linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_inode.h"
  31#include "xfs_trans.h"
  32#include "xfs_log.h"
  33#include "xfs_log_priv.h"
  34#include "xfs_log_recover.h"
  35#include "xfs_inode_item.h"
  36#include "xfs_extfree_item.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_alloc.h"
  39#include "xfs_ialloc.h"
  40#include "xfs_quota.h"
  41#include "xfs_cksum.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_bmap_btree.h"
  45#include "xfs_error.h"
  46#include "xfs_dir2.h"
  47#include "xfs_rmap_item.h"
  48#include "xfs_buf_item.h"
  49#include "xfs_refcount_item.h"
  50#include "xfs_bmap_item.h"
  51
  52#define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
  53
  54STATIC int
  55xlog_find_zeroed(
  56        struct xlog     *,
  57        xfs_daddr_t     *);
  58STATIC int
  59xlog_clear_stale_blocks(
  60        struct xlog     *,
  61        xfs_lsn_t);
  62#if defined(DEBUG)
  63STATIC void
  64xlog_recover_check_summary(
  65        struct xlog *);
  66#else
  67#define xlog_recover_check_summary(log)
  68#endif
  69STATIC int
  70xlog_do_recovery_pass(
  71        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
  72
  73/*
  74 * This structure is used during recovery to record the buf log items which
  75 * have been canceled and should not be replayed.
  76 */
  77struct xfs_buf_cancel {
  78        xfs_daddr_t             bc_blkno;
  79        uint                    bc_len;
  80        int                     bc_refcount;
  81        struct list_head        bc_list;
  82};
  83
  84/*
  85 * Sector aligned buffer routines for buffer create/read/write/access
  86 */
  87
  88/*
  89 * Verify the log-relative block number and length in basic blocks are valid for
  90 * an operation involving the given XFS log buffer. Returns true if the fields
  91 * are valid, false otherwise.
  92 */
  93static inline bool
  94xlog_verify_bp(
  95        struct xlog     *log,
  96        xfs_daddr_t     blk_no,
  97        int             bbcount)
  98{
  99        if (blk_no < 0 || blk_no >= log->l_logBBsize)
 100                return false;
 101        if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
 102                return false;
 103        return true;
 104}
 105
 106/*
 107 * Allocate a buffer to hold log data.  The buffer needs to be able
 108 * to map to a range of nbblks basic blocks at any valid (basic
 109 * block) offset within the log.
 110 */
 111STATIC xfs_buf_t *
 112xlog_get_bp(
 113        struct xlog     *log,
 114        int             nbblks)
 115{
 116        struct xfs_buf  *bp;
 117
 118        /*
 119         * Pass log block 0 since we don't have an addr yet, buffer will be
 120         * verified on read.
 121         */
 122        if (!xlog_verify_bp(log, 0, nbblks)) {
 123                xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 124                        nbblks);
 125                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 126                return NULL;
 127        }
 128
 129        /*
 130         * We do log I/O in units of log sectors (a power-of-2
 131         * multiple of the basic block size), so we round up the
 132         * requested size to accommodate the basic blocks required
 133         * for complete log sectors.
 134         *
 135         * In addition, the buffer may be used for a non-sector-
 136         * aligned block offset, in which case an I/O of the
 137         * requested size could extend beyond the end of the
 138         * buffer.  If the requested size is only 1 basic block it
 139         * will never straddle a sector boundary, so this won't be
 140         * an issue.  Nor will this be a problem if the log I/O is
 141         * done in basic blocks (sector size 1).  But otherwise we
 142         * extend the buffer by one extra log sector to ensure
 143         * there's space to accommodate this possibility.
 144         */
 145        if (nbblks > 1 && log->l_sectBBsize > 1)
 146                nbblks += log->l_sectBBsize;
 147        nbblks = round_up(nbblks, log->l_sectBBsize);
 148
 149        bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
 150        if (bp)
 151                xfs_buf_unlock(bp);
 152        return bp;
 153}
 154
 155STATIC void
 156xlog_put_bp(
 157        xfs_buf_t       *bp)
 158{
 159        xfs_buf_free(bp);
 160}
 161
 162/*
 163 * Return the address of the start of the given block number's data
 164 * in a log buffer.  The buffer covers a log sector-aligned region.
 165 */
 166STATIC char *
 167xlog_align(
 168        struct xlog     *log,
 169        xfs_daddr_t     blk_no,
 170        int             nbblks,
 171        struct xfs_buf  *bp)
 172{
 173        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 174
 175        ASSERT(offset + nbblks <= bp->b_length);
 176        return bp->b_addr + BBTOB(offset);
 177}
 178
 179
 180/*
 181 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 182 */
 183STATIC int
 184xlog_bread_noalign(
 185        struct xlog     *log,
 186        xfs_daddr_t     blk_no,
 187        int             nbblks,
 188        struct xfs_buf  *bp)
 189{
 190        int             error;
 191
 192        if (!xlog_verify_bp(log, blk_no, nbblks)) {
 193                xfs_warn(log->l_mp,
 194                         "Invalid log block/length (0x%llx, 0x%x) for buffer",
 195                         blk_no, nbblks);
 196                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 197                return -EFSCORRUPTED;
 198        }
 199
 200        blk_no = round_down(blk_no, log->l_sectBBsize);
 201        nbblks = round_up(nbblks, log->l_sectBBsize);
 202
 203        ASSERT(nbblks > 0);
 204        ASSERT(nbblks <= bp->b_length);
 205
 206        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 207        bp->b_flags |= XBF_READ;
 208        bp->b_io_length = nbblks;
 209        bp->b_error = 0;
 210
 211        error = xfs_buf_submit_wait(bp);
 212        if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
 213                xfs_buf_ioerror_alert(bp, __func__);
 214        return error;
 215}
 216
 217STATIC int
 218xlog_bread(
 219        struct xlog     *log,
 220        xfs_daddr_t     blk_no,
 221        int             nbblks,
 222        struct xfs_buf  *bp,
 223        char            **offset)
 224{
 225        int             error;
 226
 227        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 228        if (error)
 229                return error;
 230
 231        *offset = xlog_align(log, blk_no, nbblks, bp);
 232        return 0;
 233}
 234
 235/*
 236 * Read at an offset into the buffer. Returns with the buffer in it's original
 237 * state regardless of the result of the read.
 238 */
 239STATIC int
 240xlog_bread_offset(
 241        struct xlog     *log,
 242        xfs_daddr_t     blk_no,         /* block to read from */
 243        int             nbblks,         /* blocks to read */
 244        struct xfs_buf  *bp,
 245        char            *offset)
 246{
 247        char            *orig_offset = bp->b_addr;
 248        int             orig_len = BBTOB(bp->b_length);
 249        int             error, error2;
 250
 251        error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
 252        if (error)
 253                return error;
 254
 255        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 256
 257        /* must reset buffer pointer even on error */
 258        error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
 259        if (error)
 260                return error;
 261        return error2;
 262}
 263
 264/*
 265 * Write out the buffer at the given block for the given number of blocks.
 266 * The buffer is kept locked across the write and is returned locked.
 267 * This can only be used for synchronous log writes.
