linux/fs/btrfs/raid56.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/mm.h>
  35#include <asm/div64.h>
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT     1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT          2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT    3
  60
  61#define RBIO_CACHE_SIZE 1024
  62
  63enum btrfs_rbio_ops {
  64        BTRFS_RBIO_WRITE,
  65        BTRFS_RBIO_READ_REBUILD,
  66        BTRFS_RBIO_PARITY_SCRUB,
  67        BTRFS_RBIO_REBUILD_MISSING,
  68};
  69
  70struct btrfs_raid_bio {
  71        struct btrfs_fs_info *fs_info;
  72        struct btrfs_bio *bbio;
  73
  74        /* while we're doing rmw on a stripe
  75         * we put it into a hash table so we can
  76         * lock the stripe and merge more rbios
  77         * into it.
  78         */
  79        struct list_head hash_list;
  80
  81        /*
  82         * LRU list for the stripe cache
  83         */
  84        struct list_head stripe_cache;
  85
  86        /*
  87         * for scheduling work in the helper threads
  88         */
  89        struct btrfs_work work;
  90
  91        /*
  92         * bio list and bio_list_lock are used
  93         * to add more bios into the stripe
  94         * in hopes of avoiding the full rmw
  95         */
  96        struct bio_list bio_list;
  97        spinlock_t bio_list_lock;
  98
  99        /* also protected by the bio_list_lock, the
 100         * plug list is used by the plugging code
 101         * to collect partial bios while plugged.  The
 102         * stripe locking code also uses it to hand off
 103         * the stripe lock to the next pending IO
 104         */
 105        struct list_head plug_list;
 106
 107        /*
 108         * flags that tell us if it is safe to
 109         * merge with this bio
 110         */
 111        unsigned long flags;
 112
 113        /* size of each individual stripe on disk */
 114        int stripe_len;
 115
 116        /* number of data stripes (no p/q) */
 117        int nr_data;
 118
 119        int real_stripes;
 120
 121        int stripe_npages;
 122        /*
 123         * set if we're doing a parity rebuild
 124         * for a read from higher up, which is handled
 125         * differently from a parity rebuild as part of
 126         * rmw
 127         */
 128        enum btrfs_rbio_ops operation;
 129
 130        /* first bad stripe */
 131        int faila;
 132
 133        /* second bad stripe (for raid6 use) */
 134        int failb;
 135
 136        int scrubp;
 137        /*
 138         * number of pages needed to represent the full
 139         * stripe
 140         */
 141        int nr_pages;
 142
 143        /*
 144         * size of all the bios in the bio_list.  This
 145         * helps us decide if the rbio maps to a full
 146         * stripe or not
 147         */
 148        int bio_list_bytes;
 149
 150        int generic_bio_cnt;
 151
 152        refcount_t refs;
 153
 154        atomic_t stripes_pending;
 155
 156        atomic_t error;
 157        /*
 158         * these are two arrays of pointers.  We allocate the
 159         * rbio big enough to hold them both and setup their
 160         * locations when the rbio is allocated
 161         */
 162
 163        /* pointers to pages that we allocated for
 164         * reading/writing stripes directly from the disk (including P/Q)
 165         */
 166        struct page **stripe_pages;
 167
 168        /*
 169         * pointers to the pages in the bio_list.  Stored
 170         * here for faster lookup
 171         */
 172        struct page **bio_pages;
 173
 174        /*
 175         * bitmap to record which horizontal stripe has data
 176         */
 177        unsigned long *dbitmap;
 178};
 179
 180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 182static void rmw_work(struct btrfs_work *work);
 183static void read_rebuild_work(struct btrfs_work *work);
 184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 191
 192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 193                                         int need_check);
 194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
 195
 196/*
 197 * the stripe hash table is used for locking, and to collect
 198 * bios in hopes of making a full stripe
 199 */
 200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 201{
 202        struct btrfs_stripe_hash_table *table;
 203        struct btrfs_stripe_hash_table *x;
 204        struct btrfs_stripe_hash *cur;
 205        struct btrfs_stripe_hash *h;
 206        int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 207        int i;
 208        int table_size;
 209
 210        if (info->stripe_hash_table)
 211                return 0;
 212
 213        /*
 214         * The table is large, starting with order 4 and can go as high as
 215         * order 7 in case lock debugging is turned on.
 216         *
 217         * Try harder to allocate and fallback to vmalloc to lower the chance
 218         * of a failing mount.
 219         */
 220        table_size = sizeof(*table) + sizeof(*h) * num_entries;
 221        table = kvzalloc(table_size, GFP_KERNEL);
 222        if (!table)
 223                return -ENOMEM;
 224
 225        spin_lock_init(&table->cache_lock);
 226        INIT_LIST_HEAD(&table->stripe_cache);
 227
 228        h = table->table;
 229
 230        for (i = 0; i < num_entries; i++) {
 231                cur = h + i;
 232                INIT_LIST_HEAD(&cur->hash_list);
 233                spin_lock_init(&cur->lock);
 234                init_waitqueue_head(&cur->wait);
 235        }
 236
 237        x = cmpxchg(&info->stripe_hash_table, NULL, table);
 238        if (x)
 239                kvfree(x);
 240        return 0;
 241}
 242
 243/*
 244 * caching an rbio means to copy anything from the
 245 * bio_pages array into the stripe_pages array.  We
 246 * use the page uptodate bit in the stripe cache array
 247 * to indicate if it has valid data
 248 *
 249 * once the caching is done, we set the cache ready
 250 * bit.
 251 */
 252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 253{
 254        int i;
 255        char *s;
 256        char *d;
 257        int ret;
 258
 259        ret = alloc_rbio_pages(rbio);
 260        if (ret)
 261                return;
 262
 263        for (i = 0; i < rbio->nr_pages; i++) {
 264                if (!rbio->bio_pages[i])
 265                        continue;
 266
 267                s = kmap(rbio->bio_pages[i]);
 268                d = kmap(rbio->stripe_pages[i]);
 269
 270                memcpy(d, s, PAGE_SIZE);
 271
 272                kunmap(rbio->bio_pages[i]);
 273                kunmap(rbio->stripe_pages[i]);
 274                SetPageUptodate(rbio->stripe_pages[i]);
 275        }
 276        set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 277}
 278
 279/*
 280 * we hash on the first logical address of the stripe
 281 */
 282static int rbio_bucket(struct btrfs_raid_bio *rbio)
 283{
 284        u64 num = rbio->bbio->raid_map[0];
 285
 286        /*
 287         * we shift down quite a bit.  We're using byte
 288         * addressing, and most of the lower bits are zeros.
 289         * This tends to upset hash_64, and it consistently
 290         * returns just one or two different values.
 291         *
 292         * shifting off the lower bits fixes things.
 293         */
 294        return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 295}
 296
 297/*
 298 * stealing an rbio means taking all the uptodate pages from the stripe
 299 * array in the source rbio and putting them into the destination rbio
 300 */
 301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 302{
 303        int i;
 304        struct page *s;
 305        struct page *d;
 306
 307        if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 308                return;
 309
 310        for (i = 0; i < dest->nr_pages; i++) {
 311                s = src->stripe_pages[i];
 312                if (!s || !PageUptodate(s)) {
 313                        continue;
 314                }
 315
 316                d = dest->stripe_pages[i];
 317                if (d)
 318                        __free_page(d);
 319
 320                dest->stripe_pages[i] = s;
 321                src->stripe_pages[i] = NULL;
 322        }
 323}
 324
 325/*
 326 * merging means we take the bio_list from the victim and
 327 * splice it into the destination.  The victim should
 328 * be discarded afterwards.
 329 *
 330 * must be called with dest->rbio_list_lock held
 331 */
 332static void merge_rbio(struct btrfs_raid_bio *dest,
 333                       struct btrfs_raid_bio *victim)
 334{
 335        bio_list_merge(&dest->bio_list, &victim->bio_list);
 336        dest->bio_list_bytes += victim->bio_list_bytes;
 337        dest->generic_bio_cnt += victim->generic_bio_cnt;
 338        bio_list_init(&victim->bio_list);
 339}
 340
 341/*
 342 * used to prune items that are in the cache.  The caller
 343 * must hold the hash table lock.
 344 */
 345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 346{
 347        int bucket = rbio_bucket(rbio);
 348        struct btrfs_stripe_hash_table *table;
 349        struct btrfs_stripe_hash *h;
 350        int freeit = 0;
 351
 352        /*
 353         * check the bit again under the hash table lock.
 354         */
 355        if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 356                return;
 357
 358        table = rbio->fs_info->stripe_hash_table;
 359        h = table->table + bucket;
 360
 361        /* hold the lock for the bucket because we may be
 362         * removing it from the hash table
 363         */
 364        spin_lock(&h->lock);
 365
 366        /*
 367         * hold the lock for the bio list because we need
 368         * to make sure the bio list is empty
 369         */
 370        spin_lock(&rbio->bio_list_lock);
 371
 372        if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 373                list_del_init(&rbio->stripe_cache);
 374                table->cache_size -= 1;
 375                freeit = 1;
 376
 377                /* if the bio list isn't empty, this rbio is
 378                 * still involved in an IO.  We take it out
 379                 * of the cache list, and drop the ref that
 380                 * was held for the list.
