linux/fs/btrfs/ordered-data.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28#include "compression.h"
  29
  30static struct kmem_cache *btrfs_ordered_extent_cache;
  31
  32static u64 entry_end(struct btrfs_ordered_extent *entry)
  33{
  34        if (entry->file_offset + entry->len < entry->file_offset)
  35                return (u64)-1;
  36        return entry->file_offset + entry->len;
  37}
  38
  39/* returns NULL if the insertion worked, or it returns the node it did find
  40 * in the tree
  41 */
  42static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  43                                   struct rb_node *node)
  44{
  45        struct rb_node **p = &root->rb_node;
  46        struct rb_node *parent = NULL;
  47        struct btrfs_ordered_extent *entry;
  48
  49        while (*p) {
  50                parent = *p;
  51                entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  52
  53                if (file_offset < entry->file_offset)
  54                        p = &(*p)->rb_left;
  55                else if (file_offset >= entry_end(entry))
  56                        p = &(*p)->rb_right;
  57                else
  58                        return parent;
  59        }
  60
  61        rb_link_node(node, parent, p);
  62        rb_insert_color(node, root);
  63        return NULL;
  64}
  65
  66static void ordered_data_tree_panic(struct inode *inode, int errno,
  67                                               u64 offset)
  68{
  69        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  70        btrfs_panic(fs_info, errno,
  71                    "Inconsistency in ordered tree at offset %llu", offset);
  72}
  73
  74/*
  75 * look for a given offset in the tree, and if it can't be found return the
  76 * first lesser offset
  77 */
  78static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  79                                     struct rb_node **prev_ret)
  80{
  81        struct rb_node *n = root->rb_node;
  82        struct rb_node *prev = NULL;
  83        struct rb_node *test;
  84        struct btrfs_ordered_extent *entry;
  85        struct btrfs_ordered_extent *prev_entry = NULL;
  86
  87        while (n) {
  88                entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  89                prev = n;
  90                prev_entry = entry;
  91
  92                if (file_offset < entry->file_offset)
  93                        n = n->rb_left;
  94                else if (file_offset >= entry_end(entry))
  95                        n = n->rb_right;
  96                else
  97                        return n;
  98        }
  99        if (!prev_ret)
 100                return NULL;
 101
 102        while (prev && file_offset >= entry_end(prev_entry)) {
 103                test = rb_next(prev);
 104                if (!test)
 105                        break;
 106                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107                                      rb_node);
 108                if (file_offset < entry_end(prev_entry))
 109                        break;
 110
 111                prev = test;
 112        }
 113        if (prev)
 114                prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 115                                      rb_node);
 116        while (prev && file_offset < entry_end(prev_entry)) {
 117                test = rb_prev(prev);
 118                if (!test)
 119                        break;
 120                prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 121                                      rb_node);
 122                prev = test;
 123        }
 124        *prev_ret = prev;
 125        return NULL;
 126}
 127
 128/*
 129 * helper to check if a given offset is inside a given entry
 130 */
 131static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 132{
 133        if (file_offset < entry->file_offset ||
 134            entry->file_offset + entry->len <= file_offset)
 135                return 0;
 136        return 1;
 137}
 138
 139static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 140                          u64 len)
 141{
 142        if (file_offset + len <= entry->file_offset ||
 143            entry->file_offset + entry->len <= file_offset)
 144                return 0;
 145        return 1;
 146}
 147
 148/*
 149 * look find the first ordered struct that has this offset, otherwise
 150 * the first one less than this offset
 151 */
 152static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 153                                          u64 file_offset)
 154{
 155        struct rb_root *root = &tree->tree;
 156        struct rb_node *prev = NULL;
 157        struct rb_node *ret;
 158        struct btrfs_ordered_extent *entry;
 159
 160        if (tree->last) {
 161                entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 162                                 rb_node);
 163                if (offset_in_entry(entry, file_offset))
 164                        return tree->last;
 165        }
 166        ret = __tree_search(root, file_offset, &prev);
 167        if (!ret)
 168                ret = prev;
 169        if (ret)
 170                tree->last = ret;
 171        return ret;
 172}
 173
 174/* allocate and add a new ordered_extent into the per-inode tree.
 175 * file_offset is the logical offset in the file
 176 *
 177 * start is the disk block number of an extent already reserved in the
 178 * extent allocation tree
 179 *
 180 * len is the length of the extent
 181 *
 182 * The tree is given a single reference on the ordered extent that was
 183 * inserted.
