linux/fs/ext4/super.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/super.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Big-endian to little-endian byte-swapping/bitmaps by
  16 *        David S. Miller (davem@caip.rutgers.edu), 1995
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/string.h>
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/vmalloc.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/parser.h>
  29#include <linux/buffer_head.h>
  30#include <linux/exportfs.h>
  31#include <linux/vfs.h>
  32#include <linux/random.h>
  33#include <linux/mount.h>
  34#include <linux/namei.h>
  35#include <linux/quotaops.h>
  36#include <linux/seq_file.h>
  37#include <linux/ctype.h>
  38#include <linux/log2.h>
  39#include <linux/crc16.h>
  40#include <linux/dax.h>
  41#include <linux/cleancache.h>
  42#include <linux/uaccess.h>
  43
  44#include <linux/kthread.h>
  45#include <linux/freezer.h>
  46
  47#include "ext4.h"
  48#include "ext4_extents.h"       /* Needed for trace points definition */
  49#include "ext4_jbd2.h"
  50#include "xattr.h"
  51#include "acl.h"
  52#include "mballoc.h"
  53#include "fsmap.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/ext4.h>
  57
  58static struct ext4_lazy_init *ext4_li_info;
  59static struct mutex ext4_li_mtx;
  60static struct ratelimit_state ext4_mount_msg_ratelimit;
  61
  62static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  63                             unsigned long journal_devnum);
  64static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  65static int ext4_commit_super(struct super_block *sb, int sync);
  66static void ext4_mark_recovery_complete(struct super_block *sb,
  67                                        struct ext4_super_block *es);
  68static void ext4_clear_journal_err(struct super_block *sb,
  69                                   struct ext4_super_block *es);
  70static int ext4_sync_fs(struct super_block *sb, int wait);
  71static int ext4_remount(struct super_block *sb, int *flags, char *data);
  72static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  73static int ext4_unfreeze(struct super_block *sb);
  74static int ext4_freeze(struct super_block *sb);
  75static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  76                       const char *dev_name, void *data);
  77static inline int ext2_feature_set_ok(struct super_block *sb);
  78static inline int ext3_feature_set_ok(struct super_block *sb);
  79static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  80static void ext4_destroy_lazyinit_thread(void);
  81static void ext4_unregister_li_request(struct super_block *sb);
  82static void ext4_clear_request_list(void);
  83static struct inode *ext4_get_journal_inode(struct super_block *sb,
  84                                            unsigned int journal_inum);
  85
  86/*
  87 * Lock ordering
  88 *
  89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
  90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
  91 *
  92 * page fault path:
  93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
  94 *   page lock -> i_data_sem (rw)
  95 *
  96 * buffered write path:
  97 * sb_start_write -> i_mutex -> mmap_sem
  98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
  99 *   i_data_sem (rw)
 100 *
 101 * truncate:
 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
 103 *   i_mmap_rwsem (w) -> page lock
 104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
 105 *   transaction start -> i_data_sem (rw)
 106 *
 107 * direct IO:
 108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
 109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
 110 *   transaction start -> i_data_sem (rw)
 111 *
 112 * writepages:
 113 * transaction start -> page lock(s) -> i_data_sem (rw)
 114 */
 115
 116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 117static struct file_system_type ext2_fs_type = {
 118        .owner          = THIS_MODULE,
 119        .name           = "ext2",
 120        .mount          = ext4_mount,
 121        .kill_sb        = kill_block_super,
 122        .fs_flags       = FS_REQUIRES_DEV,
 123};
 124MODULE_ALIAS_FS("ext2");
 125MODULE_ALIAS("ext2");
 126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 127#else
 128#define IS_EXT2_SB(sb) (0)
 129#endif
 130
 131
 132static struct file_system_type ext3_fs_type = {
 133        .owner          = THIS_MODULE,
 134        .name           = "ext3",
 135        .mount          = ext4_mount,
 136        .kill_sb        = kill_block_super,
 137        .fs_flags       = FS_REQUIRES_DEV,
 138};
 139MODULE_ALIAS_FS("ext3");
 140MODULE_ALIAS("ext3");
 141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 142
 143static int ext4_verify_csum_type(struct super_block *sb,
 144                                 struct ext4_super_block *es)
 145{
 146        if (!ext4_has_feature_metadata_csum(sb))
 147                return 1;
 148
 149        return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 150}
 151
 152static __le32 ext4_superblock_csum(struct super_block *sb,
 153                                   struct ext4_super_block *es)
 154{
 155        struct ext4_sb_info *sbi = EXT4_SB(sb);
 156        int offset = offsetof(struct ext4_super_block, s_checksum);
 157        __u32 csum;
 158
 159        csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 160
 161        return cpu_to_le32(csum);
 162}
 163
 164static int ext4_superblock_csum_verify(struct super_block *sb,
 165                                       struct ext4_super_block *es)
 166{
 167        if (!ext4_has_metadata_csum(sb))
 168                return 1;
 169
 170        return es->s_checksum == ext4_superblock_csum(sb, es);
 171}
 172
 173void ext4_superblock_csum_set(struct super_block *sb)
 174{
 175        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 176
 177        if (!ext4_has_metadata_csum(sb))
 178                return;
 179
 180        es->s_checksum = ext4_superblock_csum(sb, es);
 181}
 182
 183void *ext4_kvmalloc(size_t size, gfp_t flags)
 184{
 185        void *ret;
 186
 187        ret = kmalloc(size, flags | __GFP_NOWARN);
 188        if (!ret)
 189                ret = __vmalloc(size, flags, PAGE_KERNEL);
 190        return ret;
 191}
 192
 193void *ext4_kvzalloc(size_t size, gfp_t flags)
 194{
 195        void *ret;
 196
 197        ret = kzalloc(size, flags | __GFP_NOWARN);
 198        if (!ret)
 199                ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
 200        return ret;
 201}
 202
 203ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 204                               struct ext4_group_desc *bg)
 205{
 206        return le32_to_cpu(bg->bg_block_bitmap_lo) |
 207                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 208                 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 209}
 210
 211ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 212                               struct ext4_group_desc *bg)
 213{
 214        return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 215                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 216                 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 217}
 218
 219ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 220                              struct ext4_group_desc *bg)
 221{
 222        return le32_to_cpu(bg->bg_inode_table_lo) |
 223                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 224                 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 225}
 226
 227__u32 ext4_free_group_clusters(struct super_block *sb,
 228                               struct ext4_group_desc *bg)
 229{
 230        return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 231                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 232                 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 233}
 234
 235__u32 ext4_free_inodes_count(struct super_block *sb,
 236                              struct ext4_group_desc *bg)
 237{
 238        return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 239                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 240                 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 241}
 242
 243__u32 ext4_used_dirs_count(struct super_block *sb,
 244                              struct ext4_group_desc *bg)
 245{
 246        return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 247                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 248                 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 249}
 250
 251__u32 ext4_itable_unused_count(struct super_block *sb,
 252                              struct ext4_group_desc *bg)
 253{
 254        return le16_to_cpu(bg->bg_itable_unused_lo) |
 255                (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 256                 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 257}
 258
 259void ext4_block_bitmap_set(struct super_block *sb,
 260                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
 261{
 262        bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 263        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 264                bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 265}
 266
 267void ext4_inode_bitmap_set(struct super_block *sb,
 268                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
 269{
 270        bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 271        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 272                bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 273}
 274
 275void ext4_inode_table_set(struct super_block *sb,
 276                          struct ext4_group_desc *bg, ext4_fsblk_t blk)
 277{
 278        bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 279        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 280                bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 281}
 282
 283void ext4_free_group_clusters_set(struct super_block *sb,
 284                                  struct ext4_group_desc *bg, __u32 count)
 285{
 286        bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 287        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 288                bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 289}
 290
 291void ext4_free_inodes_set(struct super_block *sb,
 292                          struct ext4_group_desc *bg, __u32 count)
 293{
 294        bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 295        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 296                bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 297}
 298
 299void ext4_used_dirs_set(struct super_block *sb,
 300                          struct ext4_group_desc *bg, __u32 count)
 301{
 302        bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 303        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 304                bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 305}
 306
 307void ext4_itable_unused_set(struct super_block *sb,
 308                          struct ext4_group_desc *bg, __u32 count)
 309{
 310        bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 311        if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 312                bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 313}
 314
 315
 316static void __save_error_info(struct super_block *sb, const char *func,
 317                            unsigned int line)
 318{
 319        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 320
 321        EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 322        if (bdev_read_only(sb->s_bdev))
 323                return;
 324        es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 325        es->s_last_error_time = cpu_to_le32(get_seconds());
 326        strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 327        es->s_last_error_line = cpu_to_le32(line);
 328        if (!es->s_first_error_time) {
 329                es->s_first_error_time = es->s_last_error_time;
 330                strncpy(es->s_first_error_func, func,
 331                        sizeof(es->s_first_error_func));
 332                es->s_first_error_line = cpu_to_le32(line);
 333                es->s_first_error_ino = es->s_last_error_ino;
 334                es->s_first_error_block = es->s_last_error_block;
 335        }
 336        /*
 337         * Start the daily error reporting function if it hasn't been
 338         * started already
 339         */
 340        if (!es->s_error_count)
 341                mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 342        le32_add_cpu(&es->s_error_count, 1);
 343}
 344
 345static void save_error_info(struct super_block *sb, const char *func,
 346                            unsigned int line)
 347{
 348        __save_error_info(sb, func, line);
 349        ext4_commit_super(sb, 1);
 350}
 351
 352/*
 353 * The del_gendisk() function uninitializes the disk-specific data
 354 * structures, including the bdi structure, without telling anyone
 355 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 357 * This is a kludge to prevent these oops until we can put in a proper
 358 * hook in del_gendisk() to inform the VFS and file system layers.
 359 */
 360static int block_device_ejected(struct super_block *sb)
 361{
 362        struct inode *bd_inode = sb->s_bdev->bd_inode;
 363        struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 364
 365        return bdi->dev == NULL;
 366}
 367
 368static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 369{
 370        struct super_block              *sb = journal->j_private;
 371        struct ext4_sb_info             *sbi = EXT4_SB(sb);
 372        int                             error = is_journal_aborted(journal);
 373        struct ext4_journal_cb_entry    *jce;
 374
 375        BUG_ON(txn->t_state == T_FINISHED);
 376
 377        ext4_process_freed_data(sb, txn->t_tid);
 378
 379        spin_lock(&sbi->s_md_lock);
 380        while (!list_empty(&txn->t_private_list)) {
 381                jce = list_entry(txn->t_private_list.next,
 382                                 struct ext4_journal_cb_entry, jce_list);
 383                list_del_init(&jce->jce_list);
 384                spin_unlock(&sbi->s_md_lock);
 385                jce->jce_func(sb, jce, error);
 386                spin_lock(&sbi->s_md_lock);
 387        }
 388        spin_unlock(&sbi->s_md_lock);
 389}
 390
 391/* Deal with the reporting of failure conditions on a filesystem such as
 392 * inconsistencies detected or read IO failures.
 393 *
 394 * On ext2, we can store the error state of the filesystem in the
 395 * superblock.  That is not possible on ext4, because we may have other
 396 * write ordering constraints on the superblock which prevent us from
 397 * writing it out straight away; and given that the journal is about to
 398 * be aborted, we can't rely on the current, or future, transactions to
 399 * write out the superblock safely.
 400 *
 401 * We'll just use the jbd2_journal_abort() error code to record an error in
 402 * the journal instead.  On recovery, the journal will complain about
 403 * that error until we've noted it down and cleared it.
 404 */
 405
 406static void ext4_handle_error(struct super_block *sb)
 407{
 408        if (sb_rdonly(sb))
 409                return;
 410
 411        if (!test_opt(sb, ERRORS_CONT)) {
 412                journal_t *journal = EXT4_SB(sb)->s_journal;
 413
 414                EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 415                if (journal)
 416                        jbd2_journal_abort(journal, -EIO);
 417        }
 418        if (test_opt(sb, ERRORS_RO)) {
 419                ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 420                /*
 421                 * Make sure updated value of ->s_mount_flags will be visible
 422                 * before ->s_flags update
 423                 */
 424                smp_wmb();
 425                sb->s_flags |= SB_RDONLY;
 426        }
 427        if (test_opt(sb, ERRORS_PANIC)) {
 428                if (EXT4_SB(sb)->s_journal &&
 429                  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 430                        return;
 431                panic("EXT4-fs (device %s): panic forced after error\n",
 432                        sb->s_id);
 433        }
 434}
 435
 436#define ext4_error_ratelimit(sb)                                        \
 437                ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
 438                             "EXT4-fs error")
 439
 440void __ext4_error(struct super_block *sb, const char *function,
 441                  unsigned int line, const char *fmt, ...)
 442{
 443        struct va_format vaf;
 444        va_list args;
 445
 446        if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 447                return;
 448
 449        if (ext4_error_ratelimit(sb)) {
 450                va_start(args, fmt);
 451                vaf.fmt = fmt;
 452                vaf.va = &args;
 453                printk(KERN_CRIT
 454                       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 455                       sb->s_id, function, line, current->comm, &vaf);
 456                va_end(args);
 457        }
 458        save_error_info(sb, function, line);
 459        ext4_handle_error(sb);
 460}
 461
 462void __ext4_error_inode(struct inode *inode, const char *function,
 463                        unsigned int line, ext4_fsblk_t block,
 464                        const char *fmt, ...)
 465{
 466        va_list args;
 467        struct va_format vaf;
 468        struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 469
 470        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 471                return;
 472
 473        es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 474        es->s_last_error_block = cpu_to_le64(block);
 475        if (ext4_error_ratelimit(inode->i_sb)) {
 476                va_start(args, fmt);
 477                vaf.fmt = fmt;
 478                vaf.va = &args;
 479                if (block)
 480                        printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 481                               "inode #%lu: block %llu: comm %s: %pV\n",
 482                               inode->i_sb->s_id, function, line, inode->i_ino,
 483                               block, current->comm, &vaf);
 484                else
 485                        printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 486                               "inode #%lu: comm %s: %pV\n",
 487                               inode->i_sb->s_id, function, line, inode->i_ino,
 488                               current->comm, &vaf);
 489                va_end(args);
 490        }
 491        save_error_info(inode->i_sb, function, line);
 492        ext4_handle_error(inode->i_sb);
 493}
 494
 495void __ext4_error_file(struct file *file, const char *function,
 496                       unsigned int line, ext4_fsblk_t block,
 497                       const char *fmt, ...)
 498{
 499        va_list args;
 500        struct va_format vaf;
 501        struct ext4_super_block *es;
 502        struct inode *inode = file_inode(file);
 503        char pathname[80], *path;
 504
 505        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 506                return;
 507
 508        es = EXT4_SB(inode->i_sb)->s_es;
 509        es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 510        if (ext4_error_ratelimit(inode->i_sb)) {
 511                path = file_path(file, pathname, sizeof(pathname));
 512                if (IS_ERR(path))
 513                        path = "(unknown)";
 514                va_start(args, fmt);
 515                vaf.fmt = fmt;
 516                vaf.va = &args;
 517                if (block)
 518                        printk(KERN_CRIT
 519                               "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 520                               "block %llu: comm %s: path %s: %pV\n",
 521                               inode->i_sb->s_id, function, line, inode->i_ino,
 522                               block, current->comm, path, &vaf);
 523                else
 524                        printk(KERN_CRIT
 525                               "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 526                               "comm %s: path %s: %pV\n",
 527                               inode->i_sb->s_id, function, line, inode->i_ino,
 528                               current->comm, path, &vaf);
 529                va_end(args);
 530        }
 531        save_error_info(inode->i_sb, function, line);
 532        ext4_handle_error(inode->i_sb);
 533}
 534
 535const char *ext4_decode_error(struct super_block *sb, int errno,
 536                              char nbuf[16])
 537{
 538        char *errstr = NULL;
 539
 540        switch (errno) {
 541        case -EFSCORRUPTED:
 542                errstr = "Corrupt filesystem";
 543                break;
 544        case -EFSBADCRC:
 545                errstr = "Filesystem failed CRC";
 546                break;
 547        case -EIO:
 548                errstr = "IO failure";
 549                break;
 550        case -ENOMEM:
 551                errstr = "Out of memory";
 552                break;
 553        case -EROFS:
 554                if (!sb || (EXT4_SB(sb)->s_journal &&
 555                            EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 556                        errstr = "Journal has aborted";
 557                else
 558                        errstr = "Readonly filesystem";
 559                break;
 560        default:
 561                /* If the caller passed in an extra buffer for unknown
 562                 * errors, textualise them now.  Else we just return
 563                 * NULL. */
 564                if (nbuf) {
 565                        /* Check for truncated error codes... */
 566                        if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 567                                errstr = nbuf;
 568                }
 569                break;
 570        }
 571
 572        return errstr;
 573}
 574
 575/* __ext4_std_error decodes expected errors from journaling functions
 576 * automatically and invokes the appropriate error response.  */
 577
 578void __ext4_std_error(struct super_block *sb, const char *function,
 579                      unsigned int line, int errno)
 580{
 581        char nbuf[16];
 582        const char *errstr;
 583
 584        if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 585                return;
 586
 587        /* Special case: if the error is EROFS, and we're not already
 588         * inside a transaction, then there's really no point in logging
 589         * an error. */
 590        if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 591                return;
 592
 593        if (ext4_error_ratelimit(sb)) {
 594                errstr = ext4_decode_error(sb, errno, nbuf);
 595                printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 596                       sb->s_id, function, line, errstr);
 597        }
 598
 599        save_error_info(sb, function, line);
 600        ext4_handle_error(sb);
 601}
 602
 603/*
 604 * ext4_abort is a much stronger failure handler than ext4_error.  The
 605 * abort function may be used to deal with unrecoverable failures such
 606 * as journal IO errors or ENOMEM at a critical moment in log management.
 607 *
 608 * We unconditionally force the filesystem into an ABORT|READONLY state,
 609 * unless the error response on the fs has been set to panic in which
 610 * case we take the easy way out and panic immediately.
 611 */
 612
 613void __ext4_abort(struct super_block *sb, const char *function,
 614                unsigned int line, const char *fmt, ...)
 615{
 616        struct va_format vaf;
 617        va_list args;
 618
 619        if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 620                return;
 621
 622        save_error_info(sb, function, line);
 623        va_start(args, fmt);
 624        vaf.fmt = fmt;
 625        vaf.va = &args;
 626        printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
 627               sb->s_id, function, line, &vaf);
 628        va_end(args);
 629
 630        if (sb_rdonly(sb) == 0) {
 631                ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 632                EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 633                /*
 634                 * Make sure updated value of ->s_mount_flags will be visible
 635                 * before ->s_flags update
 636                 */
 637                smp_wmb();
 638                sb->s_flags |= SB_RDONLY;
 639                if (EXT4_SB(sb)->s_journal)
 640                        jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 641                save_error_info(sb, function, line);
 642        }
 643        if (test_opt(sb, ERRORS_PANIC)) {
 644                if (EXT4_SB(sb)->s_journal &&
 645                  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 646                        return;
 647                panic("EXT4-fs panic from previous error\n");
 648        }
 649}
 650
 651void __ext4_msg(struct super_block *sb,
 652                const char *prefix, const char *fmt, ...)
 653{
 654        struct va_format vaf;
 655        va_list args;
 656
 657        if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
 658                return;
 659
 660        va_start(args, fmt);
 661        vaf.fmt = fmt;
 662        vaf.va = &args;
 663        printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 664        va_end(args);
 665}
 666
 667#define ext4_warning_ratelimit(sb)                                      \
 668                ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
 669                             "EXT4-fs warning")
 670
 671void __ext4_warning(struct super_block *sb, const char *function,
 672                    unsigned int line, const char *fmt, ...)
 673{
 674        struct va_format vaf;
 675        va_list args;
 676
 677        if (!ext4_warning_ratelimit(sb))
 678                return;
 679
 680        va_start(args, fmt);
 681        vaf.fmt = fmt;
 682        vaf.va = &args;
 683        printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 684               sb->s_id, function, line, &vaf);
 685        va_end(args);
 686}
 687
 688void __ext4_warning_inode(const struct inode *inode, const char *function,
 689                          unsigned int line, const char *fmt, ...)
 690{
 691        struct va_format vaf;
 692        va_list args;
 693
 694        if (!ext4_warning_ratelimit(inode->i_sb))
 695                return;
 696
 697        va_start(args, fmt);
 698        vaf.fmt = fmt;
 699        vaf.va = &args;
 700        printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 701               "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 702               function, line, inode->i_ino, current->comm, &vaf);
 703        va_end(args);
 704}
 705
 706void __ext4_grp_locked_error(const char *function, unsigned int line,
 707                             struct super_block *sb, ext4_group_t grp,
 708                             unsigned long ino, ext4_fsblk_t block,
 709                             const char *fmt, ...)
 710__releases(bitlock)
 711__acquires(bitlock)
 712{
 713        struct va_format vaf;
 714        va_list args;
 715        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 716
 717        if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 718                return;
 719
 720        es->s_last_error_ino = cpu_to_le32(ino);
 721        es->s_last_error_block = cpu_to_le64(block);
 722        __save_error_info(sb, function, line);
 723
 724        if (ext4_error_ratelimit(sb)) {
 725                va_start(args, fmt);
 726                vaf.fmt = fmt;
 727                vaf.va = &args;
 728                printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 729                       sb->s_id, function, line, grp);
 730                if (ino)
 731                        printk(KERN_CONT "inode %lu: ", ino);
 732                if (block)
 733                        printk(KERN_CONT "block %llu:",
 734                               (unsigned long long) block);
 735                printk(KERN_CONT "%pV\n", &vaf);
 736                va_end(args);
 737        }
 738
 739        if (test_opt(sb, ERRORS_CONT)) {
 740                ext4_commit_super(sb, 0);
 741                return;
 742        }
 743
 744        ext4_unlock_group(sb, grp);
 745        ext4_handle_error(sb);
 746        /*
 747         * We only get here in the ERRORS_RO case; relocking the group
 748         * may be dangerous, but nothing bad will happen since the
 749         * filesystem will have already been marked read/only and the
 750         * journal has been aborted.  We return 1 as a hint to callers
 751         * who might what to use the return value from
 752         * ext4_grp_locked_error() to distinguish between the
 753         * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 754         * aggressively from the ext4 function in question, with a
 755         * more appropriate error code.
 756         */
 757        ext4_lock_group(sb, grp);
 758        return;
 759}
 760
 761void ext4_update_dynamic_rev(struct super_block *sb)
 762{
 763        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 764
 765        if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 766                return;
 767
 768        ext4_warning(sb,
 769                     "updating to rev %d because of new feature flag, "
 770                     "running e2fsck is recommended",
 771                     EXT4_DYNAMIC_REV);
 772
 773        es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 774        es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 775        es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 776        /* leave es->s_feature_*compat flags alone */
 777        /* es->s_uuid will be set by e2fsck if empty */
 778
 779        /*
 780         * The rest of the superblock fields should be zero, and if not it
 781         * means they are likely already in use, so leave them alone.  We
 782         * can leave it up to e2fsck to clean up any inconsistencies there.
