linux/fs/jbd2/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd2.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/math64.h>
  40#include <linux/hash.h>
  41#include <linux/log2.h>
  42#include <linux/vmalloc.h>
  43#include <linux/backing-dev.h>
  44#include <linux/bitops.h>
  45#include <linux/ratelimit.h>
  46#include <linux/sched/mm.h>
  47
  48#define CREATE_TRACE_POINTS
  49#include <trace/events/jbd2.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/page.h>
  53
  54#ifdef CONFIG_JBD2_DEBUG
  55ushort jbd2_journal_enable_debug __read_mostly;
  56EXPORT_SYMBOL(jbd2_journal_enable_debug);
  57
  58module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  59MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  60#endif
  61
  62EXPORT_SYMBOL(jbd2_journal_extend);
  63EXPORT_SYMBOL(jbd2_journal_stop);
  64EXPORT_SYMBOL(jbd2_journal_lock_updates);
  65EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  66EXPORT_SYMBOL(jbd2_journal_get_write_access);
  67EXPORT_SYMBOL(jbd2_journal_get_create_access);
  68EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  69EXPORT_SYMBOL(jbd2_journal_set_triggers);
  70EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  71EXPORT_SYMBOL(jbd2_journal_forget);
  72#if 0
  73EXPORT_SYMBOL(journal_sync_buffer);
  74#endif
  75EXPORT_SYMBOL(jbd2_journal_flush);
  76EXPORT_SYMBOL(jbd2_journal_revoke);
  77
  78EXPORT_SYMBOL(jbd2_journal_init_dev);
  79EXPORT_SYMBOL(jbd2_journal_init_inode);
  80EXPORT_SYMBOL(jbd2_journal_check_used_features);
  81EXPORT_SYMBOL(jbd2_journal_check_available_features);
  82EXPORT_SYMBOL(jbd2_journal_set_features);
  83EXPORT_SYMBOL(jbd2_journal_load);
  84EXPORT_SYMBOL(jbd2_journal_destroy);
  85EXPORT_SYMBOL(jbd2_journal_abort);
  86EXPORT_SYMBOL(jbd2_journal_errno);
  87EXPORT_SYMBOL(jbd2_journal_ack_err);
  88EXPORT_SYMBOL(jbd2_journal_clear_err);
  89EXPORT_SYMBOL(jbd2_log_wait_commit);
  90EXPORT_SYMBOL(jbd2_log_start_commit);
  91EXPORT_SYMBOL(jbd2_journal_start_commit);
  92EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  93EXPORT_SYMBOL(jbd2_journal_wipe);
  94EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  95EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  96EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  97EXPORT_SYMBOL(jbd2_journal_force_commit);
  98EXPORT_SYMBOL(jbd2_journal_inode_add_write);
  99EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
 100EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
 101EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
 102EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
 103EXPORT_SYMBOL(jbd2_inode_cache);
 104
 105static void __journal_abort_soft (journal_t *journal, int errno);
 106static int jbd2_journal_create_slab(size_t slab_size);
 107
 108#ifdef CONFIG_JBD2_DEBUG
 109void __jbd2_debug(int level, const char *file, const char *func,
 110                  unsigned int line, const char *fmt, ...)
 111{
 112        struct va_format vaf;
 113        va_list args;
 114
 115        if (level > jbd2_journal_enable_debug)
 116                return;
 117        va_start(args, fmt);
 118        vaf.fmt = fmt;
 119        vaf.va = &args;
 120        printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
 121        va_end(args);
 122}
 123EXPORT_SYMBOL(__jbd2_debug);
 124#endif
 125
 126/* Checksumming functions */
 127static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 128{
 129        if (!jbd2_journal_has_csum_v2or3_feature(j))
 130                return 1;
 131
 132        return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 133}
 134
 135static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 136{
 137        __u32 csum;
 138        __be32 old_csum;
 139
 140        old_csum = sb->s_checksum;
 141        sb->s_checksum = 0;
 142        csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 143        sb->s_checksum = old_csum;
 144
 145        return cpu_to_be32(csum);
 146}
 147
 148static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
 149{
 150        if (!jbd2_journal_has_csum_v2or3(j))
 151                return 1;
 152
 153        return sb->s_checksum == jbd2_superblock_csum(j, sb);
 154}
 155
 156static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
 157{
 158        if (!jbd2_journal_has_csum_v2or3(j))
 159                return;
 160
 161        sb->s_checksum = jbd2_superblock_csum(j, sb);
 162}
 163
 164/*
 165 * Helper function used to manage commit timeouts
 166 */
 167
 168static void commit_timeout(struct timer_list *t)
 169{
 170        journal_t *journal = from_timer(journal, t, j_commit_timer);
 171
 172        wake_up_process(journal->j_task);
 173}
 174
 175/*
 176 * kjournald2: The main thread function used to manage a logging device
 177 * journal.
 178 *
 179 * This kernel thread is responsible for two things:
 180 *
 181 * 1) COMMIT:  Every so often we need to commit the current state of the
 182 *    filesystem to disk.  The journal thread is responsible for writing
 183 *    all of the metadata buffers to disk.
 184 *
 185 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 186 *    of the data in that part of the log has been rewritten elsewhere on
 187 *    the disk.  Flushing these old buffers to reclaim space in the log is
 188 *    known as checkpointing, and this thread is responsible for that job.
 189 */
 190
 191static int kjournald2(void *arg)
 192{
 193        journal_t *journal = arg;
 194        transaction_t *transaction;
 195
 196        /*
 197         * Set up an interval timer which can be used to trigger a commit wakeup
 198         * after the commit interval expires
 199         */
 200        timer_setup(&journal->j_commit_timer, commit_timeout, 0);
 201
 202        set_freezable();
 203
 204        /* Record that the journal thread is running */
 205        journal->j_task = current;
 206        wake_up(&journal->j_wait_done_commit);
 207
 208        /*
 209         * Make sure that no allocations from this kernel thread will ever
 210         * recurse to the fs layer because we are responsible for the
 211         * transaction commit and any fs involvement might get stuck waiting for
 212         * the trasn. commit.
 213         */
 214        memalloc_nofs_save();
 215
 216        /*
 217         * And now, wait forever for commit wakeup events.
 218         */
 219        write_lock(&journal->j_state_lock);
 220
 221loop:
 222        if (journal->j_flags & JBD2_UNMOUNT)
 223                goto end_loop;
 224
 225        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 226                journal->j_commit_sequence, journal->j_commit_request);
 227
 228        if (journal->j_commit_sequence != journal->j_commit_request) {
 229                jbd_debug(1, "OK, requests differ\n");
 230                write_unlock(&journal->j_state_lock);
 231                del_timer_sync(&journal->j_commit_timer);
 232                jbd2_journal_commit_transaction(journal);
 233                write_lock(&journal->j_state_lock);
 234                goto loop;
 235        }
 236
 237        wake_up(&journal->j_wait_done_commit);
 238        if (freezing(current)) {
 239                /*
 240                 * The simpler the better. Flushing journal isn't a
 241                 * good idea, because that depends on threads that may
 242                 * be already stopped.
 243                 */
 244                jbd_debug(1, "Now suspending kjournald2\n");
 245                write_unlock(&journal->j_state_lock);
 246                try_to_freeze();
 247                write_lock(&journal->j_state_lock);
 248        } else {
 249                /*
 250                 * We assume on resume that commits are already there,
 251                 * so we don't sleep
 252                 */
 253                DEFINE_WAIT(wait);
 254                int should_sleep = 1;
 255
 256                prepare_to_wait(&journal->j_wait_commit, &wait,
 257                                TASK_INTERRUPTIBLE);
 258                if (journal->j_commit_sequence != journal->j_commit_request)
 259                        should_sleep = 0;
 260                transaction = journal->j_running_transaction;
 261                if (transaction && time_after_eq(jiffies,
 262                                                transaction->t_expires))
 263                        should_sleep = 0;
 264                if (journal->j_flags & JBD2_UNMOUNT)
 265                        should_sleep = 0;
 266                if (should_sleep) {
 267                        write_unlock(&journal->j_state_lock);
 268                        schedule();
 269                        write_lock(&journal->j_state_lock);
 270                }
 271                finish_wait(&journal->j_wait_commit, &wait);
 272        }
 273
 274        jbd_debug(1, "kjournald2 wakes\n");
 275
 276        /*
 277         * Were we woken up by a commit wakeup event?
 278         */
 279        transaction = journal->j_running_transaction;
 280        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 281                journal->j_commit_request = transaction->t_tid;
 282                jbd_debug(1, "woke because of timeout\n");
 283        }
 284        goto loop;
 285
 286end_loop:
 287        del_timer_sync(&journal->j_commit_timer);
 288        journal->j_task = NULL;
 289        wake_up(&journal->j_wait_done_commit);
 290        jbd_debug(1, "Journal thread exiting.\n");
 291        write_unlock(&journal->j_state_lock);
 292        return 0;
 293}
 294
 295static int jbd2_journal_start_thread(journal_t *journal)
 296{
 297        struct task_struct *t;
 298
 299        t = kthread_run(kjournald2, journal, "jbd2/%s",
 300                        journal->j_devname);
 301        if (IS_ERR(t))
 302                return PTR_ERR(t);
 303
 304        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 305        return 0;
 306}
 307
 308static void journal_kill_thread(journal_t *journal)
 309{
 310        write_lock(&journal->j_state_lock);
 311        journal->j_flags |= JBD2_UNMOUNT;
 312
 313        while (journal->j_task) {
 314                write_unlock(&journal->j_state_lock);
 315                wake_up(&journal->j_wait_commit);
 316                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 317                write_lock(&journal->j_state_lock);
 318        }
 319        write_unlock(&journal->j_state_lock);
 320}
 321
 322/*
 323 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 324 *
 325 * Writes a metadata buffer to a given disk block.  The actual IO is not
 326 * performed but a new buffer_head is constructed which labels the data
 327 * to be written with the correct destination disk block.
 328 *
 329 * Any magic-number escaping which needs to be done will cause a
 330 * copy-out here.  If the buffer happens to start with the
 331 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 332 * magic number is only written to the log for descripter blocks.  In
 333 * this case, we copy the data and replace the first word with 0, and we
 334 * return a result code which indicates that this buffer needs to be
 335 * marked as an escaped buffer in the corresponding log descriptor
 336 * block.  The missing word can then be restored when the block is read
 337 * during recovery.
 338 *
 339 * If the source buffer has already been modified by a new transaction
 340 * since we took the last commit snapshot, we use the frozen copy of
 341 * that data for IO. If we end up using the existing buffer_head's data
 342 * for the write, then we have to make sure nobody modifies it while the
 343 * IO is in progress. do_get_write_access() handles this.
 344 *
 345 * The function returns a pointer to the buffer_head to be used for IO.