 268 */
 269STATIC int
 270xlog_bwrite(
 271        struct xlog     *log,
 272        xfs_daddr_t     blk_no,
 273        int             nbblks,
 274        struct xfs_buf  *bp)
 275{
 276        int             error;
 277
 278        if (!xlog_verify_bp(log, blk_no, nbblks)) {
 279                xfs_warn(log->l_mp,
 280                         "Invalid log block/length (0x%llx, 0x%x) for buffer",
 281                         blk_no, nbblks);
 282                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 283                return -EFSCORRUPTED;
 284        }
 285
 286        blk_no = round_down(blk_no, log->l_sectBBsize);
 287        nbblks = round_up(nbblks, log->l_sectBBsize);
 288
 289        ASSERT(nbblks > 0);
 290        ASSERT(nbblks <= bp->b_length);
 291
 292        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 293        xfs_buf_hold(bp);
 294        xfs_buf_lock(bp);
 295        bp->b_io_length = nbblks;
 296        bp->b_error = 0;
 297
 298        error = xfs_bwrite(bp);
 299        if (error)
 300                xfs_buf_ioerror_alert(bp, __func__);
 301        xfs_buf_relse(bp);
 302        return error;
 303}
 304
 305#ifdef DEBUG
 306/*
 307 * dump debug superblock and log record information
 308 */
 309STATIC void
 310xlog_header_check_dump(
 311        xfs_mount_t             *mp,
 312        xlog_rec_header_t       *head)
 313{
 314        xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
 315                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 316        xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
 317                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 318}
 319#else
 320#define xlog_header_check_dump(mp, head)
 321#endif
 322
 323/*
 324 * check log record header for recovery
 325 */
 326STATIC int
 327xlog_header_check_recover(
 328        xfs_mount_t             *mp,
 329        xlog_rec_header_t       *head)
 330{
 331        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 332
 333        /*
 334         * IRIX doesn't write the h_fmt field and leaves it zeroed
 335         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 336         * a dirty log created in IRIX.
 337         */
 338        if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
 339                xfs_warn(mp,
 340        "dirty log written in incompatible format - can't recover");
 341                xlog_header_check_dump(mp, head);
 342                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 343                                 XFS_ERRLEVEL_HIGH, mp);
 344                return -EFSCORRUPTED;
 345        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 346                xfs_warn(mp,
 347        "dirty log entry has mismatched uuid - can't recover");
 348                xlog_header_check_dump(mp, head);
 349                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 350                                 XFS_ERRLEVEL_HIGH, mp);
 351                return -EFSCORRUPTED;
 352        }
 353        return 0;
 354}
 355
 356/*
 357 * read the head block of the log and check the header
 358 */
 359STATIC int
 360xlog_header_check_mount(
 361        xfs_mount_t             *mp,
 362        xlog_rec_header_t       *head)
 363{
 364        ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
 365
 366        if (uuid_is_null(&head->h_fs_uuid)) {
 367                /*
 368                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 369                 * h_fs_uuid is null, we assume this log was last mounted
 370                 * by IRIX and continue.
 371                 */
 372                xfs_warn(mp, "null uuid in log - IRIX style log");
 373        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 374                xfs_warn(mp, "log has mismatched uuid - can't recover");
 375                xlog_header_check_dump(mp, head);
 376                XFS_ERROR_REPORT("xlog_header_check_mount",
 377                                 XFS_ERRLEVEL_HIGH, mp);
 378                return -EFSCORRUPTED;
 379        }
 380        return 0;
 381}
 382
 383STATIC void
 384xlog_recover_iodone(
 385        struct xfs_buf  *bp)
 386{
 387        if (bp->b_error) {
 388                /*
 389                 * We're not going to bother about retrying
 390                 * this during recovery. One strike!
 391                 */
 392                if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
 393                        xfs_buf_ioerror_alert(bp, __func__);
 394                        xfs_force_shutdown(bp->b_target->bt_mount,
 395                                                SHUTDOWN_META_IO_ERROR);
 396                }
 397        }
 398
 399        /*
 400         * On v5 supers, a bli could be attached to update the metadata LSN.
 401         * Clean it up.
 402         */
 403        if (bp->b_fspriv)
 404                xfs_buf_item_relse(bp);
 405        ASSERT(bp->b_fspriv == NULL);
 406
 407        bp->b_iodone = NULL;
 408        xfs_buf_ioend(bp);
 409}
 410
 411/*
 412 * This routine finds (to an approximation) the first block in the physical
 413 * log which contains the given cycle.  It uses a binary search algorithm.
 414 * Note that the algorithm can not be perfect because the disk will not
 415 * necessarily be perfect.
 416 */
 417STATIC int
 418xlog_find_cycle_start(
 419        struct xlog     *log,
 420        struct xfs_buf  *bp,
 421        xfs_daddr_t     first_blk,
 422        xfs_daddr_t     *last_blk,
 423        uint            cycle)
 424{
 425        char            *offset;
 426        xfs_daddr_t     mid_blk;
 427        xfs_daddr_t     end_blk;
 428        uint            mid_cycle;
 429        int             error;
 430
 431        end_blk = *last_blk;
 432        mid_blk = BLK_AVG(first_blk, end_blk);
 433        while (mid_blk != first_blk && mid_blk != end_blk) {
 434                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 435                if (error)
 436                        return error;
 437                mid_cycle = xlog_get_cycle(offset);
 438                if (mid_cycle == cycle)
 439                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 440                else
 441                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 442                mid_blk = BLK_AVG(first_blk, end_blk);
 443        }
 444        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 445               (mid_blk == end_blk && mid_blk-1 == first_blk));
 446
 447        *last_blk = end_blk;
 448
 449        return 0;
 450}
 451
 452/*
 453 * Check that a range of blocks does not contain stop_on_cycle_no.
 454 * Fill in *new_blk with the block offset where such a block is
 455 * found, or with -1 (an invalid block number) if there is no such
 456 * block in the range.  The scan needs to occur from front to back
 457 * and the pointer into the region must be updated since a later
 458 * routine will need to perform another test.
 459 */
 460STATIC int
 461xlog_find_verify_cycle(
 462        struct xlog     *log,
 463        xfs_daddr_t     start_blk,
 464        int             nbblks,
 465        uint            stop_on_cycle_no,
 466        xfs_daddr_t     *new_blk)
 467{
 468        xfs_daddr_t     i, j;
 469        uint            cycle;
 470        xfs_buf_t       *bp;
 471        xfs_daddr_t     bufblks;
 472        char            *buf = NULL;
 473        int             error = 0;
 474
 475        /*
 476         * Greedily allocate a buffer big enough to handle the full
 477         * range of basic blocks we'll be examining.  If that fails,
 478         * try a smaller size.  We need to be able to read at least
 479         * a log sector, or we're out of luck.
 480         */
 481        bufblks = 1 << ffs(nbblks);
 482        while (bufblks > log->l_logBBsize)
 483                bufblks >>= 1;
 484        while (!(bp = xlog_get_bp(log, bufblks))) {
 485                bufblks >>= 1;
 486                if (bufblks < log->l_sectBBsize)
 487                        return -ENOMEM;
 488        }
 489
 490        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 491                int     bcount;
 492
 493                bcount = min(bufblks, (start_blk + nbblks - i));
 494
 495                error = xlog_bread(log, i, bcount, bp, &buf);
 496                if (error)
 497                        goto out;
 498
 499                for (j = 0; j < bcount; j++) {
 500                        cycle = xlog_get_cycle(buf);
 501                        if (cycle == stop_on_cycle_no) {
 502                                *new_blk = i+j;
 503                                goto out;
 504                        }
 505
 506                        buf += BBSIZE;
 507                }
 508        }
 509
 510        *new_blk = -1;
 511
 512out:
 513        xlog_put_bp(bp);
 514        return error;
 515}
 516
 517/*
 518 * Potentially backup over partial log record write.