 783         */
 784}
 785
 786/*
 787 * Open the external journal device
 788 */
 789static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 790{
 791        struct block_device *bdev;
 792        char b[BDEVNAME_SIZE];
 793
 794        bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 795        if (IS_ERR(bdev))
 796                goto fail;
 797        return bdev;
 798
 799fail:
 800        ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
 801                        __bdevname(dev, b), PTR_ERR(bdev));
 802        return NULL;
 803}
 804
 805/*
 806 * Release the journal device
 807 */
 808static void ext4_blkdev_put(struct block_device *bdev)
 809{
 810        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 811}
 812
 813static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
 814{
 815        struct block_device *bdev;
 816        bdev = sbi->journal_bdev;
 817        if (bdev) {
 818                ext4_blkdev_put(bdev);
 819                sbi->journal_bdev = NULL;
 820        }
 821}
 822
 823static inline struct inode *orphan_list_entry(struct list_head *l)
 824{
 825        return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 826}
 827
 828static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 829{
 830        struct list_head *l;
 831
 832        ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 833                 le32_to_cpu(sbi->s_es->s_last_orphan));
 834
 835        printk(KERN_ERR "sb_info orphan list:\n");
 836        list_for_each(l, &sbi->s_orphan) {
 837                struct inode *inode = orphan_list_entry(l);
 838                printk(KERN_ERR "  "
 839                       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 840                       inode->i_sb->s_id, inode->i_ino, inode,
 841                       inode->i_mode, inode->i_nlink,
 842                       NEXT_ORPHAN(inode));
 843        }
 844}
 845
 846#ifdef CONFIG_QUOTA
 847static int ext4_quota_off(struct super_block *sb, int type);
 848
 849static inline void ext4_quota_off_umount(struct super_block *sb)
 850{
 851        int type;
 852
 853        /* Use our quota_off function to clear inode flags etc. */
 854        for (type = 0; type < EXT4_MAXQUOTAS; type++)
 855                ext4_quota_off(sb, type);
 856}
 857#else
 858static inline void ext4_quota_off_umount(struct super_block *sb)
 859{
 860}
 861#endif
 862
 863static void ext4_put_super(struct super_block *sb)
 864{
 865        struct ext4_sb_info *sbi = EXT4_SB(sb);
 866        struct ext4_super_block *es = sbi->s_es;
 867        int aborted = 0;
 868        int i, err;
 869
 870        ext4_unregister_li_request(sb);
 871        ext4_quota_off_umount(sb);
 872
 873        flush_workqueue(sbi->rsv_conversion_wq);
 874        destroy_workqueue(sbi->rsv_conversion_wq);
 875
 876        if (sbi->s_journal) {
 877                aborted = is_journal_aborted(sbi->s_journal);
 878                err = jbd2_journal_destroy(sbi->s_journal);
 879                sbi->s_journal = NULL;
 880                if ((err < 0) && !aborted)
 881                        ext4_abort(sb, "Couldn't clean up the journal");
 882        }
 883
 884        ext4_unregister_sysfs(sb);
 885        ext4_es_unregister_shrinker(sbi);
 886        del_timer_sync(&sbi->s_err_report);
 887        ext4_release_system_zone(sb);
 888        ext4_mb_release(sb);
 889        ext4_ext_release(sb);
 890
 891        if (!sb_rdonly(sb) && !aborted) {
 892                ext4_clear_feature_journal_needs_recovery(sb);
 893                es->s_state = cpu_to_le16(sbi->s_mount_state);
 894        }
 895        if (!sb_rdonly(sb))
 896                ext4_commit_super(sb, 1);
 897
 898        for (i = 0; i < sbi->s_gdb_count; i++)
 899                brelse(sbi->s_group_desc[i]);
 900        kvfree(sbi->s_group_desc);
 901        kvfree(sbi->s_flex_groups);
 902        percpu_counter_destroy(&sbi->s_freeclusters_counter);
 903        percpu_counter_destroy(&sbi->s_freeinodes_counter);
 904        percpu_counter_destroy(&sbi->s_dirs_counter);
 905        percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 906        percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
 907#ifdef CONFIG_QUOTA
 908        for (i = 0; i < EXT4_MAXQUOTAS; i++)
 909                kfree(sbi->s_qf_names[i]);
 910#endif
 911
 912        /* Debugging code just in case the in-memory inode orphan list
 913         * isn't empty.  The on-disk one can be non-empty if we've
 914         * detected an error and taken the fs readonly, but the
 915         * in-memory list had better be clean by this point. */
 916        if (!list_empty(&sbi->s_orphan))
 917                dump_orphan_list(sb, sbi);
 918        J_ASSERT(list_empty(&sbi->s_orphan));
 919
 920        sync_blockdev(sb->s_bdev);
 921        invalidate_bdev(sb->s_bdev);
 922        if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
 923                /*
 924                 * Invalidate the journal device's buffers.  We don't want them
 925                 * floating about in memory - the physical journal device may
 926                 * hotswapped, and it breaks the `ro-after' testing code.
 927                 */
 928                sync_blockdev(sbi->journal_bdev);
 929                invalidate_bdev(sbi->journal_bdev);
 930                ext4_blkdev_remove(sbi);
 931        }
 932        if (sbi->s_ea_inode_cache) {
 933                ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
 934                sbi->s_ea_inode_cache = NULL;
 935        }
 936        if (sbi->s_ea_block_cache) {
 937                ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
 938                sbi->s_ea_block_cache = NULL;
 939        }
 940        if (sbi->s_mmp_tsk)
 941                kthread_stop(sbi->s_mmp_tsk);
 942        brelse(sbi->s_sbh);
 943        sb->s_fs_info = NULL;
 944        /*
 945         * Now that we are completely done shutting down the
 946         * superblock, we need to actually destroy the kobject.
 947         */
 948        kobject_put(&sbi->s_kobj);
 949        wait_for_completion(&sbi->s_kobj_unregister);
 950        if (sbi->s_chksum_driver)
 951                crypto_free_shash(sbi->s_chksum_driver);
 952        kfree(sbi->s_blockgroup_lock);
 953        fs_put_dax(sbi->s_daxdev);
 954        kfree(sbi);
 955}
 956
 957static struct kmem_cache *ext4_inode_cachep;
 958
 959/*
 960 * Called inside transaction, so use GFP_NOFS
 961 */
 962static struct inode *ext4_alloc_inode(struct super_block *sb)
 963{
 964        struct ext4_inode_info *ei;
 965
 966        ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
 967        if (!ei)
 968                return NULL;
 969
 970        ei->vfs_inode.i_version = 1;
 971        spin_lock_init(&ei->i_raw_lock);
 972        INIT_LIST_HEAD(&ei->i_prealloc_list);
 973        spin_lock_init(&ei->i_prealloc_lock);
 974        ext4_es_init_tree(&ei->i_es_tree);
 975        rwlock_init(&ei->i_es_lock);
 976        INIT_LIST_HEAD(&ei->i_es_list);
 977        ei->i_es_all_nr = 0;
 978        ei->i_es_shk_nr = 0;
 979        ei->i_es_shrink_lblk = 0;
 980        ei->i_reserved_data_blocks = 0;
 981        ei->i_da_metadata_calc_len = 0;
 982        ei->i_da_metadata_calc_last_lblock = 0;
 983        spin_lock_init(&(ei->i_block_reservation_lock));
 984#ifdef CONFIG_QUOTA
 985        ei->i_reserved_quota = 0;
 986        memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
 987#endif
 988        ei->jinode = NULL;
 989        INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
 990        spin_lock_init(&ei->i_completed_io_lock);
 991        ei->i_sync_tid = 0;
 992        ei->i_datasync_tid = 0;
 993        atomic_set(&ei->i_unwritten, 0);
 994        INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
 995        return &ei->vfs_inode;
 996}
 997
 998static int ext4_drop_inode(struct inode *inode)
 999{
1000        int drop = generic_drop_inode(inode);
1001
1002        trace_ext4_drop_inode(inode, drop);
1003        return drop;
1004}
1005
1006static void ext4_i_callback(struct rcu_head *head)
1007{
1008        struct inode *inode = container_of(head, struct inode, i_rcu);
1009        kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1010}
1011
1012static void ext4_destroy_inode(struct inode *inode)
1013{
1014        if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015                ext4_msg(inode->i_sb, KERN_ERR,
1016                         "Inode %lu (%p): orphan list check failed!",
1017                         inode->i_ino, EXT4_I(inode));
1018                print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019                                EXT4_I(inode), sizeof(struct ext4_inode_info),
1020                                true);
1021                dump_stack();
1022        }
1023        call_rcu(&inode->i_rcu, ext4_i_callback);
1024}
1025
1026static void init_once(void *foo)
1027{
1028        struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1029
1030        INIT_LIST_HEAD(&ei->i_orphan);
1031        init_rwsem(&ei->xattr_sem);
1032        init_rwsem(&ei->i_data_sem);
1033        init_rwsem(&ei->i_mmap_sem);
1034        inode_init_once(&ei->vfs_inode);
1035}
1036
1037static int __init init_inodecache(void)
1038{
1039        ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040                                             sizeof(struct ext4_inode_info),
1041                                             0, (SLAB_RECLAIM_ACCOUNT|
1042                                                SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1043                                             init_once);
1044        if (ext4_inode_cachep == NULL)
1045                return -ENOMEM;
1046        return 0;
1047}
1048
1049static void destroy_inodecache(void)
1050{
1051        /*
1052         * Make sure all delayed rcu free inodes are flushed before we
1053         * destroy cache.
1054         */
1055        rcu_barrier();
1056        kmem_cache_destroy(ext4_inode_cachep);
1057}
1058
1059void ext4_clear_inode(struct inode *inode)
1060{
1061        invalidate_inode_buffers(inode);
1062        clear_inode(inode);
1063        dquot_drop(inode);
1064        ext4_discard_preallocations(inode);
1065        ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066        if (EXT4_I(inode)->jinode) {
1067                jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068                                               EXT4_I(inode)->jinode);
1069                jbd2_free_inode(EXT4_I(inode)->jinode);
1070                EXT4_I(inode)->jinode = NULL;
1071        }
1072#ifdef CONFIG_EXT4_FS_ENCRYPTION
1073        fscrypt_put_encryption_info(inode, NULL);
1074#endif
1075}
1076
1077static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078                                        u64 ino, u32 generation)
1079{
1080        struct inode *inode;
1081
1082        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083                return ERR_PTR(-ESTALE);
1084        if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085                return ERR_PTR(-ESTALE);
1086
1087        /* iget isn't really right if the inode is currently unallocated!!
1088         *
1089         * ext4_read_inode will return a bad_inode if the inode had been
1090         * deleted, so we should be safe.
1091         *
1092         * Currently we don't know the generation for parent directory, so
1093         * a generation of 0 means "accept any"
1094         */
1095        inode = ext4_iget_normal(sb, ino);
1096        if (IS_ERR(inode))
1097                return ERR_CAST(inode);
1098        if (generation && inode->i_generation != generation) {
1099                iput(inode);
1100                return ERR_PTR(-ESTALE);
1101        }
1102
1103        return inode;
1104}
1105
1106static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107                                        int fh_len, int fh_type)
1108{
1109        return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110                                    ext4_nfs_get_inode);
1111}
1112
1113static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114                                        int fh_len, int fh_type)
1115{
1116        return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117                                    ext4_nfs_get_inode);
1118}
1119
1120/*
1121 * Try to release metadata pages (indirect blocks, directories) which are
1122 * mapped via the block device.  Since these pages could have journal heads
1123 * which would prevent try_to_free_buffers() from freeing them, we must use
1124 * jbd2 layer's try_to_free_buffers() function to release them.
1125 */
1126static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1127                                 gfp_t wait)
1128{
1129        journal_t *journal = EXT4_SB(sb)->s_journal;
1130
1131        WARN_ON(PageChecked(page));
1132        if (!page_has_buffers(page))
1133                return 0;
1134        if (journal)
1135                return jbd2_journal_try_to_free_buffers(journal, page,
1136                                                wait & ~__GFP_DIRECT_RECLAIM);
1137        return try_to_free_buffers(page);
1138}
1139
1140#ifdef CONFIG_EXT4_FS_ENCRYPTION
1141static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1142{
1143        return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144                                 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1145}
1146
1147static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1148                                                        void *fs_data)
1149{
1150        handle_t *handle = fs_data;
1151        int res, res2, credits, retries = 0;
1152
1153        /*
1154         * Encrypting the root directory is not allowed because e2fsck expects
1155         * lost+found to exist and be unencrypted, and encrypting the root
1156         * directory would imply encrypting the lost+found directory as well as
1157         * the filename "lost+found" itself.
1158         */
1159        if (inode->i_ino == EXT4_ROOT_INO)
1160                return -EPERM;
1161
1162        if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1163                return -EINVAL;
1164
1165        res = ext4_convert_inline_data(inode);
1166        if (res)
1167                return res;
1168
1169        /*
1170         * If a journal handle was specified, then the encryption context is
1171         * being set on a new inode via inheritance and is part of a larger
1172         * transaction to create the inode.  Otherwise the encryption context is
1173         * being set on an existing inode in its own transaction.  Only in the
1174         * latter case should the "retry on ENOSPC" logic be used.
1175         */
1176
1177        if (handle) {
1178                res = ext4_xattr_set_handle(handle, inode,
1179                                            EXT4_XATTR_INDEX_ENCRYPTION,
1180                                            EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1181                                            ctx, len, 0);
1182                if (!res) {
1183                        ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1184                        ext4_clear_inode_state(inode,
1185                                        EXT4_STATE_MAY_INLINE_DATA);
1186                        /*
1187                         * Update inode->i_flags - S_ENCRYPTED will be enabled,
1188                         * S_DAX may be disabled
1189                         */
1190                        ext4_set_inode_flags(inode);
1191                }
1192                return res;
1193        }
1194
1195        res = dquot_initialize(inode);
1196        if (res)
1197                return res;
1198retry:
1199        res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1200                                     &credits);
1201        if (res)
1202                return res;
1203
1204        handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1205        if (IS_ERR(handle))
1206                return PTR_ERR(handle);
1207
1208        res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1209                                    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1210                                    ctx, len, 0);
1211        if (!res) {
1212                ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1213                /*
1214                 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1215                 * S_DAX may be disabled
1216                 */
1217                ext4_set_inode_flags(inode);
1218                res = ext4_mark_inode_dirty(handle, inode);
1219                if (res)
1220                        EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1221        }
1222        res2 = ext4_journal_stop(handle);
1223
1224        if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1225                goto retry;
1226        if (!res)
1227                res = res2;
1228        return res;
1229}
1230
1231static bool ext4_dummy_context(struct inode *inode)
1232{
1233        return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1234}
1235
1236static unsigned ext4_max_namelen(struct inode *inode)
1237{
1238        return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1239                EXT4_NAME_LEN;
1240}
1241
1242static const struct fscrypt_operations ext4_cryptops = {
1243        .key_prefix             = "ext4:",
1244        .get_context            = ext4_get_context,
1245        .set_context            = ext4_set_context,
1246        .dummy_context          = ext4_dummy_context,
1247        .empty_dir              = ext4_empty_dir,
1248        .max_namelen            = ext4_max_namelen,
1249};
1250#endif
1251
1252#ifdef CONFIG_QUOTA
1253static const char * const quotatypes[] = INITQFNAMES;
1254#define QTYPE2NAME(t) (quotatypes[t])
1255
1256static int ext4_write_dquot(struct dquot *dquot);
1257static int ext4_acquire_dquot(struct dquot *dquot);
1258static int ext4_release_dquot(struct dquot *dquot);
1259static int ext4_mark_dquot_dirty(struct dquot *dquot);
1260static int ext4_write_info(struct super_block *sb, int type);
1261static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1262                         const struct path *path);
1263static int ext4_quota_on_mount(struct super_block *sb, int type);
1264static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1265                               size_t len, loff_t off);
1266static ssize_t ext4_quota_write(struct super_block *sb, int type,
1267                                const char *data, size_t len, loff_t off);
1268static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1269                             unsigned int flags);
1270static int ext4_enable_quotas(struct super_block *sb);
1271static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1272
1273static struct dquot **ext4_get_dquots(struct inode *inode)
1274{
1275        return EXT4_I(inode)->i_dquot;
1276}
1277
1278static const struct dquot_operations ext4_quota_operations = {
1279        .get_reserved_space     = ext4_get_reserved_space,
1280        .write_dquot            = ext4_write_dquot,
1281        .acquire_dquot          = ext4_acquire_dquot,
1282        .release_dquot          = ext4_release_dquot,
1283        .mark_dirty             = ext4_mark_dquot_dirty,
1284        .write_info             = ext4_write_info,
1285        .alloc_dquot            = dquot_alloc,
1286        .destroy_dquot          = dquot_destroy,
1287        .get_projid             = ext4_get_projid,
1288        .get_inode_usage        = ext4_get_inode_usage,
1289        .get_next_id            = ext4_get_next_id,
1290};
1291
1292static const struct quotactl_ops ext4_qctl_operations = {
1293        .quota_on       = ext4_quota_on,
1294        .quota_off      = ext4_quota_off,
1295        .quota_sync     = dquot_quota_sync,
1296        .get_state      = dquot_get_state,
1297        .set_info       = dquot_set_dqinfo,
1298        .get_dqblk      = dquot_get_dqblk,
1299        .set_dqblk      = dquot_set_dqblk,
1300        .get_nextdqblk  = dquot_get_next_dqblk,
1301};
1302#endif
1303
1304static const struct super_operations ext4_sops = {
1305        .alloc_inode    = ext4_alloc_inode,
1306        .destroy_inode  = ext4_destroy_inode,
1307        .write_inode    = ext4_write_inode,
1308        .dirty_inode    = ext4_dirty_inode,
1309        .drop_inode     = ext4_drop_inode,
1310        .evict_inode    = ext4_evict_inode,
1311        .put_super      = ext4_put_super,
1312        .sync_fs        = ext4_sync_fs,
1313        .freeze_fs      = ext4_freeze,
1314        .unfreeze_fs    = ext4_unfreeze,
1315        .statfs         = ext4_statfs,
1316        .remount_fs     = ext4_remount,
1317        .show_options   = ext4_show_options,
1318#ifdef CONFIG_QUOTA
1319        .quota_read     = ext4_quota_read,
1320        .quota_write    = ext4_quota_write,
1321        .get_dquots     = ext4_get_dquots,
1322#endif
1323        .bdev_try_to_free_page = bdev_try_to_free_page,
1324};
1325
1326static const struct export_operations ext4_export_ops = {
1327        .fh_to_dentry = ext4_fh_to_dentry,
1328        .fh_to_parent = ext4_fh_to_parent,
1329        .get_parent = ext4_get_parent,
1330};
1331
1332enum {
1333        Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1334        Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1335        Opt_nouid32, Opt_debug, Opt_removed,
1336        Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1337        Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1338        Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1339        Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1340        Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1341        Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1342        Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1343        Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1344        Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1345        Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1346        Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1347        Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1348        Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1349        Opt_inode_readahead_blks, Opt_journal_ioprio,
1350        Opt_dioread_nolock, Opt_dioread_lock,
1351        Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1352        Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1353};
1354
1355static const match_table_t tokens = {
1356        {Opt_bsd_df, "bsddf"},
1357        {Opt_minix_df, "minixdf"},
1358        {Opt_grpid, "grpid"},
1359        {Opt_grpid, "bsdgroups"},
1360        {Opt_nogrpid, "nogrpid"},
1361        {Opt_nogrpid, "sysvgroups"},
1362        {Opt_resgid, "resgid=%u"},
1363        {Opt_resuid, "resuid=%u"},
1364        {Opt_sb, "sb=%u"},
1365        {Opt_err_cont, "errors=continue"},
1366        {Opt_err_panic, "errors=panic"},
1367        {Opt_err_ro, "errors=remount-ro"},
1368        {Opt_nouid32, "nouid32"},
1369        {Opt_debug, "debug"},
1370        {Opt_removed, "oldalloc"},
1371        {Opt_removed, "orlov"},
1372        {Opt_user_xattr, "user_xattr"},
1373        {Opt_nouser_xattr, "nouser_xattr"},
1374        {Opt_acl, "acl"},
1375        {Opt_noacl, "noacl"},
1376        {Opt_noload, "norecovery"},
1377        {Opt_noload, "noload"},
1378        {Opt_removed, "nobh"},
1379        {Opt_removed, "bh"},
1380        {Opt_commit, "commit=%u"},
1381        {Opt_min_batch_time, "min_batch_time=%u"},
1382        {Opt_max_batch_time, "max_batch_time=%u"},
1383        {Opt_journal_dev, "journal_dev=%u"},
1384        {Opt_journal_path, "journal_path=%s"},
1385        {Opt_journal_checksum, "journal_checksum"},
1386        {Opt_nojournal_checksum, "nojournal_checksum"},
1387        {Opt_journal_async_commit, "journal_async_commit"},
1388        {Opt_abort, "abort"},
1389        {Opt_data_journal, "data=journal"},
1390        {Opt_data_ordered, "data=ordered"},
1391        {Opt_data_writeback, "data=writeback"},
1392        {Opt_data_err_abort, "data_err=abort"},
1393        {Opt_data_err_ignore, "data_err=ignore"},
1394        {Opt_offusrjquota, "usrjquota="},
1395        {Opt_usrjquota, "usrjquota=%s"},
1396        {Opt_offgrpjquota, "grpjquota="},
1397        {Opt_grpjquota, "grpjquota=%s"},
1398        {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1399        {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1400        {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1401        {Opt_grpquota, "grpquota"},
1402        {Opt_noquota, "noquota"},
1403        {Opt_quota, "quota"},
1404        {Opt_usrquota, "usrquota"},
1405        {Opt_prjquota, "prjquota"},
1406        {Opt_barrier, "barrier=%u"},
1407        {Opt_barrier, "barrier"},
1408        {Opt_nobarrier, "nobarrier"},
1409        {Opt_i_version, "i_version"},
1410        {Opt_dax, "dax"},
1411        {Opt_stripe, "stripe=%u"},
1412        {Opt_delalloc, "delalloc"},
1413        {Opt_lazytime, "lazytime"},
1414        {Opt_nolazytime, "nolazytime"},
1415        {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1416        {Opt_nodelalloc, "nodelalloc"},
1417        {Opt_removed, "mblk_io_submit"},
1418        {Opt_removed, "nomblk_io_submit"},
1419        {Opt_block_validity, "block_validity"},
1420        {Opt_noblock_validity, "noblock_validity"},
1421        {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1422        {Opt_journal_ioprio, "journal_ioprio=%u"},
1423        {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1424        {Opt_auto_da_alloc, "auto_da_alloc"},
1425        {Opt_noauto_da_alloc, "noauto_da_alloc"},
1426        {Opt_dioread_nolock, "dioread_nolock"},
1427        {Opt_dioread_lock, "dioread_lock"},
1428        {Opt_discard, "discard"},
1429        {Opt_nodiscard, "nodiscard"},
1430        {Opt_init_itable, "init_itable=%u"},
1431        {Opt_init_itable, "init_itable"},
1432        {Opt_noinit_itable, "noinit_itable"},
1433        {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1434        {Opt_test_dummy_encryption, "test_dummy_encryption"},
1435        {Opt_nombcache, "nombcache"},
1436        {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1437        {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1438        {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1439        {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1440        {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1441        {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1442        {Opt_err, NULL},
1443};
1444
1445static ext4_fsblk_t get_sb_block(void **data)
1446{
1447        ext4_fsblk_t    sb_block;
1448        char            *options = (char *) *data;
1449
1450        if (!options || strncmp(options, "sb=", 3) != 0)
1451                return 1;       /* Default location */
1452
1453        options += 3;
1454        /* TODO: use simple_strtoll with >32bit ext4 */
1455        sb_block = simple_strtoul(options, &options, 0);
1456        if (*options && *options != ',') {
1457                printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1458                       (char *) *data);
1459                return 1;
1460        }
1461        if (*options == ',')
1462                options++;
1463        *data = (void *) options;
1464
1465        return sb_block;
1466}
1467
1468#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1469static const char deprecated_msg[] =
1470        "Mount option \"%s\" will be removed by %s\n"
1471        "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1472
1473#ifdef CONFIG_QUOTA
1474static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1475{
1476        struct ext4_sb_info *sbi = EXT4_SB(sb);
1477        char *qname;
1478        int ret = -1;
1479
1480        if (sb_any_quota_loaded(sb) &&
1481                !sbi->s_qf_names[qtype]) {
1482                ext4_msg(sb, KERN_ERR,
1483                        "Cannot change journaled "
1484                        "quota options when quota turned on");
1485                return -1;
1486        }
1487        if (ext4_has_feature_quota(sb)) {
1488                ext4_msg(sb, KERN_INFO, "Journaled quota options "
1489                         "ignored when QUOTA feature is enabled");
1490                return 1;
1491        }
1492        qname = match_strdup(args);
1493        if (!qname) {
1494                ext4_msg(sb, KERN_ERR,
1495                        "Not enough memory for storing quotafile name");
1496                return -1;
1497        }
1498        if (sbi->s_qf_names[qtype]) {
1499                if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1500                        ret = 1;
1501                else
1502                        ext4_msg(sb, KERN_ERR,
1503                                 "%s quota file already specified",
1504                                 QTYPE2NAME(qtype));
1505                goto errout;
1506        }
1507        if (strchr(qname, '/')) {
1508                ext4_msg(sb, KERN_ERR,
1509                        "quotafile must be on filesystem root");
1510                goto errout;
1511        }
1512        sbi->s_qf_names[qtype] = qname;
1513        set_opt(sb, QUOTA);
1514        return 1;
1515errout:
1516        kfree(qname);
1517        return ret;
1518}
1519
1520static int clear_qf_name(struct super_block *sb, int qtype)
1521{
1522
1523        struct ext4_sb_info *sbi = EXT4_SB(sb);
1524
1525        if (sb_any_quota_loaded(sb) &&
1526                sbi->s_qf_names[qtype]) {
1527                ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1528                        " when quota turned on");
1529                return -1;
1530        }
1531        kfree(sbi->s_qf_names[qtype]);
1532        sbi->s_qf_names[qtype] = NULL;
1533        return 1;
1534}
1535#endif
1536
1537#define MOPT_SET        0x0001
1538#define MOPT_CLEAR      0x0002
1539#define MOPT_NOSUPPORT  0x0004
1540#define MOPT_EXPLICIT   0x0008
1541#define MOPT_CLEAR_ERR  0x0010
1542#define MOPT_GTE0       0x0020
1543#ifdef CONFIG_QUOTA
1544#define MOPT_Q          0
1545#define MOPT_QFMT       0x0040
1546#else
1547#define MOPT_Q          MOPT_NOSUPPORT
1548#define MOPT_QFMT       MOPT_NOSUPPORT
1549#endif
1550#define MOPT_DATAJ      0x0080
1551#define MOPT_NO_EXT2    0x0100
1552#define MOPT_NO_EXT3    0x0200
1553#define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1554#define MOPT_STRING     0x0400
1555
1556static const struct mount_opts {
1557        int     token;
1558        int     mount_opt;
1559        int     flags;
1560} ext4_mount_opts[] = {
1561        {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1562        {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1563        {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1564        {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1565        {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1566        {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1567        {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568         MOPT_EXT4_ONLY | MOPT_SET},
1569        {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1570         MOPT_EXT4_ONLY | MOPT_CLEAR},
1571        {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1572        {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1573        {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1574         MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1575        {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1576         MOPT_EXT4_ONLY | MOPT_CLEAR},
1577        {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578         MOPT_EXT4_ONLY | MOPT_CLEAR},
1579        {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1580         MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1581        {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1582                                    EXT4_MOUNT_JOURNAL_CHECKSUM),
1583         MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1584        {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1585        {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1586        {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1587        {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1588        {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1589         MOPT_NO_EXT2},
1590        {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1591         MOPT_NO_EXT2},
1592        {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1593        {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1594        {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1595        {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1596        {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1597        {Opt_commit, 0, MOPT_GTE0},
1598        {Opt_max_batch_time, 0, MOPT_GTE0},
1599        {Opt_min_batch_time, 0, MOPT_GTE0},
1600        {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1601        {Opt_init_itable, 0, MOPT_GTE0},
1602        {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1603        {Opt_stripe, 0, MOPT_GTE0},
1604        {Opt_resuid, 0, MOPT_GTE0},
1605        {Opt_resgid, 0, MOPT_GTE0},
1606        {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607        {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1608        {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1609        {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1610        {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1611        {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1612         MOPT_NO_EXT2 | MOPT_DATAJ},
1613        {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1614        {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1615#ifdef CONFIG_EXT4_FS_POSIX_ACL
1616        {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1617        {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1618#else
1619        {Opt_acl, 0, MOPT_NOSUPPORT},
1620        {Opt_noacl, 0, MOPT_NOSUPPORT},
1621#endif