 346 * 
 347 *
 348 * Return value:
 349 *  <0: Error
 350 * >=0: Finished OK
 351 *
 352 * On success:
 353 * Bit 0 set == escape performed on the data
 354 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 355 */
 356
 357int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 358                                  struct journal_head  *jh_in,
 359                                  struct buffer_head **bh_out,
 360                                  sector_t blocknr)
 361{
 362        int need_copy_out = 0;
 363        int done_copy_out = 0;
 364        int do_escape = 0;
 365        char *mapped_data;
 366        struct buffer_head *new_bh;
 367        struct page *new_page;
 368        unsigned int new_offset;
 369        struct buffer_head *bh_in = jh2bh(jh_in);
 370        journal_t *journal = transaction->t_journal;
 371
 372        /*
 373         * The buffer really shouldn't be locked: only the current committing
 374         * transaction is allowed to write it, so nobody else is allowed
 375         * to do any IO.
 376         *
 377         * akpm: except if we're journalling data, and write() output is
 378         * also part of a shared mapping, and another thread has
 379         * decided to launch a writepage() against this buffer.
 380         */
 381        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 382
 383        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 384
 385        /* keep subsequent assertions sane */
 386        atomic_set(&new_bh->b_count, 1);
 387
 388        jbd_lock_bh_state(bh_in);
 389repeat:
 390        /*
 391         * If a new transaction has already done a buffer copy-out, then
 392         * we use that version of the data for the commit.
 393         */
 394        if (jh_in->b_frozen_data) {
 395                done_copy_out = 1;
 396                new_page = virt_to_page(jh_in->b_frozen_data);
 397                new_offset = offset_in_page(jh_in->b_frozen_data);
 398        } else {
 399                new_page = jh2bh(jh_in)->b_page;
 400                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 401        }
 402
 403        mapped_data = kmap_atomic(new_page);
 404        /*
 405         * Fire data frozen trigger if data already wasn't frozen.  Do this
 406         * before checking for escaping, as the trigger may modify the magic
 407         * offset.  If a copy-out happens afterwards, it will have the correct
 408         * data in the buffer.
 409         */
 410        if (!done_copy_out)
 411                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 412                                           jh_in->b_triggers);
 413
 414        /*
 415         * Check for escaping
 416         */
 417        if (*((__be32 *)(mapped_data + new_offset)) ==
 418                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 419                need_copy_out = 1;
 420                do_escape = 1;
 421        }
 422        kunmap_atomic(mapped_data);
 423
 424        /*
 425         * Do we need to do a data copy?
 426         */
 427        if (need_copy_out && !done_copy_out) {
 428                char *tmp;
 429
 430                jbd_unlock_bh_state(bh_in);
 431                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 432                if (!tmp) {
 433                        brelse(new_bh);
 434                        return -ENOMEM;
 435                }
 436                jbd_lock_bh_state(bh_in);
 437                if (jh_in->b_frozen_data) {
 438                        jbd2_free(tmp, bh_in->b_size);
 439                        goto repeat;
 440                }
 441
 442                jh_in->b_frozen_data = tmp;
 443                mapped_data = kmap_atomic(new_page);
 444                memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 445                kunmap_atomic(mapped_data);
 446
 447                new_page = virt_to_page(tmp);
 448                new_offset = offset_in_page(tmp);
 449                done_copy_out = 1;
 450
 451                /*
 452                 * This isn't strictly necessary, as we're using frozen
 453                 * data for the escaping, but it keeps consistency with
 454                 * b_frozen_data usage.
 455                 */
 456                jh_in->b_frozen_triggers = jh_in->b_triggers;
 457        }
 458
 459        /*
 460         * Did we need to do an escaping?  Now we've done all the
 461         * copying, we can finally do so.
 462         */
 463        if (do_escape) {
 464                mapped_data = kmap_atomic(new_page);
 465                *((unsigned int *)(mapped_data + new_offset)) = 0;
 466                kunmap_atomic(mapped_data);
 467        }
 468
 469        set_bh_page(new_bh, new_page, new_offset);
 470        new_bh->b_size = bh_in->b_size;
 471        new_bh->b_bdev = journal->j_dev;
 472        new_bh->b_blocknr = blocknr;
 473        new_bh->b_private = bh_in;
 474        set_buffer_mapped(new_bh);
 475        set_buffer_dirty(new_bh);
 476
 477        *bh_out = new_bh;
 478
 479        /*
 480         * The to-be-written buffer needs to get moved to the io queue,
 481         * and the original buffer whose contents we are shadowing or
 482         * copying is moved to the transaction's shadow queue.
 483         */
 484        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 485        spin_lock(&journal->j_list_lock);
 486        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 487        spin_unlock(&journal->j_list_lock);
 488        set_buffer_shadow(bh_in);
 489        jbd_unlock_bh_state(bh_in);
 490
 491        return do_escape | (done_copy_out << 1);
 492}
 493
 494/*
 495 * Allocation code for the journal file.  Manage the space left in the
 496 * journal, so that we can begin checkpointing when appropriate.
 497 */
 498
 499/*
 500 * Called with j_state_lock locked for writing.
 501 * Returns true if a transaction commit was started.
 502 */
 503int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 504{
 505        /* Return if the txn has already requested to be committed */
 506        if (journal->j_commit_request == target)
 507                return 0;
 508
 509        /*
 510         * The only transaction we can possibly wait upon is the
 511         * currently running transaction (if it exists).  Otherwise,
 512         * the target tid must be an old one.
 513         */
 514        if (journal->j_running_transaction &&
 515            journal->j_running_transaction->t_tid == target) {
 516                /*
 517                 * We want a new commit: OK, mark the request and wakeup the
 518                 * commit thread.  We do _not_ do the commit ourselves.
 519                 */
 520
 521                journal->j_commit_request = target;
 522                jbd_debug(1, "JBD2: requesting commit %d/%d\n",
 523                          journal->j_commit_request,
 524                          journal->j_commit_sequence);
 525                journal->j_running_transaction->t_requested = jiffies;
 526                wake_up(&journal->j_wait_commit);
 527                return 1;
 528        } else if (!tid_geq(journal->j_commit_request, target))
 529                /* This should never happen, but if it does, preserve
 530                   the evidence before kjournald goes into a loop and
 531                   increments j_commit_sequence beyond all recognition. */
 532                WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 533                          journal->j_commit_request,
 534                          journal->j_commit_sequence,
 535                          target, journal->j_running_transaction ? 
 536                          journal->j_running_transaction->t_tid : 0);
 537        return 0;
 538}
 539
 540int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 541{
 542        int ret;
 543
 544        write_lock(&journal->j_state_lock);
 545        ret = __jbd2_log_start_commit(journal, tid);
 546        write_unlock(&journal->j_state_lock);
 547        return ret;
 548}
 549
 550/*
 551 * Force and wait any uncommitted transactions.  We can only force the running
 552 * transaction if we don't have an active handle, otherwise, we will deadlock.
 553 * Returns: <0 in case of error,
 554 *           0 if nothing to commit,
 555 *           1 if transaction was successfully committed.
 556 */
 557static int __jbd2_journal_force_commit(journal_t *journal)
 558{
 559        transaction_t *transaction = NULL;
 560        tid_t tid;
 561        int need_to_start = 0, ret = 0;
 562
 563        read_lock(&journal->j_state_lock);
 564        if (journal->j_running_transaction && !current->journal_info) {
 565                transaction = journal->j_running_transaction;
 566                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 567                        need_to_start = 1;
 568        } else if (journal->j_committing_transaction)
 569                transaction = journal->j_committing_transaction;
 570
 571        if (!transaction) {
 572                /* Nothing to commit */
 573                read_unlock(&journal->j_state_lock);
 574                return 0;
 575        }
 576        tid = transaction->t_tid;
 577        read_unlock(&journal->j_state_lock);
 578        if (need_to_start)
 579                jbd2_log_start_commit(journal, tid);
 580        ret = jbd2_log_wait_commit(journal, tid);
 581        if (!ret)
 582                ret = 1;
 583
 584        return ret;
 585}
 586
 587/**
 588 * Force and wait upon a commit if the calling process is not within
 589 * transaction.  This is used for forcing out undo-protected data which contains
 590 * bitmaps, when the fs is running out of space.
 591 *
 592 * @journal: journal to force
 593 * Returns true if progress was made.
 594 */
 595int jbd2_journal_force_commit_nested(journal_t *journal)
 596{
 597        int ret;
 598
 599        ret = __jbd2_journal_force_commit(journal);
 600        return ret > 0;
 601}
 602
 603/**
 604 * int journal_force_commit() - force any uncommitted transactions
 605 * @journal: journal to force
 606 *
 607 * Caller want unconditional commit. We can only force the running transaction
 608 * if we don't have an active handle, otherwise, we will deadlock.
 609 */
 610int jbd2_journal_force_commit(journal_t *journal)
 611{
 612        int ret;
 613
 614        J_ASSERT(!current->journal_info);
 615        ret = __jbd2_journal_force_commit(journal);
 616        if (ret > 0)
 617                ret = 0;
 618        return ret;
 619}
 620
 621/*
 622 * Start a commit of the current running transaction (if any).  Returns true
 623 * if a transaction is going to be committed (or is currently already
 624 * committing), and fills its tid in at *ptid
 625 */
 626int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 627{
 628        int ret = 0;
 629
 630        write_lock(&journal->j_state_lock);
 631        if (journal->j_running_transaction) {
 632                tid_t tid = journal->j_running_transaction->t_tid;
 633
 634                __jbd2_log_start_commit(journal, tid);
 635                /* There's a running transaction and we've just made sure
 636                 * it's commit has been scheduled. */
 637                if (ptid)
 638                        *ptid = tid;
 639                ret = 1;
 640        } else if (journal->j_committing_transaction) {
 641                /*
 642                 * If commit has been started, then we have to wait for
 643                 * completion of that transaction.
 644                 */
 645                if (ptid)
 646                        *ptid = journal->j_committing_transaction->t_tid;
 647                ret = 1;
 648        }
 649        write_unlock(&journal->j_state_lock);
 650        return ret;
 651}
 652
 653/*
 654 * Return 1 if a given transaction has not yet sent barrier request
 655 * connected with a transaction commit. If 0 is returned, transaction
 656 * may or may not have sent the barrier. Used to avoid sending barrier
 657 * twice in common cases.
 658 */
 659int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 660{
 661        int ret = 0;
 662        transaction_t *commit_trans;
 663
 664        if (!(journal->j_flags & JBD2_BARRIER))
 665                return 0;
 666        read_lock(&journal->j_state_lock);
 667        /* Transaction already committed? */
 668        if (tid_geq(journal->j_commit_sequence, tid))
 669                goto out;
 670        commit_trans = journal->j_committing_transaction;
 671        if (!commit_trans || commit_trans->t_tid != tid) {
 672                ret = 1;
 673                goto out;
 674        }
 675        /*
 676         * Transaction is being committed and we already proceeded to
 677         * submitting a flush to fs partition?