 519 *
 520 * In the typical case, last_blk is the number of the block directly after
 521 * a good log record.  Therefore, we subtract one to get the block number
 522 * of the last block in the given buffer.  extra_bblks contains the number
 523 * of blocks we would have read on a previous read.  This happens when the
 524 * last log record is split over the end of the physical log.
 525 *
 526 * extra_bblks is the number of blocks potentially verified on a previous
 527 * call to this routine.
 528 */
 529STATIC int
 530xlog_find_verify_log_record(
 531        struct xlog             *log,
 532        xfs_daddr_t             start_blk,
 533        xfs_daddr_t             *last_blk,
 534        int                     extra_bblks)
 535{
 536        xfs_daddr_t             i;
 537        xfs_buf_t               *bp;
 538        char                    *offset = NULL;
 539        xlog_rec_header_t       *head = NULL;
 540        int                     error = 0;
 541        int                     smallmem = 0;
 542        int                     num_blks = *last_blk - start_blk;
 543        int                     xhdrs;
 544
 545        ASSERT(start_blk != 0 || *last_blk != start_blk);
 546
 547        if (!(bp = xlog_get_bp(log, num_blks))) {
 548                if (!(bp = xlog_get_bp(log, 1)))
 549                        return -ENOMEM;
 550                smallmem = 1;
 551        } else {
 552                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 553                if (error)
 554                        goto out;
 555                offset += ((num_blks - 1) << BBSHIFT);
 556        }
 557
 558        for (i = (*last_blk) - 1; i >= 0; i--) {
 559                if (i < start_blk) {
 560                        /* valid log record not found */
 561                        xfs_warn(log->l_mp,
 562                "Log inconsistent (didn't find previous header)");
 563                        ASSERT(0);
 564                        error = -EIO;
 565                        goto out;
 566                }
 567
 568                if (smallmem) {
 569                        error = xlog_bread(log, i, 1, bp, &offset);
 570                        if (error)
 571                                goto out;
 572                }
 573
 574                head = (xlog_rec_header_t *)offset;
 575
 576                if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
 577                        break;
 578
 579                if (!smallmem)
 580                        offset -= BBSIZE;
 581        }
 582
 583        /*
 584         * We hit the beginning of the physical log & still no header.  Return
 585         * to caller.  If caller can handle a return of -1, then this routine
 586         * will be called again for the end of the physical log.
 587         */
 588        if (i == -1) {
 589                error = 1;
 590                goto out;
 591        }
 592
 593        /*
 594         * We have the final block of the good log (the first block
 595         * of the log record _before_ the head. So we check the uuid.
 596         */
 597        if ((error = xlog_header_check_mount(log->l_mp, head)))
 598                goto out;
 599
 600        /*
 601         * We may have found a log record header before we expected one.
 602         * last_blk will be the 1st block # with a given cycle #.  We may end
 603         * up reading an entire log record.  In this case, we don't want to
 604         * reset last_blk.  Only when last_blk points in the middle of a log
 605         * record do we update last_blk.
 606         */
 607        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 608                uint    h_size = be32_to_cpu(head->h_size);
 609
 610                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 611                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 612                        xhdrs++;
 613        } else {
 614                xhdrs = 1;
 615        }
 616
 617        if (*last_blk - i + extra_bblks !=
 618            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 619                *last_blk = i;
 620
 621out:
 622        xlog_put_bp(bp);
 623        return error;
 624}
 625
 626/*
 627 * Head is defined to be the point of the log where the next log write
 628 * could go.  This means that incomplete LR writes at the end are
 629 * eliminated when calculating the head.  We aren't guaranteed that previous
 630 * LR have complete transactions.  We only know that a cycle number of
 631 * current cycle number -1 won't be present in the log if we start writing
 632 * from our current block number.
 633 *
 634 * last_blk contains the block number of the first block with a given
 635 * cycle number.
 636 *
 637 * Return: zero if normal, non-zero if error.
 638 */
 639STATIC int
 640xlog_find_head(
 641        struct xlog     *log,
 642        xfs_daddr_t     *return_head_blk)
 643{
 644        xfs_buf_t       *bp;
 645        char            *offset;
 646        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 647        int             num_scan_bblks;
 648        uint            first_half_cycle, last_half_cycle;
 649        uint            stop_on_cycle;
 650        int             error, log_bbnum = log->l_logBBsize;
 651
 652        /* Is the end of the log device zeroed? */
 653        error = xlog_find_zeroed(log, &first_blk);
 654        if (error < 0) {
 655                xfs_warn(log->l_mp, "empty log check failed");
 656                return error;
 657        }
 658        if (error == 1) {
 659                *return_head_blk = first_blk;
 660
 661                /* Is the whole lot zeroed? */
 662                if (!first_blk) {
 663                        /* Linux XFS shouldn't generate totally zeroed logs -
 664                         * mkfs etc write a dummy unmount record to a fresh
 665                         * log so we can store the uuid in there
 666                         */
 667                        xfs_warn(log->l_mp, "totally zeroed log");
 668                }
 669
 670                return 0;
 671        }
 672
 673        first_blk = 0;                  /* get cycle # of 1st block */
 674        bp = xlog_get_bp(log, 1);
 675        if (!bp)
 676                return -ENOMEM;
 677
 678        error = xlog_bread(log, 0, 1, bp, &offset);
 679        if (error)
 680                goto bp_err;
 681
 682        first_half_cycle = xlog_get_cycle(offset);
 683
 684        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 685        error = xlog_bread(log, last_blk, 1, bp, &offset);
 686        if (error)
 687                goto bp_err;
 688
 689        last_half_cycle = xlog_get_cycle(offset);
 690        ASSERT(last_half_cycle != 0);
 691
 692        /*
 693         * If the 1st half cycle number is equal to the last half cycle number,
 694         * then the entire log is stamped with the same cycle number.  In this
 695         * case, head_blk can't be set to zero (which makes sense).  The below
 696         * math doesn't work out properly with head_blk equal to zero.  Instead,
 697         * we set it to log_bbnum which is an invalid block number, but this
 698         * value makes the math correct.  If head_blk doesn't changed through
 699         * all the tests below, *head_blk is set to zero at the very end rather
 700         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 701         * in a circular file.
 702         */
 703        if (first_half_cycle == last_half_cycle) {
 704                /*
 705                 * In this case we believe that the entire log should have
 706                 * cycle number last_half_cycle.  We need to scan backwards
 707                 * from the end verifying that there are no holes still
 708                 * containing last_half_cycle - 1.  If we find such a hole,
 709                 * then the start of that hole will be the new head.  The
 710                 * simple case looks like
 711                 *        x | x ... | x - 1 | x
 712                 * Another case that fits this picture would be
 713                 *        x | x + 1 | x ... | x
 714                 * In this case the head really is somewhere at the end of the
 715                 * log, as one of the latest writes at the beginning was
 716                 * incomplete.
 717                 * One more case is
 718                 *        x | x + 1 | x ... | x - 1 | x
 719                 * This is really the combination of the above two cases, and
 720                 * the head has to end up at the start of the x-1 hole at the
 721                 * end of the log.