1622        {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1623        {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1624        {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1625        {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1626        {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1627                                                        MOPT_SET | MOPT_Q},
1628        {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1629                                                        MOPT_SET | MOPT_Q},
1630        {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1631                                                        MOPT_SET | MOPT_Q},
1632        {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1633                       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1634                                                        MOPT_CLEAR | MOPT_Q},
1635        {Opt_usrjquota, 0, MOPT_Q},
1636        {Opt_grpjquota, 0, MOPT_Q},
1637        {Opt_offusrjquota, 0, MOPT_Q},
1638        {Opt_offgrpjquota, 0, MOPT_Q},
1639        {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1640        {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1641        {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1642        {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1643        {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1644        {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1645        {Opt_err, 0, 0}
1646};
1647
1648static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1649                            substring_t *args, unsigned long *journal_devnum,
1650                            unsigned int *journal_ioprio, int is_remount)
1651{
1652        struct ext4_sb_info *sbi = EXT4_SB(sb);
1653        const struct mount_opts *m;
1654        kuid_t uid;
1655        kgid_t gid;
1656        int arg = 0;
1657
1658#ifdef CONFIG_QUOTA
1659        if (token == Opt_usrjquota)
1660                return set_qf_name(sb, USRQUOTA, &args[0]);
1661        else if (token == Opt_grpjquota)
1662                return set_qf_name(sb, GRPQUOTA, &args[0]);
1663        else if (token == Opt_offusrjquota)
1664                return clear_qf_name(sb, USRQUOTA);
1665        else if (token == Opt_offgrpjquota)
1666                return clear_qf_name(sb, GRPQUOTA);
1667#endif
1668        switch (token) {
1669        case Opt_noacl:
1670        case Opt_nouser_xattr:
1671                ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1672                break;
1673        case Opt_sb:
1674                return 1;       /* handled by get_sb_block() */
1675        case Opt_removed:
1676                ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1677                return 1;
1678        case Opt_abort:
1679                sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1680                return 1;
1681        case Opt_i_version:
1682                sb->s_flags |= SB_I_VERSION;
1683                return 1;
1684        case Opt_lazytime:
1685                sb->s_flags |= SB_LAZYTIME;
1686                return 1;
1687        case Opt_nolazytime:
1688                sb->s_flags &= ~SB_LAZYTIME;
1689                return 1;
1690        }
1691
1692        for (m = ext4_mount_opts; m->token != Opt_err; m++)
1693                if (token == m->token)
1694                        break;
1695
1696        if (m->token == Opt_err) {
1697                ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1698                         "or missing value", opt);
1699                return -1;
1700        }
1701
1702        if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1703                ext4_msg(sb, KERN_ERR,
1704                         "Mount option \"%s\" incompatible with ext2", opt);
1705                return -1;
1706        }
1707        if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1708                ext4_msg(sb, KERN_ERR,
1709                         "Mount option \"%s\" incompatible with ext3", opt);
1710                return -1;
1711        }
1712
1713        if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1714                return -1;
1715        if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1716                return -1;
1717        if (m->flags & MOPT_EXPLICIT) {
1718                if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1719                        set_opt2(sb, EXPLICIT_DELALLOC);
1720                } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1721                        set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1722                } else
1723                        return -1;
1724        }
1725        if (m->flags & MOPT_CLEAR_ERR)
1726                clear_opt(sb, ERRORS_MASK);
1727        if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1728                ext4_msg(sb, KERN_ERR, "Cannot change quota "
1729                         "options when quota turned on");
1730                return -1;
1731        }
1732
1733        if (m->flags & MOPT_NOSUPPORT) {
1734                ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1735        } else if (token == Opt_commit) {
1736                if (arg == 0)
1737                        arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1738                sbi->s_commit_interval = HZ * arg;
1739        } else if (token == Opt_debug_want_extra_isize) {
1740                sbi->s_want_extra_isize = arg;
1741        } else if (token == Opt_max_batch_time) {
1742                sbi->s_max_batch_time = arg;
1743        } else if (token == Opt_min_batch_time) {
1744                sbi->s_min_batch_time = arg;
1745        } else if (token == Opt_inode_readahead_blks) {
1746                if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1747                        ext4_msg(sb, KERN_ERR,
1748                                 "EXT4-fs: inode_readahead_blks must be "
1749                                 "0 or a power of 2 smaller than 2^31");
1750                        return -1;
1751                }
1752                sbi->s_inode_readahead_blks = arg;
1753        } else if (token == Opt_init_itable) {
1754                set_opt(sb, INIT_INODE_TABLE);
1755                if (!args->from)
1756                        arg = EXT4_DEF_LI_WAIT_MULT;
1757                sbi->s_li_wait_mult = arg;
1758        } else if (token == Opt_max_dir_size_kb) {
1759                sbi->s_max_dir_size_kb = arg;
1760        } else if (token == Opt_stripe) {
1761                sbi->s_stripe = arg;
1762        } else if (token == Opt_resuid) {
1763                uid = make_kuid(current_user_ns(), arg);
1764                if (!uid_valid(uid)) {
1765                        ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1766                        return -1;
1767                }
1768                sbi->s_resuid = uid;
1769        } else if (token == Opt_resgid) {
1770                gid = make_kgid(current_user_ns(), arg);
1771                if (!gid_valid(gid)) {
1772                        ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1773                        return -1;
1774                }
1775                sbi->s_resgid = gid;
1776        } else if (token == Opt_journal_dev) {
1777                if (is_remount) {
1778                        ext4_msg(sb, KERN_ERR,
1779                                 "Cannot specify journal on remount");
1780                        return -1;
1781                }
1782                *journal_devnum = arg;
1783        } else if (token == Opt_journal_path) {
1784                char *journal_path;
1785                struct inode *journal_inode;
1786                struct path path;
1787                int error;
1788
1789                if (is_remount) {
1790                        ext4_msg(sb, KERN_ERR,
1791                                 "Cannot specify journal on remount");
1792                        return -1;
1793                }
1794                journal_path = match_strdup(&args[0]);
1795                if (!journal_path) {
1796                        ext4_msg(sb, KERN_ERR, "error: could not dup "
1797                                "journal device string");
1798                        return -1;
1799                }
1800
1801                error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1802                if (error) {
1803                        ext4_msg(sb, KERN_ERR, "error: could not find "
1804                                "journal device path: error %d", error);
1805                        kfree(journal_path);
1806                        return -1;
1807                }
1808
1809                journal_inode = d_inode(path.dentry);
1810                if (!S_ISBLK(journal_inode->i_mode)) {
1811                        ext4_msg(sb, KERN_ERR, "error: journal path %s "
1812                                "is not a block device", journal_path);
1813                        path_put(&path);
1814                        kfree(journal_path);
1815                        return -1;
1816                }
1817
1818                *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1819                path_put(&path);
1820                kfree(journal_path);
1821        } else if (token == Opt_journal_ioprio) {
1822                if (arg > 7) {
1823                        ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1824                                 " (must be 0-7)");
1825                        return -1;
1826                }
1827                *journal_ioprio =
1828                        IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1829        } else if (token == Opt_test_dummy_encryption) {
1830#ifdef CONFIG_EXT4_FS_ENCRYPTION
1831                sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1832                ext4_msg(sb, KERN_WARNING,
1833                         "Test dummy encryption mode enabled");
1834#else
1835                ext4_msg(sb, KERN_WARNING,
1836                         "Test dummy encryption mount option ignored");
1837#endif
1838        } else if (m->flags & MOPT_DATAJ) {
1839                if (is_remount) {
1840                        if (!sbi->s_journal)
1841                                ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1842                        else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1843                                ext4_msg(sb, KERN_ERR,
1844                                         "Cannot change data mode on remount");
1845                                return -1;
1846                        }
1847                } else {
1848                        clear_opt(sb, DATA_FLAGS);
1849                        sbi->s_mount_opt |= m->mount_opt;
1850                }
1851#ifdef CONFIG_QUOTA
1852        } else if (m->flags & MOPT_QFMT) {
1853                if (sb_any_quota_loaded(sb) &&
1854                    sbi->s_jquota_fmt != m->mount_opt) {
1855                        ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1856                                 "quota options when quota turned on");
1857                        return -1;
1858                }
1859                if (ext4_has_feature_quota(sb)) {
1860                        ext4_msg(sb, KERN_INFO,
1861                                 "Quota format mount options ignored "
1862                                 "when QUOTA feature is enabled");
1863                        return 1;
1864                }
1865                sbi->s_jquota_fmt = m->mount_opt;
1866#endif
1867        } else if (token == Opt_dax) {
1868#ifdef CONFIG_FS_DAX
1869                ext4_msg(sb, KERN_WARNING,
1870                "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1871                        sbi->s_mount_opt |= m->mount_opt;
1872#else
1873                ext4_msg(sb, KERN_INFO, "dax option not supported");
1874                return -1;
1875#endif
1876        } else if (token == Opt_data_err_abort) {
1877                sbi->s_mount_opt |= m->mount_opt;
1878        } else if (token == Opt_data_err_ignore) {
1879                sbi->s_mount_opt &= ~m->mount_opt;
1880        } else {
1881                if (!args->from)
1882                        arg = 1;
1883                if (m->flags & MOPT_CLEAR)
1884                        arg = !arg;
1885                else if (unlikely(!(m->flags & MOPT_SET))) {
1886                        ext4_msg(sb, KERN_WARNING,
1887                                 "buggy handling of option %s", opt);
1888                        WARN_ON(1);
1889                        return -1;
1890                }
1891                if (arg != 0)
1892                        sbi->s_mount_opt |= m->mount_opt;
1893                else
1894                        sbi->s_mount_opt &= ~m->mount_opt;
1895        }
1896        return 1;
1897}
1898
1899static int parse_options(char *options, struct super_block *sb,
1900                         unsigned long *journal_devnum,
1901                         unsigned int *journal_ioprio,
1902                         int is_remount)
1903{
1904        struct ext4_sb_info *sbi = EXT4_SB(sb);
1905        char *p;
1906        substring_t args[MAX_OPT_ARGS];
1907        int token;
1908
1909        if (!options)
1910                return 1;
1911
1912        while ((p = strsep(&options, ",")) != NULL) {
1913                if (!*p)
1914                        continue;
1915                /*
1916                 * Initialize args struct so we know whether arg was
1917                 * found; some options take optional arguments.
1918                 */
1919                args[0].to = args[0].from = NULL;
1920                token = match_token(p, tokens, args);
1921                if (handle_mount_opt(sb, p, token, args, journal_devnum,
1922                                     journal_ioprio, is_remount) < 0)
1923                        return 0;
1924        }
1925#ifdef CONFIG_QUOTA
1926        /*
1927         * We do the test below only for project quotas. 'usrquota' and
1928         * 'grpquota' mount options are allowed even without quota feature
1929         * to support legacy quotas in quota files.
1930         */
1931        if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1932                ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1933                         "Cannot enable project quota enforcement.");
1934                return 0;
1935        }
1936        if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1937                if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1938                        clear_opt(sb, USRQUOTA);
1939
1940                if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1941                        clear_opt(sb, GRPQUOTA);
1942
1943                if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1944                        ext4_msg(sb, KERN_ERR, "old and new quota "
1945                                        "format mixing");
1946                        return 0;
1947                }
1948
1949                if (!sbi->s_jquota_fmt) {
1950                        ext4_msg(sb, KERN_ERR, "journaled quota format "
1951                                        "not specified");
1952                        return 0;
1953                }
1954        }
1955#endif
1956        if (test_opt(sb, DIOREAD_NOLOCK)) {
1957                int blocksize =
1958                        BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1959
1960                if (blocksize < PAGE_SIZE) {
1961                        ext4_msg(sb, KERN_ERR, "can't mount with "
1962                                 "dioread_nolock if block size != PAGE_SIZE");
1963                        return 0;
1964                }
1965        }
1966        return 1;
1967}
1968
1969static inline void ext4_show_quota_options(struct seq_file *seq,
1970                                           struct super_block *sb)
1971{
1972#if defined(CONFIG_QUOTA)
1973        struct ext4_sb_info *sbi = EXT4_SB(sb);
1974
1975        if (sbi->s_jquota_fmt) {
1976                char *fmtname = "";
1977
1978                switch (sbi->s_jquota_fmt) {
1979                case QFMT_VFS_OLD:
1980                        fmtname = "vfsold";
1981                        break;
1982                case QFMT_VFS_V0:
1983                        fmtname = "vfsv0";
1984                        break;
1985                case QFMT_VFS_V1:
1986                        fmtname = "vfsv1";
1987                        break;
1988                }
1989                seq_printf(seq, ",jqfmt=%s", fmtname);
1990        }
1991
1992        if (sbi->s_qf_names[USRQUOTA])
1993                seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1994
1995        if (sbi->s_qf_names[GRPQUOTA])
1996                seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1997#endif
1998}
1999
2000static const char *token2str(int token)
2001{
2002        const struct match_token *t;
2003
2004        for (t = tokens; t->token != Opt_err; t++)
2005                if (t->token == token && !strchr(t->pattern, '='))
2006                        break;
2007        return t->pattern;
2008}
2009
2010/*
2011 * Show an option if
2012 *  - it's set to a non-default value OR
2013 *  - if the per-sb default is different from the global default
2014 */
2015static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2016                              int nodefs)
2017{
2018        struct ext4_sb_info *sbi = EXT4_SB(sb);
2019        struct ext4_super_block *es = sbi->s_es;
2020        int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2021        const struct mount_opts *m;
2022        char sep = nodefs ? '\n' : ',';
2023
2024#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2025#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2026
2027        if (sbi->s_sb_block != 1)
2028                SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2029
2030        for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2031                int want_set = m->flags & MOPT_SET;
2032                if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2033                    (m->flags & MOPT_CLEAR_ERR))
2034                        continue;
2035                if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2036                        continue; /* skip if same as the default */
2037                if ((want_set &&
2038                     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2039                    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2040                        continue; /* select Opt_noFoo vs Opt_Foo */
2041                SEQ_OPTS_PRINT("%s", token2str(m->token));
2042        }
2043
2044        if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2045            le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2046                SEQ_OPTS_PRINT("resuid=%u",
2047                                from_kuid_munged(&init_user_ns, sbi->s_resuid));
2048        if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2049            le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2050                SEQ_OPTS_PRINT("resgid=%u",
2051                                from_kgid_munged(&init_user_ns, sbi->s_resgid));
2052        def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2053        if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2054                SEQ_OPTS_PUTS("errors=remount-ro");
2055        if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2056                SEQ_OPTS_PUTS("errors=continue");
2057        if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2058                SEQ_OPTS_PUTS("errors=panic");
2059        if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2060                SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2061        if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2062                SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2063        if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2064                SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2065        if (sb->s_flags & SB_I_VERSION)
2066                SEQ_OPTS_PUTS("i_version");
2067        if (nodefs || sbi->s_stripe)
2068                SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2069        if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2070                if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2071                        SEQ_OPTS_PUTS("data=journal");
2072                else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2073                        SEQ_OPTS_PUTS("data=ordered");
2074                else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2075                        SEQ_OPTS_PUTS("data=writeback");
2076        }
2077        if (nodefs ||
2078            sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2079                SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2080                               sbi->s_inode_readahead_blks);
2081
2082        if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2083                       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2084                SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2085        if (nodefs || sbi->s_max_dir_size_kb)
2086                SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2087        if (test_opt(sb, DATA_ERR_ABORT))
2088                SEQ_OPTS_PUTS("data_err=abort");
2089
2090        ext4_show_quota_options(seq, sb);
2091        return 0;
2092}
2093
2094static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2095{
2096        return _ext4_show_options(seq, root->d_sb, 0);
2097}
2098
2099int ext4_seq_options_show(struct seq_file *seq, void *offset)
2100{
2101        struct super_block *sb = seq->private;
2102        int rc;
2103
2104        seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2105        rc = _ext4_show_options(seq, sb, 1);
2106        seq_puts(seq, "\n");
2107        return rc;
2108}
2109
2110static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2111                            int read_only)
2112{
2113        struct ext4_sb_info *sbi = EXT4_SB(sb);
2114        int res = 0;
2115
2116        if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2117                ext4_msg(sb, KERN_ERR, "revision level too high, "
2118                         "forcing read-only mode");
2119                res = SB_RDONLY;
2120        }
2121        if (read_only)
2122                goto done;
2123        if (!(sbi->s_mount_state & EXT4_VALID_FS))
2124                ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2125                         "running e2fsck is recommended");
2126        else if (sbi->s_mount_state & EXT4_ERROR_FS)
2127                ext4_msg(sb, KERN_WARNING,
2128                         "warning: mounting fs with errors, "
2129                         "running e2fsck is recommended");
2130        else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2131                 le16_to_cpu(es->s_mnt_count) >=
2132                 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2133                ext4_msg(sb, KERN_WARNING,
2134                         "warning: maximal mount count reached, "
2135                         "running e2fsck is recommended");
2136        else if (le32_to_cpu(es->s_checkinterval) &&
2137                (le32_to_cpu(es->s_lastcheck) +
2138                        le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2139                ext4_msg(sb, KERN_WARNING,
2140                         "warning: checktime reached, "
2141                         "running e2fsck is recommended");
2142        if (!sbi->s_journal)
2143                es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2144        if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2145                es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2146        le16_add_cpu(&es->s_mnt_count, 1);
2147        es->s_mtime = cpu_to_le32(get_seconds());
2148        ext4_update_dynamic_rev(sb);
2149        if (sbi->s_journal)
2150                ext4_set_feature_journal_needs_recovery(sb);
2151
2152        ext4_commit_super(sb, 1);
2153done:
2154        if (test_opt(sb, DEBUG))
2155                printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2156                                "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2157                        sb->s_blocksize,
2158                        sbi->s_groups_count,
2159                        EXT4_BLOCKS_PER_GROUP(sb),
2160                        EXT4_INODES_PER_GROUP(sb),
2161                        sbi->s_mount_opt, sbi->s_mount_opt2);
2162
2163        cleancache_init_fs(sb);
2164        return res;
2165}
2166
2167int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2168{
2169        struct ext4_sb_info *sbi = EXT4_SB(sb);
2170        struct flex_groups *new_groups;
2171        int size;
2172
2173        if (!sbi->s_log_groups_per_flex)
2174                return 0;
2175
2176        size = ext4_flex_group(sbi, ngroup - 1) + 1;
2177        if (size <= sbi->s_flex_groups_allocated)
2178                return 0;
2179
2180        size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2181        new_groups = kvzalloc(size, GFP_KERNEL);
2182        if (!new_groups) {
2183                ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2184                         size / (int) sizeof(struct flex_groups));
2185                return -ENOMEM;
2186        }
2187
2188        if (sbi->s_flex_groups) {
2189                memcpy(new_groups, sbi->s_flex_groups,
2190                       (sbi->s_flex_groups_allocated *
2191                        sizeof(struct flex_groups)));
2192                kvfree(sbi->s_flex_groups);
2193        }
2194        sbi->s_flex_groups = new_groups;
2195        sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2196        return 0;
2197}
2198
2199static int ext4_fill_flex_info(struct super_block *sb)
2200{
2201        struct ext4_sb_info *sbi = EXT4_SB(sb);
2202        struct ext4_group_desc *gdp = NULL;
2203        ext4_group_t flex_group;
2204        int i, err;
2205
2206        sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2207        if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2208                sbi->s_log_groups_per_flex = 0;
2209                return 1;
2210        }
2211
2212        err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2213        if (err)
2214                goto failed;
2215
2216        for (i = 0; i < sbi->s_groups_count; i++) {
2217                gdp = ext4_get_group_desc(sb, i, NULL);
2218
2219                flex_group = ext4_flex_group(sbi, i);
2220                atomic_add(ext4_free_inodes_count(sb, gdp),
2221                           &sbi->s_flex_groups[flex_group].free_inodes);
2222                atomic64_add(ext4_free_group_clusters(sb, gdp),
2223                             &sbi->s_flex_groups[flex_group].free_clusters);
2224                atomic_add(ext4_used_dirs_count(sb, gdp),
2225                           &sbi->s_flex_groups[flex_group].used_dirs);
2226        }
2227
2228        return 1;
2229failed:
2230        return 0;
2231}
2232
2233static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2234                                   struct ext4_group_desc *gdp)
2235{
2236        int offset = offsetof(struct ext4_group_desc, bg_checksum);
2237        __u16 crc = 0;
2238        __le32 le_group = cpu_to_le32(block_group);
2239        struct ext4_sb_info *sbi = EXT4_SB(sb);
2240
2241        if (ext4_has_metadata_csum(sbi->s_sb)) {
2242                /* Use new metadata_csum algorithm */
2243                __u32 csum32;
2244                __u16 dummy_csum = 0;
2245
2246                csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2247                                     sizeof(le_group));
2248                csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2249                csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2250                                     sizeof(dummy_csum));
2251                offset += sizeof(dummy_csum);
2252                if (offset < sbi->s_desc_size)
2253                        csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2254                                             sbi->s_desc_size - offset);
2255
2256                crc = csum32 & 0xFFFF;
2257                goto out;
2258        }
2259
2260        /* old crc16 code */
2261        if (!ext4_has_feature_gdt_csum(sb))
2262                return 0;
2263
2264        crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2265        crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2266        crc = crc16(crc, (__u8 *)gdp, offset);
2267        offset += sizeof(gdp->bg_checksum); /* skip checksum */
2268        /* for checksum of struct ext4_group_desc do the rest...*/
2269        if (ext4_has_feature_64bit(sb) &&
2270            offset < le16_to_cpu(sbi->s_es->s_desc_size))
2271                crc = crc16(crc, (__u8 *)gdp + offset,
2272                            le16_to_cpu(sbi->s_es->s_desc_size) -
2273                                offset);
2274
2275out:
2276        return cpu_to_le16(crc);
2277}
2278
2279int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2280                                struct ext4_group_desc *gdp)
2281{
2282        if (ext4_has_group_desc_csum(sb) &&
2283            (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2284                return 0;
2285
2286        return 1;
2287}
2288
2289void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2290                              struct ext4_group_desc *gdp)
2291{
2292        if (!ext4_has_group_desc_csum(sb))
2293                return;
2294        gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2295}
2296
2297/* Called at mount-time, super-block is locked */
2298static int ext4_check_descriptors(struct super_block *sb,
2299                                  ext4_fsblk_t sb_block,
2300                                  ext4_group_t *first_not_zeroed)
2301{
2302        struct ext4_sb_info *sbi = EXT4_SB(sb);
2303        ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2304        ext4_fsblk_t last_block;
2305        ext4_fsblk_t block_bitmap;
2306        ext4_fsblk_t inode_bitmap;
2307        ext4_fsblk_t inode_table;
2308        int flexbg_flag = 0;
2309        ext4_group_t i, grp = sbi->s_groups_count;
2310
2311        if (ext4_has_feature_flex_bg(sb))
2312                flexbg_flag = 1;
2313
2314        ext4_debug("Checking group descriptors");
2315
2316        for (i = 0; i < sbi->s_groups_count; i++) {
2317                struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2318
2319                if (i == sbi->s_groups_count - 1 || flexbg_flag)
2320                        last_block = ext4_blocks_count(sbi->s_es) - 1;
2321                else
2322                        last_block = first_block +
2323                                (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2324
2325                if ((grp == sbi->s_groups_count) &&
2326                   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2327                        grp = i;
2328
2329                block_bitmap = ext4_block_bitmap(sb, gdp);
2330                if (block_bitmap == sb_block) {
2331                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332                                 "Block bitmap for group %u overlaps "
2333                                 "superblock", i);
2334                }
2335                if (block_bitmap < first_block || block_bitmap > last_block) {
2336                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337                               "Block bitmap for group %u not in group "
2338                               "(block %llu)!", i, block_bitmap);
2339                        return 0;
2340                }
2341                inode_bitmap = ext4_inode_bitmap(sb, gdp);
2342                if (inode_bitmap == sb_block) {
2343                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344                                 "Inode bitmap for group %u overlaps "
2345                                 "superblock", i);
2346                }
2347                if (inode_bitmap < first_block || inode_bitmap > last_block) {
2348                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2349                               "Inode bitmap for group %u not in group "
2350                               "(block %llu)!", i, inode_bitmap);
2351                        return 0;
2352                }
2353                inode_table = ext4_inode_table(sb, gdp);
2354                if (inode_table == sb_block) {
2355                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2356                                 "Inode table for group %u overlaps "
2357                                 "superblock", i);
2358                }
2359                if (inode_table < first_block ||
2360                    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2361                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2362                               "Inode table for group %u not in group "
2363                               "(block %llu)!", i, inode_table);
2364                        return 0;
2365                }
2366                ext4_lock_group(sb, i);
2367                if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2368                        ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2369                                 "Checksum for group %u failed (%u!=%u)",
2370                                 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2371                                     gdp)), le16_to_cpu(gdp->bg_checksum));
2372                        if (!sb_rdonly(sb)) {
2373                                ext4_unlock_group(sb, i);
2374                                return 0;
2375                        }
2376                }
2377                ext4_unlock_group(sb, i);
2378                if (!flexbg_flag)
2379                        first_block += EXT4_BLOCKS_PER_GROUP(sb);
2380        }
2381        if (NULL != first_not_zeroed)
2382                *first_not_zeroed = grp;
2383        return 1;
2384}
2385
2386/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2387 * the superblock) which were deleted from all directories, but held open by
2388 * a process at the time of a crash.  We walk the list and try to delete these
2389 * inodes at recovery time (only with a read-write filesystem).