 184 */
 185static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 186                                      u64 start, u64 len, u64 disk_len,
 187                                      int type, int dio, int compress_type)
 188{
 189        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 190        struct btrfs_root *root = BTRFS_I(inode)->root;
 191        struct btrfs_ordered_inode_tree *tree;
 192        struct rb_node *node;
 193        struct btrfs_ordered_extent *entry;
 194
 195        tree = &BTRFS_I(inode)->ordered_tree;
 196        entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 197        if (!entry)
 198                return -ENOMEM;
 199
 200        entry->file_offset = file_offset;
 201        entry->start = start;
 202        entry->len = len;
 203        entry->disk_len = disk_len;
 204        entry->bytes_left = len;
 205        entry->inode = igrab(inode);
 206        entry->compress_type = compress_type;
 207        entry->truncated_len = (u64)-1;
 208        if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 209                set_bit(type, &entry->flags);
 210
 211        if (dio)
 212                set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 213
 214        /* one ref for the tree */
 215        refcount_set(&entry->refs, 1);
 216        init_waitqueue_head(&entry->wait);
 217        INIT_LIST_HEAD(&entry->list);
 218        INIT_LIST_HEAD(&entry->root_extent_list);
 219        INIT_LIST_HEAD(&entry->work_list);
 220        init_completion(&entry->completion);
 221        INIT_LIST_HEAD(&entry->log_list);
 222        INIT_LIST_HEAD(&entry->trans_list);
 223
 224        trace_btrfs_ordered_extent_add(inode, entry);
 225
 226        spin_lock_irq(&tree->lock);
 227        node = tree_insert(&tree->tree, file_offset,
 228                           &entry->rb_node);
 229        if (node)
 230                ordered_data_tree_panic(inode, -EEXIST, file_offset);
 231        spin_unlock_irq(&tree->lock);
 232
 233        spin_lock(&root->ordered_extent_lock);
 234        list_add_tail(&entry->root_extent_list,
 235                      &root->ordered_extents);
 236        root->nr_ordered_extents++;
 237        if (root->nr_ordered_extents == 1) {
 238                spin_lock(&fs_info->ordered_root_lock);
 239                BUG_ON(!list_empty(&root->ordered_root));
 240                list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 241                spin_unlock(&fs_info->ordered_root_lock);
 242        }
 243        spin_unlock(&root->ordered_extent_lock);
 244
 245        /*
 246         * We don't need the count_max_extents here, we can assume that all of
 247         * that work has been done at higher layers, so this is truly the
 248         * smallest the extent is going to get.
 249         */
 250        spin_lock(&BTRFS_I(inode)->lock);
 251        btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
 252        spin_unlock(&BTRFS_I(inode)->lock);
 253
 254        return 0;
 255}
 256
 257int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 258                             u64 start, u64 len, u64 disk_len, int type)
 259{
 260        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 261                                          disk_len, type, 0,
 262                                          BTRFS_COMPRESS_NONE);
 263}
 264
 265int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 266                                 u64 start, u64 len, u64 disk_len, int type)
 267{
 268        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 269                                          disk_len, type, 1,
 270                                          BTRFS_COMPRESS_NONE);
 271}
 272
 273int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 274                                      u64 start, u64 len, u64 disk_len,
 275                                      int type, int compress_type)
 276{
 277        return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 278                                          disk_len, type, 0,
 279                                          compress_type);
 280}
 281
 282/*
 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 284 * when an ordered extent is finished.  If the list covers more than one
 285 * ordered extent, it is split across multiples.
 286 */
 287void btrfs_add_ordered_sum(struct inode *inode,
 288                           struct btrfs_ordered_extent *entry,
 289                           struct btrfs_ordered_sum *sum)
 290{
 291        struct btrfs_ordered_inode_tree *tree;
 292
 293        tree = &BTRFS_I(inode)->ordered_tree;
 294        spin_lock_irq(&tree->lock);
 295        list_add_tail(&sum->list, &entry->list);
 296        spin_unlock_irq(&tree->lock);
 297}
 298
 299/*
 300 * this is used to account for finished IO across a given range
 301 * of the file.  The IO may span ordered extents.  If
 302 * a given ordered_extent is completely done, 1 is returned, otherwise
 303 * 0.
 304 *
 305 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 306 * to make sure this function only returns 1 once for a given ordered extent.
 307 *
 308 * file_offset is updated to one byte past the range that is recorded as
 309 * complete.  This allows you to walk forward in the file.