 381                 *
 382                 * If the bio_list was empty, we also remove
 383                 * the rbio from the hash_table, and drop
 384                 * the corresponding ref
 385                 */
 386                if (bio_list_empty(&rbio->bio_list)) {
 387                        if (!list_empty(&rbio->hash_list)) {
 388                                list_del_init(&rbio->hash_list);
 389                                refcount_dec(&rbio->refs);
 390                                BUG_ON(!list_empty(&rbio->plug_list));
 391                        }
 392                }
 393        }
 394
 395        spin_unlock(&rbio->bio_list_lock);
 396        spin_unlock(&h->lock);
 397
 398        if (freeit)
 399                __free_raid_bio(rbio);
 400}
 401
 402/*
 403 * prune a given rbio from the cache
 404 */
 405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 406{
 407        struct btrfs_stripe_hash_table *table;
 408        unsigned long flags;
 409
 410        if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 411                return;
 412
 413        table = rbio->fs_info->stripe_hash_table;
 414
 415        spin_lock_irqsave(&table->cache_lock, flags);
 416        __remove_rbio_from_cache(rbio);
 417        spin_unlock_irqrestore(&table->cache_lock, flags);
 418}
 419
 420/*
 421 * remove everything in the cache
 422 */
 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 424{
 425        struct btrfs_stripe_hash_table *table;
 426        unsigned long flags;
 427        struct btrfs_raid_bio *rbio;
 428
 429        table = info->stripe_hash_table;
 430
 431        spin_lock_irqsave(&table->cache_lock, flags);
 432        while (!list_empty(&table->stripe_cache)) {
 433                rbio = list_entry(table->stripe_cache.next,
 434                                  struct btrfs_raid_bio,
 435                                  stripe_cache);
 436                __remove_rbio_from_cache(rbio);
 437        }
 438        spin_unlock_irqrestore(&table->cache_lock, flags);
 439}
 440
 441/*
 442 * remove all cached entries and free the hash table
 443 * used by unmount
 444 */
 445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 446{
 447        if (!info->stripe_hash_table)
 448                return;
 449        btrfs_clear_rbio_cache(info);
 450        kvfree(info->stripe_hash_table);
 451        info->stripe_hash_table = NULL;
 452}
 453
 454/*
 455 * insert an rbio into the stripe cache.  It
 456 * must have already been prepared by calling
 457 * cache_rbio_pages
 458 *
 459 * If this rbio was already cached, it gets
 460 * moved to the front of the lru.
 461 *
 462 * If the size of the rbio cache is too big, we
 463 * prune an item.
 464 */
 465static void cache_rbio(struct btrfs_raid_bio *rbio)
 466{
 467        struct btrfs_stripe_hash_table *table;
 468        unsigned long flags;
 469
 470        if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 471                return;
 472
 473        table = rbio->fs_info->stripe_hash_table;
 474
 475        spin_lock_irqsave(&table->cache_lock, flags);
 476        spin_lock(&rbio->bio_list_lock);
 477
 478        /* bump our ref if we were not in the list before */
 479        if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 480                refcount_inc(&rbio->refs);
 481
 482        if (!list_empty(&rbio->stripe_cache)){
 483                list_move(&rbio->stripe_cache, &table->stripe_cache);
 484        } else {
 485                list_add(&rbio->stripe_cache, &table->stripe_cache);
 486                table->cache_size += 1;
 487        }
 488
 489        spin_unlock(&rbio->bio_list_lock);
 490
 491        if (table->cache_size > RBIO_CACHE_SIZE) {
 492                struct btrfs_raid_bio *found;
 493
 494                found = list_entry(table->stripe_cache.prev,
 495                                  struct btrfs_raid_bio,
 496                                  stripe_cache);
 497
 498                if (found != rbio)
 499                        __remove_rbio_from_cache(found);
 500        }
 501
 502        spin_unlock_irqrestore(&table->cache_lock, flags);
 503}
 504
 505/*
 506 * helper function to run the xor_blocks api.  It is only
 507 * able to do MAX_XOR_BLOCKS at a time, so we need to
 508 * loop through.
 509 */
 510static void run_xor(void **pages, int src_cnt, ssize_t len)
 511{
 512        int src_off = 0;
 513        int xor_src_cnt = 0;
 514        void *dest = pages[src_cnt];
 515
 516        while(src_cnt > 0) {
 517                xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 518                xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 519
 520                src_cnt -= xor_src_cnt;
 521                src_off += xor_src_cnt;
 522        }
 523}
 524
 525/*
 526 * returns true if the bio list inside this rbio
 527 * covers an entire stripe (no rmw required).
 528 * Must be called with the bio list lock held, or
 529 * at a time when you know it is impossible to add
 530 * new bios into the list
 531 */
 532static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 533{
 534        unsigned long size = rbio->bio_list_bytes;
 535        int ret = 1;
 536
 537        if (size != rbio->nr_data * rbio->stripe_len)
 538                ret = 0;
 539
 540        BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 541        return ret;
 542}
 543
 544static int rbio_is_full(struct btrfs_raid_bio *rbio)
 545{
 546        unsigned long flags;
 547        int ret;
 548
 549        spin_lock_irqsave(&rbio->bio_list_lock, flags);
 550        ret = __rbio_is_full(rbio);
 551        spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 552        return ret;
 553}
 554
 555/*
 556 * returns 1 if it is safe to merge two rbios together.
 557 * The merging is safe if the two rbios correspond to
 558 * the same stripe and if they are both going in the same
 559 * direction (read vs write), and if neither one is
 560 * locked for final IO
 561 *
 562 * The caller is responsible for locking such that
 563 * rmw_locked is safe to test
 564 */
 565static int rbio_can_merge(struct btrfs_raid_bio *last,
 566                          struct btrfs_raid_bio *cur)
 567{
 568        if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 569            test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 570                return 0;
 571
 572        /*
 573         * we can't merge with cached rbios, since the
 574         * idea is that when we merge the destination
 575         * rbio is going to run our IO for us.  We can
 576         * steal from cached rbios though, other functions
 577         * handle that.
 578         */
 579        if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 580            test_bit(RBIO_CACHE_BIT, &cur->flags))
 581                return 0;
 582
 583        if (last->bbio->raid_map[0] !=
 584            cur->bbio->raid_map[0])
 585                return 0;
 586
 587        /* we can't merge with different operations */
 588        if (last->operation != cur->operation)
 589                return 0;
 590        /*
 591         * We've need read the full stripe from the drive.
 592         * check and repair the parity and write the new results.
 593         *
 594         * We're not allowed to add any new bios to the
 595         * bio list here, anyone else that wants to
 596         * change this stripe needs to do their own rmw.
 597         */
 598        if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
 599            cur->operation == BTRFS_RBIO_PARITY_SCRUB)
 600                return 0;
 601
 602        if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 603            cur->operation == BTRFS_RBIO_REBUILD_MISSING)
 604                return 0;
 605
 606        return 1;
 607}
 608
 609static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 610                                  int index)
 611{
 612        return stripe * rbio->stripe_npages + index;
 613}
 614
 615/*
 616 * these are just the pages from the rbio array, not from anything
 617 * the FS sent down to us
 618 */
 619static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 620                                     int index)
 621{
 622        return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 623}
 624
 625/*
 626 * helper to index into the pstripe
 627 */
 628static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 629{
 630        return rbio_stripe_page(rbio, rbio->nr_data, index);
 631}
 632
 633/*
 634 * helper to index into the qstripe, returns null
 635 * if there is no qstripe
 636 */
 637static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 638{
 639        if (rbio->nr_data + 1 == rbio->real_stripes)
 640                return NULL;
 641        return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 642}
 643
 644/*
 645 * The first stripe in the table for a logical address
 646 * has the lock.  rbios are added in one of three ways:
 647 *
 648 * 1) Nobody has the stripe locked yet.  The rbio is given
 649 * the lock and 0 is returned.  The caller must start the IO
 650 * themselves.
 651 *
 652 * 2) Someone has the stripe locked, but we're able to merge
 653 * with the lock owner.  The rbio is freed and the IO will
 654 * start automatically along with the existing rbio.  1 is returned.
 655 *
 656 * 3) Someone has the stripe locked, but we're not able to merge.
 657 * The rbio is added to the lock owner's plug list, or merged into
 658 * an rbio already on the plug list.  When the lock owner unlocks,
 659 * the next rbio on the list is run and the IO is started automatically.
 660 * 1 is returned
 661 *
 662 * If we return 0, the caller still owns the rbio and must continue with
 663 * IO submission.  If we return 1, the caller must assume the rbio has
 664 * already been freed.
 665 */
 666static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 667{
 668        int bucket = rbio_bucket(rbio);
 669        struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 670        struct btrfs_raid_bio *cur;
 671        struct btrfs_raid_bio *pending;
 672        unsigned long flags;
 673        DEFINE_WAIT(wait);
 674        struct btrfs_raid_bio *freeit = NULL;
 675        struct btrfs_raid_bio *cache_drop = NULL;
 676        int ret = 0;
 677
 678        spin_lock_irqsave(&h->lock, flags);
 679        list_for_each_entry(cur, &h->hash_list, hash_list) {
 680                if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 681                        spin_lock(&cur->bio_list_lock);
 682
 683                        /* can we steal this cached rbio's pages? */
 684                        if (bio_list_empty(&cur->bio_list) &&
 685                            list_empty(&cur->plug_list) &&
 686                            test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 687                            !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 688                                list_del_init(&cur->hash_list);
 689                                refcount_dec(&cur->refs);
 690
 691                                steal_rbio(cur, rbio);
 692                                cache_drop = cur;
 693                                spin_unlock(&cur->bio_list_lock);
 694
 695                                goto lockit;
 696                        }
 697
 698                        /* can we merge into the lock owner? */
 699                        if (rbio_can_merge(cur, rbio)) {
 700                                merge_rbio(cur, rbio);
 701                                spin_unlock(&cur->bio_list_lock);
 702                                freeit = rbio;
 703                                ret = 1;
 704                                goto out;
 705                        }
 706
 707
 708                        /*
 709                         * we couldn't merge with the running
 710                         * rbio, see if we can merge with the
 711                         * pending ones.  We don't have to
 712                         * check for rmw_locked because there
 713                         * is no way they are inside finish_rmw
 714                         * right now
 715                         */
 716                        list_for_each_entry(pending, &cur->plug_list,
 717                                            plug_list) {
 718                                if (rbio_can_merge(pending, rbio)) {
 719                                        merge_rbio(pending, rbio);
 720                                        spin_unlock(&cur->bio_list_lock);
 721                                        freeit = rbio;
 722                                        ret = 1;
 723                                        goto out;
 724                                }
 725                        }
 726
 727                        /* no merging, put us on the tail of the plug list,
 728                         * our rbio will be started with the currently
 729                         * running rbio unlocks
 730                         */
 731                        list_add_tail(&rbio->plug_list, &cur->plug_list);
 732                        spin_unlock(&cur->bio_list_lock);
 733                        ret = 1;
 734                        goto out;
 735                }
 736        }
 737lockit:
 738        refcount_inc(&rbio->refs);
 739        list_add(&rbio->hash_list, &h->hash_list);
 740out:
 741        spin_unlock_irqrestore(&h->lock, flags);
 742        if (cache_drop)
 743                remove_rbio_from_cache(cache_drop);
 744        if (freeit)
 745                __free_raid_bio(freeit);
 746        return ret;
 747}
 748
 749/*
 750 * called as rmw or parity rebuild is completed.  If the plug list has more
 751 * rbios waiting for this stripe, the next one on the list will be started
 752 */
 753static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 754{
 755        int bucket;
 756        struct btrfs_stripe_hash *h;
 757        unsigned long flags;
 758        int keep_cache = 0;
 759
 760        bucket = rbio_bucket(rbio);
 761        h = rbio->fs_info->stripe_hash_table->table + bucket;
 762
 763        if (list_empty(&rbio->plug_list))
 764                cache_rbio(rbio);
 765
 766        spin_lock_irqsave(&h->lock, flags);
 767        spin_lock(&rbio->bio_list_lock);
 768
 769        if (!list_empty(&rbio->hash_list)) {
 770                /*
 771                 * if we're still cached and there is no other IO
 772                 * to perform, just leave this rbio here for others
 773                 * to steal from later
 774                 */
 775                if (list_empty(&rbio->plug_list) &&
 776                    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 777                        keep_cache = 1;
 778                        clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 779                        BUG_ON(!bio_list_empty(&rbio->bio_list));
 780                        goto done;
 781                }
 782
 783                list_del_init(&rbio->hash_list);
 784                refcount_dec(&rbio->refs);
 785
 786                /*
 787                 * we use the plug list to hold all the rbios
 788                 * waiting for the chance to lock this stripe.
