes_lock);
 213        if (ret)
 214                goto out;
 215        return;
 216out:
 217        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 218}
 219
 220/*
 221 * pick the defragable inode that we want, if it doesn't exist, we will get
 222 * the next one.
 223 */
 224static struct inode_defrag *
 225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
 226{
 227        struct inode_defrag *entry = NULL;
 228        struct inode_defrag tmp;
 229        struct rb_node *p;
 230        struct rb_node *parent = NULL;
 231        int ret;
 232
 233        tmp.ino = ino;
 234        tmp.root = root;
 235
 236        spin_lock(&fs_info->defrag_inodes_lock);
 237        p = fs_info->defrag_inodes.rb_node;
 238        while (p) {
 239                parent = p;
 240                entry = rb_entry(parent, struct inode_defrag, rb_node);
 241
 242                ret = __compare_inode_defrag(&tmp, entry);
 243                if (ret < 0)
 244                        p = parent->rb_left;
 245                else if (ret > 0)
 246                        p = parent->rb_right;
 247                else
 248                        goto out;
 249        }
 250
 251        if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
 252                parent = rb_next(parent);
 253                if (parent)
 254                        entry = rb_entry(parent, struct inode_defrag, rb_node);
 255                else
 256                        entry = NULL;
 257        }
 258out:
 259        if (entry)
 260                rb_erase(parent, &fs_info->defrag_inodes);
 261        spin_unlock(&fs_info->defrag_inodes_lock);
 262        return entry;
 263}
 264
 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
 266{
 267        struct inode_defrag *defrag;
 268        struct rb_node *node;
 269
 270        spin_lock(&fs_info->defrag_inodes_lock);
 271        node = rb_first(&fs_info->defrag_inodes);
 272        while (node) {
 273                rb_erase(node, &fs_info->defrag_inodes);
 274                defrag = rb_entry(node, struct inode_defrag, rb_node);
 275                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 276
 277                cond_resched_lock(&fs_info->defrag_inodes_lock);
 278
 279                node = rb_first(&fs_info->defrag_inodes);
 280        }
 281        spin_unlock(&fs_info->defrag_inodes_lock);
 282}
 283
 284#define BTRFS_DEFRAG_BATCH      1024
 285
 286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
 287                                    struct inode_defrag *defrag)
 288{
 289        struct btrfs_root *inode_root;
 290        struct inode *inode;
 291        struct btrfs_key key;
 292        struct btrfs_ioctl_defrag_range_args range;
 293        int num_defrag;
 294        int index;
 295        int ret;
 296
 297        /* get the inode */
 298        key.objectid = defrag->root;
 299        key.type = BTRFS_ROOT_ITEM_KEY;
 300        key.offset = (u64)-1;
 301
 302        index = srcu_read_lock(&fs_info->subvol_srcu);
 303
 304        inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
 305        if (IS_ERR(inode_root)) {
 306                ret = PTR_ERR(inode_root);
 307                goto cleanup;
 308        }
 309
 310        key.objectid = defrag->ino;
 311        key.type = BTRFS_INODE_ITEM_KEY;
 312        key.offset = 0;
 313        inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
 314        if (IS_ERR(inode)) {
 315                ret = PTR_ERR(inode);
 316                goto cleanup;
 317        }
 318        srcu_read_unlock(&fs_info->subvol_srcu, index);
 319
 320        /* do a chunk of defrag */
 321        clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
 322        memset(&range, 0, sizeof(range));
 323        range.len = (u64)-1;
 324        range.start = defrag->last_offset;
 325
 326        sb_start_write(fs_info->sb);
 327        num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
 328                                       BTRFS_DEFRAG_BATCH);
 329        sb_end_write(fs_info->sb);
 330        /*
 331         * if we filled the whole defrag batch, there
 332         * must be more work to do.  Queue this defrag
 333         * again
 334         */
 335        if (num_defrag == BTRFS_DEFRAG_BATCH) {
 336                defrag->last_offset = range.start;
 337                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 338        } else if (defrag->last_offset && !defrag->cycled) {
 339                /*
 340                 * we didn't fill our defrag batch, but
 341                 * we didn't start at zero.  Make sure we loop
 342                 * around to the start of the file.
 343                 */
 344                defrag->last_offset = 0;
 345                defrag->cycled = 1;
 346                btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
 347        } else {
 348                kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 349        }
 350
 351        iput(inode);
 352        return 0;
 353cleanup:
 354        srcu_read_unlock(&fs_info->subvol_srcu, index);
 355        kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
 356        return ret;
 357}
 358
 359/*
 360 * run through the list of inodes in the FS that need
 361 * defragging
 362 */
 363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
 364{
 365        struct inode_defrag *defrag;
 366        u64 first_ino = 0;
 367        u64 root_objectid = 0;
 368
 369        atomic_inc(&fs_info->defrag_running);
 370        while (1) {
 371                /* Pause the auto defragger. */
 372                if (test_bit(BTRFS_FS_STATE_REMOUNTING,
 373                             &fs_info->fs_state))
 374                        break;
 375
 376                if (!__need_auto_defrag(fs_info))
 377                        break;
 378
 379                /* find an inode to defrag */
 380                defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
 381                                                 first_ino);
 382                if (!defrag) {
 383                        if (root_objectid || first_ino) {
 384                                root_objectid = 0;
 385                                first_ino = 0;
 386                                continue;
 387                        } else {
 388                                break;
 389                        }
 390                }
 391
 392                first_ino = defrag->ino + 1;
 393                root_objectid = defrag->root;
 394
 395                __btrfs_run_defrag_inode(fs_info, defrag);
 396        }
 397        atomic_dec(&fs_info->defrag_running);
 398
 399        /*
 400         * during unmount, we use the transaction_wait queue to
 401         * wait for the defragger to stop
 402         */
 403        wake_up(&fs_info->transaction_wait);
 404        return 0;
 405}
 406
 407/* simple helper to fault in pages and copy.  This should go away
 408 * and be replaced with calls into generic code.
 409 */
 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
 411                                         struct page **prepared_pages,
 412                                         struct iov_iter *i)
 413{
 414        size_t copied = 0;
 415        size_t total_copied = 0;
 416        int pg = 0;
 417        int offset = pos & (PAGE_SIZE - 1);
 418
 419        while (write_bytes > 0) {
 420                size_t count = min_t(size_t,
 421                                     PAGE_SIZE - offset, write_bytes);
 422                struct page *page = prepared_pages[pg];
 423                /*
 424                 * Copy data from userspace to the current page
 425                 */
 426                copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
 427
 428                /* Flush processor's dcache for this page */
 429                flush_dcache_page(page);
 430
 431                /*
 432                 * if we get a partial write, we can end up with
 433                 * partially up to date pages.  These add
 434                 * a lot of complexity, so make sure they don't
 435                 * happen by forcing this copy to be retried.
 436                 *
 437                 * The rest of the btrfs_file_write code will fall
 438                 * back to page at a time copies after we return 0.
 439                 */
 440                if (!PageUptodate(page) && copied < count)
 441                        copied = 0;
 442
 443                iov_iter_advance(i, copied);
 444                write_bytes -= copied;
 445                total_copied += copied;
 446
 447                /* Return to btrfs_file_write_iter to fault page */
 448                if (unlikely(copied == 0))
 449                        break;
 450
 451                if (copied < PAGE_SIZE - offset) {
 452                        offset += copied;
 453                } else {
 454                        pg++;
 455                        offset = 0;
 456                }
 457        }
 458        return total_copied;
 459}
 460
 461/*
 462 * unlocks pages after btrfs_file_write is done with them
 463 */
 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
 465{
 466        size_t i;
 467        for (i = 0; i < num_pages; i++) {
 468                /* page checked is some magic around finding pages that
 469                 * have been modified without going through btrfs_set_page_dirty
 470                 * clear it here. There should be no need to mark the pages
 471                 * accessed as prepare_pages should have marked them accessed
 472                 * in prepare_pages via find_or_create_page()
 473                 */
 474                ClearPageChecked(pages[i]);
 475                unlock_page(pages[i]);
 476                put_page(pages[i]);
 477        }
 478}
 479
 480static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
 481                                         const u64 start,
 482                                         const u64 len,
 483                                         struct extent_state **cached_state)
 484{
 485        u64 search_start = start;
 486        const u64 end = start + len - 1;
 487
 488        while (search_start < end) {
 489                const u64 search_len = end - search_start + 1;
 490                struct extent_map *em;
 491                u64 em_len;
 492                int ret = 0;
 493
 494                em = btrfs_get_extent(inode, NULL, 0, search_start,
 495                                      search_len, 0);
 496                if (IS_ERR(em))
 497                        return PTR_ERR(em);
 498
 499                if (em->block_start != EXTENT_MAP_HOLE)
 500                        goto next;
 501
 502                em_len = em->len;
 503                if (em->start < search_start)
 504                        em_len -= search_start - em->start;
 505                if (em_len > search_len)
 506                        em_len = search_len;
 507
 508                ret = set_extent_bit(&inode->io_tree, search_start,
 509                                     search_start + em_len - 1,
 510                                     EXTENT_DELALLOC_NEW,
 511                                     NULL, cached_state, GFP_NOFS);
 512next:
 513                search_start = extent_map_end(em);
 514                free_extent_map(em);
 515                if (ret)
 516                        return ret;
 517        }
 518        return 0;
 519}
 520
 521/*
 522 * after copy_from_user, pages need to be dirtied and we need to make
 523 * sure holes are created between the current EOF and the start of
 524 * any next extents (if required).
 525 *
 526 * this also makes the decision about creating an inline extent vs
 527 * doing real data extents, marking pages dirty and delalloc as required.
 528 */
 529int btrfs_dirty_pages(struct inode *inode, struct page **pages,
 530                      size_t num_pages, loff_t pos, size_t write_bytes,
 531                      struct extent_state **cached)
 532{
 533        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 534        int err = 0;
 535        int i;
 536        u64 num_bytes;
 537        u64 start_pos;
 538        u64 end_of_last_block;
 539        u64 end_pos = pos + write_bytes;
 540        loff_t isize = i_size_read(inode);
 541        unsigned int extra_bits = 0;
 542
 543        start_pos = pos & ~((u64) fs_info->sectorsize - 1);
 544        num_bytes = round_up(write_bytes + pos - start_pos,
 545                             fs_info->sectorsize);
 546
 547        end_of_last_block = start_pos + num_bytes - 1;
 548
 549        if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
 550                if (start_pos >= isize &&
 551                    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
 552                        /*
 553                         * There can't be any extents following eof in this case
 554                         * so just set the delalloc new bit for the range
 555                         * directly.
 556                         */
 557                        extra_bits |= EXTENT_DELALLOC_NEW;
 558                } else {
 559                        err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
 560                                                            start_pos,
 561                                                            num_bytes, cached);
 562                        if (err)
 563                                return err;
 564                }
 565        }
 566
 567        err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
 568                                        extra_bits, cached, 0);
 569        if (err)
 570                return err;
 571
 572        for (i = 0; i < num_pages; i++) {
 573                struct page *p = pages[i];
 574                SetPageUptodate(p);
 575                ClearPageChecked(p);
 576                set_page_dirty(p);
 577        }
 578
 579        /*
 580         * we've only changed i_size in ram, and we haven't updated
 581         * the disk i_size.  There is no need to log the inode
 582         * at this time.
 583         */
 584        if (end_pos > isize)
 585                i_size_write(inode, end_pos);
 586        return 0;
 587}
 588
 589/*
 590 * this drops all the extents in the cache that intersect the range
 591 * [start, end].  Existing extents are split as required.