 678         */
 679        if (journal->j_fs_dev != journal->j_dev) {
 680                if (!commit_trans->t_need_data_flush ||
 681                    commit_trans->t_state >= T_COMMIT_DFLUSH)
 682                        goto out;
 683        } else {
 684                if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 685                        goto out;
 686        }
 687        ret = 1;
 688out:
 689        read_unlock(&journal->j_state_lock);
 690        return ret;
 691}
 692EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 693
 694/*
 695 * Wait for a specified commit to complete.
 696 * The caller may not hold the journal lock.
 697 */
 698int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 699{
 700        int err = 0;
 701
 702        read_lock(&journal->j_state_lock);
 703#ifdef CONFIG_PROVE_LOCKING
 704        /*
 705         * Some callers make sure transaction is already committing and in that
 706         * case we cannot block on open handles anymore. So don't warn in that
 707         * case.
 708         */
 709        if (tid_gt(tid, journal->j_commit_sequence) &&
 710            (!journal->j_committing_transaction ||
 711             journal->j_committing_transaction->t_tid != tid)) {
 712                read_unlock(&journal->j_state_lock);
 713                jbd2_might_wait_for_commit(journal);
 714                read_lock(&journal->j_state_lock);
 715        }
 716#endif
 717#ifdef CONFIG_JBD2_DEBUG
 718        if (!tid_geq(journal->j_commit_request, tid)) {
 719                printk(KERN_ERR
 720                       "%s: error: j_commit_request=%d, tid=%d\n",
 721                       __func__, journal->j_commit_request, tid);
 722        }
 723#endif
 724        while (tid_gt(tid, journal->j_commit_sequence)) {
 725                jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
 726                                  tid, journal->j_commit_sequence);
 727                read_unlock(&journal->j_state_lock);
 728                wake_up(&journal->j_wait_commit);
 729                wait_event(journal->j_wait_done_commit,
 730                                !tid_gt(tid, journal->j_commit_sequence));
 731                read_lock(&journal->j_state_lock);
 732        }
 733        read_unlock(&journal->j_state_lock);
 734
 735        if (unlikely(is_journal_aborted(journal)))
 736                err = -EIO;
 737        return err;
 738}
 739
 740/* Return 1 when transaction with given tid has already committed. */
 741int jbd2_transaction_committed(journal_t *journal, tid_t tid)
 742{
 743        int ret = 1;
 744
 745        read_lock(&journal->j_state_lock);
 746        if (journal->j_running_transaction &&
 747            journal->j_running_transaction->t_tid == tid)
 748                ret = 0;
 749        if (journal->j_committing_transaction &&
 750            journal->j_committing_transaction->t_tid == tid)
 751                ret = 0;
 752        read_unlock(&journal->j_state_lock);
 753        return ret;
 754}
 755EXPORT_SYMBOL(jbd2_transaction_committed);
 756
 757/*
 758 * When this function returns the transaction corresponding to tid
 759 * will be completed.  If the transaction has currently running, start
 760 * committing that transaction before waiting for it to complete.  If
 761 * the transaction id is stale, it is by definition already completed,
 762 * so just return SUCCESS.
 763 */
 764int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 765{
 766        int     need_to_wait = 1;
 767
 768        read_lock(&journal->j_state_lock);
 769        if (journal->j_running_transaction &&
 770            journal->j_running_transaction->t_tid == tid) {
 771                if (journal->j_commit_request != tid) {
 772                        /* transaction not yet started, so request it */
 773                        read_unlock(&journal->j_state_lock);
 774                        jbd2_log_start_commit(journal, tid);
 775                        goto wait_commit;
 776                }
 777        } else if (!(journal->j_committing_transaction &&
 778                     journal->j_committing_transaction->t_tid == tid))
 779                need_to_wait = 0;
 780        read_unlock(&journal->j_state_lock);
 781        if (!need_to_wait)
 782                return 0;
 783wait_commit:
 784        return jbd2_log_wait_commit(journal, tid);
 785}
 786EXPORT_SYMBOL(jbd2_complete_transaction);
 787
 788/*
 789 * Log buffer allocation routines:
 790 */
 791
 792int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 793{
 794        unsigned long blocknr;
 795
 796        write_lock(&journal->j_state_lock);
 797        J_ASSERT(journal->j_free > 1);
 798
 799        blocknr = journal->j_head;
 800        journal->j_head++;
 801        journal->j_free--;
 802        if (journal->j_head == journal->j_last)
 803                journal->j_head = journal->j_first;
 804        write_unlock(&journal->j_state_lock);
 805        return jbd2_journal_bmap(journal, blocknr, retp);
 806}
 807
 808/*
 809 * Conversion of logical to physical block numbers for the journal
 810 *
 811 * On external journals the journal blocks are identity-mapped, so
 812 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 813 * ready.
 814 */
 815int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 816                 unsigned long long *retp)
 817{
 818        int err = 0;
 819        unsigned long long ret;
 820
 821        if (journal->j_inode) {
 822                ret = bmap(journal->j_inode, blocknr);
 823                if (ret)
 824                        *retp = ret;
 825                else {
 826                        printk(KERN_ALERT "%s: journal block not found "
 827                                        "at offset %lu on %s\n",
 828                               __func__, blocknr, journal->j_devname);
 829                        err = -EIO;
 830                        __journal_abort_soft(journal, err);
 831                }
 832        } else {
 833                *retp = blocknr; /* +journal->j_blk_offset */
 834        }
 835        return err;
 836}
 837
 838/*
 839 * We play buffer_head aliasing tricks to write data/metadata blocks to
 840 * the journal without copying their contents, but for journal
 841 * descriptor blocks we do need to generate bona fide buffers.
 842 *
 843 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 844 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 845 * But we don't bother doing that, so there will be coherency problems with
 846 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 847 */
 848struct buffer_head *
 849jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 850{
 851        journal_t *journal = transaction->t_journal;
 852        struct buffer_head *bh;
 853        unsigned long long blocknr;
 854        journal_header_t *header;
 855        int err;
 856
 857        err = jbd2_journal_next_log_block(journal, &blocknr);
 858
 859        if (err)
 860                return NULL;
 861
 862        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 863        if (!bh)
 864                return NULL;
 865        lock_buffer(bh);
 866        memset(bh->b_data, 0, journal->j_blocksize);
 867        header = (journal_header_t *)bh->b_data;
 868        header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 869        header->h_blocktype = cpu_to_be32(type);
 870        header->h_sequence = cpu_to_be32(transaction->t_tid);
 871        set_buffer_uptodate(bh);
 872        unlock_buffer(bh);
 873        BUFFER_TRACE(bh, "return this buffer");
 874        return bh;
 875}
 876
 877void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 878{
 879        struct jbd2_journal_block_tail *tail;
 880        __u32 csum;
 881
 882        if (!jbd2_journal_has_csum_v2or3(j))
 883                return;
 884
 885        tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 886                        sizeof(struct jbd2_journal_block_tail));
 887        tail->t_checksum = 0;
 888        csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 889        tail->t_checksum = cpu_to_be32(csum);
 890}
 891
 892/*
 893 * Return tid of the oldest transaction in the journal and block in the journal
 894 * where the transaction starts.
 895 *
 896 * If the journal is now empty, return which will be the next transaction ID
 897 * we will write and where will that transaction start.
 898 *
 899 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 900 * it can.
 901 */
 902int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 903                              unsigned long *block)
 904{
 905        transaction_t *transaction;
 906        int ret;
 907
 908        read_lock(&journal->j_state_lock);
 909        spin_lock(&journal->j_list_lock);
 910        transaction = journal->j_checkpoint_transactions;
 911        if (transaction) {
 912                *tid = transaction->t_tid;
 913                *block = transaction->t_log_start;
 914        } else if ((transaction = journal->j_committing_transaction) != NULL) {
 915                *tid = transaction->t_tid;
 916                *block = transaction->t_log_start;
 917        } else if ((transaction = journal->j_running_transaction) != NULL) {
 918                *tid = transaction->t_tid;
 919                *block = journal->j_head;
 920        } else {
 921                *tid = journal->j_transaction_sequence;
 922                *block = journal->j_head;
 923        }
 924        ret = tid_gt(*tid, journal->j_tail_sequence);
 925        spin_unlock(&journal->j_list_lock);
 926        read_unlock(&journal->j_state_lock);
 927
 928        return ret;
 929}
 930
 931/*
 932 * Update information in journal structure and in on disk journal superblock
 933 * about log tail. This function does not check whether information passed in
 934 * really pushes log tail further. It's responsibility of the caller to make
 935 * sure provided log tail information is valid (e.g. by holding
 936 * j_checkpoint_mutex all the time between computing log tail and calling this
 937 * function as is the case with jbd2_cleanup_journal_tail()).
 938 *
 939 * Requires j_checkpoint_mutex
 940 */
 941int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 942{
 943        unsigned long freed;
 944        int ret;
 945
 946        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 947
 948        /*
 949         * We cannot afford for write to remain in drive's caches since as
 950         * soon as we update j_tail, next transaction can start reusing journal
 951         * space and if we lose sb update during power failure we'd replay
 952         * old transaction with possibly newly overwritten data.
 953         */
 954        ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
 955                                              REQ_SYNC | REQ_FUA);
 956        if (ret)
 957                goto out;
 958
 959        write_lock(&journal->j_state_lock);
 960        freed = block - journal->j_tail;
 961        if (block < journal->j_tail)
 962                freed += journal->j_last - journal->j_first;
 963
 964        trace_jbd2_update_log_tail(journal, tid, block, freed);
 965        jbd_debug(1,
 966                  "Cleaning journal tail from %d to %d (offset %lu), "
 967                  "freeing %lu\n",
 968                  journal->j_tail_sequence, tid, block, freed);
 969
 970        journal->j_free += freed;
 971        journal->j_tail_sequence = tid;
 972        journal->j_tail = block;
 973        write_unlock(&journal->j_state_lock);
 974
 975out:
 976        return ret;
 977}
 978
 979/*
 980 * This is a variaon of __jbd2_update_log_tail which checks for validity of
 981 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 982 * with other threads updating log tail.