 310 */
 311int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 312                                   struct btrfs_ordered_extent **cached,
 313                                   u64 *file_offset, u64 io_size, int uptodate)
 314{
 315        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 316        struct btrfs_ordered_inode_tree *tree;
 317        struct rb_node *node;
 318        struct btrfs_ordered_extent *entry = NULL;
 319        int ret;
 320        unsigned long flags;
 321        u64 dec_end;
 322        u64 dec_start;
 323        u64 to_dec;
 324
 325        tree = &BTRFS_I(inode)->ordered_tree;
 326        spin_lock_irqsave(&tree->lock, flags);
 327        node = tree_search(tree, *file_offset);
 328        if (!node) {
 329                ret = 1;
 330                goto out;
 331        }
 332
 333        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 334        if (!offset_in_entry(entry, *file_offset)) {
 335                ret = 1;
 336                goto out;
 337        }
 338
 339        dec_start = max(*file_offset, entry->file_offset);
 340        dec_end = min(*file_offset + io_size, entry->file_offset +
 341                      entry->len);
 342        *file_offset = dec_end;
 343        if (dec_start > dec_end) {
 344                btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
 345                           dec_start, dec_end);
 346        }
 347        to_dec = dec_end - dec_start;
 348        if (to_dec > entry->bytes_left) {
 349                btrfs_crit(fs_info,
 350                           "bad ordered accounting left %llu size %llu",
 351                           entry->bytes_left, to_dec);
 352        }
 353        entry->bytes_left -= to_dec;
 354        if (!uptodate)
 355                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 356
 357        if (entry->bytes_left == 0) {
 358                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 359                /*
 360                 * Implicit memory barrier after test_and_set_bit
 361                 */
 362                if (waitqueue_active(&entry->wait))
 363                        wake_up(&entry->wait);
 364        } else {
 365                ret = 1;
 366        }
 367out:
 368        if (!ret && cached && entry) {
 369                *cached = entry;
 370                refcount_inc(&entry->refs);
 371        }
 372        spin_unlock_irqrestore(&tree->lock, flags);
 373        return ret == 0;
 374}
 375
 376/*
 377 * this is used to account for finished IO across a given range
 378 * of the file.  The IO should not span ordered extents.  If
 379 * a given ordered_extent is completely done, 1 is returned, otherwise
 380 * 0.
 381 *
 382 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 383 * to make sure this function only returns 1 once for a given ordered extent.
 384 */
 385int btrfs_dec_test_ordered_pending(struct inode *inode,
 386                                   struct btrfs_ordered_extent **cached,
 387                                   u64 file_offset, u64 io_size, int uptodate)
 388{
 389        struct btrfs_ordered_inode_tree *tree;
 390        struct rb_node *node;
 391        struct btrfs_ordered_extent *entry = NULL;
 392        unsigned long flags;
 393        int ret;
 394
 395        tree = &BTRFS_I(inode)->ordered_tree;
 396        spin_lock_irqsave(&tree->lock, flags);
 397        if (cached && *cached) {
 398                entry = *cached;
 399                goto have_entry;
 400        }
 401
 402        node = tree_search(tree, file_offset);
 403        if (!node) {
 404                ret = 1;
 405                goto out;
 406        }
 407
 408        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 409have_entry:
 410        if (!offset_in_entry(entry, file_offset)) {
 411                ret = 1;
 412                goto out;
 413        }
 414
 415        if (io_size > entry->bytes_left) {
 416                btrfs_crit(BTRFS_I(inode)->root->fs_info,
 417                           "bad ordered accounting left %llu size %llu",
 418                       entry->bytes_left, io_size);
 419        }
 420        entry->bytes_left -= io_size;
 421        if (!uptodate)
 422                set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 423
 424        if (entry->bytes_left == 0) {
 425                ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 426                /*
 427                 * Implicit memory barrier after test_and_set_bit
 428                 */
 429                if (waitqueue_active(&entry->wait))
 430                        wake_up(&entry->wait);
 431        } else {
 432                ret = 1;
 433        }
 434out:
 435        if (!ret && cached && entry) {
 436                *cached = entry;
 437                refcount_inc(&entry->refs);
 438        }
 439        spin_unlock_irqrestore(&tree->lock, flags);
 440        return ret == 0;
 441}
 442
 443/* Needs to either be called under a log transaction or the log_mutex */
 444void btrfs_get_logged_extents(struct btrfs_inode *inode,
 445                              struct list_head *logged_list,
 446                              const loff_t start,
 447                              const loff_t end)
 448{
 449        struct btrfs_ordered_inode_tree *tree;
 450        struct btrfs_ordered_extent *ordered;
 451        struct rb_node *n;
 452        struct rb_node *prev;
 453
 454        tree = &inode->ordered_tree;
 455        spin_lock_irq(&tree->lock);
 456        n = __tree_search(&tree->tree, end, &prev);
 457        if (!n)
 458                n = prev;
 459        for (; n; n = rb_prev(n)) {
 460                ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 461                if (ordered->file_offset > end)
 462                        continue;
 463                if (entry_end(ordered) <= start)
 464                        break;