 592 */
 593void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
 594                             int skip_pinned)
 595{
 596        struct extent_map *em;
 597        struct extent_map *split = NULL;
 598        struct extent_map *split2 = NULL;
 599        struct extent_map_tree *em_tree = &inode->extent_tree;
 600        u64 len = end - start + 1;
 601        u64 gen;
 602        int ret;
 603        int testend = 1;
 604        unsigned long flags;
 605        int compressed = 0;
 606        bool modified;
 607
 608        WARN_ON(end < start);
 609        if (end == (u64)-1) {
 610                len = (u64)-1;
 611                testend = 0;
 612        }
 613        while (1) {
 614                int no_splits = 0;
 615
 616                modified = false;
 617                if (!split)
 618                        split = alloc_extent_map();
 619                if (!split2)
 620                        split2 = alloc_extent_map();
 621                if (!split || !split2)
 622                        no_splits = 1;
 623
 624                write_lock(&em_tree->lock);
 625                em = lookup_extent_mapping(em_tree, start, len);
 626                if (!em) {
 627                        write_unlock(&em_tree->lock);
 628                        break;
 629                }
 630                flags = em->flags;
 631                gen = em->generation;
 632                if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
 633                        if (testend && em->start + em->len >= start + len) {
 634                                free_extent_map(em);
 635                                write_unlock(&em_tree->lock);
 636                                break;
 637                        }
 638                        start = em->start + em->len;
 639                        if (testend)
 640                                len = start + len - (em->start + em->len);
 641                        free_extent_map(em);
 642                        write_unlock(&em_tree->lock);
 643                        continue;
 644                }
 645                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 646                clear_bit(EXTENT_FLAG_PINNED, &em->flags);
 647                clear_bit(EXTENT_FLAG_LOGGING, &flags);
 648                modified = !list_empty(&em->list);
 649                if (no_splits)
 650                        goto next;
 651
 652                if (em->start < start) {
 653                        split->start = em->start;
 654                        split->len = start - em->start;
 655
 656                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 657                                split->orig_start = em->orig_start;
 658                                split->block_start = em->block_start;
 659
 660                                if (compressed)
 661                                        split->block_len = em->block_len;
 662                                else
 663                                        split->block_len = split->len;
 664                                split->orig_block_len = max(split->block_len,
 665                                                em->orig_block_len);
 666                                split->ram_bytes = em->ram_bytes;
 667                        } else {
 668                                split->orig_start = split->start;
 669                                split->block_len = 0;
 670                                split->block_start = em->block_start;
 671                                split->orig_block_len = 0;
 672                                split->ram_bytes = split->len;
 673                        }
 674
 675                        split->generation = gen;
 676                        split->bdev = em->bdev;
 677                        split->flags = flags;
 678                        split->compress_type = em->compress_type;
 679                        replace_extent_mapping(em_tree, em, split, modified);
 680                        free_extent_map(split);
 681                        split = split2;
 682                        split2 = NULL;
 683                }
 684                if (testend && em->start + em->len > start + len) {
 685                        u64 diff = start + len - em->start;
 686
 687                        split->start = start + len;
 688                        split->len = em->start + em->len - (start + len);
 689                        split->bdev = em->bdev;
 690                        split->flags = flags;
 691                        split->compress_type = em->compress_type;
 692                        split->generation = gen;
 693
 694                        if (em->block_start < EXTENT_MAP_LAST_BYTE) {
 695                                split->orig_block_len = max(em->block_len,
 696                                                    em->orig_block_len);
 697
 698                                split->ram_bytes = em->ram_bytes;
 699                                if (compressed) {
 700                                        split->block_len = em->block_len;
 701                                        split->block_start = em->block_start;
 702                                        split->orig_start = em->orig_start;
 703                                } else {
 704                                        split->block_len = split->len;
 705                                        split->block_start = em->block_start
 706                                                + diff;
 707                                        split->orig_start = em->orig_start;
 708                                }
 709                        } else {
 710                                split->ram_bytes = split->len;
 711                                split->orig_start = split->start;
 712                                split->block_len = 0;
 713                                split->block_start = em->block_start;
 714                                split->orig_block_len = 0;
 715                        }
 716
 717                        if (extent_map_in_tree(em)) {
 718                                replace_extent_mapping(em_tree, em, split,
 719                                                       modified);
 720                        } else {
 721                                ret = add_extent_mapping(em_tree, split,
 722                                                         modified);
 723                                ASSERT(ret == 0); /* Logic error */
 724                        }
 725                        free_extent_map(split);
 726                        split = NULL;
 727                }
 728next:
 729                if (extent_map_in_tree(em))
 730                        remove_extent_mapping(em_tree, em);
 731                write_unlock(&em_tree->lock);
 732
 733                /* once for us */
 734                free_extent_map(em);
 735                /* once for the tree*/
 736                free_extent_map(em);
 737        }
 738        if (split)
 739                free_extent_map(split);
 740        if (split2)
 741                free_extent_map(split2);
 742}
 743
 744/*
 745 * this is very complex, but the basic idea is to drop all extents
 746 * in the range start - end.  hint_block is filled in with a block number
 747 * that would be a good hint to the block allocator for this file.
 748 *
 749 * If an extent intersects the range but is not entirely inside the range
 750 * it is either truncated or split.  Anything entirely inside the range
 751 * is deleted from the tree.
 752 */
 753int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
 754                         struct btrfs_root *root, struct inode *inode,
 755                         struct btrfs_path *path, u64 start, u64 end,
 756                         u64 *drop_end, int drop_cache,
 757                         int replace_extent,
 758                         u32 extent_item_size,
 759                         int *key_inserted)
 760{
 761        struct btrfs_fs_info *fs_info = root->fs_info;
 762        struct extent_buffer *leaf;
 763        struct btrfs_file_extent_item *fi;
 764        struct btrfs_key key;
 765        struct btrfs_key new_key;
 766        u64 ino = btrfs_ino(BTRFS_I(inode));
 767        u64 search_start = start;
 768        u64 disk_bytenr = 0;
 769        u64 num_bytes = 0;
 770        u64 extent_offset = 0;
 771        u64 extent_end = 0;
 772        u64 last_end = start;
 773        int del_nr = 0;
 774        int del_slot = 0;
 775        int extent_type;
 776        int recow;
 777        int ret;
 778        int modify_tree = -1;
 779        int update_refs;
 780        int found = 0;
 781        int leafs_visited = 0;
 782
 783        if (drop_cache)
 784                btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
 785
 786        if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
 787                modify_tree = 0;
 788
 789        update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
 790                       root == fs_info->tree_root);
 791        while (1) {
 792                recow = 0;
 793                ret = btrfs_lookup_file_extent(trans, root, path, ino,
 794                                               search_start, modify_tree);
 795                if (ret < 0)
 796                        break;
 797                if (ret > 0 && path->slots[0] > 0 && search_start == start) {
 798                        leaf = path->nodes[0];
 799                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 800                        if (key.objectid == ino &&
 801                            key.type == BTRFS_EXTENT_DATA_KEY)
 802                                path->slots[0]--;
 803                }
 804                ret = 0;
 805                leafs_visited++;
 806next_slot:
 807                leaf = path->nodes[0];
 808                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 809                        BUG_ON(del_nr > 0);
 810                        ret = btrfs_next_leaf(root, path);
 811                        if (ret < 0)
 812                                break;
 813                        if (ret > 0) {
 814                                ret = 0;
 815                                break;
 816                        }
 817                        leafs_visited++;
 818                        leaf = path->nodes[0];
 819                        recow = 1;
 820                }
 821
 822                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 823
 824                if (key.objectid > ino)
 825                        break;
 826                if (WARN_ON_ONCE(key.objectid < ino) ||
 827                    key.type < BTRFS_EXTENT_DATA_KEY) {
 828                        ASSERT(del_nr == 0);
 829                        path->slots[0]++;
 830                        goto next_slot;
 831                }
 832                if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
 833                        break;
 834
 835                fi = btrfs_item_ptr(leaf, path->slots[0],
 836                                    struct btrfs_file_extent_item);
 837                extent_type = btrfs_file_extent_type(leaf, fi);
 838
 839                if (extent_type == BTRFS_FILE_EXTENT_REG ||
 840                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
 841                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 842                        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 843                        extent_offset = btrfs_file_extent_offset(leaf, fi);
 844                        extent_end = key.offset +
 845                                btrfs_file_extent_num_bytes(leaf, fi);
 846                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 847                        extent_end = key.offset +
 848                                btrfs_file_extent_inline_len(leaf,
 849                                                     path->slots[0], fi);
 850                } else {
 851                        /* can't happen */
 852                        BUG();
 853                }
 854
 855                /*
 856                 * Don't skip extent items representing 0 byte lengths. They
 857                 * used to be created (bug) if while punching holes we hit
 858                 * -ENOSPC condition. So if we find one here, just ensure we
 859                 * delete it, otherwise we would insert a new file extent item
 860                 * with the same key (offset) as that 0 bytes length file
 861                 * extent item in the call to setup_items_for_insert() later
 862                 * in this function.
 863                 */
 864                if (extent_end == key.offset && extent_end >= search_start) {
 865                        last_end = extent_end;
 866                        goto delete_extent_item;
 867                }
 868
 869                if (extent_end <= search_start) {
 870                        path->slots[0]++;
 871                        goto next_slot;
 872                }
 873
 874                found = 1;
 875                search_start = max(key.offset, start);
 876                if (recow || !modify_tree) {
 877                        modify_tree = -1;
 878                        btrfs_release_path(path);
 879                        continue;
 880                }
 881
 882                /*
 883                 *     | - range to drop - |
 884                 *  | -------- extent -------- |
 885                 */
 886                if (start > key.offset && end < extent_end) {
 887                        BUG_ON(del_nr > 0);
 888                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 889                                ret = -EOPNOTSUPP;
 890                                break;
 891                        }
 892
 893                        memcpy(&new_key, &key, sizeof(new_key));
 894                        new_key.offset = start;
 895                        ret = btrfs_duplicate_item(trans, root, path,
 896                                                   &new_key);
 897                        if (ret == -EAGAIN) {
 898                                btrfs_release_path(path);
 899                                continue;
 900                        }
 901                        if (ret < 0)
 902                                break;
 903
 904                        leaf = path->nodes[0];
 905                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
 906                                            struct btrfs_file_extent_item);
 907                        btrfs_set_file_extent_num_bytes(leaf, fi,
 908                                                        start - key.offset);
 909
 910                        fi = btrfs_item_ptr(leaf, path->slots[0],
 911                                            struct btrfs_file_extent_item);
 912
 913                        extent_offset += start - key.offset;
 914                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 915                        btrfs_set_file_extent_num_bytes(leaf, fi,
 916                                                        extent_end - start);
 917                        btrfs_mark_buffer_dirty(leaf);
 918
 919                        if (update_refs && disk_bytenr > 0) {
 920                                ret = btrfs_inc_extent_ref(trans, root,
 921                                                disk_bytenr, num_bytes, 0,
 922                                                root->root_key.objectid,
 923                                                new_key.objectid,
 924                                                start - extent_offset);
 925                                BUG_ON(ret); /* -ENOMEM */
 926                        }
 927                        key.offset = start;
 928                }
 929                /*
 930                 * From here on out we will have actually dropped something, so
 931                 * last_end can be updated.