 983 */
 984void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 985{
 986        mutex_lock_io(&journal->j_checkpoint_mutex);
 987        if (tid_gt(tid, journal->j_tail_sequence))
 988                __jbd2_update_log_tail(journal, tid, block);
 989        mutex_unlock(&journal->j_checkpoint_mutex);
 990}
 991
 992struct jbd2_stats_proc_session {
 993        journal_t *journal;
 994        struct transaction_stats_s *stats;
 995        int start;
 996        int max;
 997};
 998
 999static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1000{
1001        return *pos ? NULL : SEQ_START_TOKEN;
1002}
1003
1004static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1005{
1006        return NULL;
1007}
1008
1009static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010{
1011        struct jbd2_stats_proc_session *s = seq->private;
1012
1013        if (v != SEQ_START_TOKEN)
1014                return 0;
1015        seq_printf(seq, "%lu transactions (%lu requested), "
1016                   "each up to %u blocks\n",
1017                   s->stats->ts_tid, s->stats->ts_requested,
1018                   s->journal->j_max_transaction_buffers);
1019        if (s->stats->ts_tid == 0)
1020                return 0;
1021        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1022            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023        seq_printf(seq, "  %ums request delay\n",
1024            (s->stats->ts_requested == 0) ? 0 :
1025            jiffies_to_msecs(s->stats->run.rs_request_delay /
1026                             s->stats->ts_requested));
1027        seq_printf(seq, "  %ums running transaction\n",
1028            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029        seq_printf(seq, "  %ums transaction was being locked\n",
1030            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1032            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033        seq_printf(seq, "  %ums logging transaction\n",
1034            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035        seq_printf(seq, "  %lluus average transaction commit time\n",
1036                   div_u64(s->journal->j_average_commit_time, 1000));
1037        seq_printf(seq, "  %lu handles per transaction\n",
1038            s->stats->run.rs_handle_count / s->stats->ts_tid);
1039        seq_printf(seq, "  %lu blocks per transaction\n",
1040            s->stats->run.rs_blocks / s->stats->ts_tid);
1041        seq_printf(seq, "  %lu logged blocks per transaction\n",
1042            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043        return 0;
1044}
1045
1046static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047{
1048}
1049
1050static const struct seq_operations jbd2_seq_info_ops = {
1051        .start  = jbd2_seq_info_start,
1052        .next   = jbd2_seq_info_next,
1053        .stop   = jbd2_seq_info_stop,
1054        .show   = jbd2_seq_info_show,
1055};
1056
1057static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058{
1059        journal_t *journal = PDE_DATA(inode);
1060        struct jbd2_stats_proc_session *s;
1061        int rc, size;
1062
1063        s = kmalloc(sizeof(*s), GFP_KERNEL);
1064        if (s == NULL)
1065                return -ENOMEM;
1066        size = sizeof(struct transaction_stats_s);
1067        s->stats = kmalloc(size, GFP_KERNEL);
1068        if (s->stats == NULL) {
1069                kfree(s);
1070                return -ENOMEM;
1071        }
1072        spin_lock(&journal->j_history_lock);
1073        memcpy(s->stats, &journal->j_stats, size);
1074        s->journal = journal;
1075        spin_unlock(&journal->j_history_lock);
1076
1077        rc = seq_open(file, &jbd2_seq_info_ops);
1078        if (rc == 0) {
1079                struct seq_file *m = file->private_data;
1080                m->private = s;
1081        } else {
1082                kfree(s->stats);
1083                kfree(s);
1084        }
1085        return rc;
1086
1087}
1088
1089static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090{
1091        struct seq_file *seq = file->private_data;
1092        struct jbd2_stats_proc_session *s = seq->private;
1093        kfree(s->stats);
1094        kfree(s);
1095        return seq_release(inode, file);
1096}
1097
1098static const struct file_operations jbd2_seq_info_fops = {
1099        .owner          = THIS_MODULE,
1100        .open           = jbd2_seq_info_open,
1101        .read           = seq_read,
1102        .llseek         = seq_lseek,
1103        .release        = jbd2_seq_info_release,
1104};
1105
1106static struct proc_dir_entry *proc_jbd2_stats;
1107
1108static void jbd2_stats_proc_init(journal_t *journal)
1109{
1110        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111        if (journal->j_proc_entry) {
1112                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113                                 &jbd2_seq_info_fops, journal);
1114        }
1115}
1116
1117static void jbd2_stats_proc_exit(journal_t *journal)
1118{
1119        remove_proc_entry("info", journal->j_proc_entry);
1120        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121}
1122
1123/*
1124 * Management for journal control blocks: functions to create and
1125 * destroy journal_t structures, and to initialise and read existing
1126 * journal blocks from disk.  */
1127
1128/* First: create and setup a journal_t object in memory.  We initialise
1129 * very few fields yet: that has to wait until we have created the
1130 * journal structures from from scratch, or loaded them from disk. */
1131
1132static journal_t *journal_init_common(struct block_device *bdev,
1133                        struct block_device *fs_dev,
1134                        unsigned long long start, int len, int blocksize)
1135{
1136        static struct lock_class_key jbd2_trans_commit_key;
1137        journal_t *journal;
1138        int err;
1139        struct buffer_head *bh;
1140        int n;
1141
1142        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143        if (!journal)
1144                return NULL;
1145
1146        init_waitqueue_head(&journal->j_wait_transaction_locked);
1147        init_waitqueue_head(&journal->j_wait_done_commit);
1148        init_waitqueue_head(&journal->j_wait_commit);
1149        init_waitqueue_head(&journal->j_wait_updates);
1150        init_waitqueue_head(&journal->j_wait_reserved);
1151        mutex_init(&journal->j_barrier);
1152        mutex_init(&journal->j_checkpoint_mutex);
1153        spin_lock_init(&journal->j_revoke_lock);
1154        spin_lock_init(&journal->j_list_lock);
1155        rwlock_init(&journal->j_state_lock);
1156
1157        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158        journal->j_min_batch_time = 0;
1159        journal->j_max_batch_time = 15000; /* 15ms */
1160        atomic_set(&journal->j_reserved_credits, 0);
1161
1162        /* The journal is marked for error until we succeed with recovery! */
1163        journal->j_flags = JBD2_ABORT;
1164
1165        /* Set up a default-sized revoke table for the new mount. */
1166        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167        if (err)
1168                goto err_cleanup;
1169
1170        spin_lock_init(&journal->j_history_lock);
1171
1172        lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173                         &jbd2_trans_commit_key, 0);
1174
1175        /* journal descriptor can store up to n blocks -bzzz */
1176        journal->j_blocksize = blocksize;
1177        journal->j_dev = bdev;
1178        journal->j_fs_dev = fs_dev;
1179        journal->j_blk_offset = start;
1180        journal->j_maxlen = len;
1181        n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182        journal->j_wbufsize = n;
1183        journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184                                        GFP_KERNEL);
1185        if (!journal->j_wbuf)
1186                goto err_cleanup;
1187
1188        bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189        if (!bh) {
1190                pr_err("%s: Cannot get buffer for journal superblock\n",
1191                        __func__);
1192                goto err_cleanup;
1193        }
1194        journal->j_sb_buffer = bh;
1195        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196
1197        return journal;
1198
1199err_cleanup:
1200        kfree(journal->j_wbuf);
1201        jbd2_journal_destroy_revoke(journal);
1202        kfree(journal);
1203        return NULL;
1204}
1205
1206/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207 *
1208 * Create a journal structure assigned some fixed set of disk blocks to
1209 * the journal.  We don't actually touch those disk blocks yet, but we
1210 * need to set up all of the mapping information to tell the journaling
1211 * system where the journal blocks are.
1212 *
1213 */
1214
1215/**
1216 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217 *  @bdev: Block device on which to create the journal
1218 *  @fs_dev: Device which hold journalled filesystem for this journal.
1219 *  @start: Block nr Start of journal.
1220 *  @len:  Length of the journal in blocks.
1221 *  @blocksize: blocksize of journalling device
1222 *
1223 *  Returns: a newly created journal_t *
1224 *
1225 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226 *  range of blocks on an arbitrary block device.
1227 *
1228 */
1229journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230                        struct block_device *fs_dev,
1231                        unsigned long long start, int len, int blocksize)
1232{
1233        journal_t *journal;
1234
1235        journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236        if (!journal)
1237                return NULL;
1238
1239        bdevname(journal->j_dev, journal->j_devname);
1240        strreplace(journal->j_devname, '/', '!');
1241        jbd2_stats_proc_init(journal);
1242
1243        return journal;
1244}
1245
1246/**
1247 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248 *  @inode: An inode to create the journal in
1249 *
1250 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251 * the journal.  The inode must exist already, must support bmap() and
1252 * must have all data blocks preallocated.
1253 */
1254journal_t *jbd2_journal_init_inode(struct inode *inode)
1255{
1256        journal_t *journal;
1257        char *p;
1258        unsigned long long blocknr;
1259
1260        blocknr = bmap(inode, 0);
1261        if (!blocknr) {
1262                pr_err("%s: Cannot locate journal superblock\n",
1263                        __func__);
1264                return NULL;
1265        }
1266
1267        jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268                  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270
1271        journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272                        blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273                        inode->i_sb->s_blocksize);
1274        if (!journal)
1275                return NULL;
1276
1277        journal->j_inode = inode;
1278        bdevname(journal->j_dev, journal->j_devname);
1279        p = strreplace(journal->j_devname, '/', '!');
1280        sprintf(p, "-%lu", journal->j_inode->i_ino);
1281        jbd2_stats_proc_init(journal);
1282
1283        return journal;
1284}
1285
1286/*
1287 * If the journal init or create aborts, we need to mark the journal
1288 * superblock as being NULL to prevent the journal destroy from writing
1289 * back a bogus superblock.
1290 */
1291static void journal_fail_superblock (journal_t *journal)
1292{
1293        struct buffer_head *bh = journal->j_sb_buffer;
1294        brelse(bh);
1295        journal->j_sb_buffer = NULL;
1296}
1297
1298/*
1299 * Given a journal_t structure, initialise the various fields for
1300 * startup of a new journaling session.  We use this both when creating
1301 * a journal, and after recovering an old journal to reset it for
1302 * subsequent use.
1303 */
1304
1305static int journal_reset(journal_t *journal)
1306{
1307        journal_superblock_t *sb = journal->j_superblock;
1308        unsigned long long first, last;
1309
1310        first = be32_to_cpu(sb->s_first);
1311        last = be32_to_cpu(sb->s_maxlen);
1312        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313                printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314                       first, last);
1315                journal_fail_superblock(journal);
1316                return -EINVAL;
1317        }
1318
1319        journal->j_first = first;
1320        journal->j_last = last;
1321
1322        journal->j_head = first;
1323        journal->j_tail = first;
1324        journal->j_free = last - first;
1325
1326        journal->j_tail_sequence = journal->j_transaction_sequence;
1327        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328        journal->j_commit_request = journal->j_commit_sequence;
1329
1330        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331
1332        /*
1333         * As a special case, if the on-disk copy is already marked as needing
1334         * no recovery (s_start == 0), then we can safely defer the superblock
1335         * update until the next commit by setting JBD2_FLUSHED.  This avoids
1336         * attempting a write to a potential-readonly device.