 465                if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 466                        continue;
 467                list_add(&ordered->log_list, logged_list);
 468                refcount_inc(&ordered->refs);
 469        }
 470        spin_unlock_irq(&tree->lock);
 471}
 472
 473void btrfs_put_logged_extents(struct list_head *logged_list)
 474{
 475        struct btrfs_ordered_extent *ordered;
 476
 477        while (!list_empty(logged_list)) {
 478                ordered = list_first_entry(logged_list,
 479                                           struct btrfs_ordered_extent,
 480                                           log_list);
 481                list_del_init(&ordered->log_list);
 482                btrfs_put_ordered_extent(ordered);
 483        }
 484}
 485
 486void btrfs_submit_logged_extents(struct list_head *logged_list,
 487                                 struct btrfs_root *log)
 488{
 489        int index = log->log_transid % 2;
 490
 491        spin_lock_irq(&log->log_extents_lock[index]);
 492        list_splice_tail(logged_list, &log->logged_list[index]);
 493        spin_unlock_irq(&log->log_extents_lock[index]);
 494}
 495
 496void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
 497                               struct btrfs_root *log, u64 transid)
 498{
 499        struct btrfs_ordered_extent *ordered;
 500        int index = transid % 2;
 501
 502        spin_lock_irq(&log->log_extents_lock[index]);
 503        while (!list_empty(&log->logged_list[index])) {
 504                struct inode *inode;
 505                ordered = list_first_entry(&log->logged_list[index],
 506                                           struct btrfs_ordered_extent,
 507                                           log_list);
 508                list_del_init(&ordered->log_list);
 509                inode = ordered->inode;
 510                spin_unlock_irq(&log->log_extents_lock[index]);
 511
 512                if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 513                    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 514                        u64 start = ordered->file_offset;
 515                        u64 end = ordered->file_offset + ordered->len - 1;
 516
 517                        WARN_ON(!inode);
 518                        filemap_fdatawrite_range(inode->i_mapping, start, end);
 519                }
 520                wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 521                                                   &ordered->flags));
 522
 523                /*
 524                 * In order to keep us from losing our ordered extent
 525                 * information when committing the transaction we have to make
 526                 * sure that any logged extents are completed when we go to
 527                 * commit the transaction.  To do this we simply increase the
 528                 * current transactions pending_ordered counter and decrement it
 529                 * when the ordered extent completes.
 530                 */
 531                if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 532                        struct btrfs_ordered_inode_tree *tree;
 533
 534                        tree = &BTRFS_I(inode)->ordered_tree;
 535                        spin_lock_irq(&tree->lock);
 536                        if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 537                                set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
 538                                atomic_inc(&trans->transaction->pending_ordered);
 539                        }
 540                        spin_unlock_irq(&tree->lock);
 541                }
 542                btrfs_put_ordered_extent(ordered);
 543                spin_lock_irq(&log->log_extents_lock[index]);
 544        }
 545        spin_unlock_irq(&log->log_extents_lock[index]);
 546}
 547
 548void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 549{
 550        struct btrfs_ordered_extent *ordered;
 551        int index = transid % 2;
 552
 553        spin_lock_irq(&log->log_extents_lock[index]);
 554        while (!list_empty(&log->logged_list[index])) {
 555                ordered = list_first_entry(&log->logged_list[index],
 556                                           struct btrfs_ordered_extent,
 557                                           log_list);
 558                list_del_init(&ordered->log_list);
 559                spin_unlock_irq(&log->log_extents_lock[index]);
 560                btrfs_put_ordered_extent(ordered);
 561                spin_lock_irq(&log->log_extents_lock[index]);
 562        }
 563        spin_unlock_irq(&log->log_extents_lock[index]);
 564}
 565
 566/*
 567 * used to drop a reference on an ordered extent.  This will free
 568 * the extent if the last reference is dropped
 569 */
 570void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 571{
 572        struct list_head *cur;
 573        struct btrfs_ordered_sum *sum;
 574
 575        trace_btrfs_ordered_extent_put(entry->inode, entry);
 576
 577        if (refcount_dec_and_test(&entry->refs)) {
 578                ASSERT(list_empty(&entry->log_list));
 579                ASSERT(list_empty(&entry->trans_list));
 580                ASSERT(list_empty(&entry->root_extent_list));
 581                ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 582                if (entry->inode)
 583                        btrfs_add_delayed_iput(entry->inode);
 584                while (!list_empty(&entry->list)) {
 585                        cur = entry->list.next;
 586                        sum = list_entry(cur, struct btrfs_ordered_sum, list);
 587                        list_del(&sum->list);
 588                        kfree(sum);
 589                }
 590                kmem_cache_free(btrfs_ordered_extent_cache, entry);
 591        }
 592}
 593
 594/*
 595 * remove an ordered extent from the tree.  No references are dropped
 596 * and waiters are woken up.