 932                 */
 933                last_end = extent_end;
 934
 935                /*
 936                 *  | ---- range to drop ----- |
 937                 *      | -------- extent -------- |
 938                 */
 939                if (start <= key.offset && end < extent_end) {
 940                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 941                                ret = -EOPNOTSUPP;
 942                                break;
 943                        }
 944
 945                        memcpy(&new_key, &key, sizeof(new_key));
 946                        new_key.offset = end;
 947                        btrfs_set_item_key_safe(fs_info, path, &new_key);
 948
 949                        extent_offset += end - key.offset;
 950                        btrfs_set_file_extent_offset(leaf, fi, extent_offset);
 951                        btrfs_set_file_extent_num_bytes(leaf, fi,
 952                                                        extent_end - end);
 953                        btrfs_mark_buffer_dirty(leaf);
 954                        if (update_refs && disk_bytenr > 0)
 955                                inode_sub_bytes(inode, end - key.offset);
 956                        break;
 957                }
 958
 959                search_start = extent_end;
 960                /*
 961                 *       | ---- range to drop ----- |
 962                 *  | -------- extent -------- |
 963                 */
 964                if (start > key.offset && end >= extent_end) {
 965                        BUG_ON(del_nr > 0);
 966                        if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
 967                                ret = -EOPNOTSUPP;
 968                                break;
 969                        }
 970
 971                        btrfs_set_file_extent_num_bytes(leaf, fi,
 972                                                        start - key.offset);
 973                        btrfs_mark_buffer_dirty(leaf);
 974                        if (update_refs && disk_bytenr > 0)
 975                                inode_sub_bytes(inode, extent_end - start);
 976                        if (end == extent_end)
 977                                break;
 978
 979                        path->slots[0]++;
 980                        goto next_slot;
 981                }
 982
 983                /*
 984                 *  | ---- range to drop ----- |
 985                 *    | ------ extent ------ |
 986                 */
 987                if (start <= key.offset && end >= extent_end) {
 988delete_extent_item:
 989                        if (del_nr == 0) {
 990                                del_slot = path->slots[0];
 991                                del_nr = 1;
 992                        } else {
 993                                BUG_ON(del_slot + del_nr != path->slots[0]);
 994                                del_nr++;
 995                        }
 996
 997                        if (update_refs &&
 998                            extent_type == BTRFS_FILE_EXTENT_INLINE) {
 999                                inode_sub_bytes(inode,
1000                                                extent_end - key.offset);
1001                                extent_end = ALIGN(extent_end,
1002                                                   fs_info->sectorsize);
1003                        } else if (update_refs && disk_bytenr > 0) {
1004                                ret = btrfs_free_extent(trans, root,
1005                                                disk_bytenr, num_bytes, 0,
1006                                                root->root_key.objectid,
1007                                                key.objectid, key.offset -
1008                                                extent_offset);
1009                                BUG_ON(ret); /* -ENOMEM */
1010                                inode_sub_bytes(inode,
1011                                                extent_end - key.offset);
1012                        }
1013
1014                        if (end == extent_end)
1015                                break;
1016
1017                        if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018                                path->slots[0]++;
1019                                goto next_slot;
1020                        }
1021
1022                        ret = btrfs_del_items(trans, root, path, del_slot,
1023                                              del_nr);
1024                        if (ret) {
1025                                btrfs_abort_transaction(trans, ret);
1026                                break;
1027                        }
1028
1029                        del_nr = 0;
1030                        del_slot = 0;
1031
1032                        btrfs_release_path(path);
1033                        continue;
1034                }
1035
1036                BUG_ON(1);
1037        }
1038
1039        if (!ret && del_nr > 0) {
1040                /*
1041                 * Set path->slots[0] to first slot, so that after the delete
1042                 * if items are move off from our leaf to its immediate left or
1043                 * right neighbor leafs, we end up with a correct and adjusted
1044                 * path->slots[0] for our insertion (if replace_extent != 0).
1045                 */
1046                path->slots[0] = del_slot;
1047                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1048                if (ret)
1049                        btrfs_abort_transaction(trans, ret);
1050        }
1051
1052        leaf = path->nodes[0];
1053        /*
1054         * If btrfs_del_items() was called, it might have deleted a leaf, in
1055         * which case it unlocked our path, so check path->locks[0] matches a
1056         * write lock.
1057         */
1058        if (!ret && replace_extent && leafs_visited == 1 &&
1059            (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060             path->locks[0] == BTRFS_WRITE_LOCK) &&
1061            btrfs_leaf_free_space(fs_info, leaf) >=
1062            sizeof(struct btrfs_item) + extent_item_size) {
1063
1064                key.objectid = ino;
1065                key.type = BTRFS_EXTENT_DATA_KEY;
1066                key.offset = start;
1067                if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068                        struct btrfs_key slot_key;
1069
1070                        btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071                        if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072                                path->slots[0]++;
1073                }
1074                setup_items_for_insert(root, path, &key,
1075                                       &extent_item_size,
1076                                       extent_item_size,
1077                                       sizeof(struct btrfs_item) +
1078                                       extent_item_size, 1);
1079                *key_inserted = 1;
1080        }
1081
1082        if (!replace_extent || !(*key_inserted))
1083                btrfs_release_path(path);
1084        if (drop_end)
1085                *drop_end = found ? min(end, last_end) : end;
1086        return ret;
1087}
1088
1089int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090                       struct btrfs_root *root, struct inode *inode, u64 start,
1091                       u64 end, int drop_cache)
1092{
1093        struct btrfs_path *path;
1094        int ret;
1095
1096        path = btrfs_alloc_path();
1097        if (!path)
1098                return -ENOMEM;
1099        ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1100                                   drop_cache, 0, 0, NULL);
1101        btrfs_free_path(path);
1102        return ret;
1103}
1104
1105static int extent_mergeable(struct extent_buffer *leaf, int slot,
1106                            u64 objectid, u64 bytenr, u64 orig_offset,
1107                            u64 *start, u64 *end)
1108{
1109        struct btrfs_file_extent_item *fi;
1110        struct btrfs_key key;
1111        u64 extent_end;
1112
1113        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114                return 0;
1115
1116        btrfs_item_key_to_cpu(leaf, &key, slot);
1117        if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118                return 0;
1119
1120        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122            btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1123            btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1124            btrfs_file_extent_compression(leaf, fi) ||
1125            btrfs_file_extent_encryption(leaf, fi) ||
1126            btrfs_file_extent_other_encoding(leaf, fi))
1127                return 0;
1128
1129        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130        if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131                return 0;
1132
1133        *start = key.offset;
1134        *end = extent_end;
1135        return 1;
1136}
1137
1138/*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
1145int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1146                              struct btrfs_inode *inode, u64 start, u64 end)
1147{
1148        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1149        struct btrfs_root *root = inode->root;
1150        struct extent_buffer *leaf;
1151        struct btrfs_path *path;
1152        struct btrfs_file_extent_item *fi;
1153        struct btrfs_key key;
1154        struct btrfs_key new_key;
1155        u64 bytenr;
1156        u64 num_bytes;
1157        u64 extent_end;
1158        u64 orig_offset;
1159        u64 other_start;
1160        u64 other_end;
1161        u64 split;
1162        int del_nr = 0;
1163        int del_slot = 0;
1164        int recow;
1165        int ret;
1166        u64 ino = btrfs_ino(inode);
1167
1168        path = btrfs_alloc_path();
1169        if (!path)
1170                return -ENOMEM;
1171again:
1172        recow = 0;
1173        split = start;
1174        key.objectid = ino;
1175        key.type = BTRFS_EXTENT_DATA_KEY;
1176        key.offset = split;
1177
1178        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1179        if (ret < 0)
1180                goto out;
1181        if (ret > 0 && path->slots[0] > 0)
1182                path->slots[0]--;
1183
1184        leaf = path->nodes[0];
1185        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1186        if (key.objectid != ino ||
1187            key.type != BTRFS_EXTENT_DATA_KEY) {
1188                ret = -EINVAL;
1189                btrfs_abort_transaction(trans, ret);
1190                goto out;
1191        }
1192        fi = btrfs_item_ptr(leaf, path->slots[0],
1193                            struct btrfs_file_extent_item);
1194        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195                ret = -EINVAL;
1196                btrfs_abort_transaction(trans, ret);
1197                goto out;
1198        }
1199        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1200        if (key.offset > start || extent_end < end) {
1201                ret = -EINVAL;
1202                btrfs_abort_transaction(trans, ret);
1203                goto out;
1204        }
1205
1206        bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207        num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1208        orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1209        memcpy(&new_key, &key, sizeof(new_key));
1210
1211        if (start == key.offset && end < extent_end) {
1212                other_start = 0;
1213                other_end = start;
1214                if (extent_mergeable(leaf, path->slots[0] - 1,
1215                                     ino, bytenr, orig_offset,
1216                                     &other_start, &other_end)) {
1217                        new_key.offset = end;
1218                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1219                        fi = btrfs_item_ptr(leaf, path->slots[0],
1220                                            struct btrfs_file_extent_item);
1221                        btrfs_set_file_extent_generation(leaf, fi,
1222                                                         trans->transid);
1223                        btrfs_set_file_extent_num_bytes(leaf, fi,
1224                                                        extent_end - end);
1225                        btrfs_set_file_extent_offset(leaf, fi,
1226                                                     end - orig_offset);
1227                        fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228                                            struct btrfs_file_extent_item);
1229                        btrfs_set_file_extent_generation(leaf, fi,
1230                                                         trans->transid);
1231                        btrfs_set_file_extent_num_bytes(leaf, fi,
1232                                                        end - other_start);
1233                        btrfs_mark_buffer_dirty(leaf);
1234                        goto out;
1235                }
1236        }
1237
1238        if (start > key.offset && end == extent_end) {
1239                other_start = end;
1240                other_end = 0;
1241                if (extent_mergeable(leaf, path->slots[0] + 1,
1242                                     ino, bytenr, orig_offset,
1243                                     &other_start, &other_end)) {
1244                        fi = btrfs_item_ptr(leaf, path->slots[0],
1245                                            struct btrfs_file_extent_item);
1246                        btrfs_set_file_extent_num_bytes(leaf, fi,
1247                                                        start - key.offset);
1248                        btrfs_set_file_extent_generation(leaf, fi,
1249                                                         trans->transid);
1250                        path->slots[0]++;
1251                        new_key.offset = start;
1252                        btrfs_set_item_key_safe(fs_info, path, &new_key);
1253
1254                        fi = btrfs_item_ptr(leaf, path->slots[0],
1255                                            struct btrfs_file_extent_item);
1256                        btrfs_set_file_extent_generation(leaf, fi,
1257                                                         trans->transid);
1258                        btrfs_set_file_extent_num_bytes(leaf, fi,
1259                                                        other_end - start);
1260                        btrfs_set_file_extent_offset(leaf, fi,
1261                                                     start - orig_offset);
1262                        btrfs_mark_buffer_dirty(leaf);
1263                        goto out;
1264                }
1265        }
1266
1267        while (start > key.offset || end < extent_end) {
1268                if (key.offset == start)
1269                        split = end;
1270
1271                new_key.offset = split;
1272                ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273                if (ret == -EAGAIN) {
1274                        btrfs_release_path(path);
1275                        goto again;
1276                }
1277                if (ret < 0) {
1278                        btrfs_abort_transaction(trans, ret);
1279                        goto out;
1280                }
1281
1282                leaf = path->nodes[0];
1283                fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1284                                    struct btrfs_file_extent_item);
1285                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1286                btrfs_set_file_extent_num_bytes(leaf, fi,
1287                                                split - key.offset);
1288
1289                fi = btrfs_item_ptr(leaf, path->slots[0],
1290                                    struct btrfs_file_extent_item);
1291
1292                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293                btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294                btrfs_set_file_extent_num_bytes(leaf, fi,
1295                                                extent_end - split);
1296                btrfs_mark_buffer_dirty(leaf);
1297
1298                ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
1299                                           0, root->root_key.objectid,
1300                                           ino, orig_offset);
1301                if (ret) {
1302                        btrfs_abort_transaction(trans, ret);
1303                        goto out;
1304                }
1305
1306                if (split == start) {
1307                        key.offset = start;
1308                } else {
1309                        if (start != key.offset) {
1310                                ret = -EINVAL;
1311                                btrfs_abort_transaction(trans, ret);
1312                                goto out;
1313                        }
1314                        path->slots[0]--;
1315                        extent_end = end;
1316                }
1317                recow = 1;
1318        }
1319
1320        other_start = end;
1321        other_end = 0;
1322        if (extent_mergeable(leaf, path->slots[0] + 1,
1323                             ino, bytenr, orig_offset,
1324                             &other_start, &other_end)) {
1325                if (recow) {
1326                        btrfs_release_path(path);
1327                        goto again;
1328                }
1329                extent_end = other_end;
1330                del_slot = path->slots[0] + 1;
1331                del_nr++;
1332                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1333                                        0, root->root_key.objectid,
1334                                        ino, orig_offset);
1335                if (ret) {
1336                        btrfs_abort_transaction(trans, ret);
1337                        goto out;
1338                }
1339        }
1340        other_start = 0;
1341        other_end = start;
1342        if (extent_mergeable(leaf, path->slots[0] - 1,
1343                             ino, bytenr, orig_offset,
1344                             &other_start, &other_end)) {
1345                if (recow) {
1346                        btrfs_release_path(path);
1347                        goto again;
1348                }
1349                key.offset = other_start;
1350                del_slot = path->slots[0];
1351                del_nr++;
1352                ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1353                                        0, root->root_key.objectid,
1354                                        ino, orig_offset);
1355                if (ret) {
1356                        btrfs_abort_transaction(trans, ret);
1357                        goto out;
1358                }
1359        }
1360        if (del_nr == 0) {
1361                fi = btrfs_item_ptr(leaf, path->slots[0],
1362                           struct btrfs_file_extent_item);
1363                btrfs_set_file_extent_type(leaf, fi,
1364                                           BTRFS_FILE_EXTENT_REG);
1365                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1366                btrfs_mark_buffer_dirty(leaf);
1367        } else {
1368                fi = btrfs_item_ptr(leaf, del_slot - 1,
1369                           struct btrfs_file_extent_item);
1370                btrfs_set_file_extent_type(leaf, fi,
1371                                           BTRFS_FILE_EXTENT_REG);
1372                btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1373                btrfs_set_file_extent_num_bytes(leaf, fi,
1374                                                extent_end - key.offset);
1375                btrfs_mark_buffer_dirty(leaf);
1376
1377                ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1378                if (ret < 0) {
1379                        btrfs_abort_transaction(trans, ret);
1380                        goto out;
1381                }
1382        }
1383out:
1384        btrfs_free_path(path);
1385        return 0;
1386}
1387
1388/*
1389 * on error we return an unlocked page and the error value
1390 * on success we return a locked page and 0
1391 */
1392static int prepare_uptodate_page(struct inode *inode,
1393                                 struct page *page, u64 pos,
1394                                 bool force_uptodate)
1395{
1396        int ret = 0;
1397
1398        if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1399            !PageUptodate(page)) {
1400                ret = btrfs_readpage(NULL, page);
1401                if (ret)
1402                        return ret;
1403                lock_page(page);
1404                if (!PageUptodate(page)) {
1405                        unlock_page(page);
1406                        return -EIO;
1407                }
1408                if (page->mapping != inode->i_mapping) {
1409                        unlock_page(page);
1410                        return -EAGAIN;
1411                }
1412        }
1413        return 0;
1414}
1415
1416/*
1417 * this just gets pages into the page cache and locks them down.