1337         */
1338        if (sb->s_start == 0) {
1339                jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340                        "(start %ld, seq %d, errno %d)\n",
1341                        journal->j_tail, journal->j_tail_sequence,
1342                        journal->j_errno);
1343                journal->j_flags |= JBD2_FLUSHED;
1344        } else {
1345                /* Lock here to make assertions happy... */
1346                mutex_lock_io(&journal->j_checkpoint_mutex);
1347                /*
1348                 * Update log tail information. We use REQ_FUA since new
1349                 * transaction will start reusing journal space and so we
1350                 * must make sure information about current log tail is on
1351                 * disk before that.
1352                 */
1353                jbd2_journal_update_sb_log_tail(journal,
1354                                                journal->j_tail_sequence,
1355                                                journal->j_tail,
1356                                                REQ_SYNC | REQ_FUA);
1357                mutex_unlock(&journal->j_checkpoint_mutex);
1358        }
1359        return jbd2_journal_start_thread(journal);
1360}
1361
1362static int jbd2_write_superblock(journal_t *journal, int write_flags)
1363{
1364        struct buffer_head *bh = journal->j_sb_buffer;
1365        journal_superblock_t *sb = journal->j_superblock;
1366        int ret;
1367
1368        trace_jbd2_write_superblock(journal, write_flags);
1369        if (!(journal->j_flags & JBD2_BARRIER))
1370                write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1371        lock_buffer(bh);
1372        if (buffer_write_io_error(bh)) {
1373                /*
1374                 * Oh, dear.  A previous attempt to write the journal
1375                 * superblock failed.  This could happen because the
1376                 * USB device was yanked out.  Or it could happen to
1377                 * be a transient write error and maybe the block will
1378                 * be remapped.  Nothing we can do but to retry the
1379                 * write and hope for the best.
1380                 */
1381                printk(KERN_ERR "JBD2: previous I/O error detected "
1382                       "for journal superblock update for %s.\n",
1383                       journal->j_devname);
1384                clear_buffer_write_io_error(bh);
1385                set_buffer_uptodate(bh);
1386        }
1387        jbd2_superblock_csum_set(journal, sb);
1388        get_bh(bh);
1389        bh->b_end_io = end_buffer_write_sync;
1390        ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1391        wait_on_buffer(bh);
1392        if (buffer_write_io_error(bh)) {
1393                clear_buffer_write_io_error(bh);
1394                set_buffer_uptodate(bh);
1395                ret = -EIO;
1396        }
1397        if (ret) {
1398                printk(KERN_ERR "JBD2: Error %d detected when updating "
1399                       "journal superblock for %s.\n", ret,
1400                       journal->j_devname);
1401                jbd2_journal_abort(journal, ret);
1402        }
1403
1404        return ret;
1405}
1406
1407/**
1408 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1409 * @journal: The journal to update.
1410 * @tail_tid: TID of the new transaction at the tail of the log
1411 * @tail_block: The first block of the transaction at the tail of the log
1412 * @write_op: With which operation should we write the journal sb
1413 *
1414 * Update a journal's superblock information about log tail and write it to
1415 * disk, waiting for the IO to complete.
1416 */
1417int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1418                                     unsigned long tail_block, int write_op)
1419{
1420        journal_superblock_t *sb = journal->j_superblock;
1421        int ret;
1422
1423        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424        jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425                  tail_block, tail_tid);
1426
1427        sb->s_sequence = cpu_to_be32(tail_tid);
1428        sb->s_start    = cpu_to_be32(tail_block);
1429
1430        ret = jbd2_write_superblock(journal, write_op);
1431        if (ret)
1432                goto out;
1433
1434        /* Log is no longer empty */
1435        write_lock(&journal->j_state_lock);
1436        WARN_ON(!sb->s_sequence);
1437        journal->j_flags &= ~JBD2_FLUSHED;
1438        write_unlock(&journal->j_state_lock);
1439
1440out:
1441        return ret;
1442}
1443
1444/**
1445 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446 * @journal: The journal to update.
1447 * @write_op: With which operation should we write the journal sb
1448 *
1449 * Update a journal's dynamic superblock fields to show that journal is empty.
1450 * Write updated superblock to disk waiting for IO to complete.
1451 */
1452static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453{
1454        journal_superblock_t *sb = journal->j_superblock;
1455
1456        BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457        read_lock(&journal->j_state_lock);
1458        /* Is it already empty? */
1459        if (sb->s_start == 0) {
1460                read_unlock(&journal->j_state_lock);
1461                return;
1462        }
1463        jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464                  journal->j_tail_sequence);
1465
1466        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467        sb->s_start    = cpu_to_be32(0);
1468        read_unlock(&journal->j_state_lock);
1469
1470        jbd2_write_superblock(journal, write_op);
1471
1472        /* Log is no longer empty */
1473        write_lock(&journal->j_state_lock);
1474        journal->j_flags |= JBD2_FLUSHED;
1475        write_unlock(&journal->j_state_lock);
1476}
1477
1478
1479/**
1480 * jbd2_journal_update_sb_errno() - Update error in the journal.
1481 * @journal: The journal to update.
1482 *
1483 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1484 * to complete.
1485 */
1486void jbd2_journal_update_sb_errno(journal_t *journal)
1487{
1488        journal_superblock_t *sb = journal->j_superblock;
1489
1490        read_lock(&journal->j_state_lock);
1491        jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1492                  journal->j_errno);
1493        sb->s_errno    = cpu_to_be32(journal->j_errno);
1494        read_unlock(&journal->j_state_lock);
1495
1496        jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1497}
1498EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1499
1500/*
1501 * Read the superblock for a given journal, performing initial
1502 * validation of the format.
1503 */
1504static int journal_get_superblock(journal_t *journal)
1505{
1506        struct buffer_head *bh;
1507        journal_superblock_t *sb;
1508        int err = -EIO;
1509
1510        bh = journal->j_sb_buffer;
1511
1512        J_ASSERT(bh != NULL);
1513        if (!buffer_uptodate(bh)) {
1514                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1515                wait_on_buffer(bh);
1516                if (!buffer_uptodate(bh)) {
1517                        printk(KERN_ERR
1518                                "JBD2: IO error reading journal superblock\n");
1519                        goto out;
1520                }
1521        }
1522
1523        if (buffer_verified(bh))
1524                return 0;
1525
1526        sb = journal->j_superblock;
1527
1528        err = -EINVAL;
1529
1530        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1531            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1532                printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1533                goto out;
1534        }
1535
1536        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1537        case JBD2_SUPERBLOCK_V1:
1538                journal->j_format_version = 1;
1539                break;
1540        case JBD2_SUPERBLOCK_V2:
1541                journal->j_format_version = 2;
1542                break;
1543        default:
1544                printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1545                goto out;
1546        }
1547
1548        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1549                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1550        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1551                printk(KERN_WARNING "JBD2: journal file too short\n");
1552                goto out;
1553        }
1554
1555        if (be32_to_cpu(sb->s_first) == 0 ||
1556            be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1557                printk(KERN_WARNING
1558                        "JBD2: Invalid start block of journal: %u\n",
1559                        be32_to_cpu(sb->s_first));
1560                goto out;
1561        }
1562
1563        if (jbd2_has_feature_csum2(journal) &&
1564            jbd2_has_feature_csum3(journal)) {
1565                /* Can't have checksum v2 and v3 at the same time! */
1566                printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1567                       "at the same time!\n");
1568                goto out;
1569        }
1570
1571        if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1572            jbd2_has_feature_checksum(journal)) {
1573                /* Can't have checksum v1 and v2 on at the same time! */
1574                printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1575                       "at the same time!\n");
1576                goto out;
1577        }
1578
1579        if (!jbd2_verify_csum_type(journal, sb)) {
1580                printk(KERN_ERR "JBD2: Unknown checksum type\n");
1581                goto out;
1582        }
1583
1584        /* Load the checksum driver */
1585        if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1586                journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1587                if (IS_ERR(journal->j_chksum_driver)) {
1588                        printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1589                        err = PTR_ERR(journal->j_chksum_driver);
1590                        journal->j_chksum_driver = NULL;
1591                        goto out;
1592                }
1593        }
1594
1595        /* Check superblock checksum */
1596        if (!jbd2_superblock_csum_verify(journal, sb)) {
1597                printk(KERN_ERR "JBD2: journal checksum error\n");
1598                err = -EFSBADCRC;
1599                goto out;
1600        }
1601
1602        /* Precompute checksum seed for all metadata */
1603        if (jbd2_journal_has_csum_v2or3(journal))
1604                journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1605                                                   sizeof(sb->s_uuid));
1606
1607        set_buffer_verified(bh);
1608
1609        return 0;
1610
1611out:
1612        journal_fail_superblock(journal);
1613        return err;
1614}
1615
1616/*
1617 * Load the on-disk journal superblock and read the key fields into the
1618 * journal_t.
1619 */
1620
1621static int load_superblock(journal_t *journal)
1622{
1623        int err;
1624        journal_superblock_t *sb;
1625
1626        err = journal_get_superblock(journal);
1627        if (err)
1628                return err;
1629
1630        sb = journal->j_superblock;
1631
1632        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1633        journal->j_tail = be32_to_cpu(sb->s_start);
1634        journal->j_first = be32_to_cpu(sb->s_first);
1635        journal->j_last = be32_to_cpu(sb->s_maxlen);
1636        journal->j_errno = be32_to_cpu(sb->s_errno);
1637
1638        return 0;
1639}
1640
1641
1642/**
1643 * int jbd2_journal_load() - Read journal from disk.
1644 * @journal: Journal to act on.
1645 *
1646 * Given a journal_t structure which tells us which disk blocks contain
1647 * a journal, read the journal from disk to initialise the in-memory
1648 * structures.
1649 */
1650int jbd2_journal_load(journal_t *journal)
1651{
1652        int err;
1653        journal_superblock_t *sb;
1654
1655        err = load_superblock(journal);
1656        if (err)
1657                return err;
1658
1659        sb = journal->j_superblock;
1660        /* If this is a V2 superblock, then we have to check the
1661         * features flags on it. */
1662
1663        if (journal->j_format_version >= 2) {
1664                if ((sb->s_feature_ro_compat &
1665                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1666                    (sb->s_feature_incompat &
1667                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1668                        printk(KERN_WARNING
1669                                "JBD2: Unrecognised features on journal\n");
1670                        return -EINVAL;
1671                }
1672        }
1673
1674        /*
1675         * Create a slab for this blocksize
1676         */
1677        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1678        if (err)
1679                return err;
1680
1681        /* Let the recovery code check whether it needs to recover any
1682         * data from the journal. */
1683        if (jbd2_journal_recover(journal))
1684                goto recovery_error;
1685
1686        if (journal->j_failed_commit) {
1687                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1688                       "is corrupt.\n", journal->j_failed_commit,
1689                       journal->j_devname);
1690                return -EFSCORRUPTED;
1691        }
1692
1693        /* OK, we've finished with the dynamic journal bits:
1694         * reinitialise the dynamic contents of the superblock in memory
1695         * and reset them on disk. */
1696        if (journal_reset(journal))
1697                goto recovery_error;
1698
1699        journal->j_flags &= ~JBD2_ABORT;
1700        journal->j_flags |= JBD2_LOADED;
1701        return 0;
1702
1703recovery_error:
1704        printk(KERN_WARNING "JBD2: recovery failed\n");
1705        return -EIO;
1706}
1707
1708/**
1709 * void jbd2_journal_destroy() - Release a journal_t structure.