 597 */
 598void btrfs_remove_ordered_extent(struct inode *inode,
 599                                 struct btrfs_ordered_extent *entry)
 600{
 601        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 602        struct btrfs_ordered_inode_tree *tree;
 603        struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
 604        struct btrfs_root *root = btrfs_inode->root;
 605        struct rb_node *node;
 606        bool dec_pending_ordered = false;
 607
 608        /* This is paired with btrfs_add_ordered_extent. */
 609        spin_lock(&btrfs_inode->lock);
 610        btrfs_mod_outstanding_extents(btrfs_inode, -1);
 611        spin_unlock(&btrfs_inode->lock);
 612        if (root != fs_info->tree_root)
 613                btrfs_delalloc_release_metadata(btrfs_inode, entry->len);
 614
 615        tree = &btrfs_inode->ordered_tree;
 616        spin_lock_irq(&tree->lock);
 617        node = &entry->rb_node;
 618        rb_erase(node, &tree->tree);
 619        RB_CLEAR_NODE(node);
 620        if (tree->last == node)
 621                tree->last = NULL;
 622        set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 623        if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 624                dec_pending_ordered = true;
 625        spin_unlock_irq(&tree->lock);
 626
 627        /*
 628         * The current running transaction is waiting on us, we need to let it
 629         * know that we're complete and wake it up.
 630         */
 631        if (dec_pending_ordered) {
 632                struct btrfs_transaction *trans;
 633
 634                /*
 635                 * The checks for trans are just a formality, it should be set,
 636                 * but if it isn't we don't want to deref/assert under the spin
 637                 * lock, so be nice and check if trans is set, but ASSERT() so
 638                 * if it isn't set a developer will notice.
 639                 */
 640                spin_lock(&fs_info->trans_lock);
 641                trans = fs_info->running_transaction;
 642                if (trans)
 643                        refcount_inc(&trans->use_count);
 644                spin_unlock(&fs_info->trans_lock);
 645
 646                ASSERT(trans);
 647                if (trans) {
 648                        if (atomic_dec_and_test(&trans->pending_ordered))
 649                                wake_up(&trans->pending_wait);
 650                        btrfs_put_transaction(trans);
 651                }
 652        }
 653
 654        spin_lock(&root->ordered_extent_lock);
 655        list_del_init(&entry->root_extent_list);
 656        root->nr_ordered_extents--;
 657
 658        trace_btrfs_ordered_extent_remove(inode, entry);
 659
 660        if (!root->nr_ordered_extents) {
 661                spin_lock(&fs_info->ordered_root_lock);
 662                BUG_ON(list_empty(&root->ordered_root));
 663                list_del_init(&root->ordered_root);
 664                spin_unlock(&fs_info->ordered_root_lock);
 665        }
 666        spin_unlock(&root->ordered_extent_lock);
 667        wake_up(&entry->wait);
 668}
 669
 670static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 671{
 672        struct btrfs_ordered_extent *ordered;
 673
 674        ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 675        btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 676        complete(&ordered->completion);
 677}
 678
 679/*
 680 * wait for all the ordered extents in a root.  This is done when balancing
 681 * space between drives.
 682 */
 683u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 684                               const u64 range_start, const u64 range_len)
 685{
 686        struct btrfs_fs_info *fs_info = root->fs_info;
 687        LIST_HEAD(splice);
 688        LIST_HEAD(skipped);
 689        LIST_HEAD(works);
 690        struct btrfs_ordered_extent *ordered, *next;
 691        u64 count = 0;
 692        const u64 range_end = range_start + range_len;
 693
 694        mutex_lock(&root->ordered_extent_mutex);
 695        spin_lock(&root->ordered_extent_lock);
 696        list_splice_init(&root->ordered_extents, &splice);
 697        while (!list_empty(&splice) && nr) {
 698                ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 699                                           root_extent_list);
 700
 701                if (range_end <= ordered->start ||
 702                    ordered->start + ordered->disk_len <= range_start) {
 703                        list_move_tail(&ordered->root_extent_list, &skipped);
 704                        cond_resched_lock(&root->ordered_extent_lock);
 705                        continue;
 706                }
 707
 708                list_move_tail(&ordered->root_extent_list,
 709                               &root->ordered_extents);
 710                refcount_inc(&ordered->refs);
 711                spin_unlock(&root->ordered_extent_lock);
 712
 713                btrfs_init_work(&ordered->flush_work,
 714                                btrfs_flush_delalloc_helper,