1418 */
1419static noinline int prepare_pages(struct inode *inode, struct page **pages,
1420                                  size_t num_pages, loff_t pos,
1421                                  size_t write_bytes, bool force_uptodate)
1422{
1423        int i;
1424        unsigned long index = pos >> PAGE_SHIFT;
1425        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1426        int err = 0;
1427        int faili;
1428
1429        for (i = 0; i < num_pages; i++) {
1430again:
1431                pages[i] = find_or_create_page(inode->i_mapping, index + i,
1432                                               mask | __GFP_WRITE);
1433                if (!pages[i]) {
1434                        faili = i - 1;
1435                        err = -ENOMEM;
1436                        goto fail;
1437                }
1438
1439                if (i == 0)
1440                        err = prepare_uptodate_page(inode, pages[i], pos,
1441                                                    force_uptodate);
1442                if (!err && i == num_pages - 1)
1443                        err = prepare_uptodate_page(inode, pages[i],
1444                                                    pos + write_bytes, false);
1445                if (err) {
1446                        put_page(pages[i]);
1447                        if (err == -EAGAIN) {
1448                                err = 0;
1449                                goto again;
1450                        }
1451                        faili = i - 1;
1452                        goto fail;
1453                }
1454                wait_on_page_writeback(pages[i]);
1455        }
1456
1457        return 0;
1458fail:
1459        while (faili >= 0) {
1460                unlock_page(pages[faili]);
1461                put_page(pages[faili]);
1462                faili--;
1463        }
1464        return err;
1465
1466}
1467
1468/*
1469 * This function locks the extent and properly waits for data=ordered extents
1470 * to finish before allowing the pages to be modified if need.
1471 *
1472 * The return value:
1473 * 1 - the extent is locked
1474 * 0 - the extent is not locked, and everything is OK
1475 * -EAGAIN - need re-prepare the pages
1476 * the other < 0 number - Something wrong happens
1477 */
1478static noinline int
1479lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1480                                size_t num_pages, loff_t pos,
1481                                size_t write_bytes,
1482                                u64 *lockstart, u64 *lockend,
1483                                struct extent_state **cached_state)
1484{
1485        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1486        u64 start_pos;
1487        u64 last_pos;
1488        int i;
1489        int ret = 0;
1490
1491        start_pos = round_down(pos, fs_info->sectorsize);
1492        last_pos = start_pos
1493                + round_up(pos + write_bytes - start_pos,
1494                           fs_info->sectorsize) - 1;
1495
1496        if (start_pos < inode->vfs_inode.i_size) {
1497                struct btrfs_ordered_extent *ordered;
1498
1499                lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1500                                cached_state);
1501                ordered = btrfs_lookup_ordered_range(inode, start_pos,
1502                                                     last_pos - start_pos + 1);
1503                if (ordered &&
1504                    ordered->file_offset + ordered->len > start_pos &&
1505                    ordered->file_offset <= last_pos) {
1506                        unlock_extent_cached(&inode->io_tree, start_pos,
1507                                        last_pos, cached_state, GFP_NOFS);
1508                        for (i = 0; i < num_pages; i++) {
1509                                unlock_page(pages[i]);
1510                                put_page(pages[i]);
1511                        }
1512                        btrfs_start_ordered_extent(&inode->vfs_inode,
1513                                        ordered, 1);
1514                        btrfs_put_ordered_extent(ordered);
1515                        return -EAGAIN;
1516                }
1517                if (ordered)
1518                        btrfs_put_ordered_extent(ordered);
1519                clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1520                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1521                                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1522                                 0, 0, cached_state, GFP_NOFS);
1523                *lockstart = start_pos;
1524                *lockend = last_pos;
1525                ret = 1;
1526        }
1527
1528        for (i = 0; i < num_pages; i++) {
1529                if (clear_page_dirty_for_io(pages[i]))
1530                        account_page_redirty(pages[i]);
1531                set_page_extent_mapped(pages[i]);
1532                WARN_ON(!PageLocked(pages[i]));
1533        }
1534
1535        return ret;
1536}
1537
1538static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1539                                    size_t *write_bytes)
1540{
1541        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1542        struct btrfs_root *root = inode->root;
1543        struct btrfs_ordered_extent *ordered;
1544        u64 lockstart, lockend;
1545        u64 num_bytes;
1546        int ret;
1547
1548        ret = btrfs_start_write_no_snapshotting(root);
1549        if (!ret)
1550                return -ENOSPC;
1551
1552        lockstart = round_down(pos, fs_info->sectorsize);
1553        lockend = round_up(pos + *write_bytes,
1554                           fs_info->sectorsize) - 1;
1555
1556        while (1) {
1557                lock_extent(&inode->io_tree, lockstart, lockend);
1558                ordered = btrfs_lookup_ordered_range(inode, lockstart,
1559                                                     lockend - lockstart + 1);
1560                if (!ordered) {
1561                        break;
1562                }
1563                unlock_extent(&inode->io_tree, lockstart, lockend);
1564                btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1565                btrfs_put_ordered_extent(ordered);
1566        }
1567
1568        num_bytes = lockend - lockstart + 1;
1569        ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1570                        NULL, NULL, NULL);
1571        if (ret <= 0) {
1572                ret = 0;
1573                btrfs_end_write_no_snapshotting(root);
1574        } else {
1575                *write_bytes = min_t(size_t, *write_bytes ,
1576                                     num_bytes - pos + lockstart);
1577        }
1578
1579        unlock_extent(&inode->io_tree, lockstart, lockend);
1580
1581        return ret;
1582}
1583
1584static noinline ssize_t __btrfs_buffered_write(struct file *file,
1585                                               struct iov_iter *i,
1586                                               loff_t pos)
1587{
1588        struct inode *inode = file_inode(file);
1589        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1590        struct btrfs_root *root = BTRFS_I(inode)->root;
1591        struct page **pages = NULL;
1592        struct extent_state *cached_state = NULL;
1593        struct extent_changeset *data_reserved = NULL;
1594        u64 release_bytes = 0;
1595        u64 lockstart;
1596        u64 lockend;
1597        size_t num_written = 0;
1598        int nrptrs;
1599        int ret = 0;
1600        bool only_release_metadata = false;
1601        bool force_page_uptodate = false;
1602
1603        nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1604                        PAGE_SIZE / (sizeof(struct page *)));
1605        nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1606        nrptrs = max(nrptrs, 8);
1607        pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1608        if (!pages)
1609                return -ENOMEM;
1610
1611        while (iov_iter_count(i) > 0) {
1612                size_t offset = pos & (PAGE_SIZE - 1);
1613                size_t sector_offset;
1614                size_t write_bytes = min(iov_iter_count(i),
1615                                         nrptrs * (size_t)PAGE_SIZE -
1616                                         offset);
1617                size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1618                                                PAGE_SIZE);
1619                size_t reserve_bytes;
1620                size_t dirty_pages;
1621                size_t copied;
1622                size_t dirty_sectors;
1623                size_t num_sectors;
1624                int extents_locked;
1625
1626                WARN_ON(num_pages > nrptrs);
1627
1628                /*
1629                 * Fault pages before locking them in prepare_pages
1630                 * to avoid recursive lock
1631                 */
1632                if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1633                        ret = -EFAULT;
1634                        break;
1635                }
1636
1637                sector_offset = pos & (fs_info->sectorsize - 1);
1638                reserve_bytes = round_up(write_bytes + sector_offset,
1639                                fs_info->sectorsize);
1640
1641                extent_changeset_release(data_reserved);
1642                ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1643                                                  write_bytes);
1644                if (ret < 0) {
1645                        if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1646                                                      BTRFS_INODE_PREALLOC)) &&
1647                            check_can_nocow(BTRFS_I(inode), pos,
1648                                        &write_bytes) > 0) {
1649                                /*
1650                                 * For nodata cow case, no need to reserve
1651                                 * data space.
1652                                 */
1653                                only_release_metadata = true;
1654                                /*
1655                                 * our prealloc extent may be smaller than
1656                                 * write_bytes, so scale down.