2390 *
2391 * In order to keep the orphan inode chain consistent during traversal (in
2392 * case of crash during recovery), we link each inode into the superblock
2393 * orphan list_head and handle it the same way as an inode deletion during
2394 * normal operation (which journals the operations for us).
2395 *
2396 * We only do an iget() and an iput() on each inode, which is very safe if we
2397 * accidentally point at an in-use or already deleted inode.  The worst that
2398 * can happen in this case is that we get a "bit already cleared" message from
2399 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2400 * e2fsck was run on this filesystem, and it must have already done the orphan
2401 * inode cleanup for us, so we can safely abort without any further action.
2402 */
2403static void ext4_orphan_cleanup(struct super_block *sb,
2404                                struct ext4_super_block *es)
2405{
2406        unsigned int s_flags = sb->s_flags;
2407        int ret, nr_orphans = 0, nr_truncates = 0;
2408#ifdef CONFIG_QUOTA
2409        int quota_update = 0;
2410        int i;
2411#endif
2412        if (!es->s_last_orphan) {
2413                jbd_debug(4, "no orphan inodes to clean up\n");
2414                return;
2415        }
2416
2417        if (bdev_read_only(sb->s_bdev)) {
2418                ext4_msg(sb, KERN_ERR, "write access "
2419                        "unavailable, skipping orphan cleanup");
2420                return;
2421        }
2422
2423        /* Check if feature set would not allow a r/w mount */
2424        if (!ext4_feature_set_ok(sb, 0)) {
2425                ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2426                         "unknown ROCOMPAT features");
2427                return;
2428        }
2429
2430        if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2431                /* don't clear list on RO mount w/ errors */
2432                if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2433                        ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2434                                  "clearing orphan list.\n");
2435                        es->s_last_orphan = 0;
2436                }
2437                jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2438                return;
2439        }
2440
2441        if (s_flags & SB_RDONLY) {
2442                ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2443                sb->s_flags &= ~SB_RDONLY;
2444        }
2445#ifdef CONFIG_QUOTA
2446        /* Needed for iput() to work correctly and not trash data */
2447        sb->s_flags |= SB_ACTIVE;
2448
2449        /*
2450         * Turn on quotas which were not enabled for read-only mounts if
2451         * filesystem has quota feature, so that they are updated correctly.
2452         */
2453        if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2454                int ret = ext4_enable_quotas(sb);
2455
2456                if (!ret)
2457                        quota_update = 1;
2458                else
2459                        ext4_msg(sb, KERN_ERR,
2460                                "Cannot turn on quotas: error %d", ret);
2461        }
2462
2463        /* Turn on journaled quotas used for old sytle */
2464        for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2465                if (EXT4_SB(sb)->s_qf_names[i]) {
2466                        int ret = ext4_quota_on_mount(sb, i);
2467
2468                        if (!ret)
2469                                quota_update = 1;
2470                        else
2471                                ext4_msg(sb, KERN_ERR,
2472                                        "Cannot turn on journaled "
2473                                        "quota: type %d: error %d", i, ret);
2474                }
2475        }
2476#endif
2477
2478        while (es->s_last_orphan) {
2479                struct inode *inode;
2480
2481                /*
2482                 * We may have encountered an error during cleanup; if
2483                 * so, skip the rest.
2484                 */
2485                if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2486                        jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2487                        es->s_last_orphan = 0;
2488                        break;
2489                }
2490
2491                inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2492                if (IS_ERR(inode)) {
2493                        es->s_last_orphan = 0;
2494                        break;
2495                }
2496
2497                list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2498                dquot_initialize(inode);
2499                if (inode->i_nlink) {
2500                        if (test_opt(sb, DEBUG))
2501                                ext4_msg(sb, KERN_DEBUG,
2502                                        "%s: truncating inode %lu to %lld bytes",
2503                                        __func__, inode->i_ino, inode->i_size);
2504                        jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2505                                  inode->i_ino, inode->i_size);
2506                        inode_lock(inode);
2507                        truncate_inode_pages(inode->i_mapping, inode->i_size);
2508                        ret = ext4_truncate(inode);
2509                        if (ret)
2510                                ext4_std_error(inode->i_sb, ret);
2511                        inode_unlock(inode);
2512                        nr_truncates++;
2513                } else {
2514                        if (test_opt(sb, DEBUG))
2515                                ext4_msg(sb, KERN_DEBUG,
2516                                        "%s: deleting unreferenced inode %lu",
2517                                        __func__, inode->i_ino);
2518                        jbd_debug(2, "deleting unreferenced inode %lu\n",
2519                                  inode->i_ino);
2520                        nr_orphans++;
2521                }
2522                iput(inode);  /* The delete magic happens here! */
2523        }
2524
2525#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2526
2527        if (nr_orphans)
2528                ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2529                       PLURAL(nr_orphans));
2530        if (nr_truncates)
2531                ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2532                       PLURAL(nr_truncates));
2533#ifdef CONFIG_QUOTA
2534        /* Turn off quotas if they were enabled for orphan cleanup */
2535        if (quota_update) {
2536                for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2537                        if (sb_dqopt(sb)->files[i])
2538                                dquot_quota_off(sb, i);
2539                }
2540        }
2541#endif
2542        sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2543}
2544
2545/*
2546 * Maximal extent format file size.
2547 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2548 * extent format containers, within a sector_t, and within i_blocks
2549 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2550 * so that won't be a limiting factor.
2551 *
2552 * However there is other limiting factor. We do store extents in the form
2553 * of starting block and length, hence the resulting length of the extent
2554 * covering maximum file size must fit into on-disk format containers as
2555 * well. Given that length is always by 1 unit bigger than max unit (because
2556 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2557 *
2558 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2559 */
2560static loff_t ext4_max_size(int blkbits, int has_huge_files)
2561{
2562        loff_t res;
2563        loff_t upper_limit = MAX_LFS_FILESIZE;
2564
2565        /* small i_blocks in vfs inode? */
2566        if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2567                /*
2568                 * CONFIG_LBDAF is not enabled implies the inode
2569                 * i_block represent total blocks in 512 bytes
2570                 * 32 == size of vfs inode i_blocks * 8
2571                 */
2572                upper_limit = (1LL << 32) - 1;
2573
2574                /* total blocks in file system block size */
2575                upper_limit >>= (blkbits - 9);
2576                upper_limit <<= blkbits;
2577        }
2578
2579        /*
2580         * 32-bit extent-start container, ee_block. We lower the maxbytes
2581         * by one fs block, so ee_len can cover the extent of maximum file
2582         * size
2583         */
2584        res = (1LL << 32) - 1;
2585        res <<= blkbits;
2586
2587        /* Sanity check against vm- & vfs- imposed limits */
2588        if (res > upper_limit)
2589                res = upper_limit;
2590
2591        return res;
2592}
2593
2594/*
2595 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2596 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2597 * We need to be 1 filesystem block less than the 2^48 sector limit.
2598 */
2599static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2600{
2601        loff_t res = EXT4_NDIR_BLOCKS;
2602        int meta_blocks;
2603        loff_t upper_limit;
2604        /* This is calculated to be the largest file size for a dense, block
2605         * mapped file such that the file's total number of 512-byte sectors,
2606         * including data and all indirect blocks, does not exceed (2^48 - 1).
2607         *
2608         * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2609         * number of 512-byte sectors of the file.
2610         */
2611
2612        if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2613                /*
2614                 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2615                 * the inode i_block field represents total file blocks in
2616                 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2617                 */
2618                upper_limit = (1LL << 32) - 1;
2619
2620                /* total blocks in file system block size */
2621                upper_limit >>= (bits - 9);
2622
2623        } else {
2624                /*
2625                 * We use 48 bit ext4_inode i_blocks
2626                 * With EXT4_HUGE_FILE_FL set the i_blocks
2627                 * represent total number of blocks in
2628                 * file system block size
2629                 */
2630                upper_limit = (1LL << 48) - 1;
2631
2632        }
2633
2634        /* indirect blocks */
2635        meta_blocks = 1;
2636        /* double indirect blocks */
2637        meta_blocks += 1 + (1LL << (bits-2));
2638        /* tripple indirect blocks */
2639        meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2640
2641        upper_limit -= meta_blocks;
2642        upper_limit <<= bits;
2643
2644        res += 1LL << (bits-2);
2645        res += 1LL << (2*(bits-2));
2646        res += 1LL << (3*(bits-2));
2647        res <<= bits;
2648        if (res > upper_limit)
2649                res = upper_limit;
2650
2651        if (res > MAX_LFS_FILESIZE)
2652                res = MAX_LFS_FILESIZE;
2653
2654        return res;
2655}
2656
2657static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2658                                   ext4_fsblk_t logical_sb_block, int nr)
2659{
2660        struct ext4_sb_info *sbi = EXT4_SB(sb);
2661        ext4_group_t bg, first_meta_bg;
2662        int has_super = 0;
2663
2664        first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2665
2666        if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2667                return logical_sb_block + nr + 1;
2668        bg = sbi->s_desc_per_block * nr;
2669        if (ext4_bg_has_super(sb, bg))
2670                has_super = 1;
2671
2672        /*
2673         * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2674         * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2675         * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2676         * compensate.
2677         */
2678        if (sb->s_blocksize == 1024 && nr == 0 &&
2679            le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2680                has_super++;
2681
2682        return (has_super + ext4_group_first_block_no(sb, bg));
2683}
2684
2685/**
2686 * ext4_get_stripe_size: Get the stripe size.
2687 * @sbi: In memory super block info
2688 *
2689 * If we have specified it via mount option, then
2690 * use the mount option value. If the value specified at mount time is
2691 * greater than the blocks per group use the super block value.
2692 * If the super block value is greater than blocks per group return 0.
2693 * Allocator needs it be less than blocks per group.
2694 *
2695 */
2696static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2697{
2698        unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2699        unsigned long stripe_width =
2700                        le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2701        int ret;
2702
2703        if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2704                ret = sbi->s_stripe;
2705        else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2706                ret = stripe_width;
2707        else if (stride && stride <= sbi->s_blocks_per_group)
2708                ret = stride;
2709        else
2710                ret = 0;
2711
2712        /*
2713         * If the stripe width is 1, this makes no sense and
2714         * we set it to 0 to turn off stripe handling code.
2715         */
2716        if (ret <= 1)
2717                ret = 0;
2718
2719        return ret;
2720}
2721
2722/*
2723 * Check whether this filesystem can be mounted based on
2724 * the features present and the RDONLY/RDWR mount requested.
2725 * Returns 1 if this filesystem can be mounted as requested,
2726 * 0 if it cannot be.
2727 */
2728static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2729{
2730        if (ext4_has_unknown_ext4_incompat_features(sb)) {
2731                ext4_msg(sb, KERN_ERR,
2732                        "Couldn't mount because of "
2733                        "unsupported optional features (%x)",
2734                        (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2735                        ~EXT4_FEATURE_INCOMPAT_SUPP));
2736                return 0;
2737        }
2738
2739        if (readonly)
2740                return 1;
2741
2742        if (ext4_has_feature_readonly(sb)) {
2743                ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2744                sb->s_flags |= SB_RDONLY;
2745                return 1;
2746        }
2747
2748        /* Check that feature set is OK for a read-write mount */
2749        if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2750                ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2751                         "unsupported optional features (%x)",
2752                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2753                                ~EXT4_FEATURE_RO_COMPAT_SUPP));
2754                return 0;
2755        }
2756        /*
2757         * Large file size enabled file system can only be mounted
2758         * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2759         */
2760        if (ext4_has_feature_huge_file(sb)) {
2761                if (sizeof(blkcnt_t) < sizeof(u64)) {
2762                        ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2763                                 "cannot be mounted RDWR without "
2764                                 "CONFIG_LBDAF");
2765                        return 0;
2766                }
2767        }
2768        if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2769                ext4_msg(sb, KERN_ERR,
2770                         "Can't support bigalloc feature without "
2771                         "extents feature\n");
2772                return 0;
2773        }
2774
2775#ifndef CONFIG_QUOTA
2776        if (ext4_has_feature_quota(sb) && !readonly) {
2777                ext4_msg(sb, KERN_ERR,
2778                         "Filesystem with quota feature cannot be mounted RDWR "
2779                         "without CONFIG_QUOTA");
2780                return 0;
2781        }
2782        if (ext4_has_feature_project(sb) && !readonly) {
2783                ext4_msg(sb, KERN_ERR,
2784                         "Filesystem with project quota feature cannot be mounted RDWR "
2785                         "without CONFIG_QUOTA");
2786                return 0;
2787        }
2788#endif  /* CONFIG_QUOTA */
2789        return 1;
2790}
2791
2792/*
2793 * This function is called once a day if we have errors logged
2794 * on the file system
2795 */
2796static void print_daily_error_info(struct timer_list *t)
2797{
2798        struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2799        struct super_block *sb = sbi->s_sb;
2800        struct ext4_super_block *es = sbi->s_es;
2801
2802        if (es->s_error_count)
2803                /* fsck newer than v1.41.13 is needed to clean this condition. */
2804                ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2805                         le32_to_cpu(es->s_error_count));
2806        if (es->s_first_error_time) {
2807                printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2808                       sb->s_id, le32_to_cpu(es->s_first_error_time),
2809                       (int) sizeof(es->s_first_error_func),
2810                       es->s_first_error_func,
2811                       le32_to_cpu(es->s_first_error_line));
2812                if (es->s_first_error_ino)
2813                        printk(KERN_CONT ": inode %u",
2814                               le32_to_cpu(es->s_first_error_ino));
2815                if (es->s_first_error_block)
2816                        printk(KERN_CONT ": block %llu", (unsigned long long)
2817                               le64_to_cpu(es->s_first_error_block));
2818                printk(KERN_CONT "\n");
2819        }
2820        if (es->s_last_error_time) {
2821                printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2822                       sb->s_id, le32_to_cpu(es->s_last_error_time),
2823                       (int) sizeof(es->s_last_error_func),
2824                       es->s_last_error_func,
2825                       le32_to_cpu(es->s_last_error_line));
2826                if (es->s_last_error_ino)
2827                        printk(KERN_CONT ": inode %u",
2828                               le32_to_cpu(es->s_last_error_ino));
2829                if (es->s_last_error_block)
2830                        printk(KERN_CONT ": block %llu", (unsigned long long)
2831                               le64_to_cpu(es->s_last_error_block));
2832                printk(KERN_CONT "\n");
2833        }
2834        mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2835}
2836
2837/* Find next suitable group and run ext4_init_inode_table */
2838static int ext4_run_li_request(struct ext4_li_request *elr)
2839{
2840        struct ext4_group_desc *gdp = NULL;
2841        ext4_group_t group, ngroups;
2842        struct super_block *sb;
2843        unsigned long timeout = 0;
2844        int ret = 0;
2845
2846        sb = elr->lr_super;
2847        ngroups = EXT4_SB(sb)->s_groups_count;
2848
2849        for (group = elr->lr_next_group; group < ngroups; group++) {
2850                gdp = ext4_get_group_desc(sb, group, NULL);
2851                if (!gdp) {
2852                        ret = 1;
2853                        break;
2854                }
2855
2856                if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2857                        break;
2858        }
2859
2860        if (group >= ngroups)
2861                ret = 1;
2862
2863        if (!ret) {
2864                timeout = jiffies;
2865                ret = ext4_init_inode_table(sb, group,
2866                                            elr->lr_timeout ? 0 : 1);
2867                if (elr->lr_timeout == 0) {
2868                        timeout = (jiffies - timeout) *
2869                                  elr->lr_sbi->s_li_wait_mult;
2870                        elr->lr_timeout = timeout;
2871                }
2872                elr->lr_next_sched = jiffies + elr->lr_timeout;
2873                elr->lr_next_group = group + 1;
2874        }
2875        return ret;
2876}
2877
2878/*
2879 * Remove lr_request from the list_request and free the
2880 * request structure. Should be called with li_list_mtx held
2881 */
2882static void ext4_remove_li_request(struct ext4_li_request *elr)
2883{
2884        struct ext4_sb_info *sbi;
2885
2886        if (!elr)
2887                return;
2888
2889        sbi = elr->lr_sbi;
2890
2891        list_del(&elr->lr_request);
2892        sbi->s_li_request = NULL;
2893        kfree(elr);
2894}
2895
2896static void ext4_unregister_li_request(struct super_block *sb)
2897{
2898        mutex_lock(&ext4_li_mtx);
2899        if (!ext4_li_info) {
2900                mutex_unlock(&ext4_li_mtx);
2901                return;
2902        }
2903
2904        mutex_lock(&ext4_li_info->li_list_mtx);
2905        ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2906        mutex_unlock(&ext4_li_info->li_list_mtx);
2907        mutex_unlock(&ext4_li_mtx);
2908}
2909
2910static struct task_struct *ext4_lazyinit_task;
2911
2912/*
2913 * This is the function where ext4lazyinit thread lives. It walks
2914 * through the request list searching for next scheduled filesystem.
2915 * When such a fs is found, run the lazy initialization request
2916 * (ext4_rn_li_request) and keep track of the time spend in this
2917 * function. Based on that time we compute next schedule time of
2918 * the request. When walking through the list is complete, compute
2919 * next waking time and put itself into sleep.