 715                                btrfs_run_ordered_extent_work, NULL, NULL);
 716                list_add_tail(&ordered->work_list, &works);
 717                btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 718
 719                cond_resched();
 720                spin_lock(&root->ordered_extent_lock);
 721                if (nr != U64_MAX)
 722                        nr--;
 723                count++;
 724        }
 725        list_splice_tail(&skipped, &root->ordered_extents);
 726        list_splice_tail(&splice, &root->ordered_extents);
 727        spin_unlock(&root->ordered_extent_lock);
 728
 729        list_for_each_entry_safe(ordered, next, &works, work_list) {
 730                list_del_init(&ordered->work_list);
 731                wait_for_completion(&ordered->completion);
 732                btrfs_put_ordered_extent(ordered);
 733                cond_resched();
 734        }
 735        mutex_unlock(&root->ordered_extent_mutex);
 736
 737        return count;
 738}
 739
 740u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 741                             const u64 range_start, const u64 range_len)
 742{
 743        struct btrfs_root *root;
 744        struct list_head splice;
 745        u64 total_done = 0;
 746        u64 done;
 747
 748        INIT_LIST_HEAD(&splice);
 749
 750        mutex_lock(&fs_info->ordered_operations_mutex);
 751        spin_lock(&fs_info->ordered_root_lock);
 752        list_splice_init(&fs_info->ordered_roots, &splice);
 753        while (!list_empty(&splice) && nr) {
 754                root = list_first_entry(&splice, struct btrfs_root,
 755                                        ordered_root);
 756                root = btrfs_grab_fs_root(root);
 757                BUG_ON(!root);
 758                list_move_tail(&root->ordered_root,
 759                               &fs_info->ordered_roots);
 760                spin_unlock(&fs_info->ordered_root_lock);
 761
 762                done = btrfs_wait_ordered_extents(root, nr,
 763                                                  range_start, range_len);
 764                btrfs_put_fs_root(root);
 765                total_done += done;
 766
 767                spin_lock(&fs_info->ordered_root_lock);
 768                if (nr != U64_MAX) {
 769                        nr -= done;
 770                }
 771        }
 772        list_splice_tail(&splice, &fs_info->ordered_roots);
 773        spin_unlock(&fs_info->ordered_root_lock);
 774        mutex_unlock(&fs_info->ordered_operations_mutex);
 775
 776        return total_done;
 777}
 778
 779/*
 780 * Used to start IO or wait for a given ordered extent to finish.
 781 *
 782 * If wait is one, this effectively waits on page writeback for all the pages
 783 * in the extent, and it waits on the io completion code to insert
 784 * metadata into the btree corresponding to the extent
 785 */
 786void btrfs_start_ordered_extent(struct inode *inode,
 787                                       struct btrfs_ordered_extent *entry,
 788                                       int wait)
 789{
 790        u64 start = entry->file_offset;
 791        u64 end = start + entry->len - 1;
 792
 793        trace_btrfs_ordered_extent_start(inode, entry);
 794
 795        /*
 796         * pages in the range can be dirty, clean or writeback.  We
 797         * start IO on any dirty ones so the wait doesn't stall waiting
 798         * for the flusher thread to find them
 799         */
 800        if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 801                filemap_fdatawrite_range(inode->i_mapping, start, end);
 802        if (wait) {
 803                wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 804                                                 &entry->flags));
 805        }
 806}
 807
 808/*
 809 * Used to wait on ordered extents across a large range of bytes.
 810 */
 811int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 812{
 813        int ret = 0;
 814        int ret_wb = 0;
 815        u64 end;
 816        u64 orig_end;
 817        struct btrfs_ordered_extent *ordered;
 818
 819        if (start + len < start) {
 820                orig_end = INT_LIMIT(loff_t);
 821        } else {
 822                orig_end = start + len - 1;
 823                if (orig_end > INT_LIMIT(loff_t))
 824                        orig_end = INT_LIMIT(loff_t);
 825        }
 826
 827        /* start IO across the range first to instantiate any delalloc
 828         * extents
 829         */
 830        ret = btrfs_fdatawrite_range(inode, start, orig_end);
 831        if (ret)
 832                return ret;
 833
 834        /*
 835         * If we have a writeback error don't return immediately. Wait first
 836         * for any ordered extents that haven't completed yet. This is to make
 837         * sure no one can dirty the same page ranges and call writepages()
 838         * before the ordered extents complete - to avoid failures (-EEXIST)
 839         * when adding the new ordered extents to the ordered tree.