 789                 * hand the lock over to one of them.
 790                 */
 791                if (!list_empty(&rbio->plug_list)) {
 792                        struct btrfs_raid_bio *next;
 793                        struct list_head *head = rbio->plug_list.next;
 794
 795                        next = list_entry(head, struct btrfs_raid_bio,
 796                                          plug_list);
 797
 798                        list_del_init(&rbio->plug_list);
 799
 800                        list_add(&next->hash_list, &h->hash_list);
 801                        refcount_inc(&next->refs);
 802                        spin_unlock(&rbio->bio_list_lock);
 803                        spin_unlock_irqrestore(&h->lock, flags);
 804
 805                        if (next->operation == BTRFS_RBIO_READ_REBUILD)
 806                                async_read_rebuild(next);
 807                        else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 808                                steal_rbio(rbio, next);
 809                                async_read_rebuild(next);
 810                        } else if (next->operation == BTRFS_RBIO_WRITE) {
 811                                steal_rbio(rbio, next);
 812                                async_rmw_stripe(next);
 813                        } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 814                                steal_rbio(rbio, next);
 815                                async_scrub_parity(next);
 816                        }
 817
 818                        goto done_nolock;
 819                        /*
 820                         * The barrier for this waitqueue_active is not needed,
 821                         * we're protected by h->lock and can't miss a wakeup.
 822                         */
 823                } else if (waitqueue_active(&h->wait)) {
 824                        spin_unlock(&rbio->bio_list_lock);
 825                        spin_unlock_irqrestore(&h->lock, flags);
 826                        wake_up(&h->wait);
 827                        goto done_nolock;
 828                }
 829        }
 830done:
 831        spin_unlock(&rbio->bio_list_lock);
 832        spin_unlock_irqrestore(&h->lock, flags);
 833
 834done_nolock:
 835        if (!keep_cache)
 836                remove_rbio_from_cache(rbio);
 837}
 838
 839static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 840{
 841        int i;
 842
 843        if (!refcount_dec_and_test(&rbio->refs))
 844                return;
 845
 846        WARN_ON(!list_empty(&rbio->stripe_cache));
 847        WARN_ON(!list_empty(&rbio->hash_list));
 848        WARN_ON(!bio_list_empty(&rbio->bio_list));
 849
 850        for (i = 0; i < rbio->nr_pages; i++) {
 851                if (rbio->stripe_pages[i]) {
 852                        __free_page(rbio->stripe_pages[i]);
 853                        rbio->stripe_pages[i] = NULL;
 854                }
 855        }
 856
 857        btrfs_put_bbio(rbio->bbio);
 858        kfree(rbio);
 859}
 860
 861static void free_raid_bio(struct btrfs_raid_bio *rbio)
 862{
 863        unlock_stripe(rbio);
 864        __free_raid_bio(rbio);
 865}
 866
 867/*
 868 * this frees the rbio and runs through all the bios in the
 869 * bio_list and calls end_io on them
 870 */
 871static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 872{
 873        struct bio *cur = bio_list_get(&rbio->bio_list);
 874        struct bio *next;
 875
 876        if (rbio->generic_bio_cnt)
 877                btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 878
 879        free_raid_bio(rbio);
 880
 881        while (cur) {
 882                next = cur->bi_next;
 883                cur->bi_next = NULL;
 884                cur->bi_status = err;
 885                bio_endio(cur);
 886                cur = next;
 887        }
 888}
 889
 890/*
 891 * end io function used by finish_rmw.  When we finally
 892 * get here, we've written a full stripe
 893 */
 894static void raid_write_end_io(struct bio *bio)
 895{
 896        struct btrfs_raid_bio *rbio = bio->bi_private;
 897        blk_status_t err = bio->bi_status;
 898        int max_errors;
 899
 900        if (err)
 901                fail_bio_stripe(rbio, bio);
 902
 903        bio_put(bio);
 904
 905        if (!atomic_dec_and_test(&rbio->stripes_pending))
 906                return;
 907
 908        err = BLK_STS_OK;
 909
 910        /* OK, we have read all the stripes we need to. */
 911        max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 912                     0 : rbio->bbio->max_errors;
 913        if (atomic_read(&rbio->error) > max_errors)
 914                err = BLK_STS_IOERR;
 915
 916        rbio_orig_end_io(rbio, err);
 917}
 918
 919/*
 920 * the read/modify/write code wants to use the original bio for
 921 * any pages it included, and then use the rbio for everything
 922 * else.  This function decides if a given index (stripe number)
 923 * and page number in that stripe fall inside the original bio
 924 * or the rbio.
 925 *
 926 * if you set bio_list_only, you'll get a NULL back for any ranges
 927 * that are outside the bio_list
 928 *
 929 * This doesn't take any refs on anything, you get a bare page pointer
 930 * and the caller must bump refs as required.
 931 *
 932 * You must call index_rbio_pages once before you can trust
 933 * the answers from this function.
 934 */
 935static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 936                                 int index, int pagenr, int bio_list_only)
 937{
 938        int chunk_page;
 939        struct page *p = NULL;
 940
 941        chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 942
 943        spin_lock_irq(&rbio->bio_list_lock);
 944        p = rbio->bio_pages[chunk_page];
 945        spin_unlock_irq(&rbio->bio_list_lock);
 946
 947        if (p || bio_list_only)
 948                return p;
 949
 950        return rbio->stripe_pages[chunk_page];
 951}
 952
 953/*
 954 * number of pages we need for the entire stripe across all the
 955 * drives
 956 */
 957static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 958{
 959        return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 960}
 961
 962/*
 963 * allocation and initial setup for the btrfs_raid_bio.  Not
 964 * this does not allocate any pages for rbio->pages.
 965 */
 966static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 967                                         struct btrfs_bio *bbio,
 968                                         u64 stripe_len)
 969{
 970        struct btrfs_raid_bio *rbio;
 971        int nr_data = 0;
 972        int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 973        int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 974        int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 975        void *p;
 976
 977        rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
 978                       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
 979                       sizeof(long), GFP_NOFS);
 980        if (!rbio)
 981                return ERR_PTR(-ENOMEM);
 982
 983        bio_list_init(&rbio->bio_list);
 984        INIT_LIST_HEAD(&rbio->plug_list);
 985        spin_lock_init(&rbio->bio_list_lock);
 986        INIT_LIST_HEAD(&rbio->stripe_cache);
 987        INIT_LIST_HEAD(&rbio->hash_list);
 988        rbio->bbio = bbio;
 989        rbio->fs_info = fs_info;
 990        rbio->stripe_len = stripe_len;
 991        rbio->nr_pages = num_pages;
 992        rbio->real_stripes = real_stripes;
 993        rbio->stripe_npages = stripe_npages;
 994        rbio->faila = -1;
 995        rbio->failb = -1;
 996        refcount_set(&rbio->refs, 1);
 997        atomic_set(&rbio->error, 0);
 998        atomic_set(&rbio->stripes_pending, 0);
 999
1000        /*
1001         * the stripe_pages and bio_pages array point to the extra
1002         * memory we allocated past the end of the rbio
1003         */
1004        p = rbio + 1;
1005        rbio->stripe_pages = p;
1006        rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1007        rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1008
1009        if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1010                nr_data = real_stripes - 1;
1011        else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1012                nr_data = real_stripes - 2;
1013        else
1014                BUG();
1015
1016        rbio->nr_data = nr_data;
1017        return rbio;
1018}
1019
1020/* allocate pages for all the stripes in the bio, including parity */
1021static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1022{
1023        int i;
1024        struct page *page;
1025
1026        for (i = 0; i < rbio->nr_pages; i++) {
1027                if (rbio->stripe_pages[i])
1028                        continue;
1029                page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1030                if (!page)
1031                        return -ENOMEM;
1032                rbio->stripe_pages[i] = page;
1033        }
1034        return 0;
1035}
1036
1037/* only allocate pages for p/q stripes */
1038static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1039{
1040        int i;
1041        struct page *page;
1042
1043        i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1044
1045        for (; i < rbio->nr_pages; i++) {
1046                if (rbio->stripe_pages[i])
1047                        continue;
1048                page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1049                if (!page)
1050                        return -ENOMEM;
1051                rbio->stripe_pages[i] = page;
1052        }
1053        return 0;
1054}
1055
1056/*
1057 * add a single page from a specific stripe into our list of bios for IO
1058 * this will try to merge into existing bios if possible, and returns
1059 * zero if all went well.