1710 * @journal: Journal to act on.
1711 *
1712 * Release a journal_t structure once it is no longer in use by the
1713 * journaled object.
1714 * Return <0 if we couldn't clean up the journal.
1715 */
1716int jbd2_journal_destroy(journal_t *journal)
1717{
1718        int err = 0;
1719
1720        /* Wait for the commit thread to wake up and die. */
1721        journal_kill_thread(journal);
1722
1723        /* Force a final log commit */
1724        if (journal->j_running_transaction)
1725                jbd2_journal_commit_transaction(journal);
1726
1727        /* Force any old transactions to disk */
1728
1729        /* Totally anal locking here... */
1730        spin_lock(&journal->j_list_lock);
1731        while (journal->j_checkpoint_transactions != NULL) {
1732                spin_unlock(&journal->j_list_lock);
1733                mutex_lock_io(&journal->j_checkpoint_mutex);
1734                err = jbd2_log_do_checkpoint(journal);
1735                mutex_unlock(&journal->j_checkpoint_mutex);
1736                /*
1737                 * If checkpointing failed, just free the buffers to avoid
1738                 * looping forever
1739                 */
1740                if (err) {
1741                        jbd2_journal_destroy_checkpoint(journal);
1742                        spin_lock(&journal->j_list_lock);
1743                        break;
1744                }
1745                spin_lock(&journal->j_list_lock);
1746        }
1747
1748        J_ASSERT(journal->j_running_transaction == NULL);
1749        J_ASSERT(journal->j_committing_transaction == NULL);
1750        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1751        spin_unlock(&journal->j_list_lock);
1752
1753        if (journal->j_sb_buffer) {
1754                if (!is_journal_aborted(journal)) {
1755                        mutex_lock_io(&journal->j_checkpoint_mutex);
1756
1757                        write_lock(&journal->j_state_lock);
1758                        journal->j_tail_sequence =
1759                                ++journal->j_transaction_sequence;
1760                        write_unlock(&journal->j_state_lock);
1761
1762                        jbd2_mark_journal_empty(journal,
1763                                        REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1764                        mutex_unlock(&journal->j_checkpoint_mutex);
1765                } else
1766                        err = -EIO;
1767                brelse(journal->j_sb_buffer);
1768        }
1769
1770        if (journal->j_proc_entry)
1771                jbd2_stats_proc_exit(journal);
1772        iput(journal->j_inode);
1773        if (journal->j_revoke)
1774                jbd2_journal_destroy_revoke(journal);
1775        if (journal->j_chksum_driver)
1776                crypto_free_shash(journal->j_chksum_driver);
1777        kfree(journal->j_wbuf);
1778        kfree(journal);
1779
1780        return err;
1781}
1782
1783
1784/**
1785 *int jbd2_journal_check_used_features () - Check if features specified are used.
1786 * @journal: Journal to check.
1787 * @compat: bitmask of compatible features
1788 * @ro: bitmask of features that force read-only mount
1789 * @incompat: bitmask of incompatible features
1790 *
1791 * Check whether the journal uses all of a given set of
1792 * features.  Return true (non-zero) if it does.
1793 **/
1794
1795int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1796                                 unsigned long ro, unsigned long incompat)
1797{
1798        journal_superblock_t *sb;
1799
1800        if (!compat && !ro && !incompat)
1801                return 1;
1802        /* Load journal superblock if it is not loaded yet. */
1803        if (journal->j_format_version == 0 &&
1804            journal_get_superblock(journal) != 0)
1805                return 0;
1806        if (journal->j_format_version == 1)
1807                return 0;
1808
1809        sb = journal->j_superblock;
1810
1811        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1812            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1813            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1814                return 1;
1815
1816        return 0;
1817}
1818
1819/**
1820 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1821 * @journal: Journal to check.
1822 * @compat: bitmask of compatible features
1823 * @ro: bitmask of features that force read-only mount
1824 * @incompat: bitmask of incompatible features
1825 *
1826 * Check whether the journaling code supports the use of
1827 * all of a given set of features on this journal.  Return true
1828 * (non-zero) if it can. */
1829
1830int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1831                                      unsigned long ro, unsigned long incompat)
1832{
1833        if (!compat && !ro && !incompat)
1834                return 1;
1835
1836        /* We can support any known requested features iff the
1837         * superblock is in version 2.  Otherwise we fail to support any
1838         * extended sb features. */
1839
1840        if (journal->j_format_version != 2)
1841                return 0;
1842
1843        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1844            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1845            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1846                return 1;
1847
1848        return 0;
1849}
1850
1851/**
1852 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1853 * @journal: Journal to act on.
1854 * @compat: bitmask of compatible features
1855 * @ro: bitmask of features that force read-only mount
1856 * @incompat: bitmask of incompatible features
1857 *
1858 * Mark a given journal feature as present on the
1859 * superblock.  Returns true if the requested features could be set.
1860 *
1861 */
1862
1863int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1864                          unsigned long ro, unsigned long incompat)
1865{
1866#define INCOMPAT_FEATURE_ON(f) \
1867                ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1868#define COMPAT_FEATURE_ON(f) \
1869                ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1870        journal_superblock_t *sb;
1871
1872        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1873                return 1;
1874
1875        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1876                return 0;
1877
1878        /* If enabling v2 checksums, turn on v3 instead */
1879        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1880                incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1881                incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1882        }
1883
1884        /* Asking for checksumming v3 and v1?  Only give them v3. */
1885        if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1886            compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1887                compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1888
1889        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1890                  compat, ro, incompat);
1891
1892        sb = journal->j_superblock;
1893
1894        /* If enabling v3 checksums, update superblock */
1895        if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1896                sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1897                sb->s_feature_compat &=
1898                        ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1899
1900                /* Load the checksum driver */
1901                if (journal->j_chksum_driver == NULL) {
1902                        journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1903                                                                      0, 0);
1904                        if (IS_ERR(journal->j_chksum_driver)) {
1905                                printk(KERN_ERR "JBD2: Cannot load crc32c "
1906                                       "driver.\n");
1907                                journal->j_chksum_driver = NULL;
1908                                return 0;
1909                        }
1910
1911                        /* Precompute checksum seed for all metadata */
1912                        journal->j_csum_seed = jbd2_chksum(journal, ~0,
1913                                                           sb->s_uuid,
1914                                                           sizeof(sb->s_uuid));
1915                }
1916        }
1917
1918        /* If enabling v1 checksums, downgrade superblock */
1919        if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1920                sb->s_feature_incompat &=
1921                        ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1922                                     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1923
1924        sb->s_feature_compat    |= cpu_to_be32(compat);
1925        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1926        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1927
1928        return 1;
1929#undef COMPAT_FEATURE_ON
1930#undef INCOMPAT_FEATURE_ON
1931}
1932
1933/*
1934 * jbd2_journal_clear_features () - Clear a given journal feature in the
1935 *                                  superblock
1936 * @journal: Journal to act on.
1937 * @compat: bitmask of compatible features
1938 * @ro: bitmask of features that force read-only mount
1939 * @incompat: bitmask of incompatible features
1940 *
1941 * Clear a given journal feature as present on the
1942 * superblock.
1943 */
1944void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1945                                unsigned long ro, unsigned long incompat)
1946{
1947        journal_superblock_t *sb;
1948
1949        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1950                  compat, ro, incompat);
1951
1952        sb = journal->j_superblock;
1953
1954        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1955        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1956        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1957}
1958EXPORT_SYMBOL(jbd2_journal_clear_features);
1959
1960/**
1961 * int jbd2_journal_flush () - Flush journal
1962 * @journal: Journal to act on.
1963 *
1964 * Flush all data for a given journal to disk and empty the journal.
1965 * Filesystems can use this when remounting readonly to ensure that
1966 * recovery does not need to happen on remount.
1967 */
1968
1969int jbd2_journal_flush(journal_t *journal)
1970{
1971        int err = 0;
1972        transaction_t *transaction = NULL;
1973
1974        write_lock(&journal->j_state_lock);
1975
1976        /* Force everything buffered to the log... */
1977        if (journal->j_running_transaction) {
1978                transaction = journal->j_running_transaction;
1979                __jbd2_log_start_commit(journal, transaction->t_tid);
1980        } else if (journal->j_committing_transaction)
1981                transaction = journal->j_committing_transaction;
1982
1983        /* Wait for the log commit to complete... */
1984        if (transaction) {
1985                tid_t tid = transaction->t_tid;
1986
1987                write_unlock(&journal->j_state_lock);
1988                jbd2_log_wait_commit(journal, tid);
1989        } else {
1990                write_unlock(&journal->j_state_lock);
1991        }
1992
1993        /* ...and flush everything in the log out to disk. */
1994        spin_lock(&journal->j_list_lock);
1995        while (!err && journal->j_checkpoint_transactions != NULL) {
1996                spin_unlock(&journal->j_list_lock);
1997                mutex_lock_io(&journal->j_checkpoint_mutex);
1998                err = jbd2_log_do_checkpoint(journal);
1999                mutex_unlock(&journal->j_checkpoint_mutex);
2000                spin_lock(&journal->j_list_lock);
2001        }
2002        spin_unlock(&journal->j_list_lock);
2003
2004        if (is_journal_aborted(journal))
2005                return -EIO;
2006
2007        mutex_lock_io(&journal->j_checkpoint_mutex);
2008        if (!err) {
2009                err = jbd2_cleanup_journal_tail(journal);
2010                if (err < 0) {
2011                        mutex_unlock(&journal->j_checkpoint_mutex);
2012                        goto out;
2013                }
2014                err = 0;
2015        }
2016
2017        /* Finally, mark the journal as really needing no recovery.
2018         * This sets s_start==0 in the underlying superblock, which is
2019         * the magic code for a fully-recovered superblock.  Any future
2020         * commits of data to the journal will restore the current
2021         * s_start value. */
2022        jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2023        mutex_unlock(&journal->j_checkpoint_mutex);
2024        write_lock(&journal->j_state_lock);
2025        J_ASSERT(!journal->j_running_transaction);
2026        J_ASSERT(!journal->j_committing_transaction);
2027        J_ASSERT(!journal->j_checkpoint_transactions);
2028        J_ASSERT(journal->j_head == journal->j_tail);
2029        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2030        write_unlock(&journal->j_state_lock);
2031out:
2032        return err;
2033}
2034
2035/**
2036 * int jbd2_journal_wipe() - Wipe journal contents
2037 * @journal: Journal to act on.