1657                                 */
1658                                num_pages = DIV_ROUND_UP(write_bytes + offset,
1659                                                         PAGE_SIZE);
1660                                reserve_bytes = round_up(write_bytes +
1661                                                         sector_offset,
1662                                                         fs_info->sectorsize);
1663                        } else {
1664                                break;
1665                        }
1666                }
1667
1668                WARN_ON(reserve_bytes == 0);
1669                ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1670                                reserve_bytes);
1671                if (ret) {
1672                        if (!only_release_metadata)
1673                                btrfs_free_reserved_data_space(inode,
1674                                                data_reserved, pos,
1675                                                write_bytes);
1676                        else
1677                                btrfs_end_write_no_snapshotting(root);
1678                        break;
1679                }
1680
1681                release_bytes = reserve_bytes;
1682again:
1683                /*
1684                 * This is going to setup the pages array with the number of
1685                 * pages we want, so we don't really need to worry about the
1686                 * contents of pages from loop to loop
1687                 */
1688                ret = prepare_pages(inode, pages, num_pages,
1689                                    pos, write_bytes,
1690                                    force_page_uptodate);
1691                if (ret) {
1692                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1693                                                       reserve_bytes);
1694                        break;
1695                }
1696
1697                extents_locked = lock_and_cleanup_extent_if_need(
1698                                BTRFS_I(inode), pages,
1699                                num_pages, pos, write_bytes, &lockstart,
1700                                &lockend, &cached_state);
1701                if (extents_locked < 0) {
1702                        if (extents_locked == -EAGAIN)
1703                                goto again;
1704                        btrfs_delalloc_release_extents(BTRFS_I(inode),
1705                                                       reserve_bytes);
1706                        ret = extents_locked;
1707                        break;
1708                }
1709
1710                copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1711
1712                num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1713                dirty_sectors = round_up(copied + sector_offset,
1714                                        fs_info->sectorsize);
1715                dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1716
1717                /*
1718                 * if we have trouble faulting in the pages, fall
1719                 * back to one page at a time
1720                 */
1721                if (copied < write_bytes)
1722                        nrptrs = 1;
1723
1724                if (copied == 0) {
1725                        force_page_uptodate = true;
1726                        dirty_sectors = 0;
1727                        dirty_pages = 0;
1728                } else {
1729                        force_page_uptodate = false;
1730                        dirty_pages = DIV_ROUND_UP(copied + offset,
1731                                                   PAGE_SIZE);
1732                }
1733
1734                if (num_sectors > dirty_sectors) {
1735                        /* release everything except the sectors we dirtied */
1736                        release_bytes -= dirty_sectors <<
1737                                                fs_info->sb->s_blocksize_bits;
1738                        if (only_release_metadata) {
1739                                btrfs_delalloc_release_metadata(BTRFS_I(inode),
1740                                                                release_bytes);
1741                        } else {
1742                                u64 __pos;
1743
1744                                __pos = round_down(pos,
1745                                                   fs_info->sectorsize) +
1746                                        (dirty_pages << PAGE_SHIFT);
1747                                btrfs_delalloc_release_space(inode,
1748                                                data_reserved, __pos,
1749                                                release_bytes);
1750                        }
1751                }
1752
1753                release_bytes = round_up(copied + sector_offset,
1754                                        fs_info->sectorsize);
1755
1756                if (copied > 0)
1757                        ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758                                                pos, copied, NULL);
1759                if (extents_locked)
1760                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1761                                             lockstart, lockend, &cached_state,
1762                                             GFP_NOFS);
1763                btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1764                if (ret) {
1765                        btrfs_drop_pages(pages, num_pages);
1766                        break;
1767                }
1768
1769                release_bytes = 0;
1770                if (only_release_metadata)
1771                        btrfs_end_write_no_snapshotting(root);
1772
1773                if (only_release_metadata && copied > 0) {
1774                        lockstart = round_down(pos,
1775                                               fs_info->sectorsize);
1776                        lockend = round_up(pos + copied,
1777                                           fs_info->sectorsize) - 1;
1778
1779                        set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1780                                       lockend, EXTENT_NORESERVE, NULL,
1781                                       NULL, GFP_NOFS);
1782                        only_release_metadata = false;
1783                }
1784
1785                btrfs_drop_pages(pages, num_pages);
1786
1787                cond_resched();
1788
1789                balance_dirty_pages_ratelimited(inode->i_mapping);
1790                if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1791                        btrfs_btree_balance_dirty(fs_info);
1792
1793                pos += copied;
1794                num_written += copied;
1795        }
1796
1797        kfree(pages);
1798
1799        if (release_bytes) {
1800                if (only_release_metadata) {
1801                        btrfs_end_write_no_snapshotting(root);
1802                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
1803                                        release_bytes);
1804                } else {
1805                        btrfs_delalloc_release_space(inode, data_reserved,
1806                                        round_down(pos, fs_info->sectorsize),
1807                                        release_bytes);
1808                }
1809        }
1810
1811        extent_changeset_free(data_reserved);
1812        return num_written ? num_written : ret;
1813}
1814
1815static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1816{
1817        struct file *file = iocb->ki_filp;
1818        struct inode *inode = file_inode(file);
1819        loff_t pos = iocb->ki_pos;
1820        ssize_t written;
1821        ssize_t written_buffered;
1822        loff_t endbyte;
1823        int err;
1824
1825        written = generic_file_direct_write(iocb, from);
1826
1827        if (written < 0 || !iov_iter_count(from))
1828                return written;
1829
1830        pos += written;
1831        written_buffered = __btrfs_buffered_write(file, from, pos);
1832        if (written_buffered < 0) {
1833                err = written_buffered;
1834                goto out;
1835        }
1836        /*
1837         * Ensure all data is persisted. We want the next direct IO read to be
1838         * able to read what was just written.
1839         */
1840        endbyte = pos + written_buffered - 1;
1841        err = btrfs_fdatawrite_range(inode, pos, endbyte);
1842        if (err)
1843                goto out;
1844        err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1845        if (err)
1846                goto out;
1847        written += written_buffered;
1848        iocb->ki_pos = pos + written_buffered;
1849        invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1850                                 endbyte >> PAGE_SHIFT);
1851out:
1852        return written ? written : err;
1853}
1854
1855static void update_time_for_write(struct inode *inode)
1856{
1857        struct timespec now;
1858
1859        if (IS_NOCMTIME(inode))
1860                return;
1861
1862        now = current_time(inode);
1863        if (!timespec_equal(&inode->i_mtime, &now))
1864                inode->i_mtime = now;
1865
1866        if (!timespec_equal(&inode->i_ctime, &now))
1867                inode->i_ctime = now;
1868
1869        if (IS_I_VERSION(inode))
1870                inode_inc_iversion(inode);
1871}
1872
1873static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1874                                    struct iov_iter *from)
1875{
1876        struct file *file = iocb->ki_filp;
1877        struct inode *inode = file_inode(file);
1878        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1879        struct btrfs_root *root = BTRFS_I(inode)->root;
1880        u64 start_pos;
1881        u64 end_pos;
1882        ssize_t num_written = 0;
1883        bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1884        ssize_t err;
1885        loff_t pos;
1886        size_t count = iov_iter_count(from);
1887        loff_t oldsize;
1888        int clean_page = 0;
1889
1890        if (!(iocb->ki_flags & IOCB_DIRECT) &&
1891            (iocb->ki_flags & IOCB_NOWAIT))
1892                return -EOPNOTSUPP;
1893
1894        if (!inode_trylock(inode)) {
1895                if (iocb->ki_flags & IOCB_NOWAIT)
1896                        return -EAGAIN;
1897                inode_lock(inode);
1898        }
1899
1900        err = generic_write_checks(iocb, from);
1901        if (err <= 0) {
1902                inode_unlock(inode);
1903                return err;
1904        }
1905
1906        pos = iocb->ki_pos;
1907        if (iocb->ki_flags & IOCB_NOWAIT) {
1908                /*
1909                 * We will allocate space in case nodatacow is not set,
1910                 * so bail
1911                 */
1912                if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913                                              BTRFS_INODE_PREALLOC)) ||
1914                    check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915                        inode_unlock(inode);
1916                        return -EAGAIN;
1917                }
1918        }
1919
1920        current->backing_dev_info = inode_to_bdi(inode);
1921        err = file_remove_privs(file);
1922        if (err) {
1923                inode_unlock(inode);
1924                goto out;
1925        }
1926
1927        /*
1928         * If BTRFS flips readonly due to some impossible error
1929         * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930         * although we have opened a file as writable, we have
1931         * to stop this write operation to ensure FS consistency.
1932         */
1933        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934                inode_unlock(inode);
1935                err = -EROFS;
1936                goto out;
1937        }
1938
1939        /*
1940         * We reserve space for updating the inode when we reserve space for the
1941         * extent we are going to write, so we will enospc out there.  We don't
1942         * need to start yet another transaction to update the inode as we will
1943         * update the inode when we finish writing whatever data we write.
1944         */
1945        update_time_for_write(inode);
1946
1947        start_pos = round_down(pos, fs_info->sectorsize);
1948        oldsize = i_size_read(inode);
1949        if (start_pos > oldsize) {
1950                /* Expand hole size to cover write data, preventing empty gap */
1951                end_pos = round_up(pos + count,
1952                                   fs_info->sectorsize);
1953                err = btrfs_cont_expand(inode, oldsize, end_pos);
1954                if (err) {
1955                        inode_unlock(inode);
1956                        goto out;
1957                }
1958                if (start_pos > round_up(oldsize, fs_info->sectorsize))
1959                        clean_page = 1;
1960        }
1961
1962        if (sync)
1963                atomic_inc(&BTRFS_I(inode)->sync_writers);
1964
1965        if (iocb->ki_flags & IOCB_DIRECT) {
1966                num_written = __btrfs_direct_write(iocb, from);
1967        } else {
1968                num_written = __btrfs_buffered_write(file, from, pos);
1969                if (num_written > 0)
1970                        iocb->ki_pos = pos + num_written;
1971                if (clean_page)
1972                        pagecache_isize_extended(inode, oldsize,
1973                                                i_size_read(inode));
1974        }
1975
1976        inode_unlock(inode);
1977
1978        /*
1979         * We also have to set last_sub_trans to the current log transid,
1980         * otherwise subsequent syncs to a file that's been synced in this
1981         * transaction will appear to have already occurred.
1982         */
1983        spin_lock(&BTRFS_I(inode)->lock);
1984        BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985        spin_unlock(&BTRFS_I(inode)->lock);
1986        if (num_written > 0)
1987                num_written = generic_write_sync(iocb, num_written);
1988
1989        if (sync)
1990                atomic_dec(&BTRFS_I(inode)->sync_writers);
1991out:
1992        current->backing_dev_info = NULL;
1993        return num_written ? num_written : err;
1994}
1995
1996int btrfs_release_file(struct inode *inode, struct file *filp)
1997{
1998        struct btrfs_file_private *private = filp->private_data;
1999
2000        if (private && private->trans)
2001                btrfs_ioctl_trans_end(filp);
2002        if (private && private->filldir_buf)
2003                kfree(private->filldir_buf);
2004        kfree(private);
2005        filp->private_data = NULL;
2006
2007        /*
2008         * ordered_data_close is set by settattr when we are about to truncate
2009         * a file from a non-zero size to a zero size.  This tries to
2010         * flush down new bytes that may have been written if the
2011         * application were using truncate to replace a file in place.
2012         */
2013        if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014                               &BTRFS_I(inode)->runtime_flags))
2015                        filemap_flush(inode->i_mapping);
2016        return 0;
2017}
2018
2019static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020{
2021        int ret;
2022
2023        atomic_inc(&BTRFS_I(inode)->sync_writers);
2024        ret = btrfs_fdatawrite_range(inode, start, end);
2025        atomic_dec(&BTRFS_I(inode)->sync_writers);
2026
2027        return ret;
2028}
2029
2030/*
2031 * fsync call for both files and directories.  This logs the inode into
2032 * the tree log instead of forcing full commits whenever possible.
2033 *
2034 * It needs to call filemap_fdatawait so that all ordered extent updates are
2035 * in the metadata btree are up to date for copying to the log.
2036 *
2037 * It drops the inode mutex before doing the tree log commit.  This is an
2038 * important optimization for directories because holding the mutex prevents
2039 * new operations on the dir while we write to disk.
2040 */
2041int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2042{
2043        struct dentry *dentry = file_dentry(file);
2044        struct inode *inode = d_inode(dentry);
2045        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2046        struct btrfs_root *root = BTRFS_I(inode)->root;
2047        struct btrfs_trans_handle *trans;
2048        struct btrfs_log_ctx ctx;
2049        int ret = 0, err;
2050        bool full_sync = false;
2051        u64 len;
2052
2053        /*
2054         * The range length can be represented by u64, we have to do the typecasts
2055         * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2056         */
2057        len = (u64)end - (u64)start + 1;
2058        trace_btrfs_sync_file(file, datasync);
2059
2060        btrfs_init_log_ctx(&ctx, inode);
2061
2062        /*
2063         * We write the dirty pages in the range and wait until they complete
2064         * out of the ->i_mutex. If so, we can flush the dirty pages by
2065         * multi-task, and make the performance up.  See
2066         * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2067         */
2068        ret = start_ordered_ops(inode, start, end);
2069        if (ret)
2070                goto out;
2071
2072        inode_lock(inode);
2073        atomic_inc(&root->log_batch);
2074        full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2075                             &BTRFS_I(inode)->runtime_flags);
2076        /*
2077         * We might have have had more pages made dirty after calling
2078         * start_ordered_ops and before acquiring the inode's i_mutex.
2079         */
2080        if (full_sync) {
2081                /*
2082                 * For a full sync, we need to make sure any ordered operations
2083                 * start and finish before we start logging the inode, so that
2084                 * all extents are persisted and the respective file extent
2085                 * items are in the fs/subvol btree.
2086                 */
2087                ret = btrfs_wait_ordered_range(inode, start, len);
2088        } else {
2089                /*
2090                 * Start any new ordered operations before starting to log the
2091                 * inode. We will wait for them to finish in btrfs_sync_log().
