linux/fs/btrfs/root-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/err.h>
  20#include <linux/uuid.h>
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "print-tree.h"
  25
  26/*
  27 * Read a root item from the tree. In case we detect a root item smaller then
  28 * sizeof(root_item), we know it's an old version of the root structure and
  29 * initialize all new fields to zero. The same happens if we detect mismatching
  30 * generation numbers as then we know the root was once mounted with an older
  31 * kernel that was not aware of the root item structure change.
  32 */
  33static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
  34                                struct btrfs_root_item *item)
  35{
  36        uuid_le uuid;
  37        int len;
  38        int need_reset = 0;
  39
  40        len = btrfs_item_size_nr(eb, slot);
  41        read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
  42                        min_t(int, len, (int)sizeof(*item)));
  43        if (len < sizeof(*item))
  44                need_reset = 1;
  45        if (!need_reset && btrfs_root_generation(item)
  46                != btrfs_root_generation_v2(item)) {
  47                if (btrfs_root_generation_v2(item) != 0) {
  48                        btrfs_warn(eb->fs_info,
  49                                        "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
  50                }
  51                need_reset = 1;
  52        }
  53        if (need_reset) {
  54                memset(&item->generation_v2, 0,
  55                        sizeof(*item) - offsetof(struct btrfs_root_item,
  56                                        generation_v2));
  57
  58                uuid_le_gen(&uuid);
  59                memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
  60        }
  61}
  62
  63/*
  64 * btrfs_find_root - lookup the root by the key.
  65 * root: the root of the root tree
  66 * search_key: the key to search
  67 * path: the path we search
  68 * root_item: the root item of the tree we look for
  69 * root_key: the root key of the tree we look for
  70 *
  71 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
  72 * of the search key, just lookup the root with the highest offset for a
  73 * given objectid.
  74 *
  75 * If we find something return 0, otherwise > 0, < 0 on error.
  76 */
  77int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
  78                    struct btrfs_path *path, struct btrfs_root_item *root_item,
  79                    struct btrfs_key *root_key)
  80{
  81        struct btrfs_key found_key;
  82        struct extent_buffer *l;
  83        int ret;
  84        int slot;
  85
  86        ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
  87        if (ret < 0)
  88                return ret;
  89
  90        if (search_key->offset != -1ULL) {      /* the search key is exact */
  91                if (ret > 0)
  92                        goto out;
  93        } else {
  94                BUG_ON(ret == 0);               /* Logical error */
  95                if (path->slots[0] == 0)
  96                        goto out;
  97                path->slots[0]--;
  98                ret = 0;
  99        }
 100
 101        l = path->nodes[0];
 102        slot = path->slots[0];
 103
 104        btrfs_item_key_to_cpu(l, &found_key, slot);
 105        if (found_key.objectid != search_key->objectid ||
 106            found_key.type != BTRFS_ROOT_ITEM_KEY) {
 107                ret = 1;
 108                goto out;
 109        }
 110
 111        if (root_item)
 112                btrfs_read_root_item(l, slot, root_item);
 113        if (root_key)
 114                memcpy(root_key, &found_key, sizeof(found_key));
 115out:
 116        btrfs_release_path(path);
 117        return ret;
 118}
 119
 120void btrfs_set_root_node(struct btrfs_root_item *item,
 121                         struct extent_buffer *node)
 122{
 123        btrfs_set_root_bytenr(item, node->start);
 124        btrfs_set_root_level(item, btrfs_header_level(node));
 125        btrfs_set_root_generation(item, btrfs_header_generation(node));
 126}
 127
 128/*
 129 * copy the data in 'item' into the btree
 130 */
 131int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
 132                      *root, struct btrfs_key *key, struct btrfs_root_item
 133                      *item)
 134{
 135        struct btrfs_fs_info *fs_info = root->fs_info;
 136        struct btrfs_path *path;
 137        struct extent_buffer *l;
 138        int ret;
 139        int slot;
 140        unsigned long ptr;
 141        u32 old_len;
 142
 143        path = btrfs_alloc_path();
 144        if (!path)
 145                return -ENOMEM;
 146
 147        ret = btrfs_search_slot(trans, root, key, path, 0, 1);
 148        if (ret < 0) {
 149                btrfs_abort_transaction(trans, ret);
 150                goto out;
 151        }
 152
 153        if (ret != 0) {
 154                btrfs_print_leaf(path->nodes[0]);
 155                btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
 156                           key->objectid, key->type, key->offset);
 157                BUG_ON(1);
 158        }
 159
 160        l = path->nodes[0];
 161        slot = path->slots[0];
 162        ptr = btrfs_item_ptr_offset(l, slot);
 163        old_len = btrfs_item_size_nr(l, slot);
 164
 165        /*
 166         * If this is the first time we update the root item which originated
 167         * from an older kernel, we need to enlarge the item size to make room
 168         * for the added fields.