2038 * @write: flag (see below)
2039 *
2040 * Wipe out all of the contents of a journal, safely.  This will produce
2041 * a warning if the journal contains any valid recovery information.
2042 * Must be called between journal_init_*() and jbd2_journal_load().
2043 *
2044 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2045 * we merely suppress recovery.
2046 */
2047
2048int jbd2_journal_wipe(journal_t *journal, int write)
2049{
2050        int err = 0;
2051
2052        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2053
2054        err = load_superblock(journal);
2055        if (err)
2056                return err;
2057
2058        if (!journal->j_tail)
2059                goto no_recovery;
2060
2061        printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2062                write ? "Clearing" : "Ignoring");
2063
2064        err = jbd2_journal_skip_recovery(journal);
2065        if (write) {
2066                /* Lock to make assertions happy... */
2067                mutex_lock(&journal->j_checkpoint_mutex);
2068                jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2069                mutex_unlock(&journal->j_checkpoint_mutex);
2070        }
2071
2072 no_recovery:
2073        return err;
2074}
2075
2076/*
2077 * Journal abort has very specific semantics, which we describe
2078 * for journal abort.
2079 *
2080 * Two internal functions, which provide abort to the jbd layer
2081 * itself are here.
2082 */
2083
2084/*
2085 * Quick version for internal journal use (doesn't lock the journal).
2086 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2087 * and don't attempt to make any other journal updates.
2088 */
2089void __jbd2_journal_abort_hard(journal_t *journal)
2090{
2091        transaction_t *transaction;
2092
2093        if (journal->j_flags & JBD2_ABORT)
2094                return;
2095
2096        printk(KERN_ERR "Aborting journal on device %s.\n",
2097               journal->j_devname);
2098
2099        write_lock(&journal->j_state_lock);
2100        journal->j_flags |= JBD2_ABORT;
2101        transaction = journal->j_running_transaction;
2102        if (transaction)
2103                __jbd2_log_start_commit(journal, transaction->t_tid);
2104        write_unlock(&journal->j_state_lock);
2105}
2106
2107/* Soft abort: record the abort error status in the journal superblock,
2108 * but don't do any other IO. */
2109static void __journal_abort_soft (journal_t *journal, int errno)
2110{
2111        if (journal->j_flags & JBD2_ABORT)
2112                return;
2113
2114        if (!journal->j_errno)
2115                journal->j_errno = errno;
2116
2117        __jbd2_journal_abort_hard(journal);
2118
2119        if (errno) {
2120                jbd2_journal_update_sb_errno(journal);
2121                write_lock(&journal->j_state_lock);
2122                journal->j_flags |= JBD2_REC_ERR;
2123                write_unlock(&journal->j_state_lock);
2124        }
2125}
2126
2127/**
2128 * void jbd2_journal_abort () - Shutdown the journal immediately.
2129 * @journal: the journal to shutdown.
2130 * @errno:   an error number to record in the journal indicating
2131 *           the reason for the shutdown.
2132 *
2133 * Perform a complete, immediate shutdown of the ENTIRE
2134 * journal (not of a single transaction).  This operation cannot be
2135 * undone without closing and reopening the journal.
2136 *
2137 * The jbd2_journal_abort function is intended to support higher level error
2138 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2139 * mode.
2140 *
2141 * Journal abort has very specific semantics.  Any existing dirty,
2142 * unjournaled buffers in the main filesystem will still be written to
2143 * disk by bdflush, but the journaling mechanism will be suspended
2144 * immediately and no further transaction commits will be honoured.
2145 *
2146 * Any dirty, journaled buffers will be written back to disk without
2147 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2148 * filesystem, but we _do_ attempt to leave as much data as possible
2149 * behind for fsck to use for cleanup.
2150 *
2151 * Any attempt to get a new transaction handle on a journal which is in
2152 * ABORT state will just result in an -EROFS error return.  A
2153 * jbd2_journal_stop on an existing handle will return -EIO if we have
2154 * entered abort state during the update.
2155 *
2156 * Recursive transactions are not disturbed by journal abort until the
2157 * final jbd2_journal_stop, which will receive the -EIO error.
2158 *
2159 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2160 * which will be recorded (if possible) in the journal superblock.  This
2161 * allows a client to record failure conditions in the middle of a
2162 * transaction without having to complete the transaction to record the
2163 * failure to disk.  ext3_error, for example, now uses this
2164 * functionality.
2165 *
2166 * Errors which originate from within the journaling layer will NOT
2167 * supply an errno; a null errno implies that absolutely no further
2168 * writes are done to the journal (unless there are any already in
2169 * progress).
2170 *
2171 */
2172
2173void jbd2_journal_abort(journal_t *journal, int errno)
2174{
2175        __journal_abort_soft(journal, errno);
2176}
2177
2178/**
2179 * int jbd2_journal_errno () - returns the journal's error state.
2180 * @journal: journal to examine.
2181 *
2182 * This is the errno number set with jbd2_journal_abort(), the last
2183 * time the journal was mounted - if the journal was stopped
2184 * without calling abort this will be 0.
2185 *
2186 * If the journal has been aborted on this mount time -EROFS will
2187 * be returned.
2188 */
2189int jbd2_journal_errno(journal_t *journal)
2190{
2191        int err;
2192
2193        read_lock(&journal->j_state_lock);
2194        if (journal->j_flags & JBD2_ABORT)
2195                err = -EROFS;
2196        else
2197                err = journal->j_errno;
2198        read_unlock(&journal->j_state_lock);
2199        return err;
2200}
2201
2202/**
2203 * int jbd2_journal_clear_err () - clears the journal's error state
2204 * @journal: journal to act on.
2205 *
2206 * An error must be cleared or acked to take a FS out of readonly
2207 * mode.
2208 */
2209int jbd2_journal_clear_err(journal_t *journal)
2210{
2211        int err = 0;
2212
2213        write_lock(&journal->j_state_lock);
2214        if (journal->j_flags & JBD2_ABORT)
2215                err = -EROFS;
2216        else
2217                journal->j_errno = 0;
2218        write_unlock(&journal->j_state_lock);
2219        return err;
2220}
2221
2222/**
2223 * void jbd2_journal_ack_err() - Ack journal err.
2224 * @journal: journal to act on.
2225 *
2226 * An error must be cleared or acked to take a FS out of readonly
2227 * mode.
2228 */
2229void jbd2_journal_ack_err(journal_t *journal)
2230{
2231        write_lock(&journal->j_state_lock);
2232        if (journal->j_errno)
2233                journal->j_flags |= JBD2_ACK_ERR;
2234        write_unlock(&journal->j_state_lock);
2235}
2236
2237int jbd2_journal_blocks_per_page(struct inode *inode)
2238{
2239        return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2240}
2241
2242/*
2243 * helper functions to deal with 32 or 64bit block numbers.
2244 */
2245size_t journal_tag_bytes(journal_t *journal)
2246{
2247        size_t sz;
2248
2249        if (jbd2_has_feature_csum3(journal))
2250                return sizeof(journal_block_tag3_t);
2251
2252        sz = sizeof(journal_block_tag_t);
2253
2254        if (jbd2_has_feature_csum2(journal))
2255                sz += sizeof(__u16);
2256
2257        if (jbd2_has_feature_64bit(journal))
2258                return sz;
2259        else
2260                return sz - sizeof(__u32);
2261}
2262
2263/*
2264 * JBD memory management
2265 *
2266 * These functions are used to allocate block-sized chunks of memory
2267 * used for making copies of buffer_head data.  Very often it will be
2268 * page-sized chunks of data, but sometimes it will be in
2269 * sub-page-size chunks.  (For example, 16k pages on Power systems
2270 * with a 4k block file system.)  For blocks smaller than a page, we
2271 * use a SLAB allocator.  There are slab caches for each block size,
2272 * which are allocated at mount time, if necessary, and we only free
2273 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2274 * this reason we don't need to a mutex to protect access to
2275 * jbd2_slab[] allocating or releasing memory; only in
2276 * jbd2_journal_create_slab().
2277 */
2278#define JBD2_MAX_SLABS 8
2279static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2280
2281static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2282        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2283        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2284};
2285
2286
2287static void jbd2_journal_destroy_slabs(void)
2288{
2289        int i;
2290
2291        for (i = 0; i < JBD2_MAX_SLABS; i++) {
2292                if (jbd2_slab[i])
2293                        kmem_cache_destroy(jbd2_slab[i]);
2294                jbd2_slab[i] = NULL;
2295        }
2296}
2297
2298static int jbd2_journal_create_slab(size_t size)
2299{
2300        static DEFINE_MUTEX(jbd2_slab_create_mutex);
2301        int i = order_base_2(size) - 10;
2302        size_t slab_size;
2303
2304        if (size == PAGE_SIZE)
2305                return 0;
2306
2307        if (i >= JBD2_MAX_SLABS)
2308                return -EINVAL;
2309
2310        if (unlikely(i < 0))
2311                i = 0;
2312        mutex_lock(&jbd2_slab_create_mutex);
2313        if (jbd2_slab[i]) {
2314                mutex_unlock(&jbd2_slab_create_mutex);
2315                return 0;       /* Already created */
2316        }
2317
2318        slab_size = 1 << (i+10);
2319        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2320                                         slab_size, 0, NULL);
2321        mutex_unlock(&jbd2_slab_create_mutex);
2322        if (!jbd2_slab[i]) {
2323                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2324                return -ENOMEM;
2325        }
2326        return 0;
2327}
2328
2329static struct kmem_cache *get_slab(size_t size)
2330{
2331        int i = order_base_2(size) - 10;
2332
2333        BUG_ON(i >= JBD2_MAX_SLABS);
2334        if (unlikely(i < 0))
2335                i = 0;
2336        BUG_ON(jbd2_slab[i] == NULL);
2337        return jbd2_slab[i];
2338}
2339
2340void *jbd2_alloc(size_t size, gfp_t flags)
2341{
2342        void *ptr;
2343
2344        BUG_ON(size & (size-1)); /* Must be a power of 2 */
2345
2346        if (size < PAGE_SIZE)
2347                ptr = kmem_cache_alloc(get_slab(size), flags);
2348        else
2349                ptr = (void *)__get_free_pages(flags, get_order(size));
2350
2351        /* Check alignment; SLUB has gotten this wrong in the past,
2352         * and this can lead to user data corruption! */
2353        BUG_ON(((unsigned long) ptr) & (size-1));
2354
2355        return ptr;
2356}
2357
2358void jbd2_free(void *ptr, size_t size)
2359{
2360        if (size < PAGE_SIZE)
2361                kmem_cache_free(get_slab(size), ptr);
2362        else
2363                free_pages((unsigned long)ptr, get_order(size));
2364};
2365
2366/*
2367 * Journal_head storage management
2368 */
2369static struct kmem_cache *jbd2_journal_head_cache;
2370#ifdef CONFIG_JBD2_DEBUG
2371static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2372#endif
2373
2374static int jbd2_journal_init_journal_head_cache(void)
2375{
2376        int retval;
2377
2378        J_ASSERT(jbd2_journal_head_cache == NULL);
2379        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2380                                sizeof(struct journal_head),
2381                                0,              /* offset */
2382                                SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2383                                NULL);          /* ctor */
2384        retval = 0;
2385        if (!jbd2_journal_head_cache) {
2386                retval = -ENOMEM;
2387                printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2388        }
2389        return retval;
2390}
2391
2392static void jbd2_journal_destroy_journal_head_cache(void)
2393{
2394        if (jbd2_journal_head_cache) {
2395                kmem_cache_destroy(jbd2_journal_head_cache);
2396                jbd2_journal_head_cache = NULL;
2397        }
2398}
2399
2400/*
2401 * journal_head splicing and dicing
2402 */
2403static struct journal_head *journal_alloc_journal_head(void)
2404{
2405        struct journal_head *ret;
2406
2407#ifdef CONFIG_JBD2_DEBUG
2408        atomic_inc(&nr_journal_heads);
2409#endif
2410        ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2411        if (!ret) {
2412                jbd_debug(1, "out of memory for journal_head\n");
2413                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2414                ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2415                                GFP_NOFS | __GFP_NOFAIL);
2416        }
2417        return ret;
2418}
2419
2420static void journal_free_journal_head(struct journal_head *jh)
2421{
2422#ifdef CONFIG_JBD2_DEBUG
2423        atomic_dec(&nr_journal_heads);
2424        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2425#endif
2426        kmem_cache_free(jbd2_journal_head_cache, jh);
2427}
2428
2429/*
2430 * A journal_head is attached to a buffer_head whenever JBD has an
2431 * interest in the buffer.