2092                 *
2093                 * Right before acquiring the inode's mutex, we might have new
2094                 * writes dirtying pages, which won't immediately start the
2095                 * respective ordered operations - that is done through the
2096                 * fill_delalloc callbacks invoked from the writepage and
2097                 * writepages address space operations. So make sure we start
2098                 * all ordered operations before starting to log our inode. Not
2099                 * doing this means that while logging the inode, writeback
2100                 * could start and invoke writepage/writepages, which would call
2101                 * the fill_delalloc callbacks (cow_file_range,
2102                 * submit_compressed_extents). These callbacks add first an
2103                 * extent map to the modified list of extents and then create
2104                 * the respective ordered operation, which means in
2105                 * tree-log.c:btrfs_log_inode() we might capture all existing
2106                 * ordered operations (with btrfs_get_logged_extents()) before
2107                 * the fill_delalloc callback adds its ordered operation, and by
2108                 * the time we visit the modified list of extent maps (with
2109                 * btrfs_log_changed_extents()), we see and process the extent
2110                 * map they created. We then use the extent map to construct a
2111                 * file extent item for logging without waiting for the
2112                 * respective ordered operation to finish - this file extent
2113                 * item points to a disk location that might not have yet been
2114                 * written to, containing random data - so after a crash a log
2115                 * replay will make our inode have file extent items that point
2116                 * to disk locations containing invalid data, as we returned
2117                 * success to userspace without waiting for the respective
2118                 * ordered operation to finish, because it wasn't captured by
2119                 * btrfs_get_logged_extents().
2120                 */
2121                ret = start_ordered_ops(inode, start, end);
2122        }
2123        if (ret) {
2124                inode_unlock(inode);
2125                goto out;
2126        }
2127        atomic_inc(&root->log_batch);
2128
2129        /*
2130         * If the last transaction that changed this file was before the current
2131         * transaction and we have the full sync flag set in our inode, we can
2132         * bail out now without any syncing.
2133         *
2134         * Note that we can't bail out if the full sync flag isn't set. This is
2135         * because when the full sync flag is set we start all ordered extents
2136         * and wait for them to fully complete - when they complete they update
2137         * the inode's last_trans field through:
2138         *
2139         *     btrfs_finish_ordered_io() ->
2140         *         btrfs_update_inode_fallback() ->
2141         *             btrfs_update_inode() ->
2142         *                 btrfs_set_inode_last_trans()
2143         *
2144         * So we are sure that last_trans is up to date and can do this check to
2145         * bail out safely. For the fast path, when the full sync flag is not
2146         * set in our inode, we can not do it because we start only our ordered
2147         * extents and don't wait for them to complete (that is when
2148         * btrfs_finish_ordered_io runs), so here at this point their last_trans
2149         * value might be less than or equals to fs_info->last_trans_committed,
2150         * and setting a speculative last_trans for an inode when a buffered
2151         * write is made (such as fs_info->generation + 1 for example) would not
2152         * be reliable since after setting the value and before fsync is called
2153         * any number of transactions can start and commit (transaction kthread
2154         * commits the current transaction periodically), and a transaction
2155         * commit does not start nor waits for ordered extents to complete.
2156         */
2157        smp_mb();
2158        if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2159            (full_sync && BTRFS_I(inode)->last_trans <=
2160             fs_info->last_trans_committed) ||
2161            (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2162             BTRFS_I(inode)->last_trans
2163             <= fs_info->last_trans_committed)) {
2164                /*
2165                 * We've had everything committed since the last time we were
2166                 * modified so clear this flag in case it was set for whatever
2167                 * reason, it's no longer relevant.
2168                 */
2169                clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2170                          &BTRFS_I(inode)->runtime_flags);
2171                /*
2172                 * An ordered extent might have started before and completed
2173                 * already with io errors, in which case the inode was not
2174                 * updated and we end up here. So check the inode's mapping
2175                 * for any errors that might have happened since we last
2176                 * checked called fsync.
2177                 */
2178                ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2179                inode_unlock(inode);
2180                goto out;
2181        }
2182
2183        /*
2184         * ok we haven't committed the transaction yet, lets do a commit
2185         */
2186        if (file->private_data)
2187                btrfs_ioctl_trans_end(file);
2188
2189        /*
2190         * We use start here because we will need to wait on the IO to complete
2191         * in btrfs_sync_log, which could require joining a transaction (for
2192         * example checking cross references in the nocow path).  If we use join
2193         * here we could get into a situation where we're waiting on IO to
2194         * happen that is blocked on a transaction trying to commit.  With start
2195         * we inc the extwriter counter, so we wait for all extwriters to exit
2196         * before we start blocking join'ers.  This comment is to keep somebody
2197         * from thinking they are super smart and changing this to
2198         * btrfs_join_transaction *cough*Josef*cough*.
2199         */
2200        trans = btrfs_start_transaction(root, 0);
2201        if (IS_ERR(trans)) {
2202                ret = PTR_ERR(trans);
2203                inode_unlock(inode);
2204                goto out;
2205        }
2206        trans->sync = true;
2207
2208        ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2209        if (ret < 0) {
2210                /* Fallthrough and commit/free transaction. */
2211                ret = 1;
2212        }
2213
2214        /* we've logged all the items and now have a consistent
2215         * version of the file in the log.  It is possible that
2216         * someone will come in and modify the file, but that's
2217         * fine because the log is consistent on disk, and we
2218         * have references to all of the file's extents
2219         *
2220         * It is possible that someone will come in and log the
2221         * file again, but that will end up using the synchronization
2222         * inside btrfs_sync_log to keep things safe.
2223         */
2224        inode_unlock(inode);
2225
2226        /*
2227         * If any of the ordered extents had an error, just return it to user
2228         * space, so that the application knows some writes didn't succeed and
2229         * can take proper action (retry for e.g.). Blindly committing the
2230         * transaction in this case, would fool userspace that everything was
2231         * successful. And we also want to make sure our log doesn't contain
2232         * file extent items pointing to extents that weren't fully written to -
2233         * just like in the non fast fsync path, where we check for the ordered
2234         * operation's error flag before writing to the log tree and return -EIO
2235         * if any of them had this flag set (btrfs_wait_ordered_range) -
2236         * therefore we need to check for errors in the ordered operations,
2237         * which are indicated by ctx.io_err.
2238         */
2239        if (ctx.io_err) {
2240                btrfs_end_transaction(trans);
2241                ret = ctx.io_err;
2242                goto out;
2243        }
2244
2245        if (ret != BTRFS_NO_LOG_SYNC) {
2246                if (!ret) {
2247                        ret = btrfs_sync_log(trans, root, &ctx);
2248                        if (!ret) {
2249                                ret = btrfs_end_transaction(trans);
2250                                goto out;
2251                        }
2252                }
2253                if (!full_sync) {
2254                        ret = btrfs_wait_ordered_range(inode, start, len);
2255                        if (ret) {
2256                                btrfs_end_transaction(trans);
2257                                goto out;
2258                        }
2259                }
2260                ret = btrfs_commit_transaction(trans);
2261        } else {
2262                ret = btrfs_end_transaction(trans);
2263        }
2264out:
2265        ASSERT(list_empty(&ctx.list));
2266        err = file_check_and_advance_wb_err(file);
2267        if (!ret)
2268                ret = err;
2269        return ret > 0 ? -EIO : ret;
2270}
2271
2272static const struct vm_operations_struct btrfs_file_vm_ops = {
2273        .fault          = filemap_fault,
2274        .map_pages      = filemap_map_pages,
2275        .page_mkwrite   = btrfs_page_mkwrite,
2276};
2277
2278static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2279{
2280        struct address_space *mapping = filp->f_mapping;
2281
2282        if (!mapping->a_ops->readpage)
2283                return -ENOEXEC;
2284
2285        file_accessed(filp);
2286        vma->vm_ops = &btrfs_file_vm_ops;
2287
2288        return 0;
2289}
2290
2291static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2292                          int slot, u64 start, u64 end)
2293{
2294        struct btrfs_file_extent_item *fi;
2295        struct btrfs_key key;
2296
2297        if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2298                return 0;
2299
2300        btrfs_item_key_to_cpu(leaf, &key, slot);
2301        if (key.objectid != btrfs_ino(inode) ||
2302            key.type != BTRFS_EXTENT_DATA_KEY)
2303                return 0;
2304
2305        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2306
2307        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2308                return 0;
2309
2310        if (btrfs_file_extent_disk_bytenr(leaf, fi))
2311                return 0;
2312
2313        if (key.offset == end)
2314                return 1;
2315        if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2316                return 1;
2317        return 0;
2318}
2319
2320static int fill_holes(struct btrfs_trans_handle *trans,
2321                struct btrfs_inode *inode,
2322                struct btrfs_path *path, u64 offset, u64 end)
2323{
2324        struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2325        struct btrfs_root *root = inode->root;
2326        struct extent_buffer *leaf;
2327        struct btrfs_file_extent_item *fi;
2328        struct extent_map *hole_em;
2329        struct extent_map_tree *em_tree = &inode->extent_tree;
2330        struct btrfs_key key;
2331        int ret;
2332
2333        if (btrfs_fs_incompat(fs_info, NO_HOLES))
2334                goto out;
2335
2336        key.objectid = btrfs_ino(inode);
2337        key.type = BTRFS_EXTENT_DATA_KEY;
2338        key.offset = offset;
2339
2340        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2341        if (ret <= 0) {
2342                /*
2343                 * We should have dropped this offset, so if we find it then
2344                 * something has gone horribly wrong.
2345                 */
2346                if (ret == 0)
2347                        ret = -EINVAL;
2348                return ret;
2349        }
2350
2351        leaf = path->nodes[0];
2352        if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2353                u64 num_bytes;
2354
2355                path->slots[0]--;
2356                fi = btrfs_item_ptr(leaf, path->slots[0],
2357                                    struct btrfs_file_extent_item);
2358                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2359                        end - offset;
2360                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2361                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2362                btrfs_set_file_extent_offset(leaf, fi, 0);
2363                btrfs_mark_buffer_dirty(leaf);
2364                goto out;
2365        }
2366
2367        if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2368                u64 num_bytes;
2369
2370                key.offset = offset;
2371                btrfs_set_item_key_safe(fs_info, path, &key);
2372                fi = btrfs_item_ptr(leaf, path->slots[0],
2373                                    struct btrfs_file_extent_item);
2374                num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2375                        offset;
2376                btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2377                btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2378                btrfs_set_file_extent_offset(leaf, fi, 0);
2379                btrfs_mark_buffer_dirty(leaf);
2380                goto out;
2381        }
2382        btrfs_release_path(path);
2383
2384        ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2385                        offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2386        if (ret)
2387                return ret;
2388
2389out:
2390        btrfs_release_path(path);
2391
2392        hole_em = alloc_extent_map();
2393        if (!hole_em) {
2394                btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2395                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2396        } else {
2397                hole_em->start = offset;
2398                hole_em->len = end - offset;
2399                hole_em->ram_bytes = hole_em->len;
2400                hole_em->orig_start = offset;
2401
2402                hole_em->block_start = EXTENT_MAP_HOLE;
2403                hole_em->block_len = 0;
2404                hole_em->orig_block_len = 0;
2405                hole_em->bdev = fs_info->fs_devices->latest_bdev;
2406                hole_em->compress_type = BTRFS_COMPRESS_NONE;
2407                hole_em->generation = trans->transid;
2408
2409                do {
2410                        btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2411                        write_lock(&em_tree->lock);
2412                        ret = add_extent_mapping(em_tree, hole_em, 1);
2413                        write_unlock(&em_tree->lock);
2414                } while (ret == -EEXIST);
2415                free_extent_map(hole_em);
2416                if (ret)
2417                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2418                                        &inode->runtime_flags);
2419        }
2420
2421        return 0;
2422}
2423
2424/*
2425 * Find a hole extent on given inode and change start/len to the end of hole
2426 * extent.(hole/vacuum extent whose em->start <= start &&
2427 *         em->start + em->len > start)
2428 * When a hole extent is found, return 1 and modify start/len.