 169         */
 170        if (old_len < sizeof(*item)) {
 171                btrfs_release_path(path);
 172                ret = btrfs_search_slot(trans, root, key, path,
 173                                -1, 1);
 174                if (ret < 0) {
 175                        btrfs_abort_transaction(trans, ret);
 176                        goto out;
 177                }
 178
 179                ret = btrfs_del_item(trans, root, path);
 180                if (ret < 0) {
 181                        btrfs_abort_transaction(trans, ret);
 182                        goto out;
 183                }
 184                btrfs_release_path(path);
 185                ret = btrfs_insert_empty_item(trans, root, path,
 186                                key, sizeof(*item));
 187                if (ret < 0) {
 188                        btrfs_abort_transaction(trans, ret);
 189                        goto out;
 190                }
 191                l = path->nodes[0];
 192                slot = path->slots[0];
 193                ptr = btrfs_item_ptr_offset(l, slot);
 194        }
 195
 196        /*
 197         * Update generation_v2 so at the next mount we know the new root
 198         * fields are valid.
 199         */
 200        btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
 201
 202        write_extent_buffer(l, item, ptr, sizeof(*item));
 203        btrfs_mark_buffer_dirty(path->nodes[0]);
 204out:
 205        btrfs_free_path(path);
 206        return ret;
 207}
 208
 209int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
 210                      const struct btrfs_key *key, struct btrfs_root_item *item)
 211{
 212        /*
 213         * Make sure generation v1 and v2 match. See update_root for details.
 214         */
 215        btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
 216        return btrfs_insert_item(trans, root, key, item, sizeof(*item));
 217}
 218
 219int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
 220{
 221        struct btrfs_root *tree_root = fs_info->tree_root;
 222        struct extent_buffer *leaf;
 223        struct btrfs_path *path;
 224        struct btrfs_key key;
 225        struct btrfs_key root_key;
 226        struct btrfs_root *root;
 227        int err = 0;
 228        int ret;
 229
 230        path = btrfs_alloc_path();
 231        if (!path)
 232                return -ENOMEM;
 233
 234        key.objectid = BTRFS_ORPHAN_OBJECTID;
 235        key.type = BTRFS_ORPHAN_ITEM_KEY;
 236        key.offset = 0;
 237
 238        root_key.type = BTRFS_ROOT_ITEM_KEY;
 239        root_key.offset = (u64)-1;
 240
 241        while (1) {
 242                ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
 243                if (ret < 0) {
 244                        err = ret;
 245                        break;
 246                }
 247
 248                leaf = path->nodes[0];
 249                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 250                        ret = btrfs_next_leaf(tree_root, path);
 251                        if (ret < 0)
 252                                err = ret;
 253                        if (ret != 0)
 254                                break;
 255                        leaf = path->nodes[0];
 256                }
 257
 258                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 259                btrfs_release_path(path);
 260
 261                if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
 262                    key.type != BTRFS_ORPHAN_ITEM_KEY)
 263                        break;
 264
 265                root_key.objectid = key.offset;
 266                key.offset++;
 267
 268                /*
 269                 * The root might have been inserted already, as before we look
 270                 * for orphan roots, log replay might have happened, which
 271                 * triggers a transaction commit and qgroup accounting, which
 272                 * in turn reads and inserts fs roots while doing backref
 273                 * walking.