1060 */
1061static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1062                            struct bio_list *bio_list,
1063                            struct page *page,
1064                            int stripe_nr,
1065                            unsigned long page_index,
1066                            unsigned long bio_max_len)
1067{
1068        struct bio *last = bio_list->tail;
1069        u64 last_end = 0;
1070        int ret;
1071        struct bio *bio;
1072        struct btrfs_bio_stripe *stripe;
1073        u64 disk_start;
1074
1075        stripe = &rbio->bbio->stripes[stripe_nr];
1076        disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1077
1078        /* if the device is missing, just fail this stripe */
1079        if (!stripe->dev->bdev)
1080                return fail_rbio_index(rbio, stripe_nr);
1081
1082        /* see if we can add this page onto our existing bio */
1083        if (last) {
1084                last_end = (u64)last->bi_iter.bi_sector << 9;
1085                last_end += last->bi_iter.bi_size;
1086
1087                /*
1088                 * we can't merge these if they are from different
1089                 * devices or if they are not contiguous
1090                 */
1091                if (last_end == disk_start && stripe->dev->bdev &&
1092                    !last->bi_status &&
1093                    last->bi_disk == stripe->dev->bdev->bd_disk &&
1094                    last->bi_partno == stripe->dev->bdev->bd_partno) {
1095                        ret = bio_add_page(last, page, PAGE_SIZE, 0);
1096                        if (ret == PAGE_SIZE)
1097                                return 0;
1098                }
1099        }
1100
1101        /* put a new bio on the list */
1102        bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1103        bio->bi_iter.bi_size = 0;
1104        bio_set_dev(bio, stripe->dev->bdev);
1105        bio->bi_iter.bi_sector = disk_start >> 9;
1106
1107        bio_add_page(bio, page, PAGE_SIZE, 0);
1108        bio_list_add(bio_list, bio);
1109        return 0;
1110}
1111
1112/*
1113 * while we're doing the read/modify/write cycle, we could
1114 * have errors in reading pages off the disk.  This checks
1115 * for errors and if we're not able to read the page it'll
1116 * trigger parity reconstruction.  The rmw will be finished
1117 * after we've reconstructed the failed stripes
1118 */
1119static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1120{
1121        if (rbio->faila >= 0 || rbio->failb >= 0) {
1122                BUG_ON(rbio->faila == rbio->real_stripes - 1);
1123                __raid56_parity_recover(rbio);
1124        } else {
1125                finish_rmw(rbio);
1126        }
1127}
1128
1129/*
1130 * helper function to walk our bio list and populate the bio_pages array with
1131 * the result.  This seems expensive, but it is faster than constantly
1132 * searching through the bio list as we setup the IO in finish_rmw or stripe
1133 * reconstruction.
1134 *
1135 * This must be called before you trust the answers from page_in_rbio
1136 */
1137static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138{
1139        struct bio *bio;
1140        u64 start;
1141        unsigned long stripe_offset;
1142        unsigned long page_index;
1143
1144        spin_lock_irq(&rbio->bio_list_lock);
1145        bio_list_for_each(bio, &rbio->bio_list) {
1146                struct bio_vec bvec;
1147                struct bvec_iter iter;
1148                int i = 0;
1149
1150                start = (u64)bio->bi_iter.bi_sector << 9;
1151                stripe_offset = start - rbio->bbio->raid_map[0];
1152                page_index = stripe_offset >> PAGE_SHIFT;
1153
1154                if (bio_flagged(bio, BIO_CLONED))
1155                        bio->bi_iter = btrfs_io_bio(bio)->iter;
1156
1157                bio_for_each_segment(bvec, bio, iter) {
1158                        rbio->bio_pages[page_index + i] = bvec.bv_page;
1159                        i++;
1160                }
1161        }
1162        spin_unlock_irq(&rbio->bio_list_lock);
1163}
1164
1165/*
1166 * this is called from one of two situations.  We either
1167 * have a full stripe from the higher layers, or we've read all
1168 * the missing bits off disk.
1169 *
1170 * This will calculate the parity and then send down any
1171 * changed blocks.
1172 */
1173static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1174{
1175        struct btrfs_bio *bbio = rbio->bbio;
1176        void *pointers[rbio->real_stripes];
1177        int nr_data = rbio->nr_data;
1178        int stripe;
1179        int pagenr;
1180        int p_stripe = -1;
1181        int q_stripe = -1;
1182        struct bio_list bio_list;
1183        struct bio *bio;
1184        int ret;
1185
1186        bio_list_init(&bio_list);
1187
1188        if (rbio->real_stripes - rbio->nr_data == 1) {
1189                p_stripe = rbio->real_stripes - 1;
1190        } else if (rbio->real_stripes - rbio->nr_data == 2) {
1191                p_stripe = rbio->real_stripes - 2;
1192                q_stripe = rbio->real_stripes - 1;
1193        } else {
1194                BUG();
1195        }
1196
1197        /* at this point we either have a full stripe,
1198         * or we've read the full stripe from the drive.
1199         * recalculate the parity and write the new results.
1200         *
1201         * We're not allowed to add any new bios to the
1202         * bio list here, anyone else that wants to
1203         * change this stripe needs to do their own rmw.
1204         */
1205        spin_lock_irq(&rbio->bio_list_lock);
1206        set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1207        spin_unlock_irq(&rbio->bio_list_lock);
1208
1209        atomic_set(&rbio->error, 0);
1210
1211        /*
1212         * now that we've set rmw_locked, run through the
1213         * bio list one last time and map the page pointers
1214         *
1215         * We don't cache full rbios because we're assuming
1216         * the higher layers are unlikely to use this area of
1217         * the disk again soon.  If they do use it again,
1218         * hopefully they will send another full bio.
1219         */
1220        index_rbio_pages(rbio);
1221        if (!rbio_is_full(rbio))
1222                cache_rbio_pages(rbio);
1223        else
1224                clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1225
1226        for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1227                struct page *p;
1228                /* first collect one page from each data stripe */
1229                for (stripe = 0; stripe < nr_data; stripe++) {
1230                        p = page_in_rbio(rbio, stripe, pagenr, 0);
1231                        pointers[stripe] = kmap(p);
1232                }
1233
1234                /* then add the parity stripe */
1235                p = rbio_pstripe_page(rbio, pagenr);
1236                SetPageUptodate(p);
1237                pointers[stripe++] = kmap(p);
1238
1239                if (q_stripe != -1) {
1240
1241                        /*
1242                         * raid6, add the qstripe and call the
1243                         * library function to fill in our p/q
1244                         */
1245                        p = rbio_qstripe_page(rbio, pagenr);
1246                        SetPageUptodate(p);
1247                        pointers[stripe++] = kmap(p);
1248
1249                        raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1250                                                pointers);
1251                } else {
1252                        /* raid5 */
1253                        memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1254                        run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1255                }
1256
1257
1258                for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1259                        kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1260        }
1261
1262        /*
1263         * time to start writing.  Make bios for everything from the
1264         * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1265         * everything else.
1266         */
1267        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1268                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1269                        struct page *page;
1270                        if (stripe < rbio->nr_data) {
1271                                page = page_in_rbio(rbio, stripe, pagenr, 1);
1272                                if (!page)
1273                                        continue;
1274                        } else {
1275                               page = rbio_stripe_page(rbio, stripe, pagenr);
1276                        }
1277
1278                        ret = rbio_add_io_page(rbio, &bio_list,
1279                                       page, stripe, pagenr, rbio->stripe_len);
1280                        if (ret)
1281                                goto cleanup;
1282                }
1283        }
1284
1285        if (likely(!bbio->num_tgtdevs))
1286                goto write_data;
1287
1288        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1289                if (!bbio->tgtdev_map[stripe])
1290                        continue;
1291
1292                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1293                        struct page *page;
1294                        if (stripe < rbio->nr_data) {
1295                                page = page_in_rbio(rbio, stripe, pagenr, 1);
1296                                if (!page)
1297                                        continue;
1298                        } else {
1299                               page = rbio_stripe_page(rbio, stripe, pagenr);
1300                        }
1301
1302                        ret = rbio_add_io_page(rbio, &bio_list, page,
1303                                               rbio->bbio->tgtdev_map[stripe],
1304                                               pagenr, rbio->stripe_len);
1305                        if (ret)
1306                                goto cleanup;
1307                }
1308        }
1309
1310write_data:
1311        atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1312        BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1313
1314        while (1) {
1315                bio = bio_list_pop(&bio_list);
1316                if (!bio)
1317                        break;
1318
1319                bio->bi_private = rbio;
1320                bio->bi_end_io = raid_write_end_io;
1321                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1322
1323                submit_bio(bio);
1324        }
1325        return;
1326
1327cleanup:
1328        rbio_orig_end_io(rbio, BLK_STS_IOERR);
1329
1330        while ((bio = bio_list_pop(&bio_list)))
1331                bio_put(bio);
1332}
1333
1334/*
1335 * helper to find the stripe number for a given bio.  Used to figure out which
1336 * stripe has failed.  This expects the bio to correspond to a physical disk,
1337 * so it looks up based on physical sector numbers.
1338 */
1339static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1340                           struct bio *bio)
1341{
1342        u64 physical = bio->bi_iter.bi_sector;
1343        u64 stripe_start;
1344        int i;
1345        struct btrfs_bio_stripe *stripe;
1346
1347        physical <<= 9;
1348
1349        for (i = 0; i < rbio->bbio->num_stripes; i++) {
1350                stripe = &rbio->bbio->stripes[i];
1351                stripe_start = stripe->physical;
1352                if (physical >= stripe_start &&
1353                    physical < stripe_start + rbio->stripe_len &&
1354                    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1355                    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1356                        return i;
1357                }
1358        }
1359        return -1;
1360}
1361
1362/*
1363 * helper to find the stripe number for a given
1364 * bio (before mapping).  Used to figure out which stripe has
1365 * failed.  This looks up based on logical block numbers.