2429 */
2430static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2431{
2432        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2433        struct extent_map *em;
2434        int ret = 0;
2435
2436        em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2437                              round_down(*start, fs_info->sectorsize),
2438                              round_up(*len, fs_info->sectorsize), 0);
2439        if (IS_ERR(em))
2440                return PTR_ERR(em);
2441
2442        /* Hole or vacuum extent(only exists in no-hole mode) */
2443        if (em->block_start == EXTENT_MAP_HOLE) {
2444                ret = 1;
2445                *len = em->start + em->len > *start + *len ?
2446                       0 : *start + *len - em->start - em->len;
2447                *start = em->start + em->len;
2448        }
2449        free_extent_map(em);
2450        return ret;
2451}
2452
2453static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2454{
2455        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456        struct btrfs_root *root = BTRFS_I(inode)->root;
2457        struct extent_state *cached_state = NULL;
2458        struct btrfs_path *path;
2459        struct btrfs_block_rsv *rsv;
2460        struct btrfs_trans_handle *trans;
2461        u64 lockstart;
2462        u64 lockend;
2463        u64 tail_start;
2464        u64 tail_len;
2465        u64 orig_start = offset;
2466        u64 cur_offset;
2467        u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2468        u64 drop_end;
2469        int ret = 0;
2470        int err = 0;
2471        unsigned int rsv_count;
2472        bool same_block;
2473        bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2474        u64 ino_size;
2475        bool truncated_block = false;
2476        bool updated_inode = false;
2477
2478        ret = btrfs_wait_ordered_range(inode, offset, len);
2479        if (ret)
2480                return ret;
2481
2482        inode_lock(inode);
2483        ino_size = round_up(inode->i_size, fs_info->sectorsize);
2484        ret = find_first_non_hole(inode, &offset, &len);
2485        if (ret < 0)
2486                goto out_only_mutex;
2487        if (ret && !len) {
2488                /* Already in a large hole */
2489                ret = 0;
2490                goto out_only_mutex;
2491        }
2492
2493        lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2494        lockend = round_down(offset + len,
2495                             btrfs_inode_sectorsize(inode)) - 1;
2496        same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2497                == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2498        /*
2499         * We needn't truncate any block which is beyond the end of the file
2500         * because we are sure there is no data there.
2501         */
2502        /*
2503         * Only do this if we are in the same block and we aren't doing the
2504         * entire block.
2505         */
2506        if (same_block && len < fs_info->sectorsize) {
2507                if (offset < ino_size) {
2508                        truncated_block = true;
2509                        ret = btrfs_truncate_block(inode, offset, len, 0);
2510                } else {
2511                        ret = 0;
2512                }
2513                goto out_only_mutex;
2514        }
2515
2516        /* zero back part of the first block */
2517        if (offset < ino_size) {
2518                truncated_block = true;
2519                ret = btrfs_truncate_block(inode, offset, 0, 0);
2520                if (ret) {
2521                        inode_unlock(inode);
2522                        return ret;
2523                }
2524        }
2525
2526        /* Check the aligned pages after the first unaligned page,
2527         * if offset != orig_start, which means the first unaligned page
2528         * including several following pages are already in holes,
2529         * the extra check can be skipped */
2530        if (offset == orig_start) {
2531                /* after truncate page, check hole again */
2532                len = offset + len - lockstart;
2533                offset = lockstart;
2534                ret = find_first_non_hole(inode, &offset, &len);
2535                if (ret < 0)
2536                        goto out_only_mutex;
2537                if (ret && !len) {
2538                        ret = 0;
2539                        goto out_only_mutex;
2540                }
2541                lockstart = offset;
2542        }
2543
2544        /* Check the tail unaligned part is in a hole */
2545        tail_start = lockend + 1;
2546        tail_len = offset + len - tail_start;
2547        if (tail_len) {
2548                ret = find_first_non_hole(inode, &tail_start, &tail_len);
2549                if (unlikely(ret < 0))
2550                        goto out_only_mutex;
2551                if (!ret) {
2552                        /* zero the front end of the last page */
2553                        if (tail_start + tail_len < ino_size) {
2554                                truncated_block = true;
2555                                ret = btrfs_truncate_block(inode,
2556                                                        tail_start + tail_len,
2557                                                        0, 1);
2558                                if (ret)
2559                                        goto out_only_mutex;
2560                        }
2561                }
2562        }
2563
2564        if (lockend < lockstart) {
2565                ret = 0;
2566                goto out_only_mutex;
2567        }
2568
2569        while (1) {
2570                struct btrfs_ordered_extent *ordered;
2571
2572                truncate_pagecache_range(inode, lockstart, lockend);
2573
2574                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2575                                 &cached_state);
2576                ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2577
2578                /*
2579                 * We need to make sure we have no ordered extents in this range
2580                 * and nobody raced in and read a page in this range, if we did
2581                 * we need to try again.
2582                 */
2583                if ((!ordered ||
2584                    (ordered->file_offset + ordered->len <= lockstart ||
2585                     ordered->file_offset > lockend)) &&
2586                     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2587                        if (ordered)
2588                                btrfs_put_ordered_extent(ordered);
2589                        break;
2590                }
2591                if (ordered)
2592                        btrfs_put_ordered_extent(ordered);
2593                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2594                                     lockend, &cached_state, GFP_NOFS);
2595                ret = btrfs_wait_ordered_range(inode, lockstart,
2596                                               lockend - lockstart + 1);
2597                if (ret) {
2598                        inode_unlock(inode);
2599                        return ret;
2600                }
2601        }
2602
2603        path = btrfs_alloc_path();
2604        if (!path) {
2605                ret = -ENOMEM;
2606                goto out;
2607        }
2608
2609        rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2610        if (!rsv) {
2611                ret = -ENOMEM;
2612                goto out_free;
2613        }
2614        rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2615        rsv->failfast = 1;
2616
2617        /*
2618         * 1 - update the inode
2619         * 1 - removing the extents in the range
2620         * 1 - adding the hole extent if no_holes isn't set
2621         */
2622        rsv_count = no_holes ? 2 : 3;
2623        trans = btrfs_start_transaction(root, rsv_count);
2624        if (IS_ERR(trans)) {
2625                err = PTR_ERR(trans);
2626                goto out_free;
2627        }
2628
2629        ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2630                                      min_size, 0);
2631        BUG_ON(ret);
2632        trans->block_rsv = rsv;
2633
2634        cur_offset = lockstart;
2635        len = lockend - cur_offset;
2636        while (cur_offset < lockend) {
2637                ret = __btrfs_drop_extents(trans, root, inode, path,
2638                                           cur_offset, lockend + 1,
2639                                           &drop_end, 1, 0, 0, NULL);
2640                if (ret != -ENOSPC)
2641                        break;
2642
2643                trans->block_rsv = &fs_info->trans_block_rsv;
2644
2645                if (cur_offset < drop_end && cur_offset < ino_size) {
2646                        ret = fill_holes(trans, BTRFS_I(inode), path,
2647                                        cur_offset, drop_end);
2648                        if (ret) {
2649                                /*
2650                                 * If we failed then we didn't insert our hole
2651                                 * entries for the area we dropped, so now the
2652                                 * fs is corrupted, so we must abort the
2653                                 * transaction.
2654                                 */
2655                                btrfs_abort_transaction(trans, ret);
2656                                err = ret;
2657                                break;
2658                        }
2659                }
2660
2661                cur_offset = drop_end;
2662
2663                ret = btrfs_update_inode(trans, root, inode);
2664                if (ret) {
2665                        err = ret;
2666                        break;
2667                }
2668
2669                btrfs_end_transaction(trans);
2670                btrfs_btree_balance_dirty(fs_info);
2671
2672                trans = btrfs_start_transaction(root, rsv_count);
2673                if (IS_ERR(trans)) {
2674                        ret = PTR_ERR(trans);
2675                        trans = NULL;
2676                        break;
2677                }
2678
2679                ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2680                                              rsv, min_size, 0);
2681                BUG_ON(ret);    /* shouldn't happen */
2682                trans->block_rsv = rsv;
2683
2684                ret = find_first_non_hole(inode, &cur_offset, &len);
2685                if (unlikely(ret < 0))
2686                        break;
2687                if (ret && !len) {
2688                        ret = 0;
2689                        break;
2690                }
2691        }
2692
2693        if (ret) {
2694                err = ret;
2695                goto out_trans;
2696        }
2697
2698        trans->block_rsv = &fs_info->trans_block_rsv;
2699        /*
2700         * If we are using the NO_HOLES feature we might have had already an
2701         * hole that overlaps a part of the region [lockstart, lockend] and
2702         * ends at (or beyond) lockend. Since we have no file extent items to
2703         * represent holes, drop_end can be less than lockend and so we must
2704         * make sure we have an extent map representing the existing hole (the
2705         * call to __btrfs_drop_extents() might have dropped the existing extent
2706         * map representing the existing hole), otherwise the fast fsync path
2707         * will not record the existence of the hole region
2708         * [existing_hole_start, lockend].
2709         */
2710        if (drop_end <= lockend)
2711                drop_end = lockend + 1;
2712        /*
2713         * Don't insert file hole extent item if it's for a range beyond eof
2714         * (because it's useless) or if it represents a 0 bytes range (when
2715         * cur_offset == drop_end).
2716         */
2717        if (cur_offset < ino_size && cur_offset < drop_end) {
2718                ret = fill_holes(trans, BTRFS_I(inode), path,
2719                                cur_offset, drop_end);
2720                if (ret) {
2721                        /* Same comment as above. */
2722                        btrfs_abort_transaction(trans, ret);
2723                        err = ret;
2724                        goto out_trans;
2725                }
2726        }
2727
2728out_trans:
2729        if (!trans)
2730                goto out_free;
2731
2732        inode_inc_iversion(inode);
2733        inode->i_mtime = inode->i_ctime = current_time(inode);
2734
2735        trans->block_rsv = &fs_info->trans_block_rsv;
2736        ret = btrfs_update_inode(trans, root, inode);
2737        updated_inode = true;
2738        btrfs_end_transaction(trans);
2739        btrfs_btree_balance_dirty(fs_info);
2740out_free:
2741        btrfs_free_path(path);
2742        btrfs_free_block_rsv(fs_info, rsv);
2743out:
2744        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2745                             &cached_state, GFP_NOFS);
2746out_only_mutex:
2747        if (!updated_inode && truncated_block && !ret && !err) {
2748                /*
2749                 * If we only end up zeroing part of a page, we still need to
2750                 * update the inode item, so that all the time fields are
2751                 * updated as well as the necessary btrfs inode in memory fields
2752                 * for detecting, at fsync time, if the inode isn't yet in the
2753                 * log tree or it's there but not up to date.
2754                 */
2755                trans = btrfs_start_transaction(root, 1);
2756                if (IS_ERR(trans)) {
2757                        err = PTR_ERR(trans);
2758                } else {
2759                        err = btrfs_update_inode(trans, root, inode);
2760                        ret = btrfs_end_transaction(trans);
2761                }
2762        }
2763        inode_unlock(inode);
2764        if (ret && !err)
2765                err = ret;
2766        return err;
2767}
2768
2769/* Helper structure to record which range is already reserved */
2770struct falloc_range {
2771        struct list_head list;
2772        u64 start;
2773        u64 len;
2774};
2775
2776/*
2777 * Helper function to add falloc range
2778 *
2779 * Caller should have locked the larger range of extent containing
2780 * [start, len)
2781 */
2782static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2783{
2784        struct falloc_range *prev = NULL;
2785        struct falloc_range *range = NULL;
2786
2787        if (list_empty(head))
2788                goto insert;
2789
2790        /*
2791         * As fallocate iterate by bytenr order, we only need to check
2792         * the last range.