2920 */
2921static int ext4_lazyinit_thread(void *arg)
2922{
2923        struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2924        struct list_head *pos, *n;
2925        struct ext4_li_request *elr;
2926        unsigned long next_wakeup, cur;
2927
2928        BUG_ON(NULL == eli);
2929
2930cont_thread:
2931        while (true) {
2932                next_wakeup = MAX_JIFFY_OFFSET;
2933
2934                mutex_lock(&eli->li_list_mtx);
2935                if (list_empty(&eli->li_request_list)) {
2936                        mutex_unlock(&eli->li_list_mtx);
2937                        goto exit_thread;
2938                }
2939                list_for_each_safe(pos, n, &eli->li_request_list) {
2940                        int err = 0;
2941                        int progress = 0;
2942                        elr = list_entry(pos, struct ext4_li_request,
2943                                         lr_request);
2944
2945                        if (time_before(jiffies, elr->lr_next_sched)) {
2946                                if (time_before(elr->lr_next_sched, next_wakeup))
2947                                        next_wakeup = elr->lr_next_sched;
2948                                continue;
2949                        }
2950                        if (down_read_trylock(&elr->lr_super->s_umount)) {
2951                                if (sb_start_write_trylock(elr->lr_super)) {
2952                                        progress = 1;
2953                                        /*
2954                                         * We hold sb->s_umount, sb can not
2955                                         * be removed from the list, it is
2956                                         * now safe to drop li_list_mtx
2957                                         */
2958                                        mutex_unlock(&eli->li_list_mtx);
2959                                        err = ext4_run_li_request(elr);
2960                                        sb_end_write(elr->lr_super);
2961                                        mutex_lock(&eli->li_list_mtx);
2962                                        n = pos->next;
2963                                }
2964                                up_read((&elr->lr_super->s_umount));
2965                        }
2966                        /* error, remove the lazy_init job */
2967                        if (err) {
2968                                ext4_remove_li_request(elr);
2969                                continue;
2970                        }
2971                        if (!progress) {
2972                                elr->lr_next_sched = jiffies +
2973                                        (prandom_u32()
2974                                         % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2975                        }
2976                        if (time_before(elr->lr_next_sched, next_wakeup))
2977                                next_wakeup = elr->lr_next_sched;
2978                }
2979                mutex_unlock(&eli->li_list_mtx);
2980
2981                try_to_freeze();
2982
2983                cur = jiffies;
2984                if ((time_after_eq(cur, next_wakeup)) ||
2985                    (MAX_JIFFY_OFFSET == next_wakeup)) {
2986                        cond_resched();
2987                        continue;
2988                }
2989
2990                schedule_timeout_interruptible(next_wakeup - cur);
2991
2992                if (kthread_should_stop()) {
2993                        ext4_clear_request_list();
2994                        goto exit_thread;
2995                }
2996        }
2997
2998exit_thread:
2999        /*
3000         * It looks like the request list is empty, but we need
3001         * to check it under the li_list_mtx lock, to prevent any
3002         * additions into it, and of course we should lock ext4_li_mtx
3003         * to atomically free the list and ext4_li_info, because at
3004         * this point another ext4 filesystem could be registering
3005         * new one.
3006         */
3007        mutex_lock(&ext4_li_mtx);
3008        mutex_lock(&eli->li_list_mtx);
3009        if (!list_empty(&eli->li_request_list)) {
3010                mutex_unlock(&eli->li_list_mtx);
3011                mutex_unlock(&ext4_li_mtx);
3012                goto cont_thread;
3013        }
3014        mutex_unlock(&eli->li_list_mtx);
3015        kfree(ext4_li_info);
3016        ext4_li_info = NULL;
3017        mutex_unlock(&ext4_li_mtx);
3018
3019        return 0;
3020}
3021
3022static void ext4_clear_request_list(void)
3023{
3024        struct list_head *pos, *n;
3025        struct ext4_li_request *elr;
3026
3027        mutex_lock(&ext4_li_info->li_list_mtx);
3028        list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3029                elr = list_entry(pos, struct ext4_li_request,
3030                                 lr_request);
3031                ext4_remove_li_request(elr);
3032        }
3033        mutex_unlock(&ext4_li_info->li_list_mtx);
3034}
3035
3036static int ext4_run_lazyinit_thread(void)
3037{
3038        ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3039                                         ext4_li_info, "ext4lazyinit");
3040        if (IS_ERR(ext4_lazyinit_task)) {
3041                int err = PTR_ERR(ext4_lazyinit_task);
3042                ext4_clear_request_list();
3043                kfree(ext4_li_info);
3044                ext4_li_info = NULL;
3045                printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3046                                 "initialization thread\n",
3047                                 err);
3048                return err;
3049        }
3050        ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3051        return 0;
3052}
3053
3054/*
3055 * Check whether it make sense to run itable init. thread or not.
3056 * If there is at least one uninitialized inode table, return
3057 * corresponding group number, else the loop goes through all
3058 * groups and return total number of groups.
3059 */
3060static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3061{
3062        ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3063        struct ext4_group_desc *gdp = NULL;
3064
3065        for (group = 0; group < ngroups; group++) {
3066                gdp = ext4_get_group_desc(sb, group, NULL);
3067                if (!gdp)
3068                        continue;
3069
3070                if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3071                        break;
3072        }
3073
3074        return group;
3075}
3076
3077static int ext4_li_info_new(void)
3078{
3079        struct ext4_lazy_init *eli = NULL;
3080
3081        eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3082        if (!eli)
3083                return -ENOMEM;
3084
3085        INIT_LIST_HEAD(&eli->li_request_list);
3086        mutex_init(&eli->li_list_mtx);
3087
3088        eli->li_state |= EXT4_LAZYINIT_QUIT;
3089
3090        ext4_li_info = eli;
3091
3092        return 0;
3093}
3094
3095static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3096                                            ext4_group_t start)
3097{
3098        struct ext4_sb_info *sbi = EXT4_SB(sb);
3099        struct ext4_li_request *elr;
3100
3101        elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3102        if (!elr)
3103                return NULL;
3104
3105        elr->lr_super = sb;
3106        elr->lr_sbi = sbi;
3107        elr->lr_next_group = start;
3108
3109        /*
3110         * Randomize first schedule time of the request to
3111         * spread the inode table initialization requests
3112         * better.
3113         */
3114        elr->lr_next_sched = jiffies + (prandom_u32() %
3115                                (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3116        return elr;
3117}
3118
3119int ext4_register_li_request(struct super_block *sb,
3120                             ext4_group_t first_not_zeroed)
3121{
3122        struct ext4_sb_info *sbi = EXT4_SB(sb);
3123        struct ext4_li_request *elr = NULL;
3124        ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3125        int ret = 0;
3126
3127        mutex_lock(&ext4_li_mtx);
3128        if (sbi->s_li_request != NULL) {
3129                /*
3130                 * Reset timeout so it can be computed again, because
3131                 * s_li_wait_mult might have changed.
3132                 */
3133                sbi->s_li_request->lr_timeout = 0;
3134                goto out;
3135        }
3136
3137        if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3138            !test_opt(sb, INIT_INODE_TABLE))
3139                goto out;
3140
3141        elr = ext4_li_request_new(sb, first_not_zeroed);
3142        if (!elr) {
3143                ret = -ENOMEM;
3144                goto out;
3145        }
3146
3147        if (NULL == ext4_li_info) {
3148                ret = ext4_li_info_new();
3149                if (ret)
3150                        goto out;
3151        }
3152
3153        mutex_lock(&ext4_li_info->li_list_mtx);
3154        list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3155        mutex_unlock(&ext4_li_info->li_list_mtx);
3156
3157        sbi->s_li_request = elr;
3158        /*
3159         * set elr to NULL here since it has been inserted to
3160         * the request_list and the removal and free of it is
3161         * handled by ext4_clear_request_list from now on.
3162         */
3163        elr = NULL;
3164
3165        if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3166                ret = ext4_run_lazyinit_thread();
3167                if (ret)
3168                        goto out;
3169        }
3170out:
3171        mutex_unlock(&ext4_li_mtx);
3172        if (ret)
3173                kfree(elr);
3174        return ret;
3175}
3176
3177/*
3178 * We do not need to lock anything since this is called on
3179 * module unload.
3180 */
3181static void ext4_destroy_lazyinit_thread(void)
3182{
3183        /*
3184         * If thread exited earlier
3185         * there's nothing to be done.
3186         */
3187        if (!ext4_li_info || !ext4_lazyinit_task)
3188                return;
3189
3190        kthread_stop(ext4_lazyinit_task);
3191}
3192
3193static int set_journal_csum_feature_set(struct super_block *sb)
3194{
3195        int ret = 1;
3196        int compat, incompat;
3197        struct ext4_sb_info *sbi = EXT4_SB(sb);
3198
3199        if (ext4_has_metadata_csum(sb)) {
3200                /* journal checksum v3 */
3201                compat = 0;
3202                incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3203        } else {
3204                /* journal checksum v1 */
3205                compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3206                incompat = 0;
3207        }
3208
3209        jbd2_journal_clear_features(sbi->s_journal,
3210                        JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3211                        JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3212                        JBD2_FEATURE_INCOMPAT_CSUM_V2);
3213        if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3214                ret = jbd2_journal_set_features(sbi->s_journal,
3215                                compat, 0,
3216                                JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3217                                incompat);
3218        } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3219                ret = jbd2_journal_set_features(sbi->s_journal,
3220                                compat, 0,
3221                                incompat);
3222                jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3223                                JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3224        } else {
3225                jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3226                                JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3227        }
3228
3229        return ret;
3230}
3231
3232/*
3233 * Note: calculating the overhead so we can be compatible with
3234 * historical BSD practice is quite difficult in the face of
3235 * clusters/bigalloc.  This is because multiple metadata blocks from
3236 * different block group can end up in the same allocation cluster.
3237 * Calculating the exact overhead in the face of clustered allocation
3238 * requires either O(all block bitmaps) in memory or O(number of block
3239 * groups**2) in time.  We will still calculate the superblock for
3240 * older file systems --- and if we come across with a bigalloc file
3241 * system with zero in s_overhead_clusters the estimate will be close to
3242 * correct especially for very large cluster sizes --- but for newer
3243 * file systems, it's better to calculate this figure once at mkfs
3244 * time, and store it in the superblock.  If the superblock value is
3245 * present (even for non-bigalloc file systems), we will use it.
3246 */
3247static int count_overhead(struct super_block *sb, ext4_group_t grp,
3248                          char *buf)
3249{
3250        struct ext4_sb_info     *sbi = EXT4_SB(sb);
3251        struct ext4_group_desc  *gdp;
3252        ext4_fsblk_t            first_block, last_block, b;
3253        ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3254        int                     s, j, count = 0;
3255
3256        if (!ext4_has_feature_bigalloc(sb))
3257                return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3258                        sbi->s_itb_per_group + 2);
3259
3260        first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3261                (grp * EXT4_BLOCKS_PER_GROUP(sb));
3262        last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3263        for (i = 0; i < ngroups; i++) {
3264                gdp = ext4_get_group_desc(sb, i, NULL);
3265                b = ext4_block_bitmap(sb, gdp);
3266                if (b >= first_block && b <= last_block) {
3267                        ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3268                        count++;
3269                }
3270                b = ext4_inode_bitmap(sb, gdp);
3271                if (b >= first_block && b <= last_block) {
3272                        ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3273                        count++;
3274                }
3275                b = ext4_inode_table(sb, gdp);
3276                if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3277                        for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3278                                int c = EXT4_B2C(sbi, b - first_block);
3279                                ext4_set_bit(c, buf);
3280                                count++;
3281                        }
3282                if (i != grp)
3283                        continue;
3284                s = 0;
3285                if (ext4_bg_has_super(sb, grp)) {
3286                        ext4_set_bit(s++, buf);
3287                        count++;
3288                }
3289                j = ext4_bg_num_gdb(sb, grp);
3290                if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3291                        ext4_error(sb, "Invalid number of block group "
3292                                   "descriptor blocks: %d", j);
3293                        j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3294                }
3295                count += j;
3296                for (; j > 0; j--)
3297                        ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3298        }
3299        if (!count)
3300                return 0;
3301        return EXT4_CLUSTERS_PER_GROUP(sb) -
3302                ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3303}
3304
3305/*
3306 * Compute the overhead and stash it in sbi->s_overhead
3307 */
3308int ext4_calculate_overhead(struct super_block *sb)
3309{
3310        struct ext4_sb_info *sbi = EXT4_SB(sb);
3311        struct ext4_super_block *es = sbi->s_es;
3312        struct inode *j_inode;
3313        unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3314        ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3315        ext4_fsblk_t overhead = 0;
3316        char *buf = (char *) get_zeroed_page(GFP_NOFS);
3317
3318        if (!buf)
3319                return -ENOMEM;
3320
3321        /*
3322         * Compute the overhead (FS structures).  This is constant
3323         * for a given filesystem unless the number of block groups
3324         * changes so we cache the previous value until it does.
3325         */
3326
3327        /*
3328         * All of the blocks before first_data_block are overhead
3329         */
3330        overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3331
3332        /*
3333         * Add the overhead found in each block group
3334         */
3335        for (i = 0; i < ngroups; i++) {
3336                int blks;
3337
3338                blks = count_overhead(sb, i, buf);
3339                overhead += blks;
3340                if (blks)
3341                        memset(buf, 0, PAGE_SIZE);
3342                cond_resched();
3343        }
3344
3345        /*
3346         * Add the internal journal blocks whether the journal has been
3347         * loaded or not
3348         */
3349        if (sbi->s_journal && !sbi->journal_bdev)
3350                overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3351        else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3352                j_inode = ext4_get_journal_inode(sb, j_inum);
3353                if (j_inode) {
3354                        j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3355                        overhead += EXT4_NUM_B2C(sbi, j_blocks);
3356                        iput(j_inode);
3357                } else {
3358                        ext4_msg(sb, KERN_ERR, "can't get journal size");
3359                }
3360        }
3361        sbi->s_overhead = overhead;
3362        smp_wmb();
3363        free_page((unsigned long) buf);
3364        return 0;
3365}
3366
3367static void ext4_set_resv_clusters(struct super_block *sb)
3368{
3369        ext4_fsblk_t resv_clusters;
3370        struct ext4_sb_info *sbi = EXT4_SB(sb);
3371
3372        /*
3373         * There's no need to reserve anything when we aren't using extents.
3374         * The space estimates are exact, there are no unwritten extents,
3375         * hole punching doesn't need new metadata... This is needed especially
3376         * to keep ext2/3 backward compatibility.
3377         */
3378        if (!ext4_has_feature_extents(sb))
3379                return;
3380        /*
3381         * By default we reserve 2% or 4096 clusters, whichever is smaller.
3382         * This should cover the situations where we can not afford to run
3383         * out of space like for example punch hole, or converting
3384         * unwritten extents in delalloc path. In most cases such
3385         * allocation would require 1, or 2 blocks, higher numbers are
3386         * very rare.
3387         */
3388        resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3389                         sbi->s_cluster_bits);
3390
3391        do_div(resv_clusters, 50);
3392        resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3393
3394        atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3395}
3396
3397static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3398{
3399        struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3400        char *orig_data = kstrdup(data, GFP_KERNEL);
3401        struct buffer_head *bh;
3402        struct ext4_super_block *es = NULL;
3403        struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3404        ext4_fsblk_t block;
3405        ext4_fsblk_t sb_block = get_sb_block(&data);
3406        ext4_fsblk_t logical_sb_block;
3407        unsigned long offset = 0;
3408        unsigned long journal_devnum = 0;
3409        unsigned long def_mount_opts;
3410        struct inode *root;
3411        const char *descr;
3412        int ret = -ENOMEM;
3413        int blocksize, clustersize;
3414        unsigned int db_count;
3415        unsigned int i;
3416        int needs_recovery, has_huge_files, has_bigalloc;
3417        __u64 blocks_count;
3418        int err = 0;
3419        unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3420        ext4_group_t first_not_zeroed;
3421
3422        if ((data && !orig_data) || !sbi)
3423                goto out_free_base;
3424
3425        sbi->s_daxdev = dax_dev;
3426        sbi->s_blockgroup_lock =
3427                kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3428        if (!sbi->s_blockgroup_lock)
3429                goto out_free_base;
3430
3431        sb->s_fs_info = sbi;
3432        sbi->s_sb = sb;
3433        sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3434        sbi->s_sb_block = sb_block;
3435        if (sb->s_bdev->bd_part)
3436                sbi->s_sectors_written_start =
3437                        part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3438
3439        /* Cleanup superblock name */
3440        strreplace(sb->s_id, '/', '!');
3441
3442        /* -EINVAL is default */
3443        ret = -EINVAL;
3444        blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3445        if (!blocksize) {
3446                ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3447                goto out_fail;
3448        }
3449
3450        /*
3451         * The ext4 superblock will not be buffer aligned for other than 1kB
3452         * block sizes.  We need to calculate the offset from buffer start.
3453         */
3454        if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3455                logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3456                offset = do_div(logical_sb_block, blocksize);
3457        } else {
3458                logical_sb_block = sb_block;
3459        }
3460
3461        if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3462                ext4_msg(sb, KERN_ERR, "unable to read superblock");
3463                goto out_fail;
3464        }
3465        /*
3466         * Note: s_es must be initialized as soon as possible because
3467         *       some ext4 macro-instructions depend on its value
3468         */
3469        es = (struct ext4_super_block *) (bh->b_data + offset);
3470        sbi->s_es = es;
3471        sb->s_magic = le16_to_cpu(es->s_magic);
3472        if (sb->s_magic != EXT4_SUPER_MAGIC)
3473                goto cantfind_ext4;
3474        sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3475
3476        /* Warn if metadata_csum and gdt_csum are both set. */
3477        if (ext4_has_feature_metadata_csum(sb) &&
3478            ext4_has_feature_gdt_csum(sb))
3479                ext4_warning(sb, "metadata_csum and uninit_bg are "
3480                             "redundant flags; please run fsck.");
3481
3482        /* Check for a known checksum algorithm */
3483        if (!ext4_verify_csum_type(sb, es)) {
3484                ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3485                         "unknown checksum algorithm.");
3486                silent = 1;
3487                goto cantfind_ext4;
3488        }
3489
3490        /* Load the checksum driver */
3491        if (ext4_has_feature_metadata_csum(sb) ||
3492            ext4_has_feature_ea_inode(sb)) {
3493                sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3494                if (IS_ERR(sbi->s_chksum_driver)) {
3495                        ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3496                        ret = PTR_ERR(sbi->s_chksum_driver);
3497                        sbi->s_chksum_driver = NULL;
3498                        goto failed_mount;
3499                }
3500        }
3501
3502        /* Check superblock checksum */
3503        if (!ext4_superblock_csum_verify(sb, es)) {
3504                ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3505                         "invalid superblock checksum.  Run e2fsck?");
3506                silent = 1;
3507                ret = -EFSBADCRC;
3508                goto cantfind_ext4;
3509        }
3510
3511        /* Precompute checksum seed for all metadata */
3512        if (ext4_has_feature_csum_seed(sb))
3513                sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3514        else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3515                sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3516                                               sizeof(es->s_uuid));
3517
3518        /* Set defaults before we parse the mount options */
3519        def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3520        set_opt(sb, INIT_INODE_TABLE);
3521        if (def_mount_opts & EXT4_DEFM_DEBUG)
3522                set_opt(sb, DEBUG);
3523        if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3524                set_opt(sb, GRPID);
3525        if (def_mount_opts & EXT4_DEFM_UID16)
3526                set_opt(sb, NO_UID32);
3527        /* xattr user namespace & acls are now defaulted on */
3528        set_opt(sb, XATTR_USER);
3529#ifdef CONFIG_EXT4_FS_POSIX_ACL
3530        set_opt(sb, POSIX_ACL);
3531#endif
3532        /* don't forget to enable journal_csum when metadata_csum is enabled. */
3533        if (ext4_has_metadata_csum(sb))
3534                set_opt(sb, JOURNAL_CHECKSUM);
3535
3536        if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3537                set_opt(sb, JOURNAL_DATA);
3538        else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3539                set_opt(sb, ORDERED_DATA);
3540        else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3541                set_opt(sb, WRITEBACK_DATA);
3542
3543        if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3544                set_opt(sb, ERRORS_PANIC);
3545        else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3546                set_opt(sb, ERRORS_CONT);
3547        else
3548                set_opt(sb, ERRORS_RO);
3549        /* block_validity enabled by default; disable with noblock_validity */
3550        set_opt(sb, BLOCK_VALIDITY);
3551        if (def_mount_opts & EXT4_DEFM_DISCARD)
3552                set_opt(sb, DISCARD);
3553
3554        sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3555        sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3556        sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3557        sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3558        sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3559
3560        if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3561                set_opt(sb, BARRIER);
3562
3563        /*
3564         * enable delayed allocation by default
3565         * Use -o nodelalloc to turn it off
3566         */
3567        if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3568            ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3569                set_opt(sb, DELALLOC);
3570
3571        /*
3572         * set default s_li_wait_mult for lazyinit, for the case there is
3573         * no mount option specified.
3574         */
3575        sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3576
3577        if (sbi->s_es->s_mount_opts[0]) {
3578                char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3579                                              sizeof(sbi->s_es->s_mount_opts),
3580                                              GFP_KERNEL);
3581                if (!s_mount_opts)
3582                        goto failed_mount;
3583                if (!parse_options(s_mount_opts, sb, &journal_devnum,
3584                                   &journal_ioprio, 0)) {
3585                        ext4_msg(sb, KERN_WARNING,
3586                                 "failed to parse options in superblock: %s",
3587                                 s_mount_opts);
3588                }
3589                kfree(s_mount_opts);
3590        }
3591        sbi->s_def_mount_opt = sbi->s_mount_opt;
3592        if (!parse_options((char *) data, sb, &journal_devnum,
3593                           &journal_ioprio, 0))
3594                goto failed_mount;
3595
3596        if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3597                printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3598                            "with data=journal disables delayed "
3599                            "allocation and O_DIRECT support!\n");
3600                if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3601                        ext4_msg(sb, KERN_ERR, "can't mount with "
3602                                 "both data=journal and delalloc");
3603                        goto failed_mount;
3604                }
3605                if (test_opt(sb, DIOREAD_NOLOCK)) {
3606                        ext4_msg(sb, KERN_ERR, "can't mount with "
3607                                 "both data=journal and dioread_nolock");
3608                        goto failed_mount;
3609                }
3610                if (test_opt(sb, DAX)) {
3611                        ext4_msg(sb, KERN_ERR, "can't mount with "
3612                                 "both data=journal and dax");
3613                        goto failed_mount;
3614                }
3615                if (ext4_has_feature_encrypt(sb)) {
3616                        ext4_msg(sb, KERN_WARNING,
3617                                 "encrypted files will use data=ordered "
3618                                 "instead of data journaling mode");
3619                }
3620                if (test_opt(sb, DELALLOC))
3621                        clear_opt(sb, DELALLOC);
3622        } else {
3623                sb->s_iflags |= SB_I_CGROUPWB;
3624        }
3625
3626        sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3627                (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3628
3629        if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3630            (ext4_has_compat_features(sb) ||
3631             ext4_has_ro_compat_features(sb) ||
3632             ext4_has_incompat_features(sb)))
3633                ext4_msg(sb, KERN_WARNING,
3634                       "feature flags set on rev 0 fs, "
3635                       "running e2fsck is recommended");
3636
3637        if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3638                set_opt2(sb, HURD_COMPAT);
3639                if (ext4_has_feature_64bit(sb)) {
3640                        ext4_msg(sb, KERN_ERR,
3641                                 "The Hurd can't support 64-bit file systems");
3642                        goto failed_mount;
3643                }
3644
3645                /*
3646                 * ea_inode feature uses l_i_version field which is not
3647                 * available in HURD_COMPAT mode.
3648                 */
3649                if (ext4_has_feature_ea_inode(sb)) {
3650                        ext4_msg(sb, KERN_ERR,
3651                                 "ea_inode feature is not supported for Hurd");
3652                        goto failed_mount;
3653                }
3654        }
3655
3656        if (IS_EXT2_SB(sb)) {
3657                if (ext2_feature_set_ok(sb))
3658                        ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3659                                 "using the ext4 subsystem");
3660                else {
3661                        ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3662                                 "to feature incompatibilities");
3663                        goto failed_mount;
3664                }
3665        }
3666
3667        if (IS_EXT3_SB(sb)) {
3668                if (ext3_feature_set_ok(sb))
3669                        ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3670                                 "using the ext4 subsystem");
3671                else {
3672                        ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3673                                 "to feature incompatibilities");
3674                        goto failed_mount;
3675                }
3676        }
3677
3678        /*
3679         * Check feature flags regardless of the revision level, since we
3680         * previously didn't change the revision level when setting the flags,
3681         * so there is a chance incompat flags are set on a rev 0 filesystem.