1366 */
1367static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1368                                   struct bio *bio)
1369{
1370        u64 logical = bio->bi_iter.bi_sector;
1371        u64 stripe_start;
1372        int i;
1373
1374        logical <<= 9;
1375
1376        for (i = 0; i < rbio->nr_data; i++) {
1377                stripe_start = rbio->bbio->raid_map[i];
1378                if (logical >= stripe_start &&
1379                    logical < stripe_start + rbio->stripe_len) {
1380                        return i;
1381                }
1382        }
1383        return -1;
1384}
1385
1386/*
1387 * returns -EIO if we had too many failures
1388 */
1389static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1390{
1391        unsigned long flags;
1392        int ret = 0;
1393
1394        spin_lock_irqsave(&rbio->bio_list_lock, flags);
1395
1396        /* we already know this stripe is bad, move on */
1397        if (rbio->faila == failed || rbio->failb == failed)
1398                goto out;
1399
1400        if (rbio->faila == -1) {
1401                /* first failure on this rbio */
1402                rbio->faila = failed;
1403                atomic_inc(&rbio->error);
1404        } else if (rbio->failb == -1) {
1405                /* second failure on this rbio */
1406                rbio->failb = failed;
1407                atomic_inc(&rbio->error);
1408        } else {
1409                ret = -EIO;
1410        }
1411out:
1412        spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1413
1414        return ret;
1415}
1416
1417/*
1418 * helper to fail a stripe based on a physical disk
1419 * bio.
1420 */
1421static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1422                           struct bio *bio)
1423{
1424        int failed = find_bio_stripe(rbio, bio);
1425
1426        if (failed < 0)
1427                return -EIO;
1428
1429        return fail_rbio_index(rbio, failed);
1430}
1431
1432/*
1433 * this sets each page in the bio uptodate.  It should only be used on private
1434 * rbio pages, nothing that comes in from the higher layers
1435 */
1436static void set_bio_pages_uptodate(struct bio *bio)
1437{
1438        struct bio_vec bvec;
1439        struct bvec_iter iter;
1440
1441        if (bio_flagged(bio, BIO_CLONED))
1442                bio->bi_iter = btrfs_io_bio(bio)->iter;
1443
1444        bio_for_each_segment(bvec, bio, iter)
1445                SetPageUptodate(bvec.bv_page);
1446}
1447
1448/*
1449 * end io for the read phase of the rmw cycle.  All the bios here are physical
1450 * stripe bios we've read from the disk so we can recalculate the parity of the
1451 * stripe.
1452 *
1453 * This will usually kick off finish_rmw once all the bios are read in, but it
1454 * may trigger parity reconstruction if we had any errors along the way
1455 */
1456static void raid_rmw_end_io(struct bio *bio)
1457{
1458        struct btrfs_raid_bio *rbio = bio->bi_private;
1459
1460        if (bio->bi_status)
1461                fail_bio_stripe(rbio, bio);
1462        else
1463                set_bio_pages_uptodate(bio);
1464
1465        bio_put(bio);
1466
1467        if (!atomic_dec_and_test(&rbio->stripes_pending))
1468                return;
1469
1470        if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1471                goto cleanup;
1472
1473        /*
1474         * this will normally call finish_rmw to start our write
1475         * but if there are any failed stripes we'll reconstruct
1476         * from parity first
1477         */
1478        validate_rbio_for_rmw(rbio);
1479        return;
1480
1481cleanup:
1482
1483        rbio_orig_end_io(rbio, BLK_STS_IOERR);
1484}
1485
1486static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1487{
1488        btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1489        btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1490}
1491
1492static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1493{
1494        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1495                        read_rebuild_work, NULL, NULL);
1496
1497        btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1498}
1499
1500/*
1501 * the stripe must be locked by the caller.  It will
1502 * unlock after all the writes are done
1503 */
1504static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1505{
1506        int bios_to_read = 0;
1507        struct bio_list bio_list;
1508        int ret;
1509        int pagenr;
1510        int stripe;
1511        struct bio *bio;
1512
1513        bio_list_init(&bio_list);
1514
1515        ret = alloc_rbio_pages(rbio);
1516        if (ret)
1517                goto cleanup;
1518
1519        index_rbio_pages(rbio);
1520
1521        atomic_set(&rbio->error, 0);
1522        /*
1523         * build a list of bios to read all the missing parts of this
1524         * stripe
1525         */
1526        for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1527                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1528                        struct page *page;
1529                        /*
1530                         * we want to find all the pages missing from
1531                         * the rbio and read them from the disk.  If
1532                         * page_in_rbio finds a page in the bio list
1533                         * we don't need to read it off the stripe.
1534                         */
1535                        page = page_in_rbio(rbio, stripe, pagenr, 1);
1536                        if (page)
1537                                continue;
1538
1539                        page = rbio_stripe_page(rbio, stripe, pagenr);
1540                        /*
1541                         * the bio cache may have handed us an uptodate
1542                         * page.  If so, be happy and use it
1543                         */
1544                        if (PageUptodate(page))
1545                                continue;
1546
1547                        ret = rbio_add_io_page(rbio, &bio_list, page,
1548                                       stripe, pagenr, rbio->stripe_len);
1549                        if (ret)
1550                                goto cleanup;
1551                }
1552        }
1553
1554        bios_to_read = bio_list_size(&bio_list);
1555        if (!bios_to_read) {
1556                /*
1557                 * this can happen if others have merged with
1558                 * us, it means there is nothing left to read.
1559                 * But if there are missing devices it may not be
1560                 * safe to do the full stripe write yet.
1561                 */
1562                goto finish;
1563        }
1564
1565        /*
1566         * the bbio may be freed once we submit the last bio.  Make sure
1567         * not to touch it after that
1568         */
1569        atomic_set(&rbio->stripes_pending, bios_to_read);
1570        while (1) {
1571                bio = bio_list_pop(&bio_list);
1572                if (!bio)
1573                        break;
1574
1575                bio->bi_private = rbio;
1576                bio->bi_end_io = raid_rmw_end_io;
1577                bio_set_op_attrs(bio, REQ_OP_READ, 0);
1578
1579                btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1580
1581                submit_bio(bio);
1582        }
1583        /* the actual write will happen once the reads are done */
1584        return 0;
1585
1586cleanup:
1587        rbio_orig_end_io(rbio, BLK_STS_IOERR);
1588
1589        while ((bio = bio_list_pop(&bio_list)))
1590                bio_put(bio);
1591
1592        return -EIO;
1593
1594finish:
1595        validate_rbio_for_rmw(rbio);
1596        return 0;
1597}
1598
1599/*
1600 * if the upper layers pass in a full stripe, we thank them by only allocating
1601 * enough pages to hold the parity, and sending it all down quickly.
1602 */
1603static int full_stripe_write(struct btrfs_raid_bio *rbio)
1604{
1605        int ret;
1606
1607        ret = alloc_rbio_parity_pages(rbio);
1608        if (ret) {
1609                __free_raid_bio(rbio);
1610                return ret;
1611        }
1612
1613        ret = lock_stripe_add(rbio);
1614        if (ret == 0)
1615                finish_rmw(rbio);
1616        return 0;
1617}
1618
1619/*
1620 * partial stripe writes get handed over to async helpers.
1621 * We're really hoping to merge a few more writes into this
1622 * rbio before calculating new parity
1623 */
1624static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1625{
1626        int ret;
1627
1628        ret = lock_stripe_add(rbio);
1629        if (ret == 0)
1630                async_rmw_stripe(rbio);
1631        return 0;
1632}
1633
1634/*
1635 * sometimes while we were reading from the drive to
1636 * recalculate parity, enough new bios come into create
1637 * a full stripe.  So we do a check here to see if we can
1638 * go directly to finish_rmw
1639 */
1640static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1641{
1642        /* head off into rmw land if we don't have a full stripe */
1643        if (!rbio_is_full(rbio))
1644                return partial_stripe_write(rbio);
1645        return full_stripe_write(rbio);
1646}
1647
1648/*
1649 * We use plugging call backs to collect full stripes.
1650 * Any time we get a partial stripe write while plugged
1651 * we collect it into a list.  When the unplug comes down,
1652 * we sort the list by logical block number and merge
1653 * everything we can into the same rbios
1654 */
1655struct btrfs_plug_cb {
1656        struct blk_plug_cb cb;
1657        struct btrfs_fs_info *info;
1658        struct list_head rbio_list;
1659        struct btrfs_work work;
1660};
1661
1662/*
1663 * rbios on the plug list are sorted for easier merging.
1664 */
1665static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1666{
1667        struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1668                                                 plug_list);
1669        struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1670                                                 plug_list);
1671        u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1672        u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1673
1674        if (a_sector < b_sector)
1675                return -1;
1676        if (a_sector > b_sector)
1677                return 1;
1678        return 0;
1679}
1680
1681static void run_plug(struct btrfs_plug_cb *plug)
1682{
1683        struct btrfs_raid_bio *cur;
1684        struct btrfs_raid_bio *last = NULL;
1685
1686        /*
1687         * sort our plug list then try to merge
1688         * everything we can in hopes of creating full
1689         * stripes.
1690         */
1691        list_sort(NULL, &plug->rbio_list, plug_cmp);
1692        while (!list_empty(&plug->rbio_list)) {
1693                cur = list_entry(plug->rbio_list.next,
1694                                 struct btrfs_raid_bio, plug_list);
1695                list_del_init(&cur->plug_list);
1696
1697                if (rbio_is_full(cur)) {
1698                        /* we have a full stripe, send it down */
1699                        full_stripe_write(cur);
1700                        continue;
1701                }
1702                if (last) {
1703                        if (rbio_can_merge(last, cur)) {
1704                                merge_rbio(last, cur);
1705                                __free_raid_bio(cur);
1706                                continue;
1707
1708                        }
1709                        __raid56_parity_write(last);
1710                }
1711                last = cur;
1712        }
1713        if (last) {
1714                __raid56_parity_write(last);
1715        }
1716        kfree(plug);
1717}
1718
1719/*
1720 * if the unplug comes from schedule, we have to push the
1721 * work off to a helper thread
1722 */
1723static void unplug_work(struct btrfs_work *work)
1724{
1725        struct btrfs_plug_cb *plug;
1726        plug = container_of(work, struct btrfs_plug_cb, work);
1727        run_plug(plug);
1728}
1729
1730static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1731{
1732        struct btrfs_plug_cb *plug;
1733        plug = container_of(cb, struct btrfs_plug_cb, cb);
1734
1735        if (from_schedule) {
1736                btrfs_init_work(&plug->work, btrfs_rmw_helper,
1737                                unplug_work, NULL, NULL);
1738                btrfs_queue_work(plug->info->rmw_workers,
1739                                 &plug->work);
1740                return;
1741        }
1742        run_plug(plug);
1743}
1744
1745/*
1746 * our main entry point for writes from the rest of the FS.