 722                 *
 723                 * In the 256k log case, we will read from the beginning to the
 724                 * end of the log and search for cycle numbers equal to x-1.
 725                 * We don't worry about the x+1 blocks that we encounter,
 726                 * because we know that they cannot be the head since the log
 727                 * started with x.
 728                 */
 729                head_blk = log_bbnum;
 730                stop_on_cycle = last_half_cycle - 1;
 731        } else {
 732                /*
 733                 * In this case we want to find the first block with cycle
 734                 * number matching last_half_cycle.  We expect the log to be
 735                 * some variation on
 736                 *        x + 1 ... | x ... | x
 737                 * The first block with cycle number x (last_half_cycle) will
 738                 * be where the new head belongs.  First we do a binary search
 739                 * for the first occurrence of last_half_cycle.  The binary
 740                 * search may not be totally accurate, so then we scan back
 741                 * from there looking for occurrences of last_half_cycle before
 742                 * us.  If that backwards scan wraps around the beginning of
 743                 * the log, then we look for occurrences of last_half_cycle - 1
 744                 * at the end of the log.  The cases we're looking for look
 745                 * like
 746                 *                               v binary search stopped here
 747                 *        x + 1 ... | x | x + 1 | x ... | x
 748                 *                   ^ but we want to locate this spot
 749                 * or
 750                 *        <---------> less than scan distance
 751                 *        x + 1 ... | x ... | x - 1 | x
 752                 *                           ^ we want to locate this spot
 753                 */
 754                stop_on_cycle = last_half_cycle;
 755                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 756                                                &head_blk, last_half_cycle)))
 757                        goto bp_err;
 758        }
 759
 760        /*
 761         * Now validate the answer.  Scan back some number of maximum possible
 762         * blocks and make sure each one has the expected cycle number.  The
 763         * maximum is determined by the total possible amount of buffering
 764         * in the in-core log.  The following number can be made tighter if
 765         * we actually look at the block size of the filesystem.
 766         */
 767        num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
 768        if (head_blk >= num_scan_bblks) {
 769                /*
 770                 * We are guaranteed that the entire check can be performed
 771                 * in one buffer.
 772                 */
 773                start_blk = head_blk - num_scan_bblks;
 774                if ((error = xlog_find_verify_cycle(log,
 775                                                start_blk, num_scan_bblks,
 776                                                stop_on_cycle, &new_blk)))
 777                        goto bp_err;
 778                if (new_blk != -1)
 779                        head_blk = new_blk;
 780        } else {                /* need to read 2 parts of log */
 781                /*
 782                 * We are going to scan backwards in the log in two parts.
 783                 * First we scan the physical end of the log.  In this part
 784                 * of the log, we are looking for blocks with cycle number
 785                 * last_half_cycle - 1.
 786                 * If we find one, then we know that the log starts there, as
 787                 * we've found a hole that didn't get written in going around
 788                 * the end of the physical log.  The simple case for this is
 789                 *        x + 1 ... | x ... | x - 1 | x
 790                 *        <---------> less than scan distance
 791                 * If all of the blocks at the end of the log have cycle number
 792                 * last_half_cycle, then we check the blocks at the start of
 793                 * the log looking for occurrences of last_half_cycle.  If we
 794                 * find one, then our current estimate for the location of the
 795                 * first occurrence of last_half_cycle is wrong and we move
 796                 * back to the hole we've found.  This case looks like
 797                 *        x + 1 ... | x | x + 1 | x ...
 798                 *                               ^ binary search stopped here
 799                 * Another case we need to handle that only occurs in 256k
 800                 * logs is
 801                 *        x + 1 ... | x ... | x+1 | x ...
 802                 *                   ^ binary search stops here
 803                 * In a 256k log, the scan at the end of the log will see the
 804                 * x + 1 blocks.  We need to skip past those since that is
 805                 * certainly not the head of the log.  By searching for
 806                 * last_half_cycle-1 we accomplish that.
 807                 */
 808                ASSERT(head_blk <= INT_MAX &&
 809                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 810                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 811                if ((error = xlog_find_verify_cycle(log, start_blk,
 812                                        num_scan_bblks - (int)head_blk,
 813                                        (stop_on_cycle - 1), &new_blk)))
 814                        goto bp_err;
 815                if (new_blk != -1) {
 816                        head_blk = new_blk;
 817                        goto validate_head;
 818                }
 819
 820                /*
 821                 * Scan beginning of log now.  The last part of the physical
 822                 * log is good.  This scan needs to verify that it doesn't find
 823                 * the last_half_cycle.
 824                 */
 825                start_blk = 0;
 826                ASSERT(head_blk <= INT_MAX);
 827                if ((error = xlog_find_verify_cycle(log,
 828                                        start_blk, (int)head_blk,
 829                                        stop_on_cycle, &new_blk)))
 830                        goto bp_err;
 831                if (new_blk != -1)
 832                        head_blk = new_blk;
 833        }
 834
 835validate_head:
 836        /*
 837         * Now we need to make sure head_blk is not pointing to a block in
 838         * the middle of a log record.
 839         */
 840        num_scan_bblks = XLOG_REC_SHIFT(log);
 841        if (head_blk >= num_scan_bblks) {
 842                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 843
 844                /* start ptr at last block ptr before head_blk */
 845                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 846                if (error == 1)
 847                        error = -EIO;
 848                if (error)
 849                        goto bp_err;
 850        } else {
 851                start_blk = 0;
 852                ASSERT(head_blk <= INT_MAX);
 853                error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
 854                if (error < 0)
 855                        goto bp_err;
 856                if (error == 1) {
 857                        /* We hit the beginning of the log during our search */
 858                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 859                        new_blk = log_bbnum;
 860                        ASSERT(start_blk <= INT_MAX &&
 861                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 862                        ASSERT(head_blk <= INT_MAX);
 863                        error = xlog_find_verify_log_record(log, start_blk,
 864                                                        &new_blk, (int)head_blk);
 865                        if (error == 1)
 866                                error = -EIO;
 867                        if (error)
 868                                goto bp_err;
 869                        if (new_blk != log_bbnum)
 870                                head_blk = new_blk;
 871                } else if (error)
 872                        goto bp_err;
 873        }
 874
 875        xlog_put_bp(bp);
 876        if (head_blk == log_bbnum)
 877                *return_head_blk = 0;
 878        else
 879                *return_head_blk = head_blk;
 880        /*
 881         * When returning here, we have a good block number.  Bad block
 882         * means that during a previous crash, we didn't have a clean break
 883         * from cycle number N to cycle number N-1.  In this case, we need
 884         * to find the first block with cycle number N-1.
 885         */
 886        return 0;
 887
 888 bp_err:
 889        xlog_put_bp(bp);
 890
 891        if (error)
 892                xfs_warn(log->l_mp, "failed to find log head");
 893        return error;
 894}
 895
 896/*
 897 * Seek backwards in the log for log record headers.
 898 *
 899 * Given a starting log block, walk backwards until we find the provided number
 900 * of records or hit the provided tail block. The return value is the number of
 901 * records encountered or a negative error code. The log block and buffer
 902 * pointer of the last record seen are returned in rblk and rhead respectively.