3682         */
3683        if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3684                goto failed_mount;
3685
3686        blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3687        if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3688            blocksize > EXT4_MAX_BLOCK_SIZE) {
3689                ext4_msg(sb, KERN_ERR,
3690                       "Unsupported filesystem blocksize %d (%d log_block_size)",
3691                         blocksize, le32_to_cpu(es->s_log_block_size));
3692                goto failed_mount;
3693        }
3694        if (le32_to_cpu(es->s_log_block_size) >
3695            (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3696                ext4_msg(sb, KERN_ERR,
3697                         "Invalid log block size: %u",
3698                         le32_to_cpu(es->s_log_block_size));
3699                goto failed_mount;
3700        }
3701
3702        if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3703                ext4_msg(sb, KERN_ERR,
3704                         "Number of reserved GDT blocks insanely large: %d",
3705                         le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3706                goto failed_mount;
3707        }
3708
3709        if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3710                if (ext4_has_feature_inline_data(sb)) {
3711                        ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3712                                        " that may contain inline data");
3713                        goto failed_mount;
3714                }
3715                err = bdev_dax_supported(sb, blocksize);
3716                if (err)
3717                        goto failed_mount;
3718        }
3719
3720        if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3721                ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3722                         es->s_encryption_level);
3723                goto failed_mount;
3724        }
3725
3726        if (sb->s_blocksize != blocksize) {
3727                /* Validate the filesystem blocksize */
3728                if (!sb_set_blocksize(sb, blocksize)) {
3729                        ext4_msg(sb, KERN_ERR, "bad block size %d",
3730                                        blocksize);
3731                        goto failed_mount;
3732                }
3733
3734                brelse(bh);
3735                logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3736                offset = do_div(logical_sb_block, blocksize);
3737                bh = sb_bread_unmovable(sb, logical_sb_block);
3738                if (!bh) {
3739                        ext4_msg(sb, KERN_ERR,
3740                               "Can't read superblock on 2nd try");
3741                        goto failed_mount;
3742                }
3743                es = (struct ext4_super_block *)(bh->b_data + offset);
3744                sbi->s_es = es;
3745                if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3746                        ext4_msg(sb, KERN_ERR,
3747                               "Magic mismatch, very weird!");
3748                        goto failed_mount;
3749                }
3750        }
3751
3752        has_huge_files = ext4_has_feature_huge_file(sb);
3753        sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3754                                                      has_huge_files);
3755        sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3756
3757        if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3758                sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3759                sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3760        } else {
3761                sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3762                sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3763                if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3764                    (!is_power_of_2(sbi->s_inode_size)) ||
3765                    (sbi->s_inode_size > blocksize)) {
3766                        ext4_msg(sb, KERN_ERR,
3767                               "unsupported inode size: %d",
3768                               sbi->s_inode_size);
3769                        goto failed_mount;
3770                }
3771                if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3772                        sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3773        }
3774
3775        sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3776        if (ext4_has_feature_64bit(sb)) {
3777                if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3778                    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3779                    !is_power_of_2(sbi->s_desc_size)) {
3780                        ext4_msg(sb, KERN_ERR,
3781                               "unsupported descriptor size %lu",
3782                               sbi->s_desc_size);
3783                        goto failed_mount;
3784                }
3785        } else
3786                sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3787
3788        sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3789        sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3790
3791        sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3792        if (sbi->s_inodes_per_block == 0)
3793                goto cantfind_ext4;
3794        if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3795            sbi->s_inodes_per_group > blocksize * 8) {
3796                ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3797                         sbi->s_blocks_per_group);
3798                goto failed_mount;
3799        }
3800        sbi->s_itb_per_group = sbi->s_inodes_per_group /
3801                                        sbi->s_inodes_per_block;
3802        sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3803        sbi->s_sbh = bh;
3804        sbi->s_mount_state = le16_to_cpu(es->s_state);
3805        sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3806        sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3807
3808        for (i = 0; i < 4; i++)
3809                sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3810        sbi->s_def_hash_version = es->s_def_hash_version;
3811        if (ext4_has_feature_dir_index(sb)) {
3812                i = le32_to_cpu(es->s_flags);
3813                if (i & EXT2_FLAGS_UNSIGNED_HASH)
3814                        sbi->s_hash_unsigned = 3;
3815                else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3816#ifdef __CHAR_UNSIGNED__
3817                        if (!sb_rdonly(sb))
3818                                es->s_flags |=
3819                                        cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3820                        sbi->s_hash_unsigned = 3;
3821#else
3822                        if (!sb_rdonly(sb))
3823                                es->s_flags |=
3824                                        cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3825#endif
3826                }
3827        }
3828
3829        /* Handle clustersize */
3830        clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3831        has_bigalloc = ext4_has_feature_bigalloc(sb);
3832        if (has_bigalloc) {
3833                if (clustersize < blocksize) {
3834                        ext4_msg(sb, KERN_ERR,
3835                                 "cluster size (%d) smaller than "
3836                                 "block size (%d)", clustersize, blocksize);
3837                        goto failed_mount;
3838                }
3839                if (le32_to_cpu(es->s_log_cluster_size) >
3840                    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3841                        ext4_msg(sb, KERN_ERR,
3842                                 "Invalid log cluster size: %u",
3843                                 le32_to_cpu(es->s_log_cluster_size));
3844                        goto failed_mount;
3845                }
3846                sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3847                        le32_to_cpu(es->s_log_block_size);
3848                sbi->s_clusters_per_group =
3849                        le32_to_cpu(es->s_clusters_per_group);
3850                if (sbi->s_clusters_per_group > blocksize * 8) {
3851                        ext4_msg(sb, KERN_ERR,
3852                                 "#clusters per group too big: %lu",
3853                                 sbi->s_clusters_per_group);
3854                        goto failed_mount;
3855                }
3856                if (sbi->s_blocks_per_group !=
3857                    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3858                        ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3859                                 "clusters per group (%lu) inconsistent",
3860                                 sbi->s_blocks_per_group,
3861                                 sbi->s_clusters_per_group);
3862                        goto failed_mount;
3863                }
3864        } else {
3865                if (clustersize != blocksize) {
3866                        ext4_warning(sb, "fragment/cluster size (%d) != "
3867                                     "block size (%d)", clustersize,
3868                                     blocksize);
3869                        clustersize = blocksize;
3870                }
3871                if (sbi->s_blocks_per_group > blocksize * 8) {
3872                        ext4_msg(sb, KERN_ERR,
3873                                 "#blocks per group too big: %lu",
3874                                 sbi->s_blocks_per_group);
3875                        goto failed_mount;
3876                }
3877                sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3878                sbi->s_cluster_bits = 0;
3879        }
3880        sbi->s_cluster_ratio = clustersize / blocksize;
3881
3882        /* Do we have standard group size of clustersize * 8 blocks ? */
3883        if (sbi->s_blocks_per_group == clustersize << 3)
3884                set_opt2(sb, STD_GROUP_SIZE);
3885
3886        /*
3887         * Test whether we have more sectors than will fit in sector_t,
3888         * and whether the max offset is addressable by the page cache.
3889         */
3890        err = generic_check_addressable(sb->s_blocksize_bits,
3891                                        ext4_blocks_count(es));
3892        if (err) {
3893                ext4_msg(sb, KERN_ERR, "filesystem"
3894                         " too large to mount safely on this system");
3895                if (sizeof(sector_t) < 8)
3896                        ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3897                goto failed_mount;
3898        }
3899
3900        if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3901                goto cantfind_ext4;
3902
3903        /* check blocks count against device size */
3904        blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3905        if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3906                ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3907                       "exceeds size of device (%llu blocks)",
3908                       ext4_blocks_count(es), blocks_count);
3909                goto failed_mount;
3910        }
3911
3912        /*
3913         * It makes no sense for the first data block to be beyond the end
3914         * of the filesystem.
3915         */
3916        if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3917                ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3918                         "block %u is beyond end of filesystem (%llu)",
3919                         le32_to_cpu(es->s_first_data_block),
3920                         ext4_blocks_count(es));
3921                goto failed_mount;
3922        }
3923        blocks_count = (ext4_blocks_count(es) -
3924                        le32_to_cpu(es->s_first_data_block) +
3925                        EXT4_BLOCKS_PER_GROUP(sb) - 1);
3926        do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3927        if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3928                ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3929                       "(block count %llu, first data block %u, "
3930                       "blocks per group %lu)", sbi->s_groups_count,
3931                       ext4_blocks_count(es),
3932                       le32_to_cpu(es->s_first_data_block),
3933                       EXT4_BLOCKS_PER_GROUP(sb));
3934                goto failed_mount;
3935        }
3936        sbi->s_groups_count = blocks_count;
3937        sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3938                        (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3939        db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3940                   EXT4_DESC_PER_BLOCK(sb);
3941        if (ext4_has_feature_meta_bg(sb)) {
3942                if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3943                        ext4_msg(sb, KERN_WARNING,
3944                                 "first meta block group too large: %u "
3945                                 "(group descriptor block count %u)",
3946                                 le32_to_cpu(es->s_first_meta_bg), db_count);
3947                        goto failed_mount;
3948                }
3949        }
3950        sbi->s_group_desc = kvmalloc(db_count *
3951                                          sizeof(struct buffer_head *),
3952                                          GFP_KERNEL);
3953        if (sbi->s_group_desc == NULL) {
3954                ext4_msg(sb, KERN_ERR, "not enough memory");
3955                ret = -ENOMEM;
3956                goto failed_mount;
3957        }
3958
3959        bgl_lock_init(sbi->s_blockgroup_lock);
3960
3961        /* Pre-read the descriptors into the buffer cache */
3962        for (i = 0; i < db_count; i++) {
3963                block = descriptor_loc(sb, logical_sb_block, i);
3964                sb_breadahead(sb, block);
3965        }
3966
3967        for (i = 0; i < db_count; i++) {
3968                block = descriptor_loc(sb, logical_sb_block, i);
3969                sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3970                if (!sbi->s_group_desc[i]) {
3971                        ext4_msg(sb, KERN_ERR,
3972                               "can't read group descriptor %d", i);
3973                        db_count = i;
3974                        goto failed_mount2;
3975                }
3976        }
3977        if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3978                ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3979                ret = -EFSCORRUPTED;
3980                goto failed_mount2;
3981        }
3982
3983        sbi->s_gdb_count = db_count;
3984
3985        timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
3986
3987        /* Register extent status tree shrinker */
3988        if (ext4_es_register_shrinker(sbi))
3989                goto failed_mount3;
3990
3991        sbi->s_stripe = ext4_get_stripe_size(sbi);
3992        sbi->s_extent_max_zeroout_kb = 32;
3993
3994        /*
3995         * set up enough so that it can read an inode
3996         */
3997        sb->s_op = &ext4_sops;
3998        sb->s_export_op = &ext4_export_ops;
3999        sb->s_xattr = ext4_xattr_handlers;
4000#ifdef CONFIG_EXT4_FS_ENCRYPTION
4001        sb->s_cop = &ext4_cryptops;
4002#endif
4003#ifdef CONFIG_QUOTA
4004        sb->dq_op = &ext4_quota_operations;
4005        if (ext4_has_feature_quota(sb))
4006                sb->s_qcop = &dquot_quotactl_sysfile_ops;
4007        else
4008                sb->s_qcop = &ext4_qctl_operations;
4009        sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4010#endif
4011        memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4012
4013        INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4014        mutex_init(&sbi->s_orphan_lock);
4015
4016        sb->s_root = NULL;
4017
4018        needs_recovery = (es->s_last_orphan != 0 ||
4019                          ext4_has_feature_journal_needs_recovery(sb));
4020
4021        if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4022                if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4023                        goto failed_mount3a;
4024
4025        /*
4026         * The first inode we look at is the journal inode.  Don't try
4027         * root first: it may be modified in the journal!
4028         */
4029        if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4030                err = ext4_load_journal(sb, es, journal_devnum);
4031                if (err)
4032                        goto failed_mount3a;
4033        } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4034                   ext4_has_feature_journal_needs_recovery(sb)) {
4035                ext4_msg(sb, KERN_ERR, "required journal recovery "
4036                       "suppressed and not mounted read-only");
4037                goto failed_mount_wq;
4038        } else {
4039                /* Nojournal mode, all journal mount options are illegal */
4040                if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4041                        ext4_msg(sb, KERN_ERR, "can't mount with "
4042                                 "journal_checksum, fs mounted w/o journal");
4043                        goto failed_mount_wq;
4044                }
4045                if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4046                        ext4_msg(sb, KERN_ERR, "can't mount with "
4047                                 "journal_async_commit, fs mounted w/o journal");
4048                        goto failed_mount_wq;
4049                }
4050                if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4051                        ext4_msg(sb, KERN_ERR, "can't mount with "
4052                                 "commit=%lu, fs mounted w/o journal",
4053                                 sbi->s_commit_interval / HZ);
4054                        goto failed_mount_wq;
4055                }
4056                if (EXT4_MOUNT_DATA_FLAGS &
4057                    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4058                        ext4_msg(sb, KERN_ERR, "can't mount with "
4059                                 "data=, fs mounted w/o journal");
4060                        goto failed_mount_wq;
4061                }
4062                sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4063                clear_opt(sb, JOURNAL_CHECKSUM);
4064                clear_opt(sb, DATA_FLAGS);
4065                sbi->s_journal = NULL;
4066                needs_recovery = 0;
4067                goto no_journal;
4068        }
4069
4070        if (ext4_has_feature_64bit(sb) &&
4071            !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4072                                       JBD2_FEATURE_INCOMPAT_64BIT)) {
4073                ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4074                goto failed_mount_wq;
4075        }
4076
4077        if (!set_journal_csum_feature_set(sb)) {
4078                ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4079                         "feature set");
4080                goto failed_mount_wq;
4081        }
4082
4083        /* We have now updated the journal if required, so we can
4084         * validate the data journaling mode. */
4085        switch (test_opt(sb, DATA_FLAGS)) {
4086        case 0:
4087                /* No mode set, assume a default based on the journal
4088                 * capabilities: ORDERED_DATA if the journal can
4089                 * cope, else JOURNAL_DATA
4090                 */
4091                if (jbd2_journal_check_available_features
4092                    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4093                        set_opt(sb, ORDERED_DATA);
4094                else
4095                        set_opt(sb, JOURNAL_DATA);
4096                break;
4097
4098        case EXT4_MOUNT_ORDERED_DATA:
4099        case EXT4_MOUNT_WRITEBACK_DATA:
4100                if (!jbd2_journal_check_available_features
4101                    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4102                        ext4_msg(sb, KERN_ERR, "Journal does not support "
4103                               "requested data journaling mode");
4104                        goto failed_mount_wq;
4105                }
4106        default:
4107                break;
4108        }
4109
4110        if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4111            test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4112                ext4_msg(sb, KERN_ERR, "can't mount with "
4113                        "journal_async_commit in data=ordered mode");
4114                goto failed_mount_wq;
4115        }
4116
4117        set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4118
4119        sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4120
4121no_journal:
4122        if (!test_opt(sb, NO_MBCACHE)) {
4123                sbi->s_ea_block_cache = ext4_xattr_create_cache();
4124                if (!sbi->s_ea_block_cache) {
4125                        ext4_msg(sb, KERN_ERR,
4126                                 "Failed to create ea_block_cache");
4127                        goto failed_mount_wq;
4128                }
4129
4130                if (ext4_has_feature_ea_inode(sb)) {
4131                        sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4132                        if (!sbi->s_ea_inode_cache) {
4133                                ext4_msg(sb, KERN_ERR,
4134                                         "Failed to create ea_inode_cache");
4135                                goto failed_mount_wq;
4136                        }
4137                }
4138        }
4139
4140        if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4141            (blocksize != PAGE_SIZE)) {
4142                ext4_msg(sb, KERN_ERR,
4143                         "Unsupported blocksize for fs encryption");
4144                goto failed_mount_wq;
4145        }
4146
4147        if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4148            !ext4_has_feature_encrypt(sb)) {
4149                ext4_set_feature_encrypt(sb);
4150                ext4_commit_super(sb, 1);
4151        }
4152
4153        /*
4154         * Get the # of file system overhead blocks from the
4155         * superblock if present.
4156         */
4157        if (es->s_overhead_clusters)
4158                sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4159        else {
4160                err = ext4_calculate_overhead(sb);
4161                if (err)
4162                        goto failed_mount_wq;
4163        }
4164
4165        /*
4166         * The maximum number of concurrent works can be high and
4167         * concurrency isn't really necessary.  Limit it to 1.
4168         */
4169        EXT4_SB(sb)->rsv_conversion_wq =
4170                alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4171        if (!EXT4_SB(sb)->rsv_conversion_wq) {
4172                printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4173                ret = -ENOMEM;
4174                goto failed_mount4;
4175        }
4176
4177        /*
4178         * The jbd2_journal_load will have done any necessary log recovery,
4179         * so we can safely mount the rest of the filesystem now.
4180         */
4181
4182        root = ext4_iget(sb, EXT4_ROOT_INO);
4183        if (IS_ERR(root)) {
4184                ext4_msg(sb, KERN_ERR, "get root inode failed");
4185                ret = PTR_ERR(root);
4186                root = NULL;
4187                goto failed_mount4;
4188        }
4189        if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4190                ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4191                iput(root);
4192                goto failed_mount4;
4193        }
4194        sb->s_root = d_make_root(root);
4195        if (!sb->s_root) {
4196                ext4_msg(sb, KERN_ERR, "get root dentry failed");
4197                ret = -ENOMEM;
4198                goto failed_mount4;
4199        }
4200
4201        if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4202                sb->s_flags |= SB_RDONLY;
4203
4204        /* determine the minimum size of new large inodes, if present */
4205        if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4206            sbi->s_want_extra_isize == 0) {
4207                sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4208                                                     EXT4_GOOD_OLD_INODE_SIZE;
4209                if (ext4_has_feature_extra_isize(sb)) {
4210                        if (sbi->s_want_extra_isize <
4211                            le16_to_cpu(es->s_want_extra_isize))
4212                                sbi->s_want_extra_isize =
4213                                        le16_to_cpu(es->s_want_extra_isize);
4214                        if (sbi->s_want_extra_isize <
4215                            le16_to_cpu(es->s_min_extra_isize))
4216                                sbi->s_want_extra_isize =
4217                                        le16_to_cpu(es->s_min_extra_isize);
4218                }
4219        }
4220        /* Check if enough inode space is available */
4221        if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4222                                                        sbi->s_inode_size) {
4223                sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4224                                                       EXT4_GOOD_OLD_INODE_SIZE;
4225                ext4_msg(sb, KERN_INFO, "required extra inode space not"
4226                         "available");
4227        }
4228
4229        ext4_set_resv_clusters(sb);
4230
4231        err = ext4_setup_system_zone(sb);
4232        if (err) {
4233                ext4_msg(sb, KERN_ERR, "failed to initialize system "
4234                         "zone (%d)", err);
4235                goto failed_mount4a;
4236        }
4237
4238        ext4_ext_init(sb);
4239        err = ext4_mb_init(sb);
4240        if (err) {
4241                ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4242                         err);
4243                goto failed_mount5;
4244        }
4245
4246        block = ext4_count_free_clusters(sb);
4247        ext4_free_blocks_count_set(sbi->s_es, 
4248                                   EXT4_C2B(sbi, block));
4249        err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4250                                  GFP_KERNEL);
4251        if (!err) {
4252                unsigned long freei = ext4_count_free_inodes(sb);
4253                sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4254                err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4255                                          GFP_KERNEL);
4256        }
4257        if (!err)
4258                err = percpu_counter_init(&sbi->s_dirs_counter,
4259                                          ext4_count_dirs(sb), GFP_KERNEL);
4260        if (!err)
4261                err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4262                                          GFP_KERNEL);
4263        if (!err)
4264                err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4265
4266        if (err) {
4267                ext4_msg(sb, KERN_ERR, "insufficient memory");
4268                goto failed_mount6;
4269        }
4270
4271        if (ext4_has_feature_flex_bg(sb))
4272                if (!ext4_fill_flex_info(sb)) {
4273                        ext4_msg(sb, KERN_ERR,
4274                               "unable to initialize "
4275                               "flex_bg meta info!");
4276                        goto failed_mount6;
4277                }
4278
4279        err = ext4_register_li_request(sb, first_not_zeroed);
4280        if (err)
4281                goto failed_mount6;
4282
4283        err = ext4_register_sysfs(sb);
4284        if (err)
4285                goto failed_mount7;
4286
4287#ifdef CONFIG_QUOTA
4288        /* Enable quota usage during mount. */
4289        if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4290                err = ext4_enable_quotas(sb);
4291                if (err)
4292                        goto failed_mount8;
4293        }
4294#endif  /* CONFIG_QUOTA */
4295
4296        EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4297        ext4_orphan_cleanup(sb, es);
4298        EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4299        if (needs_recovery) {
4300                ext4_msg(sb, KERN_INFO, "recovery complete");
4301                ext4_mark_recovery_complete(sb, es);
4302        }
4303        if (EXT4_SB(sb)->s_journal) {
4304                if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4305                        descr = " journalled data mode";
4306                else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4307                        descr = " ordered data mode";
4308                else
4309                        descr = " writeback data mode";
4310        } else
4311                descr = "out journal";
4312
4313        if (test_opt(sb, DISCARD)) {
4314                struct request_queue *q = bdev_get_queue(sb->s_bdev);
4315                if (!blk_queue_discard(q))
4316                        ext4_msg(sb, KERN_WARNING,
4317                                 "mounting with \"discard\" option, but "
4318                                 "the device does not support discard");
4319        }
4320
4321        if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4322                ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4323                         "Opts: %.*s%s%s", descr,
4324                         (int) sizeof(sbi->s_es->s_mount_opts),
4325                         sbi->s_es->s_mount_opts,
4326                         *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4327
4328        if (es->s_error_count)
4329                mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4330
4331        /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4332        ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4333        ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4334        ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4335
4336        kfree(orig_data);
4337        return 0;
4338
4339cantfind_ext4:
4340        if (!silent)
4341                ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4342        goto failed_mount;
4343
4344#ifdef CONFIG_QUOTA
4345failed_mount8:
4346        ext4_unregister_sysfs(sb);
4347#endif
4348failed_mount7:
4349        ext4_unregister_li_request(sb);
4350failed_mount6:
4351        ext4_mb_release(sb);
4352        if (sbi->s_flex_groups)
4353                kvfree(sbi->s_flex_groups);
4354        percpu_counter_destroy(&sbi->s_freeclusters_counter);
4355        percpu_counter_destroy(&sbi->s_freeinodes_counter);
4356        percpu_counter_destroy(&sbi->s_dirs_counter);
4357        percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4358failed_mount5:
4359        ext4_ext_release(sb);
4360        ext4_release_system_zone(sb);
4361failed_mount4a:
4362        dput(sb->s_root);
4363        sb->s_root = NULL;
4364failed_mount4:
4365        ext4_msg(sb, KERN_ERR, "mount failed");
4366        if (EXT4_SB(sb)->rsv_conversion_wq)
4367                destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4368failed_mount_wq:
4369        if (sbi->s_ea_inode_cache) {
4370                ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4371                sbi->s_ea_inode_cache = NULL;
4372        }
4373        if (sbi->s_ea_block_cache) {
4374                ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4375                sbi->s_ea_block_cache = NULL;
4376        }
4377        if (sbi->s_journal) {
4378                jbd2_journal_destroy(sbi->s_journal);
4379                sbi->s_journal = NULL;
4380        }
4381failed_mount3a:
4382        ext4_es_unregister_shrinker(sbi);
4383failed_mount3:
4384        del_timer_sync(&sbi->s_err_report);
4385        if (sbi->s_mmp_tsk)
4386                kthread_stop(sbi->s_mmp_tsk);
4387failed_mount2:
4388        for (i = 0; i < db_count; i++)
4389                brelse(sbi->s_group_desc[i]);
4390        kvfree(sbi->s_group_desc);
4391failed_mount:
4392        if (sbi->s_chksum_driver)
4393                crypto_free_shash(sbi->s_chksum_driver);
4394#ifdef CONFIG_QUOTA
4395        for (i = 0; i < EXT4_MAXQUOTAS; i++)
4396                kfree(sbi->s_qf_names[i]);
4397#endif
4398        ext4_blkdev_remove(sbi);
4399        brelse(bh);
4400out_fail:
4401        sb->s_fs_info = NULL;
4402        kfree(sbi->s_blockgroup_lock);
4403out_free_base:
4404        kfree(sbi);
4405        kfree(orig_data);
4406        fs_put_dax(dax_dev);
4407        return err ? err : ret;
4408}
4409
4410/*
4411 * Setup any per-fs journal parameters now.  We'll do this both on
4412 * initial mount, once the journal has been initialised but before we've
4413 * done any recovery; and again on any subsequent remount.