1747 */
1748int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1749                        struct btrfs_bio *bbio, u64 stripe_len)
1750{
1751        struct btrfs_raid_bio *rbio;
1752        struct btrfs_plug_cb *plug = NULL;
1753        struct blk_plug_cb *cb;
1754        int ret;
1755
1756        rbio = alloc_rbio(fs_info, bbio, stripe_len);
1757        if (IS_ERR(rbio)) {
1758                btrfs_put_bbio(bbio);
1759                return PTR_ERR(rbio);
1760        }
1761        bio_list_add(&rbio->bio_list, bio);
1762        rbio->bio_list_bytes = bio->bi_iter.bi_size;
1763        rbio->operation = BTRFS_RBIO_WRITE;
1764
1765        btrfs_bio_counter_inc_noblocked(fs_info);
1766        rbio->generic_bio_cnt = 1;
1767
1768        /*
1769         * don't plug on full rbios, just get them out the door
1770         * as quickly as we can
1771         */
1772        if (rbio_is_full(rbio)) {
1773                ret = full_stripe_write(rbio);
1774                if (ret)
1775                        btrfs_bio_counter_dec(fs_info);
1776                return ret;
1777        }
1778
1779        cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1780        if (cb) {
1781                plug = container_of(cb, struct btrfs_plug_cb, cb);
1782                if (!plug->info) {
1783                        plug->info = fs_info;
1784                        INIT_LIST_HEAD(&plug->rbio_list);
1785                }
1786                list_add_tail(&rbio->plug_list, &plug->rbio_list);
1787                ret = 0;
1788        } else {
1789                ret = __raid56_parity_write(rbio);
1790                if (ret)
1791                        btrfs_bio_counter_dec(fs_info);
1792        }
1793        return ret;
1794}
1795
1796/*
1797 * all parity reconstruction happens here.  We've read in everything
1798 * we can find from the drives and this does the heavy lifting of
1799 * sorting the good from the bad.
1800 */
1801static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1802{
1803        int pagenr, stripe;
1804        void **pointers;
1805        int faila = -1, failb = -1;
1806        struct page *page;
1807        blk_status_t err;
1808        int i;
1809
1810        pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1811        if (!pointers) {
1812                err = BLK_STS_RESOURCE;
1813                goto cleanup_io;
1814        }
1815
1816        faila = rbio->faila;
1817        failb = rbio->failb;
1818
1819        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1820            rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1821                spin_lock_irq(&rbio->bio_list_lock);
1822                set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1823                spin_unlock_irq(&rbio->bio_list_lock);
1824        }
1825
1826        index_rbio_pages(rbio);
1827
1828        for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1829                /*
1830                 * Now we just use bitmap to mark the horizontal stripes in
1831                 * which we have data when doing parity scrub.
1832                 */
1833                if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1834                    !test_bit(pagenr, rbio->dbitmap))
1835                        continue;
1836
1837                /* setup our array of pointers with pages
1838                 * from each stripe
1839                 */
1840                for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1841                        /*
1842                         * if we're rebuilding a read, we have to use
1843                         * pages from the bio list
1844                         */
1845                        if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1846                             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1847                            (stripe == faila || stripe == failb)) {
1848                                page = page_in_rbio(rbio, stripe, pagenr, 0);
1849                        } else {
1850                                page = rbio_stripe_page(rbio, stripe, pagenr);
1851                        }
1852                        pointers[stripe] = kmap(page);
1853                }
1854
1855                /* all raid6 handling here */
1856                if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1857                        /*
1858                         * single failure, rebuild from parity raid5
1859                         * style
1860                         */
1861                        if (failb < 0) {
1862                                if (faila == rbio->nr_data) {
1863                                        /*
1864                                         * Just the P stripe has failed, without
1865                                         * a bad data or Q stripe.
1866                                         * TODO, we should redo the xor here.
1867                                         */
1868                                        err = BLK_STS_IOERR;
1869                                        goto cleanup;
1870                                }
1871                                /*
1872                                 * a single failure in raid6 is rebuilt
1873                                 * in the pstripe code below
1874                                 */
1875                                goto pstripe;
1876                        }
1877
1878                        /* make sure our ps and qs are in order */
1879                        if (faila > failb) {
1880                                int tmp = failb;
1881                                failb = faila;
1882                                faila = tmp;
1883                        }
1884
1885                        /* if the q stripe is failed, do a pstripe reconstruction
1886                         * from the xors.
1887                         * If both the q stripe and the P stripe are failed, we're
1888                         * here due to a crc mismatch and we can't give them the
1889                         * data they want
1890                         */
1891                        if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1892                                if (rbio->bbio->raid_map[faila] ==
1893                                    RAID5_P_STRIPE) {
1894                                        err = BLK_STS_IOERR;
1895                                        goto cleanup;
1896                                }
1897                                /*
1898                                 * otherwise we have one bad data stripe and
1899                                 * a good P stripe.  raid5!
1900                                 */
1901                                goto pstripe;
1902                        }
1903
1904                        if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1905                                raid6_datap_recov(rbio->real_stripes,
1906                                                  PAGE_SIZE, faila, pointers);
1907                        } else {
1908                                raid6_2data_recov(rbio->real_stripes,
1909                                                  PAGE_SIZE, faila, failb,
1910                                                  pointers);
1911                        }
1912                } else {
1913                        void *p;
1914
1915                        /* rebuild from P stripe here (raid5 or raid6) */
1916                        BUG_ON(failb != -1);
1917pstripe:
1918                        /* Copy parity block into failed block to start with */
1919                        memcpy(pointers[faila],
1920                               pointers[rbio->nr_data],
1921                               PAGE_SIZE);
1922
1923                        /* rearrange the pointer array */
1924                        p = pointers[faila];
1925                        for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1926                                pointers[stripe] = pointers[stripe + 1];
1927                        pointers[rbio->nr_data - 1] = p;
1928
1929                        /* xor in the rest */
1930                        run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1931                }
1932                /* if we're doing this rebuild as part of an rmw, go through
1933                 * and set all of our private rbio pages in the
1934                 * failed stripes as uptodate.  This way finish_rmw will
1935                 * know they can be trusted.  If this was a read reconstruction,
1936                 * other endio functions will fiddle the uptodate bits
1937                 */
1938                if (rbio->operation == BTRFS_RBIO_WRITE) {
1939                        for (i = 0;  i < rbio->stripe_npages; i++) {
1940                                if (faila != -1) {
1941                                        page = rbio_stripe_page(rbio, faila, i);
1942                                        SetPageUptodate(page);
1943                                }
1944                                if (failb != -1) {
1945                                        page = rbio_stripe_page(rbio, failb, i);
1946                                        SetPageUptodate(page);
1947                                }
1948                        }
1949                }
1950                for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1951                        /*
1952                         * if we're rebuilding a read, we have to use
1953                         * pages from the bio list
1954                         */
1955                        if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1956                             rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1957                            (stripe == faila || stripe == failb)) {
1958                                page = page_in_rbio(rbio, stripe, pagenr, 0);
1959                        } else {
1960                                page = rbio_stripe_page(rbio, stripe, pagenr);
1961                        }
1962                        kunmap(page);
1963                }
1964        }
1965
1966        err = BLK_STS_OK;
1967cleanup:
1968        kfree(pointers);
1969
1970cleanup_io:
1971        if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1972                if (err == BLK_STS_OK)
1973                        cache_rbio_pages(rbio);
1974                else
1975                        clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1976
1977                rbio_orig_end_io(rbio, err);
1978        } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1979                rbio_orig_end_io(rbio, err);
1980        } else if (err == BLK_STS_OK) {
1981                rbio->faila = -1;
1982                rbio->failb = -1;
1983
1984                if (rbio->operation == BTRFS_RBIO_WRITE)
1985                        finish_rmw(rbio);
1986                else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1987                        finish_parity_scrub(rbio, 0);
1988                else
1989                        BUG();
1990        } else {
1991                rbio_orig_end_io(rbio, err);
1992        }
1993}
1994
1995/*
1996 * This is called only for stripes we've read from disk to
1997 * reconstruct the parity.
1998 */
1999static void raid_recover_end_io(struct bio *bio)
2000{
2001        struct btrfs_raid_bio *rbio = bio->bi_private;
2002
2003        /*
2004         * we only read stripe pages off the disk, set them
2005         * up to date if there were no errors
2006         */
2007        if (bio->bi_status)
2008                fail_bio_stripe(rbio, bio);
2009        else
2010                set_bio_pages_uptodate(bio);
2011        bio_put(bio);
2012
2013        if (!atomic_dec_and_test(&rbio->stripes_pending))
2014                return;
2015
2016        if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2017                rbio_orig_end_io(rbio, BLK_STS_IOERR);
2018        else
2019                __raid_recover_end_io(rbio);
2020}
2021
2022/*
2023 * reads everything we need off the disk to reconstruct
2024 * the parity. endio handlers trigger final reconstruction
2025 * when the IO is done.
2026 *
2027 * This is used both for reads from the higher layers and for
2028 * parity construction required to finish a rmw cycle.
2029 */
2030static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2031{
2032        int bios_to_read = 0;
2033        struct bio_list bio_list;
2034        int ret;
2035        int pagenr;
2036        int stripe;
2037        struct bio *bio;
2038
2039        bio_list_init(&bio_list);
2040
2041        ret = alloc_rbio_pages(rbio);
2042        if (ret)
2043                goto cleanup;
2044
2045        atomic_set(&rbio->error, 0);
2046
2047        /*
2048         * read everything that hasn't failed.  Thanks to the
2049         * stripe cache, it is possible that some or all of these
2050         * pages are going to be uptodate.