 840         */
 841        ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 842
 843        end = orig_end;
 844        while (1) {
 845                ordered = btrfs_lookup_first_ordered_extent(inode, end);
 846                if (!ordered)
 847                        break;
 848                if (ordered->file_offset > orig_end) {
 849                        btrfs_put_ordered_extent(ordered);
 850                        break;
 851                }
 852                if (ordered->file_offset + ordered->len <= start) {
 853                        btrfs_put_ordered_extent(ordered);
 854                        break;
 855                }
 856                btrfs_start_ordered_extent(inode, ordered, 1);
 857                end = ordered->file_offset;
 858                if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 859                        ret = -EIO;
 860                btrfs_put_ordered_extent(ordered);
 861                if (ret || end == 0 || end == start)
 862                        break;
 863                end--;
 864        }
 865        return ret_wb ? ret_wb : ret;
 866}
 867
 868/*
 869 * find an ordered extent corresponding to file_offset.  return NULL if
 870 * nothing is found, otherwise take a reference on the extent and return it
 871 */
 872struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 873                                                         u64 file_offset)
 874{
 875        struct btrfs_ordered_inode_tree *tree;
 876        struct rb_node *node;
 877        struct btrfs_ordered_extent *entry = NULL;
 878
 879        tree = &BTRFS_I(inode)->ordered_tree;
 880        spin_lock_irq(&tree->lock);
 881        node = tree_search(tree, file_offset);
 882        if (!node)
 883                goto out;
 884
 885        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 886        if (!offset_in_entry(entry, file_offset))
 887                entry = NULL;
 888        if (entry)
 889                refcount_inc(&entry->refs);
 890out:
 891        spin_unlock_irq(&tree->lock);
 892        return entry;
 893}
 894
 895/* Since the DIO code tries to lock a wide area we need to look for any ordered
 896 * extents that exist in the range, rather than just the start of the range.
 897 */
 898struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 899                struct btrfs_inode *inode, u64 file_offset, u64 len)
 900{
 901        struct btrfs_ordered_inode_tree *tree;
 902        struct rb_node *node;
 903        struct btrfs_ordered_extent *entry = NULL;
 904
 905        tree = &inode->ordered_tree;
 906        spin_lock_irq(&tree->lock);
 907        node = tree_search(tree, file_offset);
 908        if (!node) {
 909                node = tree_search(tree, file_offset + len);
 910                if (!node)
 911                        goto out;
 912        }
 913
 914        while (1) {
 915                entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 916                if (range_overlaps(entry, file_offset, len))
 917                        break;
 918
 919                if (entry->file_offset >= file_offset + len) {
 920                        entry = NULL;
 921                        break;
 922                }
 923                entry = NULL;
 924                node = rb_next(node);
 925                if (!node)
 926                        break;
 927        }
 928out:
 929        if (entry)
 930                refcount_inc(&entry->refs);
 931        spin_unlock_irq(&tree->lock);
 932        return entry;
 933}
 934
 935bool btrfs_have_ordered_extents_in_range(struct inode *inode,
 936                                         u64 file_offset,
 937                                         u64 len)
 938{
 939        struct btrfs_ordered_extent *oe;
 940
 941        oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
 942        if (oe) {
 943                btrfs_put_ordered_extent(oe);
 944                return true;
 945        }
 946        return false;
 947}
 948
 949/*
 950 * lookup and return any extent before 'file_offset'.  NULL is returned
 951 * if none is found
 952 */
 953struct btrfs_ordered_extent *
 954btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 955{
 956        struct btrfs_ordered_inode_tree *tree;
 957        struct rb_node *node;
 958        struct btrfs_ordered_extent *entry = NULL;
 959
 960        tree = &BTRFS_I(inode)->ordered_tree;
 961        spin_lock_irq(&tree->lock);
 962        node = tree_search(tree, file_offset);
 963        if (!node)
 964                goto out;
 965
 966        entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 967        refcount_inc(&entry->refs);
 968out:
 969        spin_unlock_irq(&tree->lock);
 970        return entry;
 971}
 972
 973/*
 974 * After an extent is done, call this to conditionally update the on disk
 975 * i_size.  i_size is updated to cover any fully written part of the file.
 976 */
 977int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 978                                struct btrfs_ordered_extent *ordered)
 979{
 980        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 981        u64 disk_i_size;
 982        u64 new_i_size;
 983        u64 i_size = i_size_read(inode);
 984        struct rb_node *node;
 985        struct rb_node *prev = NULL;
 986        struct btrfs_ordered_extent *test;
 987        int ret = 1;
 988        u64 orig_offset = offset;
 989
 990        spin_lock_irq(&tree->lock);
 991        if (ordered) {
 992                offset = entry_end(ordered);
 993                if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 994                        offset = min(offset,
 995                                     ordered->file_offset +
 996                                     ordered->truncated_len);
 997        } else {
 998                offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
 999        }
1000        disk_i_size = BTRFS_I(inode)->disk_i_size;
1001
1002        /*
1003         * truncate file.
1004         * If ordered is not NULL, then this is called from endio and
1005         * disk_i_size will be updated by either truncate itself or any
1006         * in-flight IOs which are inside the disk_i_size.
1007         *
1008         * Because btrfs_setsize() may set i_size with disk_i_size if truncate
1009         * fails somehow, we need to make sure we have a precise disk_i_size by
1010         * updating it as usual.
1011         *
1012         */
1013        if (!ordered && disk_i_size > i_size) {
1014                BTRFS_I(inode)->disk_i_size = orig_offset;
1015                ret = 0;
1016                goto out;
1017        }
1018
1019        /*
1020         * if the disk i_size is already at the inode->i_size, or
1021         * this ordered extent is inside the disk i_size, we're done
1022         */
1023        if (disk_i_size == i_size)
1024                goto out;
1025
1026        /*
1027         * We still need to update disk_i_size if outstanding_isize is greater
1028         * than disk_i_size.