 274                 */
 275                root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
 276                if (root) {
 277                        WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
 278                                          &root->state));
 279                        if (btrfs_root_refs(&root->root_item) == 0)
 280                                btrfs_add_dead_root(root);
 281                        continue;
 282                }
 283
 284                root = btrfs_read_fs_root(tree_root, &root_key);
 285                err = PTR_ERR_OR_ZERO(root);
 286                if (err && err != -ENOENT) {
 287                        break;
 288                } else if (err == -ENOENT) {
 289                        struct btrfs_trans_handle *trans;
 290
 291                        btrfs_release_path(path);
 292
 293                        trans = btrfs_join_transaction(tree_root);
 294                        if (IS_ERR(trans)) {
 295                                err = PTR_ERR(trans);
 296                                btrfs_handle_fs_error(fs_info, err,
 297                                            "Failed to start trans to delete orphan item");
 298                                break;
 299                        }
 300                        err = btrfs_del_orphan_item(trans, tree_root,
 301                                                    root_key.objectid);
 302                        btrfs_end_transaction(trans);
 303                        if (err) {
 304                                btrfs_handle_fs_error(fs_info, err,
 305                                            "Failed to delete root orphan item");
 306                                break;
 307                        }
 308                        continue;
 309                }
 310
 311                err = btrfs_init_fs_root(root);
 312                if (err) {
 313                        btrfs_free_fs_root(root);
 314                        break;
 315                }
 316
 317                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 318
 319                err = btrfs_insert_fs_root(fs_info, root);
 320                if (err) {
 321                        BUG_ON(err == -EEXIST);
 322                        btrfs_free_fs_root(root);
 323                        break;
 324                }
 325
 326                if (btrfs_root_refs(&root->root_item) == 0)
 327                        btrfs_add_dead_root(root);
 328        }
 329
 330        btrfs_free_path(path);
 331        return err;
 332}
 333
 334/* drop the root item for 'key' from the tree root */
 335int btrfs_del_root(struct btrfs_trans_handle *trans,
 336                   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
 337{
 338        struct btrfs_root *root = fs_info->tree_root;
 339        struct btrfs_path *path;
 340        int ret;
 341
 342        path = btrfs_alloc_path();
 343        if (!path)
 344                return -ENOMEM;
 345        ret = btrfs_search_slot(trans, root, key, path, -1, 1);
 346        if (ret < 0)
 347                goto out;
 348
 349        BUG_ON(ret != 0);
 350
 351        ret = btrfs_del_item(trans, root, path);
 352out:
 353        btrfs_free_path(path);
 354        return ret;
 355}
 356
 357int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
 358                       struct btrfs_fs_info *fs_info,
 359                       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
 360                       const char *name, int name_len)
 361
 362{
 363        struct btrfs_root *tree_root = fs_info->tree_root;
 364        struct btrfs_path *path;
 365        struct btrfs_root_ref *ref;
 366        struct extent_buffer *leaf;
 367        struct btrfs_key key;
 368        unsigned long ptr;
 369        int err = 0;
 370        int ret;
 371
 372        path = btrfs_alloc_path();
 373        if (!path)
 374                return -ENOMEM;
 375
 376        key.objectid = root_id;
 377        key.type = BTRFS_ROOT_BACKREF_KEY;
 378        key.offset = ref_id;
 379again:
 380        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
 381        BUG_ON(ret < 0);
 382        if (ret == 0) {
 383                leaf = path->nodes[0];
 384                ref = btrfs_item_ptr(leaf, path->slots[0],
 385                                     struct btrfs_root_ref);
 386
 387                WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
 388                WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
 389                ptr = (unsigned long)(ref + 1);
 390                ret = btrfs_is_name_len_valid(leaf, path->slots[0], ptr,
 391                                              name_len);
 392                if (!ret) {
 393                        err = -EIO;
 394                        goto out;
 395                }
 396
 397                WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 398                *sequence = btrfs_root_ref_sequence(leaf, ref);
 399
 400                ret = btrfs_del_item(trans, tree_root, path);
 401                if (ret) {
 402                        err = ret;
 403                        goto out;
 404                }
 405        } else
 406                err = -ENOENT;
 407
 408        if (key.type == BTRFS_ROOT_BACKREF_KEY) {
 409                btrfs_release_path(path);
 410                key.objectid = ref_id;
 411                key.type = BTRFS_ROOT_REF_KEY;
 412                key.offset = root_id;
 413                goto again;
 414        }
 415
 416out:
 417        btrfs_free_path(path);
 418        return err;
 419}
 420
 421/*
 422 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
 423 * or BTRFS_ROOT_BACKREF_KEY.