2051         */
2052        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2053                if (rbio->faila == stripe || rbio->failb == stripe) {
2054                        atomic_inc(&rbio->error);
2055                        continue;
2056                }
2057
2058                for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2059                        struct page *p;
2060
2061                        /*
2062                         * the rmw code may have already read this
2063                         * page in
2064                         */
2065                        p = rbio_stripe_page(rbio, stripe, pagenr);
2066                        if (PageUptodate(p))
2067                                continue;
2068
2069                        ret = rbio_add_io_page(rbio, &bio_list,
2070                                       rbio_stripe_page(rbio, stripe, pagenr),
2071                                       stripe, pagenr, rbio->stripe_len);
2072                        if (ret < 0)
2073                                goto cleanup;
2074                }
2075        }
2076
2077        bios_to_read = bio_list_size(&bio_list);
2078        if (!bios_to_read) {
2079                /*
2080                 * we might have no bios to read just because the pages
2081                 * were up to date, or we might have no bios to read because
2082                 * the devices were gone.
2083                 */
2084                if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2085                        __raid_recover_end_io(rbio);
2086                        goto out;
2087                } else {
2088                        goto cleanup;
2089                }
2090        }
2091
2092        /*
2093         * the bbio may be freed once we submit the last bio.  Make sure
2094         * not to touch it after that
2095         */
2096        atomic_set(&rbio->stripes_pending, bios_to_read);
2097        while (1) {
2098                bio = bio_list_pop(&bio_list);
2099                if (!bio)
2100                        break;
2101
2102                bio->bi_private = rbio;
2103                bio->bi_end_io = raid_recover_end_io;
2104                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2105
2106                btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2107
2108                submit_bio(bio);
2109        }
2110out:
2111        return 0;
2112
2113cleanup:
2114        if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2115            rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2116                rbio_orig_end_io(rbio, BLK_STS_IOERR);
2117
2118        while ((bio = bio_list_pop(&bio_list)))
2119                bio_put(bio);
2120
2121        return -EIO;
2122}
2123
2124/*
2125 * the main entry point for reads from the higher layers.  This
2126 * is really only called when the normal read path had a failure,
2127 * so we assume the bio they send down corresponds to a failed part
2128 * of the drive.
2129 */
2130int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2131                          struct btrfs_bio *bbio, u64 stripe_len,
2132                          int mirror_num, int generic_io)
2133{
2134        struct btrfs_raid_bio *rbio;
2135        int ret;
2136
2137        if (generic_io) {
2138                ASSERT(bbio->mirror_num == mirror_num);
2139                btrfs_io_bio(bio)->mirror_num = mirror_num;
2140        }
2141
2142        rbio = alloc_rbio(fs_info, bbio, stripe_len);
2143        if (IS_ERR(rbio)) {
2144                if (generic_io)
2145                        btrfs_put_bbio(bbio);
2146                return PTR_ERR(rbio);
2147        }
2148
2149        rbio->operation = BTRFS_RBIO_READ_REBUILD;
2150        bio_list_add(&rbio->bio_list, bio);
2151        rbio->bio_list_bytes = bio->bi_iter.bi_size;
2152
2153        rbio->faila = find_logical_bio_stripe(rbio, bio);
2154        if (rbio->faila == -1) {
2155                btrfs_warn(fs_info,
2156        "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2157                           __func__, (u64)bio->bi_iter.bi_sector << 9,
2158                           (u64)bio->bi_iter.bi_size, bbio->map_type);
2159                if (generic_io)
2160                        btrfs_put_bbio(bbio);
2161                kfree(rbio);
2162                return -EIO;
2163        }
2164
2165        if (generic_io) {
2166                btrfs_bio_counter_inc_noblocked(fs_info);
2167                rbio->generic_bio_cnt = 1;
2168        } else {
2169                btrfs_get_bbio(bbio);
2170        }
2171
2172        /*
2173         * reconstruct from the q stripe if they are
2174         * asking for mirror 3
2175         */
2176        if (mirror_num == 3)
2177                rbio->failb = rbio->real_stripes - 2;
2178
2179        ret = lock_stripe_add(rbio);
2180
2181        /*
2182         * __raid56_parity_recover will end the bio with
2183         * any errors it hits.  We don't want to return
2184         * its error value up the stack because our caller
2185         * will end up calling bio_endio with any nonzero
2186         * return
2187         */
2188        if (ret == 0)
2189                __raid56_parity_recover(rbio);
2190        /*
2191         * our rbio has been added to the list of
2192         * rbios that will be handled after the
2193         * currently lock owner is done
2194         */
2195        return 0;
2196
2197}
2198
2199static void rmw_work(struct btrfs_work *work)
2200{
2201        struct btrfs_raid_bio *rbio;
2202
2203        rbio = container_of(work, struct btrfs_raid_bio, work);
2204        raid56_rmw_stripe(rbio);
2205}
2206
2207static void read_rebuild_work(struct btrfs_work *work)
2208{
2209        struct btrfs_raid_bio *rbio;
2210
2211        rbio = container_of(work, struct btrfs_raid_bio, work);
2212        __raid56_parity_recover(rbio);
2213}
2214
2215/*
2216 * The following code is used to scrub/replace the parity stripe
2217 *
2218 * Caller must have already increased bio_counter for getting @bbio.
2219 *
2220 * Note: We need make sure all the pages that add into the scrub/replace
2221 * raid bio are correct and not be changed during the scrub/replace. That
2222 * is those pages just hold metadata or file data with checksum.
2223 */
2224
2225struct btrfs_raid_bio *
2226raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2227                               struct btrfs_bio *bbio, u64 stripe_len,
2228                               struct btrfs_device *scrub_dev,
2229                               unsigned long *dbitmap, int stripe_nsectors)
2230{
2231        struct btrfs_raid_bio *rbio;
2232        int i;
2233
2234        rbio = alloc_rbio(fs_info, bbio, stripe_len);
2235        if (IS_ERR(rbio))
2236                return NULL;
2237        bio_list_add(&rbio->bio_list, bio);
2238        /*
2239         * This is a special bio which is used to hold the completion handler
2240         * and make the scrub rbio is similar to the other types
2241         */
2242        ASSERT(!bio->bi_iter.bi_size);
2243        rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2244
2245        /*
2246         * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2247         * to the end position, so this search can start from the first parity
2248         * stripe.
2249         */
2250        for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2251                if (bbio->stripes[i].dev == scrub_dev) {
2252                        rbio->scrubp = i;
2253                        break;
2254                }
2255        }
2256        ASSERT(i < rbio->real_stripes);
2257
2258        /* Now we just support the sectorsize equals to page size */
2259        ASSERT(fs_info->sectorsize == PAGE_SIZE);
2260        ASSERT(rbio->stripe_npages == stripe_nsectors);
2261        bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2262
2263        /*
2264         * We have already increased bio_counter when getting bbio, record it
2265         * so we can free it at rbio_orig_end_io().
2266         */
2267        rbio->generic_bio_cnt = 1;
2268
2269        return rbio;
2270}
2271
2272/* Used for both parity scrub and missing. */
2273void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2274                            u64 logical)
2275{
2276        int stripe_offset;
2277        int index;
2278
2279        ASSERT(logical >= rbio->bbio->raid_map[0]);
2280        ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2281                                rbio->stripe_len * rbio->nr_data);
2282        stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2283        index = stripe_offset >> PAGE_SHIFT;
2284        rbio->bio_pages[index] = page;
2285}
2286
2287/*
2288 * We just scrub the parity that we have correct data on the same horizontal,
2289 * so we needn't allocate all pages for all the stripes.
2290 */
2291static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2292{
2293        int i;
2294        int bit;
2295        int index;
2296        struct page *page;
2297
2298        for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2299                for (i = 0; i < rbio->real_stripes; i++) {
2300                        index = i * rbio->stripe_npages + bit;
2301                        if (rbio->stripe_pages[index])
2302                                continue;
2303
2304                        page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2305                        if (!page)
2306                                return -ENOMEM;
2307                        rbio->stripe_pages[index] = page;
2308                }
2309        }
2310        return 0;
2311}
2312
2313static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2314                                         int need_check)
2315{
2316        struct btrfs_bio *bbio = rbio->bbio;
2317        void *pointers[rbio->real_stripes];
2318        DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2319        int nr_data = rbio->nr_data;
2320        int stripe;
2321        int pagenr;
2322        int p_stripe = -1;
2323        int q_stripe = -1;
2324        struct page *p_page = NULL;
2325        struct page *q_page = NULL;
2326        struct bio_list bio_list;
2327        struct bio *bio;
2328        int is_replace = 0;
2329        int ret;
2330
2331        bio_list_init(&bio_list);
2332
2333        if (rbio->real_stripes - rbio->nr_data == 1) {
2334                p_stripe = rbio->real_stripes - 1;
2335        } else if (rbio->real_stripes - rbio->nr_data == 2) {
2336                p_stripe = rbio->real_stripes - 2;
2337                q_stripe = rbio->real_stripes - 1;
2338        } else {
2339                BUG();
2340        }
2341
2342        if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2343                is_replace = 1;
2344                bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2345        }
2346
2347        /*
2348         * Because the higher layers(scrubber) are unlikely to
2349         * use this area of the disk again soon, so don't cache
2350         * it.
2351         */
2352        clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2353
2354        if (!need_check)
2355                goto writeback;
2356
2357        p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2358        if (!p_page)
2359                goto cleanup;
2360        SetPageUptodate(p_page);
2361
2362        if (q_stripe != -1) {
2363                q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2364                if (!q_page) {
2365                        __free_page(p_page);
2366                        goto cleanup;
2367                }
2368                SetPageUptodate(q_page);
2369        }
2370
2371        atomic_set(&rbio->error, 0);
2372
2373        for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2374                struct page *p;
2375                void *parity;
2376                /* first collect one page from each data stripe */
2377                for (stripe = 0; stripe < nr_data; stripe++) {
2378                        p = page_in_rbio(rbio, stripe, pagenr, 0);
2379                        pointers[stripe] = kmap(p);
2380                }
2381
2382                /* then add the parity stripe */
2383                pointers[stripe++] = kmap(p_page);
2384
2385                if (q_stripe != -1) {
2386
2387                        /*
2388                         * raid6, add the qstripe and call the
2389                         * library function to fill in our p/q
2390                         */
2391                        pointers[stripe++] = kmap(q_page);
2392
2393                        raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2394                                                pointers);
2395                } else {
2396                        /* raid5 */
2397                        memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2398                        run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2399                }
2400
2401                /* Check scrubbing parity and repair it */
2402                p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2403                parity = kmap(p);
2404                if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2405                        memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2406                else
2407                        /* Parity is right, needn't writeback */
2408                        bitmap_clear(rbio->dbitmap, pagenr, 1);
2409                kunmap(p);
2410
2411                for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2412                        kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2413        }
2414
2415        __free_page(p_page);
2416        if (q_page)
2417                __free_page(q_page);
2418
2419writeback:
2420        /*
2421         * time to start writing.  Make bios for everything from the
2422         * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2423         * everything else.