 903 */
 904STATIC int
 905xlog_rseek_logrec_hdr(
 906        struct xlog             *log,
 907        xfs_daddr_t             head_blk,
 908        xfs_daddr_t             tail_blk,
 909        int                     count,
 910        struct xfs_buf          *bp,
 911        xfs_daddr_t             *rblk,
 912        struct xlog_rec_header  **rhead,
 913        bool                    *wrapped)
 914{
 915        int                     i;
 916        int                     error;
 917        int                     found = 0;
 918        char                    *offset = NULL;
 919        xfs_daddr_t             end_blk;
 920
 921        *wrapped = false;
 922
 923        /*
 924         * Walk backwards from the head block until we hit the tail or the first
 925         * block in the log.
 926         */
 927        end_blk = head_blk > tail_blk ? tail_blk : 0;
 928        for (i = (int) head_blk - 1; i >= end_blk; i--) {
 929                error = xlog_bread(log, i, 1, bp, &offset);
 930                if (error)
 931                        goto out_error;
 932
 933                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 934                        *rblk = i;
 935                        *rhead = (struct xlog_rec_header *) offset;
 936                        if (++found == count)
 937                                break;
 938                }
 939        }
 940
 941        /*
 942         * If we haven't hit the tail block or the log record header count,
 943         * start looking again from the end of the physical log. Note that
 944         * callers can pass head == tail if the tail is not yet known.
 945         */
 946        if (tail_blk >= head_blk && found != count) {
 947                for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
 948                        error = xlog_bread(log, i, 1, bp, &offset);
 949                        if (error)
 950                                goto out_error;
 951
 952                        if (*(__be32 *)offset ==
 953                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
 954                                *wrapped = true;
 955                                *rblk = i;
 956                                *rhead = (struct xlog_rec_header *) offset;
 957                                if (++found == count)
 958                                        break;
 959                        }
 960                }
 961        }
 962
 963        return found;
 964
 965out_error:
 966        return error;
 967}
 968
 969/*
 970 * Seek forward in the log for log record headers.
 971 *
 972 * Given head and tail blocks, walk forward from the tail block until we find
 973 * the provided number of records or hit the head block. The return value is the
 974 * number of records encountered or a negative error code. The log block and
 975 * buffer pointer of the last record seen are returned in rblk and rhead
 976 * respectively.
 977 */
 978STATIC int
 979xlog_seek_logrec_hdr(
 980        struct xlog             *log,
 981        xfs_daddr_t             head_blk,
 982        xfs_daddr_t             tail_blk,
 983        int                     count,
 984        struct xfs_buf          *bp,
 985        xfs_daddr_t             *rblk,
 986        struct xlog_rec_header  **rhead,
 987        bool                    *wrapped)
 988{
 989        int                     i;
 990        int                     error;
 991        int                     found = 0;
 992        char                    *offset = NULL;
 993        xfs_daddr_t             end_blk;
 994
 995        *wrapped = false;
 996
 997        /*
 998         * Walk forward from the tail block until we hit the head or the last
 999         * block in the log.
1000         */
1001        end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1002        for (i = (int) tail_blk; i <= end_blk; i++) {
1003                error = xlog_bread(log, i, 1, bp, &offset);
1004                if (error)
1005                        goto out_error;
1006
1007                if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1008                        *rblk = i;
1009                        *rhead = (struct xlog_rec_header *) offset;
1010                        if (++found == count)
1011                                break;
1012                }
1013        }
1014
1015        /*
1016         * If we haven't hit the head block or the log record header count,
1017         * start looking again from the start of the physical log.
1018         */
1019        if (tail_blk > head_blk && found != count) {
1020                for (i = 0; i < (int) head_blk; i++) {
1021                        error = xlog_bread(log, i, 1, bp, &offset);
1022                        if (error)
1023                                goto out_error;
1024
1025                        if (*(__be32 *)offset ==
1026                            cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1027                                *wrapped = true;
1028                                *rblk = i;
1029                                *rhead = (struct xlog_rec_header *) offset;
1030                                if (++found == count)
1031                                        break;
1032                        }
1033                }
1034        }
1035
1036        return found;
1037
1038out_error:
1039        return error;
1040}
1041
1042/*
1043 * Calculate distance from head to tail (i.e., unused space in the log).
1044 */
1045static inline int
1046xlog_tail_distance(
1047        struct xlog     *log,
1048        xfs_daddr_t     head_blk,
1049        xfs_daddr_t     tail_blk)
1050{
1051        if (head_blk < tail_blk)
1052                return tail_blk - head_blk;
1053
1054        return tail_blk + (log->l_logBBsize - head_blk);
1055}
1056
1057/*
1058 * Verify the log tail. This is particularly important when torn or incomplete
1059 * writes have been detected near the front of the log and the head has been
1060 * walked back accordingly.
1061 *
1062 * We also have to handle the case where the tail was pinned and the head
1063 * blocked behind the tail right before a crash. If the tail had been pushed
1064 * immediately prior to the crash and the subsequent checkpoint was only
1065 * partially written, it's possible it overwrote the last referenced tail in the
1066 * log with garbage. This is not a coherency problem because the tail must have
1067 * been pushed before it can be overwritten, but appears as log corruption to
1068 * recovery because we have no way to know the tail was updated if the
1069 * subsequent checkpoint didn't write successfully.
1070 *
1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072 * offending record is within max iclog bufs from the head, walk the tail
1073 * forward and retry until a valid tail is found or corruption is detected out
1074 * of the range of a possible overwrite.
1075 */
1076STATIC int
1077xlog_verify_tail(
1078        struct xlog             *log,
1079        xfs_daddr_t             head_blk,
1080        xfs_daddr_t             *tail_blk,
1081        int                     hsize)
1082{
1083        struct xlog_rec_header  *thead;
1084        struct xfs_buf          *bp;
1085        xfs_daddr_t             first_bad;
1086        int                     error = 0;
1087        bool                    wrapped;
1088        xfs_daddr_t             tmp_tail;
1089        xfs_daddr_t             orig_tail = *tail_blk;
1090
1091        bp = xlog_get_bp(log, 1);
1092        if (!bp)
1093                return -ENOMEM;
1094
1095        /*
1096         * Make sure the tail points to a record (returns positive count on
1097         * success).
1098         */
1099        error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1100                        &tmp_tail, &thead, &wrapped);
1101        if (error < 0)
1102                goto out;
1103        if (*tail_blk != tmp_tail)
1104                *tail_blk = tmp_tail;
1105
1106        /*
1107         * Run a CRC check from the tail to the head. We can't just check
1108         * MAX_ICLOGS records past the tail because the tail may point to stale
1109         * blocks cleared during the search for the head/tail. These blocks are
1110         * overwritten with zero-length records and thus record count is not a
1111         * reliable indicator of the iclog state before a crash.
1112         */
1113        first_bad = 0;
1114        error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1115                                      XLOG_RECOVER_CRCPASS, &first_bad);
1116        while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1117                int     tail_distance;
1118
1119                /*
1120                 * Is corruption within range of the head? If so, retry from
1121                 * the next record. Otherwise return an error.