 424 *
 425 * The dirid, sequence, name and name_len refer to the directory entry
 426 * that is referencing the root.
 427 *
 428 * For a forward ref, the root_id is the id of the tree referencing
 429 * the root and ref_id is the id of the subvol  or snapshot.
 430 *
 431 * For a back ref the root_id is the id of the subvol or snapshot and
 432 * ref_id is the id of the tree referencing it.
 433 *
 434 * Will return 0, -ENOMEM, or anything from the CoW path
 435 */
 436int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
 437                       struct btrfs_fs_info *fs_info,
 438                       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
 439                       const char *name, int name_len)
 440{
 441        struct btrfs_root *tree_root = fs_info->tree_root;
 442        struct btrfs_key key;
 443        int ret;
 444        struct btrfs_path *path;
 445        struct btrfs_root_ref *ref;
 446        struct extent_buffer *leaf;
 447        unsigned long ptr;
 448
 449        path = btrfs_alloc_path();
 450        if (!path)
 451                return -ENOMEM;
 452
 453        key.objectid = root_id;
 454        key.type = BTRFS_ROOT_BACKREF_KEY;
 455        key.offset = ref_id;
 456again:
 457        ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
 458                                      sizeof(*ref) + name_len);
 459        if (ret) {
 460                btrfs_abort_transaction(trans, ret);
 461                btrfs_free_path(path);
 462                return ret;
 463        }
 464
 465        leaf = path->nodes[0];
 466        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
 467        btrfs_set_root_ref_dirid(leaf, ref, dirid);
 468        btrfs_set_root_ref_sequence(leaf, ref, sequence);
 469        btrfs_set_root_ref_name_len(leaf, ref, name_len);
 470        ptr = (unsigned long)(ref + 1);
 471        write_extent_buffer(leaf, name, ptr, name_len);
 472        btrfs_mark_buffer_dirty(leaf);
 473
 474        if (key.type == BTRFS_ROOT_BACKREF_KEY) {
 475                btrfs_release_path(path);
 476                key.objectid = ref_id;
 477                key.type = BTRFS_ROOT_REF_KEY;
 478                key.offset = root_id;
 479                goto again;
 480        }
 481
 482        btrfs_free_path(path);
 483        return 0;
 484}
 485
 486/*
 487 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
 488 * for subvolumes. To work around this problem, we steal a bit from
 489 * root_item->inode_item->flags, and use it to indicate if those fields
 490 * have been properly initialized.
 491 */
 492void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
 493{
 494        u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
 495
 496        if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
 497                inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
 498                btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
 499                btrfs_set_root_flags(root_item, 0);
 500                btrfs_set_root_limit(root_item, 0);
 501        }
 502}
 503
 504void btrfs_update_root_times(struct btrfs_trans_handle *trans,
 505                             struct btrfs_root *root)
 506{
 507        struct btrfs_root_item *item = &root->root_item;
 508        struct timespec ct;
 509
 510        ktime_get_real_ts(&ct);
 511        spin_lock(&root->root_item_lock);
 512        btrfs_set_root_ctransid(item, trans->transid);
 513        btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
 514        btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
 515        spin_unlock(&root->root_item_lock);
 516}
 517