2793         */
2794        prev = list_entry(head->prev, struct falloc_range, list);
2795        if (prev->start + prev->len == start) {
2796                prev->len += len;
2797                return 0;
2798        }
2799insert:
2800        range = kmalloc(sizeof(*range), GFP_KERNEL);
2801        if (!range)
2802                return -ENOMEM;
2803        range->start = start;
2804        range->len = len;
2805        list_add_tail(&range->list, head);
2806        return 0;
2807}
2808
2809static long btrfs_fallocate(struct file *file, int mode,
2810                            loff_t offset, loff_t len)
2811{
2812        struct inode *inode = file_inode(file);
2813        struct extent_state *cached_state = NULL;
2814        struct extent_changeset *data_reserved = NULL;
2815        struct falloc_range *range;
2816        struct falloc_range *tmp;
2817        struct list_head reserve_list;
2818        u64 cur_offset;
2819        u64 last_byte;
2820        u64 alloc_start;
2821        u64 alloc_end;
2822        u64 alloc_hint = 0;
2823        u64 locked_end;
2824        u64 actual_end = 0;
2825        struct extent_map *em;
2826        int blocksize = btrfs_inode_sectorsize(inode);
2827        int ret;
2828
2829        alloc_start = round_down(offset, blocksize);
2830        alloc_end = round_up(offset + len, blocksize);
2831        cur_offset = alloc_start;
2832
2833        /* Make sure we aren't being give some crap mode */
2834        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2835                return -EOPNOTSUPP;
2836
2837        if (mode & FALLOC_FL_PUNCH_HOLE)
2838                return btrfs_punch_hole(inode, offset, len);
2839
2840        /*
2841         * Only trigger disk allocation, don't trigger qgroup reserve
2842         *
2843         * For qgroup space, it will be checked later.
2844         */
2845        ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2846                        alloc_end - alloc_start);
2847        if (ret < 0)
2848                return ret;
2849
2850        inode_lock(inode);
2851
2852        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2853                ret = inode_newsize_ok(inode, offset + len);
2854                if (ret)
2855                        goto out;
2856        }
2857
2858        /*
2859         * TODO: Move these two operations after we have checked
2860         * accurate reserved space, or fallocate can still fail but
2861         * with page truncated or size expanded.
2862         *
2863         * But that's a minor problem and won't do much harm BTW.
2864         */
2865        if (alloc_start > inode->i_size) {
2866                ret = btrfs_cont_expand(inode, i_size_read(inode),
2867                                        alloc_start);
2868                if (ret)
2869                        goto out;
2870        } else if (offset + len > inode->i_size) {
2871                /*
2872                 * If we are fallocating from the end of the file onward we
2873                 * need to zero out the end of the block if i_size lands in the
2874                 * middle of a block.
2875                 */
2876                ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2877                if (ret)
2878                        goto out;
2879        }
2880
2881        /*
2882         * wait for ordered IO before we have any locks.  We'll loop again
2883         * below with the locks held.
2884         */
2885        ret = btrfs_wait_ordered_range(inode, alloc_start,
2886                                       alloc_end - alloc_start);
2887        if (ret)
2888                goto out;
2889
2890        locked_end = alloc_end - 1;
2891        while (1) {
2892                struct btrfs_ordered_extent *ordered;
2893
2894                /* the extent lock is ordered inside the running
2895                 * transaction
2896                 */
2897                lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2898                                 locked_end, &cached_state);
2899                ordered = btrfs_lookup_first_ordered_extent(inode,
2900                                                            alloc_end - 1);
2901                if (ordered &&
2902                    ordered->file_offset + ordered->len > alloc_start &&
2903                    ordered->file_offset < alloc_end) {
2904                        btrfs_put_ordered_extent(ordered);
2905                        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2906                                             alloc_start, locked_end,
2907                                             &cached_state, GFP_KERNEL);
2908                        /*
2909                         * we can't wait on the range with the transaction
2910                         * running or with the extent lock held
2911                         */
2912                        ret = btrfs_wait_ordered_range(inode, alloc_start,
2913                                                       alloc_end - alloc_start);
2914                        if (ret)
2915                                goto out;
2916                } else {
2917                        if (ordered)
2918                                btrfs_put_ordered_extent(ordered);
2919                        break;
2920                }
2921        }
2922
2923        /* First, check if we exceed the qgroup limit */
2924        INIT_LIST_HEAD(&reserve_list);
2925        while (1) {
2926                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2927                                      alloc_end - cur_offset, 0);
2928                if (IS_ERR(em)) {
2929                        ret = PTR_ERR(em);
2930                        break;
2931                }
2932                last_byte = min(extent_map_end(em), alloc_end);
2933                actual_end = min_t(u64, extent_map_end(em), offset + len);
2934                last_byte = ALIGN(last_byte, blocksize);
2935                if (em->block_start == EXTENT_MAP_HOLE ||
2936                    (cur_offset >= inode->i_size &&
2937                     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2938                        ret = add_falloc_range(&reserve_list, cur_offset,
2939                                               last_byte - cur_offset);
2940                        if (ret < 0) {
2941                                free_extent_map(em);
2942                                break;
2943                        }
2944                        ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2945                                        cur_offset, last_byte - cur_offset);
2946                        if (ret < 0) {
2947                                free_extent_map(em);
2948                                break;
2949                        }
2950                } else {
2951                        /*
2952                         * Do not need to reserve unwritten extent for this
2953                         * range, free reserved data space first, otherwise
2954                         * it'll result in false ENOSPC error.
2955                         */
2956                        btrfs_free_reserved_data_space(inode, data_reserved,
2957                                        cur_offset, last_byte - cur_offset);
2958                }
2959                free_extent_map(em);
2960                cur_offset = last_byte;
2961                if (cur_offset >= alloc_end)
2962                        break;
2963        }
2964
2965        /*
2966         * If ret is still 0, means we're OK to fallocate.
2967         * Or just cleanup the list and exit.
2968         */
2969        list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2970                if (!ret)
2971                        ret = btrfs_prealloc_file_range(inode, mode,
2972                                        range->start,
2973                                        range->len, i_blocksize(inode),
2974                                        offset + len, &alloc_hint);
2975                else
2976                        btrfs_free_reserved_data_space(inode,
2977                                        data_reserved, range->start,
2978                                        range->len);
2979                list_del(&range->list);
2980                kfree(range);
2981        }
2982        if (ret < 0)
2983                goto out_unlock;
2984
2985        if (actual_end > inode->i_size &&
2986            !(mode & FALLOC_FL_KEEP_SIZE)) {
2987                struct btrfs_trans_handle *trans;
2988                struct btrfs_root *root = BTRFS_I(inode)->root;
2989
2990                /*
2991                 * We didn't need to allocate any more space, but we
2992                 * still extended the size of the file so we need to
2993                 * update i_size and the inode item.
2994                 */
2995                trans = btrfs_start_transaction(root, 1);
2996                if (IS_ERR(trans)) {
2997                        ret = PTR_ERR(trans);
2998                } else {
2999                        inode->i_ctime = current_time(inode);
3000                        i_size_write(inode, actual_end);
3001                        btrfs_ordered_update_i_size(inode, actual_end, NULL);
3002                        ret = btrfs_update_inode(trans, root, inode);
3003                        if (ret)
3004                                btrfs_end_transaction(trans);
3005                        else
3006                                ret = btrfs_end_transaction(trans);
3007                }
3008        }
3009out_unlock:
3010        unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3011                             &cached_state, GFP_KERNEL);
3012out:
3013        inode_unlock(inode);
3014        /* Let go of our reservation. */
3015        if (ret != 0)
3016                btrfs_free_reserved_data_space(inode, data_reserved,
3017                                alloc_start, alloc_end - cur_offset);
3018        extent_changeset_free(data_reserved);
3019        return ret;
3020}
3021
3022static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3023{
3024        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3025        struct extent_map *em = NULL;
3026        struct extent_state *cached_state = NULL;
3027        u64 lockstart;
3028        u64 lockend;
3029        u64 start;
3030        u64 len;
3031        int ret = 0;
3032
3033        if (inode->i_size == 0)
3034                return -ENXIO;
3035
3036        /*
3037         * *offset can be negative, in this case we start finding DATA/HOLE from
3038         * the very start of the file.
3039         */
3040        start = max_t(loff_t, 0, *offset);
3041
3042        lockstart = round_down(start, fs_info->sectorsize);
3043        lockend = round_up(i_size_read(inode),
3044                           fs_info->sectorsize);
3045        if (lockend <= lockstart)
3046                lockend = lockstart + fs_info->sectorsize;
3047        lockend--;
3048        len = lockend - lockstart + 1;
3049
3050        lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3051                         &cached_state);
3052
3053        while (start < inode->i_size) {
3054                em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3055                                start, len, 0);
3056                if (IS_ERR(em)) {
3057                        ret = PTR_ERR(em);
3058                        em = NULL;
3059                        break;
3060                }
3061
3062                if (whence == SEEK_HOLE &&
3063                    (em->block_start == EXTENT_MAP_HOLE ||
3064                     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3065                        break;
3066                else if (whence == SEEK_DATA &&
3067                           (em->block_start != EXTENT_MAP_HOLE &&
3068                            !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3069                        break;
3070
3071                start = em->start + em->len;
3072                free_extent_map(em);
3073                em = NULL;
3074                cond_resched();
3075        }
3076        free_extent_map(em);
3077        if (!ret) {
3078                if (whence == SEEK_DATA && start >= inode->i_size)
3079                        ret = -ENXIO;
3080                else
3081                        *offset = min_t(loff_t, start, inode->i_size);
3082        }
3083        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3084                             &cached_state, GFP_NOFS);
3085        return ret;
3086}
3087
3088static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3089{
3090        struct inode *inode = file->f_mapping->host;
3091        int ret;
3092
3093        inode_lock(inode);
3094        switch (whence) {
3095        case SEEK_END:
3096        case SEEK_CUR:
3097                offset = generic_file_llseek(file, offset, whence);
3098                goto out;
3099        case SEEK_DATA:
3100        case SEEK_HOLE:
3101                if (offset >= i_size_read(inode)) {
3102                        inode_unlock(inode);
3103                        return -ENXIO;
3104                }
3105
3106                ret = find_desired_extent(inode, &offset, whence);
3107                if (ret) {
3108                        inode_unlock(inode);
3109                        return ret;
3110                }
3111        }
3112
3113        offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3114out:
3115        inode_unlock(inode);
3116        return offset;
3117}
3118
3119static int btrfs_file_open(struct inode *inode, struct file *filp)
3120{
3121        filp->f_mode |= FMODE_NOWAIT;
3122        return generic_file_open(inode, filp);
3123}
3124
3125const struct file_operations btrfs_file_operations = {
3126        .llseek         = btrfs_file_llseek,
3127        .read_iter      = generic_file_read_iter,
3128        .splice_read    = generic_file_splice_read,
3129        .write_iter     = btrfs_file_write_iter,
3130        .mmap           = btrfs_file_mmap,
3131        .open           = btrfs_file_open,
3132        .release        = btrfs_release_file,
3133        .fsync          = btrfs_sync_file,
3134        .fallocate      = btrfs_fallocate,
3135        .unlocked_ioctl = btrfs_ioctl,
3136#ifdef CONFIG_COMPAT
3137        .compat_ioctl   = btrfs_compat_ioctl,
3138#endif
3139        .clone_file_range = btrfs_clone_file_range,
3140        .dedupe_file_range = btrfs_dedupe_file_range,
3141};
3142
3143void btrfs_auto_defrag_exit(void)
3144{
3145        kmem_cache_destroy(btrfs_inode_defrag_cachep);
3146}
3147
3148int btrfs_auto_defrag_init(void)
3149{
3150        btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3151                                        sizeof(struct inode_defrag), 0,
3152                                        SLAB_MEM_SPREAD,
3153                                        NULL);
3154        if (!btrfs_inode_defrag_cachep)
3155                return -ENOMEM;
3156
3157        return 0;
3158}
3159
3160int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3161{
3162        int ret;
3163
3164        /*
3165         * So with compression we will find and lock a dirty page and clear the
3166         * first one as dirty, setup an async extent, and immediately return
3167         * with the entire range locked but with nobody actually marked with
3168         * writeback.  So we can't just filemap_write_and_wait_range() and
3169         * expect it to work since it will just kick off a thread to do the
3170         * actual work.  So we need to call filemap_fdatawrite_range _again_
3171         * since it will wait on the page lock, which won't be unlocked until
3172         * after the pages have been marked as writeback and so we're good to go
3173         * from there.  We have to do this otherwise we'll miss the ordered
3174         * extents and that results in badness.  Please Josef, do not think you
3175         * know better and pull this out at some point in the future, it is
3176         * right and you are wrong.
3177         */
3178        ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3179        if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3180                             &BTRFS_I(inode)->runtime_flags))
3181                ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3182
3183        return ret;
3184}
3185