1122                 */
1123                tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1124                if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1125                        break;
1126
1127                /* skip to the next record; returns positive count on success */
1128                error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1129                                &tmp_tail, &thead, &wrapped);
1130                if (error < 0)
1131                        goto out;
1132
1133                *tail_blk = tmp_tail;
1134                first_bad = 0;
1135                error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1136                                              XLOG_RECOVER_CRCPASS, &first_bad);
1137        }
1138
1139        if (!error && *tail_blk != orig_tail)
1140                xfs_warn(log->l_mp,
1141                "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142                         orig_tail, *tail_blk);
1143out:
1144        xlog_put_bp(bp);
1145        return error;
1146}
1147
1148/*
1149 * Detect and trim torn writes from the head of the log.
1150 *
1151 * Storage without sector atomicity guarantees can result in torn writes in the
1152 * log in the event of a crash. Our only means to detect this scenario is via
1153 * CRC verification. While we can't always be certain that CRC verification
1154 * failure is due to a torn write vs. an unrelated corruption, we do know that
1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157 * the log and treat failures in this range as torn writes as a matter of
1158 * policy. In the event of CRC failure, the head is walked back to the last good
1159 * record in the log and the tail is updated from that record and verified.
1160 */
1161STATIC int
1162xlog_verify_head(
1163        struct xlog             *log,
1164        xfs_daddr_t             *head_blk,      /* in/out: unverified head */
1165        xfs_daddr_t             *tail_blk,      /* out: tail block */
1166        struct xfs_buf          *bp,
1167        xfs_daddr_t             *rhead_blk,     /* start blk of last record */
1168        struct xlog_rec_header  **rhead,        /* ptr to last record */
1169        bool                    *wrapped)       /* last rec. wraps phys. log */
1170{
1171        struct xlog_rec_header  *tmp_rhead;
1172        struct xfs_buf          *tmp_bp;
1173        xfs_daddr_t             first_bad;
1174        xfs_daddr_t             tmp_rhead_blk;
1175        int                     found;
1176        int                     error;
1177        bool                    tmp_wrapped;
1178
1179        /*
1180         * Check the head of the log for torn writes. Search backwards from the
1181         * head until we hit the tail or the maximum number of log record I/Os
1182         * that could have been in flight at one time. Use a temporary buffer so
1183         * we don't trash the rhead/bp pointers from the caller.
1184         */
1185        tmp_bp = xlog_get_bp(log, 1);
1186        if (!tmp_bp)
1187                return -ENOMEM;
1188        error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1189                                      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1190                                      &tmp_rhead, &tmp_wrapped);
1191        xlog_put_bp(tmp_bp);
1192        if (error < 0)
1193                return error;
1194
1195        /*
1196         * Now run a CRC verification pass over the records starting at the
1197         * block found above to the current head. If a CRC failure occurs, the
1198         * log block of the first bad record is saved in first_bad.
1199         */
1200        error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1201                                      XLOG_RECOVER_CRCPASS, &first_bad);
1202        if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1203                /*
1204                 * We've hit a potential torn write. Reset the error and warn
1205                 * about it.
1206                 */
1207                error = 0;
1208                xfs_warn(log->l_mp,
1209"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210                         first_bad, *head_blk);
1211
1212                /*
1213                 * Get the header block and buffer pointer for the last good
1214                 * record before the bad record.
1215                 *
1216                 * Note that xlog_find_tail() clears the blocks at the new head
1217                 * (i.e., the records with invalid CRC) if the cycle number
1218                 * matches the the current cycle.
1219                 */
1220                found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1221                                              rhead_blk, rhead, wrapped);
1222                if (found < 0)
1223                        return found;
1224                if (found == 0)         /* XXX: right thing to do here? */
1225                        return -EIO;
1226
1227                /*
1228                 * Reset the head block to the starting block of the first bad
1229                 * log record and set the tail block based on the last good
1230                 * record.
1231                 *
1232                 * Bail out if the updated head/tail match as this indicates
1233                 * possible corruption outside of the acceptable
1234                 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1235                 */
1236                *head_blk = first_bad;
1237                *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1238                if (*head_blk == *tail_blk) {
1239                        ASSERT(0);
1240                        return 0;
1241                }
1242        }
1243        if (error)
1244                return error;
1245
1246        return xlog_verify_tail(log, *head_blk, tail_blk,
1247                                be32_to_cpu((*rhead)->h_size));
1248}
1249
1250/*
1251 * Check whether the head of the log points to an unmount record. In other
1252 * words, determine whether the log is clean. If so, update the in-core state
1253 * appropriately.
1254 */
1255static int
1256xlog_check_unmount_rec(
1257        struct xlog             *log,
1258        xfs_daddr_t             *head_blk,
1259        xfs_daddr_t             *tail_blk,
1260        struct xlog_rec_header  *rhead,
1261        xfs_daddr_t             rhead_blk,
1262        struct xfs_buf          *bp,
1263        bool                    *clean)
1264{
1265        struct xlog_op_header   *op_head;
1266        xfs_daddr_t             umount_data_blk;
1267        xfs_daddr_t             after_umount_blk;
1268        int                     hblks;
1269        int                     error;
1270        char                    *offset;
1271
1272        *clean = false;
1273
1274        /*
1275         * Look for unmount record. If we find it, then we know there was a
1276         * clean unmount. Since 'i' could be the last block in the physical
1277         * log, we convert to a log block before comparing to the head_blk.
1278         *
1279         * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280         * below. We won't want to clear the unmount record if there is one, so
1281         * we pass the lsn of the unmount record rather than the block after it.
1282         */
1283        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1284                int     h_size = be32_to_cpu(rhead->h_size);
1285                int     h_version = be32_to_cpu(rhead->h_version);
1286
1287                if ((h_version & XLOG_VERSION_2) &&
1288                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1289                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1290                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
1291                                hblks++;
1292                } else {
1293                        hblks = 1;
1294                }
1295        } else {
1296                hblks = 1;
1297        }
1298        after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1299        after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1300        if (*head_blk == after_umount_blk &&
1301            be32_to_cpu(rhead->h_num_logops) == 1) {
1302                umount_data_blk = rhead_blk + hblks;
1303                umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1304                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1305                if (error)
1306                        return error;
1307
1308                op_head = (struct xlog_op_header *)offset;
1309                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1310                        /*
1311                         * Set tail and last sync so that newly written log
1312                         * records will point recovery to after the current
1313                         * unmount record.
1314                         */
1315                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
1316                                        log->l_curr_cycle, after_umount_blk);
1317                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1318                                        log->l_curr_cycle, after_umount_blk);
1319                        *tail_blk = after_umount_blk;
1320
1321                        *clean = true;
1322                }
1323        }
1324
1325        return 0;
1326}
1327
1328static void
1329xlog_set_state(
1330        struct xlog             *log,
1331        xfs_daddr_t             head_blk,
1332        struct xlog_rec_header  *rhead,
1333        xfs_daddr_t             rhead_blk,
1334        bool                    bump_cycle)
1335{
1336        /*
1337         * Reset log values according to the state of the log when we
1338         * crashed.  In the case where head_blk == 0, we bump curr_cycle
1339         * one because the next write starts a new cycle rather than
1340         * continuing the cycle of the last good log record.  At this
1341         * point we have guaranteed that all partial log records have been
1342         * accounted for.  Therefore, we know that the last good log record
1343         * written was complete and ended exactly on the end boundary
1344         * of the physical log.
1345         */
1346        log->l_prev_block = rhead_blk;
1347        log->l_curr_block = (int)head_blk;
1348        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1349        if (bump_cycle)
1350                log->l_curr_cycle++;
1351        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1352        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1353        xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1354                                        BBTOB(log->l_curr_block));
1355        xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1356                                        BBTOB(log->l_curr_block));
1357}
1358
1359/*
1360 * Find the sync block number or the tail of the log.