4414 */
4415static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4416{
4417        struct ext4_sb_info *sbi = EXT4_SB(sb);
4418
4419        journal->j_commit_interval = sbi->s_commit_interval;
4420        journal->j_min_batch_time = sbi->s_min_batch_time;
4421        journal->j_max_batch_time = sbi->s_max_batch_time;
4422
4423        write_lock(&journal->j_state_lock);
4424        if (test_opt(sb, BARRIER))
4425                journal->j_flags |= JBD2_BARRIER;
4426        else
4427                journal->j_flags &= ~JBD2_BARRIER;
4428        if (test_opt(sb, DATA_ERR_ABORT))
4429                journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4430        else
4431                journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4432        write_unlock(&journal->j_state_lock);
4433}
4434
4435static struct inode *ext4_get_journal_inode(struct super_block *sb,
4436                                             unsigned int journal_inum)
4437{
4438        struct inode *journal_inode;
4439
4440        /*
4441         * Test for the existence of a valid inode on disk.  Bad things
4442         * happen if we iget() an unused inode, as the subsequent iput()
4443         * will try to delete it.
4444         */
4445        journal_inode = ext4_iget(sb, journal_inum);
4446        if (IS_ERR(journal_inode)) {
4447                ext4_msg(sb, KERN_ERR, "no journal found");
4448                return NULL;
4449        }
4450        if (!journal_inode->i_nlink) {
4451                make_bad_inode(journal_inode);
4452                iput(journal_inode);
4453                ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4454                return NULL;
4455        }
4456
4457        jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4458                  journal_inode, journal_inode->i_size);
4459        if (!S_ISREG(journal_inode->i_mode)) {
4460                ext4_msg(sb, KERN_ERR, "invalid journal inode");
4461                iput(journal_inode);
4462                return NULL;
4463        }
4464        return journal_inode;
4465}
4466
4467static journal_t *ext4_get_journal(struct super_block *sb,
4468                                   unsigned int journal_inum)
4469{
4470        struct inode *journal_inode;
4471        journal_t *journal;
4472
4473        BUG_ON(!ext4_has_feature_journal(sb));
4474
4475        journal_inode = ext4_get_journal_inode(sb, journal_inum);
4476        if (!journal_inode)
4477                return NULL;
4478
4479        journal = jbd2_journal_init_inode(journal_inode);
4480        if (!journal) {
4481                ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4482                iput(journal_inode);
4483                return NULL;
4484        }
4485        journal->j_private = sb;
4486        ext4_init_journal_params(sb, journal);
4487        return journal;
4488}
4489
4490static journal_t *ext4_get_dev_journal(struct super_block *sb,
4491                                       dev_t j_dev)
4492{
4493        struct buffer_head *bh;
4494        journal_t *journal;
4495        ext4_fsblk_t start;
4496        ext4_fsblk_t len;
4497        int hblock, blocksize;
4498        ext4_fsblk_t sb_block;
4499        unsigned long offset;
4500        struct ext4_super_block *es;
4501        struct block_device *bdev;
4502
4503        BUG_ON(!ext4_has_feature_journal(sb));
4504
4505        bdev = ext4_blkdev_get(j_dev, sb);
4506        if (bdev == NULL)
4507                return NULL;
4508
4509        blocksize = sb->s_blocksize;
4510        hblock = bdev_logical_block_size(bdev);
4511        if (blocksize < hblock) {
4512                ext4_msg(sb, KERN_ERR,
4513                        "blocksize too small for journal device");
4514                goto out_bdev;
4515        }
4516
4517        sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4518        offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4519        set_blocksize(bdev, blocksize);
4520        if (!(bh = __bread(bdev, sb_block, blocksize))) {
4521                ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4522                       "external journal");
4523                goto out_bdev;
4524        }
4525
4526        es = (struct ext4_super_block *) (bh->b_data + offset);
4527        if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4528            !(le32_to_cpu(es->s_feature_incompat) &
4529              EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4530                ext4_msg(sb, KERN_ERR, "external journal has "
4531                                        "bad superblock");
4532                brelse(bh);
4533                goto out_bdev;
4534        }
4535
4536        if ((le32_to_cpu(es->s_feature_ro_compat) &
4537             EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4538            es->s_checksum != ext4_superblock_csum(sb, es)) {
4539                ext4_msg(sb, KERN_ERR, "external journal has "
4540                                       "corrupt superblock");
4541                brelse(bh);
4542                goto out_bdev;
4543        }
4544
4545        if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4546                ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4547                brelse(bh);
4548                goto out_bdev;
4549        }
4550
4551        len = ext4_blocks_count(es);
4552        start = sb_block + 1;
4553        brelse(bh);     /* we're done with the superblock */
4554
4555        journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4556                                        start, len, blocksize);
4557        if (!journal) {
4558                ext4_msg(sb, KERN_ERR, "failed to create device journal");
4559                goto out_bdev;
4560        }
4561        journal->j_private = sb;
4562        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4563        wait_on_buffer(journal->j_sb_buffer);
4564        if (!buffer_uptodate(journal->j_sb_buffer)) {
4565                ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4566                goto out_journal;
4567        }
4568        if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4569                ext4_msg(sb, KERN_ERR, "External journal has more than one "
4570                                        "user (unsupported) - %d",
4571                        be32_to_cpu(journal->j_superblock->s_nr_users));
4572                goto out_journal;
4573        }
4574        EXT4_SB(sb)->journal_bdev = bdev;
4575        ext4_init_journal_params(sb, journal);
4576        return journal;
4577
4578out_journal:
4579        jbd2_journal_destroy(journal);
4580out_bdev:
4581        ext4_blkdev_put(bdev);
4582        return NULL;
4583}
4584
4585static int ext4_load_journal(struct super_block *sb,
4586                             struct ext4_super_block *es,
4587                             unsigned long journal_devnum)
4588{
4589        journal_t *journal;
4590        unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4591        dev_t journal_dev;
4592        int err = 0;
4593        int really_read_only;
4594
4595        BUG_ON(!ext4_has_feature_journal(sb));
4596
4597        if (journal_devnum &&
4598            journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4599                ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4600                        "numbers have changed");
4601                journal_dev = new_decode_dev(journal_devnum);
4602        } else
4603                journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4604
4605        really_read_only = bdev_read_only(sb->s_bdev);
4606
4607        /*
4608         * Are we loading a blank journal or performing recovery after a
4609         * crash?  For recovery, we need to check in advance whether we
4610         * can get read-write access to the device.
4611         */
4612        if (ext4_has_feature_journal_needs_recovery(sb)) {
4613                if (sb_rdonly(sb)) {
4614                        ext4_msg(sb, KERN_INFO, "INFO: recovery "
4615                                        "required on readonly filesystem");
4616                        if (really_read_only) {
4617                                ext4_msg(sb, KERN_ERR, "write access "
4618                                        "unavailable, cannot proceed "
4619                                        "(try mounting with noload)");
4620                                return -EROFS;
4621                        }
4622                        ext4_msg(sb, KERN_INFO, "write access will "
4623                               "be enabled during recovery");
4624                }
4625        }
4626
4627        if (journal_inum && journal_dev) {
4628                ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4629                       "and inode journals!");
4630                return -EINVAL;
4631        }
4632
4633        if (journal_inum) {
4634                if (!(journal = ext4_get_journal(sb, journal_inum)))
4635                        return -EINVAL;
4636        } else {
4637                if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4638                        return -EINVAL;
4639        }
4640
4641        if (!(journal->j_flags & JBD2_BARRIER))
4642                ext4_msg(sb, KERN_INFO, "barriers disabled");
4643
4644        if (!ext4_has_feature_journal_needs_recovery(sb))
4645                err = jbd2_journal_wipe(journal, !really_read_only);
4646        if (!err) {
4647                char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4648                if (save)
4649                        memcpy(save, ((char *) es) +
4650                               EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4651                err = jbd2_journal_load(journal);
4652                if (save)
4653                        memcpy(((char *) es) + EXT4_S_ERR_START,
4654                               save, EXT4_S_ERR_LEN);
4655                kfree(save);
4656        }
4657
4658        if (err) {
4659                ext4_msg(sb, KERN_ERR, "error loading journal");
4660                jbd2_journal_destroy(journal);
4661                return err;
4662        }
4663
4664        EXT4_SB(sb)->s_journal = journal;
4665        ext4_clear_journal_err(sb, es);
4666
4667        if (!really_read_only && journal_devnum &&
4668            journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4669                es->s_journal_dev = cpu_to_le32(journal_devnum);
4670
4671                /* Make sure we flush the recovery flag to disk. */
4672                ext4_commit_super(sb, 1);
4673        }
4674
4675        return 0;
4676}
4677
4678static int ext4_commit_super(struct super_block *sb, int sync)
4679{
4680        struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4681        struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4682        int error = 0;
4683
4684        if (!sbh || block_device_ejected(sb))
4685                return error;
4686        /*
4687         * If the file system is mounted read-only, don't update the
4688         * superblock write time.  This avoids updating the superblock
4689         * write time when we are mounting the root file system
4690         * read/only but we need to replay the journal; at that point,
4691         * for people who are east of GMT and who make their clock
4692         * tick in localtime for Windows bug-for-bug compatibility,
4693         * the clock is set in the future, and this will cause e2fsck
4694         * to complain and force a full file system check.
4695         */
4696        if (!(sb->s_flags & SB_RDONLY))
4697                es->s_wtime = cpu_to_le32(get_seconds());
4698        if (sb->s_bdev->bd_part)
4699                es->s_kbytes_written =
4700                        cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4701                            ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4702                              EXT4_SB(sb)->s_sectors_written_start) >> 1));
4703        else
4704                es->s_kbytes_written =
4705                        cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4706        if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4707                ext4_free_blocks_count_set(es,
4708                        EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4709                                &EXT4_SB(sb)->s_freeclusters_counter)));
4710        if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4711                es->s_free_inodes_count =
4712                        cpu_to_le32(percpu_counter_sum_positive(
4713                                &EXT4_SB(sb)->s_freeinodes_counter));
4714        BUFFER_TRACE(sbh, "marking dirty");
4715        ext4_superblock_csum_set(sb);
4716        if (sync)
4717                lock_buffer(sbh);
4718        if (buffer_write_io_error(sbh)) {
4719                /*
4720                 * Oh, dear.  A previous attempt to write the
4721                 * superblock failed.  This could happen because the
4722                 * USB device was yanked out.  Or it could happen to
4723                 * be a transient write error and maybe the block will
4724                 * be remapped.  Nothing we can do but to retry the
4725                 * write and hope for the best.
4726                 */
4727                ext4_msg(sb, KERN_ERR, "previous I/O error to "
4728                       "superblock detected");
4729                clear_buffer_write_io_error(sbh);
4730                set_buffer_uptodate(sbh);
4731        }
4732        mark_buffer_dirty(sbh);
4733        if (sync) {
4734                unlock_buffer(sbh);
4735                error = __sync_dirty_buffer(sbh,
4736                        REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4737                if (error)
4738                        return error;
4739
4740                error = buffer_write_io_error(sbh);
4741                if (error) {
4742                        ext4_msg(sb, KERN_ERR, "I/O error while writing "
4743                               "superblock");
4744                        clear_buffer_write_io_error(sbh);
4745                        set_buffer_uptodate(sbh);
4746                }
4747        }
4748        return error;
4749}
4750
4751/*
4752 * Have we just finished recovery?  If so, and if we are mounting (or
4753 * remounting) the filesystem readonly, then we will end up with a
4754 * consistent fs on disk.  Record that fact.
4755 */
4756static void ext4_mark_recovery_complete(struct super_block *sb,
4757                                        struct ext4_super_block *es)
4758{
4759        journal_t *journal = EXT4_SB(sb)->s_journal;
4760
4761        if (!ext4_has_feature_journal(sb)) {
4762                BUG_ON(journal != NULL);
4763                return;
4764        }
4765        jbd2_journal_lock_updates(journal);
4766        if (jbd2_journal_flush(journal) < 0)
4767                goto out;
4768
4769        if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4770                ext4_clear_feature_journal_needs_recovery(sb);
4771                ext4_commit_super(sb, 1);
4772        }
4773
4774out:
4775        jbd2_journal_unlock_updates(journal);
4776}
4777
4778/*
4779 * If we are mounting (or read-write remounting) a filesystem whose journal
4780 * has recorded an error from a previous lifetime, move that error to the
4781 * main filesystem now.
4782 */
4783static void ext4_clear_journal_err(struct super_block *sb,
4784                                   struct ext4_super_block *es)
4785{
4786        journal_t *journal;
4787        int j_errno;
4788        const char *errstr;
4789
4790        BUG_ON(!ext4_has_feature_journal(sb));
4791
4792        journal = EXT4_SB(sb)->s_journal;
4793
4794        /*
4795         * Now check for any error status which may have been recorded in the
4796         * journal by a prior ext4_error() or ext4_abort()
4797         */
4798
4799        j_errno = jbd2_journal_errno(journal);
4800        if (j_errno) {
4801                char nbuf[16];
4802
4803                errstr = ext4_decode_error(sb, j_errno, nbuf);
4804                ext4_warning(sb, "Filesystem error recorded "
4805                             "from previous mount: %s", errstr);
4806                ext4_warning(sb, "Marking fs in need of filesystem check.");
4807
4808                EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4809                es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4810                ext4_commit_super(sb, 1);
4811
4812                jbd2_journal_clear_err(journal);
4813                jbd2_journal_update_sb_errno(journal);
4814        }
4815}
4816
4817/*
4818 * Force the running and committing transactions to commit,
4819 * and wait on the commit.
4820 */
4821int ext4_force_commit(struct super_block *sb)
4822{
4823        journal_t *journal;
4824
4825        if (sb_rdonly(sb))
4826                return 0;
4827
4828        journal = EXT4_SB(sb)->s_journal;
4829        return ext4_journal_force_commit(journal);
4830}
4831
4832static int ext4_sync_fs(struct super_block *sb, int wait)
4833{
4834        int ret = 0;
4835        tid_t target;
4836        bool needs_barrier = false;
4837        struct ext4_sb_info *sbi = EXT4_SB(sb);
4838
4839        if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4840                return 0;
4841
4842        trace_ext4_sync_fs(sb, wait);
4843        flush_workqueue(sbi->rsv_conversion_wq);
4844        /*
4845         * Writeback quota in non-journalled quota case - journalled quota has
4846         * no dirty dquots
4847         */
4848        dquot_writeback_dquots(sb, -1);
4849        /*
4850         * Data writeback is possible w/o journal transaction, so barrier must
4851         * being sent at the end of the function. But we can skip it if
4852         * transaction_commit will do it for us.
4853         */
4854        if (sbi->s_journal) {
4855                target = jbd2_get_latest_transaction(sbi->s_journal);
4856                if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4857                    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4858                        needs_barrier = true;
4859
4860                if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4861                        if (wait)
4862                                ret = jbd2_log_wait_commit(sbi->s_journal,
4863                                                           target);
4864                }
4865        } else if (wait && test_opt(sb, BARRIER))
4866                needs_barrier = true;
4867        if (needs_barrier) {
4868                int err;
4869                err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4870                if (!ret)
4871                        ret = err;
4872        }
4873
4874        return ret;
4875}
4876
4877/*
4878 * LVM calls this function before a (read-only) snapshot is created.  This
4879 * gives us a chance to flush the journal completely and mark the fs clean.
4880 *
4881 * Note that only this function cannot bring a filesystem to be in a clean
4882 * state independently. It relies on upper layer to stop all data & metadata
4883 * modifications.
4884 */
4885static int ext4_freeze(struct super_block *sb)
4886{
4887        int error = 0;
4888        journal_t *journal;
4889
4890        if (sb_rdonly(sb))
4891                return 0;
4892
4893        journal = EXT4_SB(sb)->s_journal;
4894
4895        if (journal) {
4896                /* Now we set up the journal barrier. */
4897                jbd2_journal_lock_updates(journal);
4898
4899                /*
4900                 * Don't clear the needs_recovery flag if we failed to
4901                 * flush the journal.
4902                 */
4903                error = jbd2_journal_flush(journal);
4904                if (error < 0)
4905                        goto out;
4906
4907                /* Journal blocked and flushed, clear needs_recovery flag. */
4908                ext4_clear_feature_journal_needs_recovery(sb);
4909        }
4910
4911        error = ext4_commit_super(sb, 1);
4912out:
4913        if (journal)
4914                /* we rely on upper layer to stop further updates */
4915                jbd2_journal_unlock_updates(journal);
4916        return error;
4917}
4918
4919/*
4920 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4921 * flag here, even though the filesystem is not technically dirty yet.
4922 */
4923static int ext4_unfreeze(struct super_block *sb)
4924{
4925        if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4926                return 0;
4927
4928        if (EXT4_SB(sb)->s_journal) {
4929                /* Reset the needs_recovery flag before the fs is unlocked. */
4930                ext4_set_feature_journal_needs_recovery(sb);
4931        }
4932
4933        ext4_commit_super(sb, 1);
4934        return 0;
4935}
4936
4937/*
4938 * Structure to save mount options for ext4_remount's benefit
4939 */
4940struct ext4_mount_options {
4941        unsigned long s_mount_opt;
4942        unsigned long s_mount_opt2;
4943        kuid_t s_resuid;
4944        kgid_t s_resgid;
4945        unsigned long s_commit_interval;
4946        u32 s_min_batch_time, s_max_batch_time;
4947#ifdef CONFIG_QUOTA
4948        int s_jquota_fmt;
4949        char *s_qf_names[EXT4_MAXQUOTAS];
4950#endif
4951};
4952
4953static int ext4_remount(struct super_block *sb, int *flags, char *data)
4954{
4955        struct ext4_super_block *es;
4956        struct ext4_sb_info *sbi = EXT4_SB(sb);
4957        unsigned long old_sb_flags;
4958        struct ext4_mount_options old_opts;
4959        int enable_quota = 0;
4960        ext4_group_t g;
4961        unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4962        int err = 0;
4963#ifdef CONFIG_QUOTA
4964        int i, j;
4965#endif
4966        char *orig_data = kstrdup(data, GFP_KERNEL);
4967
4968        /* Store the original options */
4969        old_sb_flags = sb->s_flags;
4970        old_opts.s_mount_opt = sbi->s_mount_opt;
4971        old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4972        old_opts.s_resuid = sbi->s_resuid;
4973        old_opts.s_resgid = sbi->s_resgid;
4974        old_opts.s_commit_interval = sbi->s_commit_interval;
4975        old_opts.s_min_batch_time = sbi->s_min_batch_time;
4976        old_opts.s_max_batch_time = sbi->s_max_batch_time;
4977#ifdef CONFIG_QUOTA
4978        old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4979        for (i = 0; i < EXT4_MAXQUOTAS; i++)
4980                if (sbi->s_qf_names[i]) {
4981                        old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4982                                                         GFP_KERNEL);
4983                        if (!old_opts.s_qf_names[i]) {
4984                                for (j = 0; j < i; j++)
4985                                        kfree(old_opts.s_qf_names[j]);
4986                                kfree(orig_data);
4987                                return -ENOMEM;
4988                        }
4989                } else
4990                        old_opts.s_qf_names[i] = NULL;
4991#endif
4992        if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4993                journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4994
4995        if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4996                err = -EINVAL;
4997                goto restore_opts;
4998        }
4999
5000        if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5001            test_opt(sb, JOURNAL_CHECKSUM)) {
5002                ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5003                         "during remount not supported; ignoring");
5004                sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5005        }
5006
5007        if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5008                if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5009                        ext4_msg(sb, KERN_ERR, "can't mount with "
5010                                 "both data=journal and delalloc");
5011                        err = -EINVAL;
5012                        goto restore_opts;
5013                }
5014                if (test_opt(sb, DIOREAD_NOLOCK)) {
5015                        ext4_msg(sb, KERN_ERR, "can't mount with "
5016                                 "both data=journal and dioread_nolock");
5017                        err = -EINVAL;
5018                        goto restore_opts;
5019                }
5020                if (test_opt(sb, DAX)) {
5021                        ext4_msg(sb, KERN_ERR, "can't mount with "
5022                                 "both data=journal and dax");
5023                        err = -EINVAL;
5024                        goto restore_opts;
5025                }
5026        } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5027                if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5028                        ext4_msg(sb, KERN_ERR, "can't mount with "
5029                                "journal_async_commit in data=ordered mode");
5030                        err = -EINVAL;
5031                        goto restore_opts;
5032                }
5033        }
5034
5035        if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5036                ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5037                err = -EINVAL;
5038                goto restore_opts;
5039        }
5040
5041        if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5042                ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5043                        "dax flag with busy inodes while remounting");
5044                sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5045        }
5046
5047        if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5048                ext4_abort(sb, "Abort forced by user");
5049
5050        sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5051                (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5052
5053        es = sbi->s_es;
5054
5055        if (sbi->s_journal) {
5056                ext4_init_journal_params(sb, sbi->s_journal);
5057                set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5058        }
5059
5060        if (*flags & SB_LAZYTIME)
5061                sb->s_flags |= SB_LAZYTIME;
5062
5063        if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5064                if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5065                        err = -EROFS;
5066                        goto restore_opts;
5067                }
5068
5069                if (*flags & SB_RDONLY) {
5070                        err = sync_filesystem(sb);
5071                        if (err < 0)
5072                                goto restore_opts;
5073                        err = dquot_suspend(sb, -1);
5074                        if (err < 0)
5075                                goto restore_opts;
5076
5077                        /*
5078                         * First of all, the unconditional stuff we have to do
5079                         * to disable replay of the journal when we next remount
5080                         */
5081                        sb->s_flags |= SB_RDONLY;
5082
5083                        /*
5084                         * OK, test if we are remounting a valid rw partition
5085                         * readonly, and if so set the rdonly flag and then
5086                         * mark the partition as valid again.
5087                         */
5088                        if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5089                            (sbi->s_mount_state & EXT4_VALID_FS))
5090                                es->s_state = cpu_to_le16(sbi->s_mount_state);
5091
5092                        if (sbi->s_journal)
5093                                ext4_mark_recovery_complete(sb, es);
5094                } else {
5095                        /* Make sure we can mount this feature set readwrite */
5096                        if (ext4_has_feature_readonly(sb) ||
5097                            !ext4_feature_set_ok(sb, 0)) {
5098                                err = -EROFS;
5099                                goto restore_opts;
5100                        }
5101                        /*
5102                         * Make sure the group descriptor checksums
5103                         * are sane.  If they aren't, refuse to remount r/w.