2424         */
2425        for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2426                struct page *page;
2427
2428                page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2429                ret = rbio_add_io_page(rbio, &bio_list,
2430                               page, rbio->scrubp, pagenr, rbio->stripe_len);
2431                if (ret)
2432                        goto cleanup;
2433        }
2434
2435        if (!is_replace)
2436                goto submit_write;
2437
2438        for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2439                struct page *page;
2440
2441                page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2442                ret = rbio_add_io_page(rbio, &bio_list, page,
2443                                       bbio->tgtdev_map[rbio->scrubp],
2444                                       pagenr, rbio->stripe_len);
2445                if (ret)
2446                        goto cleanup;
2447        }
2448
2449submit_write:
2450        nr_data = bio_list_size(&bio_list);
2451        if (!nr_data) {
2452                /* Every parity is right */
2453                rbio_orig_end_io(rbio, BLK_STS_OK);
2454                return;
2455        }
2456
2457        atomic_set(&rbio->stripes_pending, nr_data);
2458
2459        while (1) {
2460                bio = bio_list_pop(&bio_list);
2461                if (!bio)
2462                        break;
2463
2464                bio->bi_private = rbio;
2465                bio->bi_end_io = raid_write_end_io;
2466                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2467
2468                submit_bio(bio);
2469        }
2470        return;
2471
2472cleanup:
2473        rbio_orig_end_io(rbio, BLK_STS_IOERR);
2474
2475        while ((bio = bio_list_pop(&bio_list)))
2476                bio_put(bio);
2477}
2478
2479static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2480{
2481        if (stripe >= 0 && stripe < rbio->nr_data)
2482                return 1;
2483        return 0;
2484}
2485
2486/*
2487 * While we're doing the parity check and repair, we could have errors
2488 * in reading pages off the disk.  This checks for errors and if we're
2489 * not able to read the page it'll trigger parity reconstruction.  The
2490 * parity scrub will be finished after we've reconstructed the failed
2491 * stripes
2492 */
2493static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2494{
2495        if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2496                goto cleanup;
2497
2498        if (rbio->faila >= 0 || rbio->failb >= 0) {
2499                int dfail = 0, failp = -1;
2500
2501                if (is_data_stripe(rbio, rbio->faila))
2502                        dfail++;
2503                else if (is_parity_stripe(rbio->faila))
2504                        failp = rbio->faila;
2505
2506                if (is_data_stripe(rbio, rbio->failb))
2507                        dfail++;
2508                else if (is_parity_stripe(rbio->failb))
2509                        failp = rbio->failb;
2510
2511                /*
2512                 * Because we can not use a scrubbing parity to repair
2513                 * the data, so the capability of the repair is declined.
2514                 * (In the case of RAID5, we can not repair anything)
2515                 */
2516                if (dfail > rbio->bbio->max_errors - 1)
2517                        goto cleanup;
2518
2519                /*
2520                 * If all data is good, only parity is correctly, just
2521                 * repair the parity.
2522                 */
2523                if (dfail == 0) {
2524                        finish_parity_scrub(rbio, 0);
2525                        return;
2526                }
2527
2528                /*
2529                 * Here means we got one corrupted data stripe and one
2530                 * corrupted parity on RAID6, if the corrupted parity
2531                 * is scrubbing parity, luckily, use the other one to repair
2532                 * the data, or we can not repair the data stripe.
2533                 */
2534                if (failp != rbio->scrubp)
2535                        goto cleanup;
2536
2537                __raid_recover_end_io(rbio);
2538        } else {
2539                finish_parity_scrub(rbio, 1);
2540        }
2541        return;
2542
2543cleanup:
2544        rbio_orig_end_io(rbio, BLK_STS_IOERR);
2545}
2546
2547/*
2548 * end io for the read phase of the rmw cycle.  All the bios here are physical
2549 * stripe bios we've read from the disk so we can recalculate the parity of the
2550 * stripe.
2551 *
2552 * This will usually kick off finish_rmw once all the bios are read in, but it
2553 * may trigger parity reconstruction if we had any errors along the way
2554 */
2555static void raid56_parity_scrub_end_io(struct bio *bio)
2556{
2557        struct btrfs_raid_bio *rbio = bio->bi_private;
2558
2559        if (bio->bi_status)
2560                fail_bio_stripe(rbio, bio);
2561        else
2562                set_bio_pages_uptodate(bio);
2563
2564        bio_put(bio);
2565
2566        if (!atomic_dec_and_test(&rbio->stripes_pending))
2567                return;
2568
2569        /*
2570         * this will normally call finish_rmw to start our write
2571         * but if there are any failed stripes we'll reconstruct
2572         * from parity first
2573         */
2574        validate_rbio_for_parity_scrub(rbio);
2575}
2576
2577static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2578{
2579        int bios_to_read = 0;
2580        struct bio_list bio_list;
2581        int ret;
2582        int pagenr;
2583        int stripe;
2584        struct bio *bio;
2585
2586        bio_list_init(&bio_list);
2587
2588        ret = alloc_rbio_essential_pages(rbio);
2589        if (ret)
2590                goto cleanup;
2591
2592        atomic_set(&rbio->error, 0);
2593        /*
2594         * build a list of bios to read all the missing parts of this
2595         * stripe
2596         */
2597        for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2598                for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2599                        struct page *page;
2600                        /*
2601                         * we want to find all the pages missing from
2602                         * the rbio and read them from the disk.  If
2603                         * page_in_rbio finds a page in the bio list
2604                         * we don't need to read it off the stripe.
2605                         */
2606                        page = page_in_rbio(rbio, stripe, pagenr, 1);
2607                        if (page)
2608                                continue;
2609
2610                        page = rbio_stripe_page(rbio, stripe, pagenr);
2611                        /*
2612                         * the bio cache may have handed us an uptodate
2613                         * page.  If so, be happy and use it
2614                         */
2615                        if (PageUptodate(page))
2616                                continue;
2617
2618                        ret = rbio_add_io_page(rbio, &bio_list, page,
2619                                       stripe, pagenr, rbio->stripe_len);
2620                        if (ret)
2621                                goto cleanup;
2622                }
2623        }
2624
2625        bios_to_read = bio_list_size(&bio_list);
2626        if (!bios_to_read) {
2627                /*
2628                 * this can happen if others have merged with
2629                 * us, it means there is nothing left to read.
2630                 * But if there are missing devices it may not be
2631                 * safe to do the full stripe write yet.
2632                 */
2633                goto finish;
2634        }
2635
2636        /*
2637         * the bbio may be freed once we submit the last bio.  Make sure
2638         * not to touch it after that
2639         */
2640        atomic_set(&rbio->stripes_pending, bios_to_read);
2641        while (1) {
2642                bio = bio_list_pop(&bio_list);
2643                if (!bio)
2644                        break;
2645
2646                bio->bi_private = rbio;
2647                bio->bi_end_io = raid56_parity_scrub_end_io;
2648                bio_set_op_attrs(bio, REQ_OP_READ, 0);
2649
2650                btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2651
2652                submit_bio(bio);
2653        }
2654        /* the actual write will happen once the reads are done */
2655        return;
2656
2657cleanup:
2658        rbio_orig_end_io(rbio, BLK_STS_IOERR);
2659
2660        while ((bio = bio_list_pop(&bio_list)))
2661                bio_put(bio);
2662
2663        return;
2664
2665finish:
2666        validate_rbio_for_parity_scrub(rbio);
2667}
2668
2669static void scrub_parity_work(struct btrfs_work *work)
2670{
2671        struct btrfs_raid_bio *rbio;
2672
2673        rbio = container_of(work, struct btrfs_raid_bio, work);
2674        raid56_parity_scrub_stripe(rbio);
2675}
2676
2677static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2678{
2679        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2680                        scrub_parity_work, NULL, NULL);
2681
2682        btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2683}
2684
2685void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2686{
2687        if (!lock_stripe_add(rbio))
2688                async_scrub_parity(rbio);
2689}
2690
2691/* The following code is used for dev replace of a missing RAID 5/6 device. */
2692
2693struct btrfs_raid_bio *
2694raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2695                          struct btrfs_bio *bbio, u64 length)
2696{
2697        struct btrfs_raid_bio *rbio;
2698
2699        rbio = alloc_rbio(fs_info, bbio, length);
2700        if (IS_ERR(rbio))
2701                return NULL;
2702
2703        rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2704        bio_list_add(&rbio->bio_list, bio);
2705        /*
2706         * This is a special bio which is used to hold the completion handler
2707         * and make the scrub rbio is similar to the other types
2708         */
2709        ASSERT(!bio->bi_iter.bi_size);
2710
2711        rbio->faila = find_logical_bio_stripe(rbio, bio);
2712        if (rbio->faila == -1) {
2713                BUG();
2714                kfree(rbio);
2715                return NULL;
2716        }
2717
2718        /*
2719         * When we get bbio, we have already increased bio_counter, record it
2720         * so we can free it at rbio_orig_end_io()
2721         */
2722        rbio->generic_bio_cnt = 1;
2723
2724        return rbio;
2725}
2726
2727static void missing_raid56_work(struct btrfs_work *work)
2728{
2729        struct btrfs_raid_bio *rbio;
2730
2731        rbio = container_of(work, struct btrfs_raid_bio, work);
2732        __raid56_parity_recover(rbio);
2733}
2734
2735static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2736{
2737        btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2738                        missing_raid56_work, NULL, NULL);
2739
2740        btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2741}
2742
2743void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2744{
2745        if (!lock_stripe_add(rbio))
2746                async_missing_raid56(rbio);
2747}
2748