1361 *
1362 * This will be the block number of the last record to have its
1363 * associated buffers synced to disk.  Every log record header has
1364 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1365 * to get a sync block number.  The only concern is to figure out which
1366 * log record header to believe.
1367 *
1368 * The following algorithm uses the log record header with the largest
1369 * lsn.  The entire log record does not need to be valid.  We only care
1370 * that the header is valid.
1371 *
1372 * We could speed up search by using current head_blk buffer, but it is not
1373 * available.
1374 */
1375STATIC int
1376xlog_find_tail(
1377        struct xlog             *log,
1378        xfs_daddr_t             *head_blk,
1379        xfs_daddr_t             *tail_blk)
1380{
1381        xlog_rec_header_t       *rhead;
1382        char                    *offset = NULL;
1383        xfs_buf_t               *bp;
1384        int                     error;
1385        xfs_daddr_t             rhead_blk;
1386        xfs_lsn_t               tail_lsn;
1387        bool                    wrapped = false;
1388        bool                    clean = false;
1389
1390        /*
1391         * Find previous log record
1392         */
1393        if ((error = xlog_find_head(log, head_blk)))
1394                return error;
1395        ASSERT(*head_blk < INT_MAX);
1396
1397        bp = xlog_get_bp(log, 1);
1398        if (!bp)
1399                return -ENOMEM;
1400        if (*head_blk == 0) {                           /* special case */
1401                error = xlog_bread(log, 0, 1, bp, &offset);
1402                if (error)
1403                        goto done;
1404
1405                if (xlog_get_cycle(offset) == 0) {
1406                        *tail_blk = 0;
1407                        /* leave all other log inited values alone */
1408                        goto done;
1409                }
1410        }
1411
1412        /*
1413         * Search backwards through the log looking for the log record header
1414         * block. This wraps all the way back around to the head so something is
1415         * seriously wrong if we can't find it.
1416         */
1417        error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1418                                      &rhead_blk, &rhead, &wrapped);
1419        if (error < 0)
1420                return error;
1421        if (!error) {
1422                xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1423                return -EIO;
1424        }
1425        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1426
1427        /*
1428         * Set the log state based on the current head record.
1429         */
1430        xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1431        tail_lsn = atomic64_read(&log->l_tail_lsn);
1432
1433        /*
1434         * Look for an unmount record at the head of the log. This sets the log
1435         * state to determine whether recovery is necessary.
1436         */
1437        error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1438                                       rhead_blk, bp, &clean);
1439        if (error)
1440                goto done;
1441
1442        /*
1443         * Verify the log head if the log is not clean (e.g., we have anything
1444         * but an unmount record at the head). This uses CRC verification to
1445         * detect and trim torn writes. If discovered, CRC failures are
1446         * considered torn writes and the log head is trimmed accordingly.
1447         *
1448         * Note that we can only run CRC verification when the log is dirty
1449         * because there's no guarantee that the log data behind an unmount
1450         * record is compatible with the current architecture.
1451         */
1452        if (!clean) {
1453                xfs_daddr_t     orig_head = *head_blk;
1454
1455                error = xlog_verify_head(log, head_blk, tail_blk, bp,
1456                                         &rhead_blk, &rhead, &wrapped);
1457                if (error)
1458                        goto done;
1459
1460                /* update in-core state again if the head changed */
1461                if (*head_blk != orig_head) {
1462                        xlog_set_state(log, *head_blk, rhead, rhead_blk,
1463                                       wrapped);
1464                        tail_lsn = atomic64_read(&log->l_tail_lsn);
1465                        error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1466                                                       rhead, rhead_blk, bp,
1467                                                       &clean);
1468                        if (error)
1469                                goto done;
1470                }
1471        }
1472
1473        /*
1474         * Note that the unmount was clean. If the unmount was not clean, we
1475         * need to know this to rebuild the superblock counters from the perag
1476         * headers if we have a filesystem using non-persistent counters.
1477         */
1478        if (clean)
1479                log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1480
1481        /*
1482         * Make sure that there are no blocks in front of the head
1483         * with the same cycle number as the head.  This can happen
1484         * because we allow multiple outstanding log writes concurrently,
1485         * and the later writes might make it out before earlier ones.
1486         *
1487         * We use the lsn from before modifying it so that we'll never
1488         * overwrite the unmount record after a clean unmount.
1489         *
1490         * Do this only if we are going to recover the filesystem
1491         *
1492         * NOTE: This used to say "if (!readonly)"
1493         * However on Linux, we can & do recover a read-only filesystem.
1494         * We only skip recovery if NORECOVERY is specified on mount,
1495         * in which case we would not be here.
1496         *
1497         * But... if the -device- itself is readonly, just skip this.
1498         * We can't recover this device anyway, so it won't matter.
1499         */
1500        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1501                error = xlog_clear_stale_blocks(log, tail_lsn);
1502
1503done:
1504        xlog_put_bp(bp);
1505
1506        if (error)
1507                xfs_warn(log->l_mp, "failed to locate log tail");
1508        return error;
1509}
1510
1511/*
1512 * Is the log zeroed at all?
1513 *
1514 * The last binary search should be changed to perform an X block read
1515 * once X becomes small enough.  You can then search linearly through
1516 * the X blocks.  This will cut down on the number of reads we need to do.
1517 *
1518 * If the log is partially zeroed, this routine will pass back the blkno
1519 * of the first block with cycle number 0.  It won't have a complete LR
1520 * preceding it.
1521 *
1522 * Return:
1523 *      0  => the log is completely written to
1524 *      1 => use *blk_no as the first block of the log
1525 *      <0 => error has occurred
1526 */
1527STATIC int
1528xlog_find_zeroed(
1529        struct xlog     *log,
1530        xfs_daddr_t     *blk_no)
1531{
1532        xfs_buf_t       *bp;
1533        char            *offset;
1534        uint            first_cycle, last_cycle;
1535        xfs_daddr_t     new_blk, last_blk, start_blk;
1536        xfs_daddr_t     num_scan_bblks;
1537        int             error, log_bbnum = log->l_logBBsize;
1538
1539        *blk_no = 0;
1540
1541        /* check totally zeroed log */
1542        bp = xlog_get_bp(log, 1);
1543        if (!bp)
1544                return -ENOMEM;
1545        error = xlog_bread(log, 0, 1, bp, &offset);
1546        if (error)
1547                goto bp_err;
1548
1549        first_cycle = xlog_get_cycle(offset);
1550        if (first_cycle == 0) {         /* completely zeroed log */
1551                *blk_no = 0;
1552                xlog_put_bp(bp);
1553                return 1;
1554        }
1555
1556        /* check partially zeroed log */
1557        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1558        if (error)
1559                goto bp_err;
1560
1561        last_cycle = xlog_get_cycle(offset);
1562        if (last_cycle != 0) {          /* log completely written to */
1563                xlog_put_bp(bp);
1564                return 0;
1565        } else if (first_cycle != 1) {
1566                /*
1567                 * If the cycle of the last block is zero, the cycle of
1568                 * the first block must be 1. If it's not, maybe we're
1569                 * not looking at a log... Bail out.