5104                         */
5105                        for (g = 0; g < sbi->s_groups_count; g++) {
5106                                struct ext4_group_desc *gdp =
5107                                        ext4_get_group_desc(sb, g, NULL);
5108
5109                                if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5110                                        ext4_msg(sb, KERN_ERR,
5111               "ext4_remount: Checksum for group %u failed (%u!=%u)",
5112                g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5113                                               le16_to_cpu(gdp->bg_checksum));
5114                                        err = -EFSBADCRC;
5115                                        goto restore_opts;
5116                                }
5117                        }
5118
5119                        /*
5120                         * If we have an unprocessed orphan list hanging
5121                         * around from a previously readonly bdev mount,
5122                         * require a full umount/remount for now.
5123                         */
5124                        if (es->s_last_orphan) {
5125                                ext4_msg(sb, KERN_WARNING, "Couldn't "
5126                                       "remount RDWR because of unprocessed "
5127                                       "orphan inode list.  Please "
5128                                       "umount/remount instead");
5129                                err = -EINVAL;
5130                                goto restore_opts;
5131                        }
5132
5133                        /*
5134                         * Mounting a RDONLY partition read-write, so reread
5135                         * and store the current valid flag.  (It may have
5136                         * been changed by e2fsck since we originally mounted
5137                         * the partition.)
5138                         */
5139                        if (sbi->s_journal)
5140                                ext4_clear_journal_err(sb, es);
5141                        sbi->s_mount_state = le16_to_cpu(es->s_state);
5142                        if (!ext4_setup_super(sb, es, 0))
5143                                sb->s_flags &= ~SB_RDONLY;
5144                        if (ext4_has_feature_mmp(sb))
5145                                if (ext4_multi_mount_protect(sb,
5146                                                le64_to_cpu(es->s_mmp_block))) {
5147                                        err = -EROFS;
5148                                        goto restore_opts;
5149                                }
5150                        enable_quota = 1;
5151                }
5152        }
5153
5154        /*
5155         * Reinitialize lazy itable initialization thread based on
5156         * current settings
5157         */
5158        if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5159                ext4_unregister_li_request(sb);
5160        else {
5161                ext4_group_t first_not_zeroed;
5162                first_not_zeroed = ext4_has_uninit_itable(sb);
5163                ext4_register_li_request(sb, first_not_zeroed);
5164        }
5165
5166        ext4_setup_system_zone(sb);
5167        if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5168                ext4_commit_super(sb, 1);
5169
5170#ifdef CONFIG_QUOTA
5171        /* Release old quota file names */
5172        for (i = 0; i < EXT4_MAXQUOTAS; i++)
5173                kfree(old_opts.s_qf_names[i]);
5174        if (enable_quota) {
5175                if (sb_any_quota_suspended(sb))
5176                        dquot_resume(sb, -1);
5177                else if (ext4_has_feature_quota(sb)) {
5178                        err = ext4_enable_quotas(sb);
5179                        if (err)
5180                                goto restore_opts;
5181                }
5182        }
5183#endif
5184
5185        *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5186        ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5187        kfree(orig_data);
5188        return 0;
5189
5190restore_opts:
5191        sb->s_flags = old_sb_flags;
5192        sbi->s_mount_opt = old_opts.s_mount_opt;
5193        sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5194        sbi->s_resuid = old_opts.s_resuid;
5195        sbi->s_resgid = old_opts.s_resgid;
5196        sbi->s_commit_interval = old_opts.s_commit_interval;
5197        sbi->s_min_batch_time = old_opts.s_min_batch_time;
5198        sbi->s_max_batch_time = old_opts.s_max_batch_time;
5199#ifdef CONFIG_QUOTA
5200        sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5201        for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5202                kfree(sbi->s_qf_names[i]);
5203                sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5204        }
5205#endif
5206        kfree(orig_data);
5207        return err;
5208}
5209
5210#ifdef CONFIG_QUOTA
5211static int ext4_statfs_project(struct super_block *sb,
5212                               kprojid_t projid, struct kstatfs *buf)
5213{
5214        struct kqid qid;
5215        struct dquot *dquot;
5216        u64 limit;
5217        u64 curblock;
5218
5219        qid = make_kqid_projid(projid);
5220        dquot = dqget(sb, qid);
5221        if (IS_ERR(dquot))
5222                return PTR_ERR(dquot);
5223        spin_lock(&dquot->dq_dqb_lock);
5224
5225        limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5226                 dquot->dq_dqb.dqb_bsoftlimit :
5227                 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5228        if (limit && buf->f_blocks > limit) {
5229                curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5230                buf->f_blocks = limit;
5231                buf->f_bfree = buf->f_bavail =
5232                        (buf->f_blocks > curblock) ?
5233                         (buf->f_blocks - curblock) : 0;
5234        }
5235
5236        limit = dquot->dq_dqb.dqb_isoftlimit ?
5237                dquot->dq_dqb.dqb_isoftlimit :
5238                dquot->dq_dqb.dqb_ihardlimit;
5239        if (limit && buf->f_files > limit) {
5240                buf->f_files = limit;
5241                buf->f_ffree =
5242                        (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5243                         (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5244        }
5245
5246        spin_unlock(&dquot->dq_dqb_lock);
5247        dqput(dquot);
5248        return 0;
5249}
5250#endif
5251
5252static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5253{
5254        struct super_block *sb = dentry->d_sb;
5255        struct ext4_sb_info *sbi = EXT4_SB(sb);
5256        struct ext4_super_block *es = sbi->s_es;
5257        ext4_fsblk_t overhead = 0, resv_blocks;
5258        u64 fsid;
5259        s64 bfree;
5260        resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5261
5262        if (!test_opt(sb, MINIX_DF))
5263                overhead = sbi->s_overhead;
5264
5265        buf->f_type = EXT4_SUPER_MAGIC;
5266        buf->f_bsize = sb->s_blocksize;
5267        buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5268        bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5269                percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5270        /* prevent underflow in case that few free space is available */
5271        buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5272        buf->f_bavail = buf->f_bfree -
5273                        (ext4_r_blocks_count(es) + resv_blocks);
5274        if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5275                buf->f_bavail = 0;
5276        buf->f_files = le32_to_cpu(es->s_inodes_count);
5277        buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5278        buf->f_namelen = EXT4_NAME_LEN;
5279        fsid = le64_to_cpup((void *)es->s_uuid) ^
5280               le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5281        buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5282        buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5283
5284#ifdef CONFIG_QUOTA
5285        if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5286            sb_has_quota_limits_enabled(sb, PRJQUOTA))
5287                ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5288#endif
5289        return 0;
5290}
5291
5292
5293#ifdef CONFIG_QUOTA
5294
5295/*
5296 * Helper functions so that transaction is started before we acquire dqio_sem
5297 * to keep correct lock ordering of transaction > dqio_sem
5298 */
5299static inline struct inode *dquot_to_inode(struct dquot *dquot)
5300{
5301        return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5302}
5303
5304static int ext4_write_dquot(struct dquot *dquot)
5305{
5306        int ret, err;
5307        handle_t *handle;
5308        struct inode *inode;
5309
5310        inode = dquot_to_inode(dquot);
5311        handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5312                                    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5313        if (IS_ERR(handle))
5314                return PTR_ERR(handle);
5315        ret = dquot_commit(dquot);
5316        err = ext4_journal_stop(handle);
5317        if (!ret)
5318                ret = err;
5319        return ret;
5320}
5321
5322static int ext4_acquire_dquot(struct dquot *dquot)
5323{
5324        int ret, err;
5325        handle_t *handle;
5326
5327        handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5328                                    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5329        if (IS_ERR(handle))
5330                return PTR_ERR(handle);
5331        ret = dquot_acquire(dquot);
5332        err = ext4_journal_stop(handle);
5333        if (!ret)
5334                ret = err;
5335        return ret;
5336}
5337
5338static int ext4_release_dquot(struct dquot *dquot)
5339{
5340        int ret, err;
5341        handle_t *handle;
5342
5343        handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5344                                    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5345        if (IS_ERR(handle)) {
5346                /* Release dquot anyway to avoid endless cycle in dqput() */
5347                dquot_release(dquot);
5348                return PTR_ERR(handle);
5349        }
5350        ret = dquot_release(dquot);
5351        err = ext4_journal_stop(handle);
5352        if (!ret)
5353                ret = err;
5354        return ret;
5355}
5356
5357static int ext4_mark_dquot_dirty(struct dquot *dquot)
5358{
5359        struct super_block *sb = dquot->dq_sb;
5360        struct ext4_sb_info *sbi = EXT4_SB(sb);
5361
5362        /* Are we journaling quotas? */
5363        if (ext4_has_feature_quota(sb) ||
5364            sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5365                dquot_mark_dquot_dirty(dquot);
5366                return ext4_write_dquot(dquot);
5367        } else {
5368                return dquot_mark_dquot_dirty(dquot);
5369        }
5370}
5371
5372static int ext4_write_info(struct super_block *sb, int type)
5373{
5374        int ret, err;
5375        handle_t *handle;
5376
5377        /* Data block + inode block */
5378        handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5379        if (IS_ERR(handle))
5380                return PTR_ERR(handle);
5381        ret = dquot_commit_info(sb, type);
5382        err = ext4_journal_stop(handle);
5383        if (!ret)
5384                ret = err;
5385        return ret;
5386}
5387
5388/*
5389 * Turn on quotas during mount time - we need to find
5390 * the quota file and such...
5391 */
5392static int ext4_quota_on_mount(struct super_block *sb, int type)
5393{
5394        return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5395                                        EXT4_SB(sb)->s_jquota_fmt, type);
5396}
5397
5398static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5399{
5400        struct ext4_inode_info *ei = EXT4_I(inode);
5401
5402        /* The first argument of lockdep_set_subclass has to be
5403         * *exactly* the same as the argument to init_rwsem() --- in
5404         * this case, in init_once() --- or lockdep gets unhappy
5405         * because the name of the lock is set using the
5406         * stringification of the argument to init_rwsem().
5407         */
5408        (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5409        lockdep_set_subclass(&ei->i_data_sem, subclass);
5410}
5411
5412/*
5413 * Standard function to be called on quota_on
5414 */
5415static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5416                         const struct path *path)
5417{
5418        int err;
5419
5420        if (!test_opt(sb, QUOTA))
5421                return -EINVAL;
5422
5423        /* Quotafile not on the same filesystem? */
5424        if (path->dentry->d_sb != sb)
5425                return -EXDEV;
5426        /* Journaling quota? */
5427        if (EXT4_SB(sb)->s_qf_names[type]) {
5428                /* Quotafile not in fs root? */
5429                if (path->dentry->d_parent != sb->s_root)
5430                        ext4_msg(sb, KERN_WARNING,
5431                                "Quota file not on filesystem root. "
5432                                "Journaled quota will not work");
5433                sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5434        } else {
5435                /*
5436                 * Clear the flag just in case mount options changed since
5437                 * last time.
5438                 */
5439                sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5440        }
5441
5442        /*
5443         * When we journal data on quota file, we have to flush journal to see
5444         * all updates to the file when we bypass pagecache...
5445         */
5446        if (EXT4_SB(sb)->s_journal &&
5447            ext4_should_journal_data(d_inode(path->dentry))) {
5448                /*
5449                 * We don't need to lock updates but journal_flush() could
5450                 * otherwise be livelocked...
5451                 */
5452                jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5453                err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5454                jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5455                if (err)
5456                        return err;
5457        }
5458
5459        lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5460        err = dquot_quota_on(sb, type, format_id, path);
5461        if (err) {
5462                lockdep_set_quota_inode(path->dentry->d_inode,
5463                                             I_DATA_SEM_NORMAL);
5464        } else {
5465                struct inode *inode = d_inode(path->dentry);
5466                handle_t *handle;
5467
5468                /*
5469                 * Set inode flags to prevent userspace from messing with quota
5470                 * files. If this fails, we return success anyway since quotas
5471                 * are already enabled and this is not a hard failure.
5472                 */
5473                inode_lock(inode);
5474                handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5475                if (IS_ERR(handle))
5476                        goto unlock_inode;
5477                EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5478                inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5479                                S_NOATIME | S_IMMUTABLE);
5480                ext4_mark_inode_dirty(handle, inode);
5481                ext4_journal_stop(handle);
5482        unlock_inode:
5483                inode_unlock(inode);
5484        }
5485        return err;
5486}
5487
5488static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5489                             unsigned int flags)
5490{
5491        int err;
5492        struct inode *qf_inode;
5493        unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5494                le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5495                le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5496                le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5497        };
5498
5499        BUG_ON(!ext4_has_feature_quota(sb));
5500
5501        if (!qf_inums[type])
5502                return -EPERM;
5503
5504        qf_inode = ext4_iget(sb, qf_inums[type]);
5505        if (IS_ERR(qf_inode)) {
5506                ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5507                return PTR_ERR(qf_inode);
5508        }
5509
5510        /* Don't account quota for quota files to avoid recursion */
5511        qf_inode->i_flags |= S_NOQUOTA;
5512        lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5513        err = dquot_enable(qf_inode, type, format_id, flags);
5514        iput(qf_inode);
5515        if (err)
5516                lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5517
5518        return err;
5519}
5520
5521/* Enable usage tracking for all quota types. */
5522static int ext4_enable_quotas(struct super_block *sb)
5523{
5524        int type, err = 0;
5525        unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5526                le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5527                le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5528                le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5529        };
5530        bool quota_mopt[EXT4_MAXQUOTAS] = {
5531                test_opt(sb, USRQUOTA),
5532                test_opt(sb, GRPQUOTA),
5533                test_opt(sb, PRJQUOTA),
5534        };
5535
5536        sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5537        for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5538                if (qf_inums[type]) {
5539                        err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5540                                DQUOT_USAGE_ENABLED |
5541                                (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5542                        if (err) {
5543                                for (type--; type >= 0; type--)
5544                                        dquot_quota_off(sb, type);
5545
5546                                ext4_warning(sb,
5547                                        "Failed to enable quota tracking "
5548                                        "(type=%d, err=%d). Please run "
5549                                        "e2fsck to fix.", type, err);
5550                                return err;
5551                        }
5552                }
5553        }
5554        return 0;
5555}
5556
5557static int ext4_quota_off(struct super_block *sb, int type)
5558{
5559        struct inode *inode = sb_dqopt(sb)->files[type];
5560        handle_t *handle;
5561        int err;
5562
5563        /* Force all delayed allocation blocks to be allocated.
5564         * Caller already holds s_umount sem */
5565        if (test_opt(sb, DELALLOC))
5566                sync_filesystem(sb);
5567
5568        if (!inode || !igrab(inode))
5569                goto out;
5570
5571        err = dquot_quota_off(sb, type);
5572        if (err || ext4_has_feature_quota(sb))
5573                goto out_put;
5574
5575        inode_lock(inode);
5576        /*
5577         * Update modification times of quota files when userspace can
5578         * start looking at them. If we fail, we return success anyway since
5579         * this is not a hard failure and quotas are already disabled.
5580         */
5581        handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5582        if (IS_ERR(handle))
5583                goto out_unlock;
5584        EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5585        inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5586        inode->i_mtime = inode->i_ctime = current_time(inode);
5587        ext4_mark_inode_dirty(handle, inode);
5588        ext4_journal_stop(handle);
5589out_unlock:
5590        inode_unlock(inode);
5591out_put:
5592        lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5593        iput(inode);
5594        return err;
5595out:
5596        return dquot_quota_off(sb, type);
5597}
5598
5599/* Read data from quotafile - avoid pagecache and such because we cannot afford
5600 * acquiring the locks... As quota files are never truncated and quota code
5601 * itself serializes the operations (and no one else should touch the files)
5602 * we don't have to be afraid of races */
5603static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5604                               size_t len, loff_t off)
5605{
5606        struct inode *inode = sb_dqopt(sb)->files[type];
5607        ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5608        int offset = off & (sb->s_blocksize - 1);
5609        int tocopy;
5610        size_t toread;
5611        struct buffer_head *bh;
5612        loff_t i_size = i_size_read(inode);
5613
5614        if (off > i_size)
5615                return 0;
5616        if (off+len > i_size)
5617                len = i_size-off;
5618        toread = len;
5619        while (toread > 0) {
5620                tocopy = sb->s_blocksize - offset < toread ?
5621                                sb->s_blocksize - offset : toread;
5622                bh = ext4_bread(NULL, inode, blk, 0);
5623                if (IS_ERR(bh))
5624                        return PTR_ERR(bh);
5625                if (!bh)        /* A hole? */
5626                        memset(data, 0, tocopy);
5627                else
5628                        memcpy(data, bh->b_data+offset, tocopy);
5629                brelse(bh);
5630                offset = 0;
5631                toread -= tocopy;
5632                data += tocopy;
5633                blk++;
5634        }
5635        return len;
5636}
5637
5638/* Write to quotafile (we know the transaction is already started and has
5639 * enough credits) */
5640static ssize_t ext4_quota_write(struct super_block *sb, int type,
5641                                const char *data, size_t len, loff_t off)
5642{
5643        struct inode *inode = sb_dqopt(sb)->files[type];
5644        ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5645        int err, offset = off & (sb->s_blocksize - 1);
5646        int retries = 0;
5647        struct buffer_head *bh;
5648        handle_t *handle = journal_current_handle();
5649
5650        if (EXT4_SB(sb)->s_journal && !handle) {
5651                ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5652                        " cancelled because transaction is not started",
5653                        (unsigned long long)off, (unsigned long long)len);
5654                return -EIO;
5655        }
5656        /*
5657         * Since we account only one data block in transaction credits,
5658         * then it is impossible to cross a block boundary.
5659         */
5660        if (sb->s_blocksize - offset < len) {
5661                ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5662                        " cancelled because not block aligned",
5663                        (unsigned long long)off, (unsigned long long)len);
5664                return -EIO;
5665        }
5666
5667        do {
5668                bh = ext4_bread(handle, inode, blk,
5669                                EXT4_GET_BLOCKS_CREATE |
5670                                EXT4_GET_BLOCKS_METADATA_NOFAIL);
5671        } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5672                 ext4_should_retry_alloc(inode->i_sb, &retries));
5673        if (IS_ERR(bh))
5674                return PTR_ERR(bh);
5675        if (!bh)
5676                goto out;
5677        BUFFER_TRACE(bh, "get write access");
5678        err = ext4_journal_get_write_access(handle, bh);
5679        if (err) {
5680                brelse(bh);
5681                return err;
5682        }
5683        lock_buffer(bh);
5684        memcpy(bh->b_data+offset, data, len);
5685        flush_dcache_page(bh->b_page);
5686        unlock_buffer(bh);
5687        err = ext4_handle_dirty_metadata(handle, NULL, bh);
5688        brelse(bh);
5689out:
5690        if (inode->i_size < off + len) {
5691                i_size_write(inode, off + len);
5692                EXT4_I(inode)->i_disksize = inode->i_size;
5693                ext4_mark_inode_dirty(handle, inode);
5694        }
5695        return len;
5696}
5697
5698static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5699{
5700        const struct quota_format_ops   *ops;
5701
5702        if (!sb_has_quota_loaded(sb, qid->type))
5703                return -ESRCH;
5704        ops = sb_dqopt(sb)->ops[qid->type];
5705        if (!ops || !ops->get_next_id)
5706                return -ENOSYS;
5707        return dquot_get_next_id(sb, qid);
5708}
5709#endif
5710
5711static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5712                       const char *dev_name, void *data)
5713{
5714        return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5715}
5716
5717#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5718static inline void register_as_ext2(void)
5719{
5720        int err = register_filesystem(&ext2_fs_type);
5721        if (err)
5722                printk(KERN_WARNING
5723                       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5724}
5725
5726static inline void unregister_as_ext2(void)
5727{
5728        unregister_filesystem(&ext2_fs_type);
5729}
5730
5731static inline int ext2_feature_set_ok(struct super_block *sb)
5732{
5733        if (ext4_has_unknown_ext2_incompat_features(sb))
5734                return 0;
5735        if (sb_rdonly(sb))
5736                return 1;
5737        if (ext4_has_unknown_ext2_ro_compat_features(sb))
5738                return 0;
5739        return 1;
5740}
5741#else
5742static inline void register_as_ext2(void) { }
5743static inline void unregister_as_ext2(void) { }
5744static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5745#endif
5746
5747static inline void register_as_ext3(void)
5748{
5749        int err = register_filesystem(&ext3_fs_type);
5750        if (err)
5751                printk(KERN_WARNING
5752                       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5753}
5754
5755static inline void unregister_as_ext3(void)
5756{
5757        unregister_filesystem(&ext3_fs_type);
5758}
5759
5760static inline int ext3_feature_set_ok(struct super_block *sb)
5761{
5762        if (ext4_has_unknown_ext3_incompat_features(sb))
5763                return 0;
5764        if (!ext4_has_feature_journal(sb))
5765                return 0;
5766        if (sb_rdonly(sb))
5767                return 1;
5768        if (ext4_has_unknown_ext3_ro_compat_features(sb))
5769                return 0;
5770        return 1;
5771}
5772
5773static struct file_system_type ext4_fs_type = {
5774        .owner          = THIS_MODULE,
5775        .name           = "ext4",
5776        .mount          = ext4_mount,
5777        .kill_sb        = kill_block_super,
5778        .fs_flags       = FS_REQUIRES_DEV,
5779};
5780MODULE_ALIAS_FS("ext4");
5781
5782/* Shared across all ext4 file systems */
5783wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5784
5785static int __init ext4_init_fs(void)
5786{
5787        int i, err;
5788
5789        ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5790        ext4_li_info = NULL;
5791        mutex_init(&ext4_li_mtx);
5792
5793        /* Build-time check for flags consistency */
5794        ext4_check_flag_values();
5795
5796        for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5797                init_waitqueue_head(&ext4__ioend_wq[i]);
5798
5799        err = ext4_init_es();
5800        if (err)
5801                return err;
5802
5803        err = ext4_init_pageio();
5804        if (err)
5805                goto out5;
5806
5807        err = ext4_init_system_zone();
5808        if (err)
5809                goto out4;
5810
5811        err = ext4_init_sysfs();
5812        if (err)
5813                goto out3;
5814
5815        err = ext4_init_mballoc();
5816        if (err)
5817                goto out2;
5818        err = init_inodecache();
5819        if (err)
5820                goto out1;
5821        register_as_ext3();
5822        register_as_ext2();
5823        err = register_filesystem(&ext4_fs_type);
5824        if (err)
5825                goto out;
5826
5827        return 0;
5828out:
5829        unregister_as_ext2();
5830        unregister_as_ext3();
5831        destroy_inodecache();
5832out1:
5833        ext4_exit_mballoc();
5834out2:
5835        ext4_exit_sysfs();
5836out3:
5837        ext4_exit_system_zone();
5838out4:
5839        ext4_exit_pageio();
5840out5:
5841        ext4_exit_es();
5842
5843        return err;
5844}
5845
5846static void __exit ext4_exit_fs(void)
5847{
5848        ext4_destroy_lazyinit_thread();
5849        unregister_as_ext2();
5850        unregister_as_ext3();
5851        unregister_filesystem(&ext4_fs_type);
5852        destroy_inodecache();
5853        ext4_exit_mballoc();
5854        ext4_exit_sysfs();
5855        ext4_exit_system_zone();
5856        ext4_exit_pageio();
5857        ext4_exit_es();
5858}
5859
5860MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5861MODULE_DESCRIPTION("Fourth Extended Filesystem");
5862MODULE_LICENSE("GPL");
5863module_init(ext4_init_fs)
5864module_exit(ext4_exit_fs)
5865