2432 *
2433 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2434 * is set.  This bit is tested in core kernel code where we need to take
2435 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2436 * there.
2437 *
2438 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2439 *
2440 * When a buffer has its BH_JBD bit set it is immune from being released by
2441 * core kernel code, mainly via ->b_count.
2442 *
2443 * A journal_head is detached from its buffer_head when the journal_head's
2444 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2445 * transaction (b_cp_transaction) hold their references to b_jcount.
2446 *
2447 * Various places in the kernel want to attach a journal_head to a buffer_head
2448 * _before_ attaching the journal_head to a transaction.  To protect the
2449 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2450 * journal_head's b_jcount refcount by one.  The caller must call
2451 * jbd2_journal_put_journal_head() to undo this.
2452 *
2453 * So the typical usage would be:
2454 *
2455 *      (Attach a journal_head if needed.  Increments b_jcount)
2456 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2457 *      ...
2458 *      (Get another reference for transaction)
2459 *      jbd2_journal_grab_journal_head(bh);
2460 *      jh->b_transaction = xxx;
2461 *      (Put original reference)
2462 *      jbd2_journal_put_journal_head(jh);
2463 */
2464
2465/*
2466 * Give a buffer_head a journal_head.
2467 *
2468 * May sleep.
2469 */
2470struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2471{
2472        struct journal_head *jh;
2473        struct journal_head *new_jh = NULL;
2474
2475repeat:
2476        if (!buffer_jbd(bh))
2477                new_jh = journal_alloc_journal_head();
2478
2479        jbd_lock_bh_journal_head(bh);
2480        if (buffer_jbd(bh)) {
2481                jh = bh2jh(bh);
2482        } else {
2483                J_ASSERT_BH(bh,
2484                        (atomic_read(&bh->b_count) > 0) ||
2485                        (bh->b_page && bh->b_page->mapping));
2486
2487                if (!new_jh) {
2488                        jbd_unlock_bh_journal_head(bh);
2489                        goto repeat;
2490                }
2491
2492                jh = new_jh;
2493                new_jh = NULL;          /* We consumed it */
2494                set_buffer_jbd(bh);
2495                bh->b_private = jh;
2496                jh->b_bh = bh;
2497                get_bh(bh);
2498                BUFFER_TRACE(bh, "added journal_head");
2499        }
2500        jh->b_jcount++;
2501        jbd_unlock_bh_journal_head(bh);
2502        if (new_jh)
2503                journal_free_journal_head(new_jh);
2504        return bh->b_private;
2505}
2506
2507/*
2508 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2509 * having a journal_head, return NULL
2510 */
2511struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2512{
2513        struct journal_head *jh = NULL;
2514
2515        jbd_lock_bh_journal_head(bh);
2516        if (buffer_jbd(bh)) {
2517                jh = bh2jh(bh);
2518                jh->b_jcount++;
2519        }
2520        jbd_unlock_bh_journal_head(bh);
2521        return jh;
2522}
2523
2524static void __journal_remove_journal_head(struct buffer_head *bh)
2525{
2526        struct journal_head *jh = bh2jh(bh);
2527
2528        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2529        J_ASSERT_JH(jh, jh->b_transaction == NULL);
2530        J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2531        J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2532        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2533        J_ASSERT_BH(bh, buffer_jbd(bh));
2534        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2535        BUFFER_TRACE(bh, "remove journal_head");
2536        if (jh->b_frozen_data) {
2537                printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2538                jbd2_free(jh->b_frozen_data, bh->b_size);
2539        }
2540        if (jh->b_committed_data) {
2541                printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2542                jbd2_free(jh->b_committed_data, bh->b_size);
2543        }
2544        bh->b_private = NULL;
2545        jh->b_bh = NULL;        /* debug, really */
2546        clear_buffer_jbd(bh);
2547        journal_free_journal_head(jh);
2548}
2549
2550/*
2551 * Drop a reference on the passed journal_head.  If it fell to zero then
2552 * release the journal_head from the buffer_head.
2553 */
2554void jbd2_journal_put_journal_head(struct journal_head *jh)
2555{
2556        struct buffer_head *bh = jh2bh(jh);
2557
2558        jbd_lock_bh_journal_head(bh);
2559        J_ASSERT_JH(jh, jh->b_jcount > 0);
2560        --jh->b_jcount;
2561        if (!jh->b_jcount) {
2562                __journal_remove_journal_head(bh);
2563                jbd_unlock_bh_journal_head(bh);
2564                __brelse(bh);
2565        } else
2566                jbd_unlock_bh_journal_head(bh);
2567}
2568
2569/*
2570 * Initialize jbd inode head
2571 */
2572void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2573{
2574        jinode->i_transaction = NULL;
2575        jinode->i_next_transaction = NULL;
2576        jinode->i_vfs_inode = inode;
2577        jinode->i_flags = 0;
2578        INIT_LIST_HEAD(&jinode->i_list);
2579}
2580
2581/*
2582 * Function to be called before we start removing inode from memory (i.e.,
2583 * clear_inode() is a fine place to be called from). It removes inode from
2584 * transaction's lists.
2585 */
2586void jbd2_journal_release_jbd_inode(journal_t *journal,
2587                                    struct jbd2_inode *jinode)
2588{
2589        if (!journal)
2590                return;
2591restart:
2592        spin_lock(&journal->j_list_lock);
2593        /* Is commit writing out inode - we have to wait */
2594        if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595                wait_queue_head_t *wq;
2596                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598                prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599                spin_unlock(&journal->j_list_lock);
2600                schedule();
2601                finish_wait(wq, &wait.wq_entry);
2602                goto restart;
2603        }
2604
2605        if (jinode->i_transaction) {
2606                list_del(&jinode->i_list);
2607                jinode->i_transaction = NULL;
2608        }
2609        spin_unlock(&journal->j_list_lock);
2610}
2611
2612
2613#ifdef CONFIG_PROC_FS
2614
2615#define JBD2_STATS_PROC_NAME "fs/jbd2"
2616
2617static void __init jbd2_create_jbd_stats_proc_entry(void)
2618{
2619        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620}
2621
2622static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623{
2624        if (proc_jbd2_stats)
2625                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626}
2627
2628#else
2629
2630#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632
2633#endif
2634
2635struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636
2637static int __init jbd2_journal_init_handle_cache(void)
2638{
2639        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2640        if (jbd2_handle_cache == NULL) {
2641                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2642                return -ENOMEM;
2643        }
2644        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2645        if (jbd2_inode_cache == NULL) {
2646                printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2647                kmem_cache_destroy(jbd2_handle_cache);
2648                return -ENOMEM;
2649        }
2650        return 0;
2651}
2652
2653static void jbd2_journal_destroy_handle_cache(void)
2654{
2655        if (jbd2_handle_cache)
2656                kmem_cache_destroy(jbd2_handle_cache);
2657        if (jbd2_inode_cache)
2658                kmem_cache_destroy(jbd2_inode_cache);
2659
2660}
2661
2662/*
2663 * Module startup and shutdown
2664 */
2665
2666static int __init journal_init_caches(void)
2667{
2668        int ret;
2669
2670        ret = jbd2_journal_init_revoke_caches();
2671        if (ret == 0)
2672                ret = jbd2_journal_init_journal_head_cache();
2673        if (ret == 0)
2674                ret = jbd2_journal_init_handle_cache();
2675        if (ret == 0)
2676                ret = jbd2_journal_init_transaction_cache();
2677        return ret;
2678}
2679
2680static void jbd2_journal_destroy_caches(void)
2681{
2682        jbd2_journal_destroy_revoke_caches();
2683        jbd2_journal_destroy_journal_head_cache();
2684        jbd2_journal_destroy_handle_cache();
2685        jbd2_journal_destroy_transaction_cache();
2686        jbd2_journal_destroy_slabs();
2687}
2688
2689static int __init journal_init(void)
2690{
2691        int ret;
2692
2693        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2694
2695        ret = journal_init_caches();
2696        if (ret == 0) {
2697                jbd2_create_jbd_stats_proc_entry();
2698        } else {
2699                jbd2_journal_destroy_caches();
2700        }
2701        return ret;
2702}
2703
2704static void __exit journal_exit(void)
2705{
2706#ifdef CONFIG_JBD2_DEBUG
2707        int n = atomic_read(&nr_journal_heads);
2708        if (n)
2709                printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2710#endif
2711        jbd2_remove_jbd_stats_proc_entry();
2712        jbd2_journal_destroy_caches();
2713}
2714
2715MODULE_LICENSE("GPL");
2716module_init(journal_init);
2717module_exit(journal_exit);
2718
2719