1029         */
1030        if (offset <= disk_i_size &&
1031            (!ordered || ordered->outstanding_isize <= disk_i_size))
1032                goto out;
1033
1034        /*
1035         * walk backward from this ordered extent to disk_i_size.
1036         * if we find an ordered extent then we can't update disk i_size
1037         * yet
1038         */
1039        if (ordered) {
1040                node = rb_prev(&ordered->rb_node);
1041        } else {
1042                prev = tree_search(tree, offset);
1043                /*
1044                 * we insert file extents without involving ordered struct,
1045                 * so there should be no ordered struct cover this offset
1046                 */
1047                if (prev) {
1048                        test = rb_entry(prev, struct btrfs_ordered_extent,
1049                                        rb_node);
1050                        BUG_ON(offset_in_entry(test, offset));
1051                }
1052                node = prev;
1053        }
1054        for (; node; node = rb_prev(node)) {
1055                test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1056
1057                /* We treat this entry as if it doesn't exist */
1058                if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1059                        continue;
1060
1061                if (entry_end(test) <= disk_i_size)
1062                        break;
1063                if (test->file_offset >= i_size)
1064                        break;
1065
1066                /*
1067                 * We don't update disk_i_size now, so record this undealt
1068                 * i_size. Or we will not know the real i_size.
1069                 */
1070                if (test->outstanding_isize < offset)
1071                        test->outstanding_isize = offset;
1072                if (ordered &&
1073                    ordered->outstanding_isize > test->outstanding_isize)
1074                        test->outstanding_isize = ordered->outstanding_isize;
1075                goto out;
1076        }
1077        new_i_size = min_t(u64, offset, i_size);
1078
1079        /*
1080         * Some ordered extents may completed before the current one, and
1081         * we hold the real i_size in ->outstanding_isize.
1082         */
1083        if (ordered && ordered->outstanding_isize > new_i_size)
1084                new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1085        BTRFS_I(inode)->disk_i_size = new_i_size;
1086        ret = 0;
1087out:
1088        /*
1089         * We need to do this because we can't remove ordered extents until
1090         * after the i_disk_size has been updated and then the inode has been
1091         * updated to reflect the change, so we need to tell anybody who finds
1092         * this ordered extent that we've already done all the real work, we
1093         * just haven't completed all the other work.
1094         */
1095        if (ordered)
1096                set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1097        spin_unlock_irq(&tree->lock);
1098        return ret;
1099}
1100
1101/*
1102 * search the ordered extents for one corresponding to 'offset' and
1103 * try to find a checksum.  This is used because we allow pages to
1104 * be reclaimed before their checksum is actually put into the btree
1105 */
1106int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1107                           u32 *sum, int len)
1108{
1109        struct btrfs_ordered_sum *ordered_sum;
1110        struct btrfs_ordered_extent *ordered;
1111        struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1112        unsigned long num_sectors;
1113        unsigned long i;
1114        u32 sectorsize = btrfs_inode_sectorsize(inode);
1115        int index = 0;
1116
1117        ordered = btrfs_lookup_ordered_extent(inode, offset);
1118        if (!ordered)
1119                return 0;
1120
1121        spin_lock_irq(&tree->lock);
1122        list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1123                if (disk_bytenr >= ordered_sum->bytenr &&
1124                    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1125                        i = (disk_bytenr - ordered_sum->bytenr) >>
1126                            inode->i_sb->s_blocksize_bits;
1127                        num_sectors = ordered_sum->len >>
1128                                      inode->i_sb->s_blocksize_bits;
1129                        num_sectors = min_t(int, len - index, num_sectors - i);
1130                        memcpy(sum + index, ordered_sum->sums + i,
1131                               num_sectors);
1132
1133                        index += (int)num_sectors;
1134                        if (index == len)
1135                                goto out;
1136                        disk_bytenr += num_sectors * sectorsize;
1137                }
1138        }
1139out:
1140        spin_unlock_irq(&tree->lock);
1141        btrfs_put_ordered_extent(ordered);
1142        return index;
1143}
1144
1145int __init ordered_data_init(void)
1146{
1147        btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1148                                     sizeof(struct btrfs_ordered_extent), 0,
1149                                     SLAB_MEM_SPREAD,
1150                                     NULL);
1151        if (!btrfs_ordered_extent_cache)
1152                return -ENOMEM;
1153
1154        return 0;
1155}
1156
1157void ordered_data_exit(void)
1158{
1159        kmem_cache_destroy(btrfs_ordered_extent_cache);
1160}
1161