1570                 */
1571                xfs_warn(log->l_mp,
1572                        "Log inconsistent or not a log (last==0, first!=1)");
1573                error = -EINVAL;
1574                goto bp_err;
1575        }
1576
1577        /* we have a partially zeroed log */
1578        last_blk = log_bbnum-1;
1579        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1580                goto bp_err;
1581
1582        /*
1583         * Validate the answer.  Because there is no way to guarantee that
1584         * the entire log is made up of log records which are the same size,
1585         * we scan over the defined maximum blocks.  At this point, the maximum
1586         * is not chosen to mean anything special.   XXXmiken
1587         */
1588        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1589        ASSERT(num_scan_bblks <= INT_MAX);
1590
1591        if (last_blk < num_scan_bblks)
1592                num_scan_bblks = last_blk;
1593        start_blk = last_blk - num_scan_bblks;
1594
1595        /*
1596         * We search for any instances of cycle number 0 that occur before
1597         * our current estimate of the head.  What we're trying to detect is
1598         *        1 ... | 0 | 1 | 0...
1599         *                       ^ binary search ends here
1600         */
1601        if ((error = xlog_find_verify_cycle(log, start_blk,
1602                                         (int)num_scan_bblks, 0, &new_blk)))
1603                goto bp_err;
1604        if (new_blk != -1)
1605                last_blk = new_blk;
1606
1607        /*
1608         * Potentially backup over partial log record write.  We don't need
1609         * to search the end of the log because we know it is zero.
1610         */
1611        error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1612        if (error == 1)
1613                error = -EIO;
1614        if (error)
1615                goto bp_err;
1616
1617        *blk_no = last_blk;
1618bp_err:
1619        xlog_put_bp(bp);
1620        if (error)
1621                return error;
1622        return 1;
1623}
1624
1625/*
1626 * These are simple subroutines used by xlog_clear_stale_blocks() below
1627 * to initialize a buffer full of empty log record headers and write
1628 * them into the log.
1629 */
1630STATIC void
1631xlog_add_record(
1632        struct xlog             *log,
1633        char                    *buf,
1634        int                     cycle,
1635        int                     block,
1636        int                     tail_cycle,
1637        int                     tail_block)
1638{
1639        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1640
1641        memset(buf, 0, BBSIZE);
1642        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1643        recp->h_cycle = cpu_to_be32(cycle);
1644        recp->h_version = cpu_to_be32(
1645                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1646        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1647        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1648        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1649        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1650}
1651
1652STATIC int
1653xlog_write_log_records(
1654        struct xlog     *log,
1655        int             cycle,
1656        int             start_block,
1657        int             blocks,
1658        int             tail_cycle,
1659        int             tail_block)
1660{
1661        char            *offset;
1662        xfs_buf_t       *bp;
1663        int             balign, ealign;
1664        int             sectbb = log->l_sectBBsize;
1665        int             end_block = start_block + blocks;
1666        int             bufblks;
1667        int             error = 0;
1668        int             i, j = 0;
1669
1670        /*
1671         * Greedily allocate a buffer big enough to handle the full
1672         * range of basic blocks to be written.  If that fails, try
1673         * a smaller size.  We need to be able to write at least a
1674         * log sector, or we're out of luck.
1675         */
1676        bufblks = 1 << ffs(blocks);
1677        while (bufblks > log->l_logBBsize)
1678                bufblks >>= 1;
1679        while (!(bp = xlog_get_bp(log, bufblks))) {
1680                bufblks >>= 1;
1681                if (bufblks < sectbb)
1682                        return -ENOMEM;
1683        }
1684
1685        /* We may need to do a read at the start to fill in part of
1686         * the buffer in the starting sector not covered by the first
1687         * write below.
1688         */
1689        balign = round_down(start_block, sectbb);
1690        if (balign != start_block) {
1691                error = xlog_bread_noalign(log, start_block, 1, bp);
1692                if (error)
1693                        goto out_put_bp;
1694
1695                j = start_block - balign;
1696        }
1697
1698        for (i = start_block; i < end_block; i += bufblks) {
1699                int             bcount, endcount;
1700
1701                bcount = min(bufblks, end_block - start_block);
1702                endcount = bcount - j;
1703
1704                /* We may need to do a read at the end to fill in part of
1705                 * the buffer in the final sector not covered by the write.
1706                 * If this is the same sector as the above read, skip it.
1707                 */
1708                ealign = round_down(end_block, sectbb);
1709                if (j == 0 && (start_block + endcount > ealign)) {
1710                        offset = bp->b_addr + BBTOB(ealign - start_block);
1711                        error = xlog_bread_offset(log, ealign, sectbb,
1712                                                        bp, offset);
1713                        if (error)
1714                                break;
1715
1716                }
1717
1718                offset = xlog_align(log, start_block, endcount, bp);
1719                for (; j < endcount; j++) {
1720                        xlog_add_record(log, offset, cycle, i+j,
1721                                        tail_cycle, tail_block);
1722                        offset += BBSIZE;
1723                }
1724                error = xlog_bwrite(log, start_block, endcount, bp);
1725                if (error)
1726                        break;
1727                start_block += endcount;
1728                j = 0;
1729        }
1730
1731 out_put_bp:
1732        xlog_put_bp(bp);
1733        return error;
1734}
1735
1736/*
1737 * This routine is called to blow away any incomplete log writes out
1738 * in front of the log head.  We do this so that we won't become confused
1739 * if we come up, write only a little bit more, and then crash again.
1740 * If we leave the partial log records out there, this situation could
1741 * cause us to think those partial writes are valid blocks since they
1742 * have the current cycle number.  We get rid of them by overwriting them
1743 * with empty log records with the old cycle number rather than the
1744 * current one.
1745 *
1746 * The tail lsn is passed in rather than taken from
1747 * the log so that we will not write over the unmount record after a
1748 * clean unmount in a 512 block log.  Doing so would leave the log without
1749 * any valid log records in it until a new one was written.  If we crashed
1750 * during that time we would not be able to recover.
1751 */
1752STATIC int
1753xlog_clear_stale_blocks(
1754        struct xlog     *log,
1755        xfs_lsn_t       tail_lsn)
1756{
1757        int             tail_cycle, head_cycle;
1758        int             tail_block, head_block;
1759        int             tail_distance, max_distance;
1760        int             distance;
1761        int             error;
1762
1763        tail_cycle = CYCLE_LSN(tail_lsn);
1764        tail_block = BLOCK_LSN(tail_lsn);
1765        head_cycle = log->l_curr_cycle;
1766        head_block = log->l_curr_block;
1767
1768        /*
1769         * Figure out the distance between the new head of the log
1770         * and the tail.  We want to write over any blocks beyond the
1771         * head that we may have written just before the crash, but
1772         * we don't want to overwrite the tail of the log.
1773         */
1774        if (head_cycle == tail_cycle) {
1775                /*
1776                 * The tail is behind the head in the physical log,
1777                 * so the distance from the head to the tail is the
1778                 * distance from the head to the end of the log plus
1779                 * the distance from the beginning of the log to the
1780                 * tail.
1781                 */
1782                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1783                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784                                         XFS_ERRLEVEL_LOW, log->l_mp);
1785                        return -EFSCORRUPTED;
1786                }
1787                tail_distance = tail_block + (log->l_logBBsize - head_block);
1788        } else {
1789                /*
1790                 * The head is behind the tail in the physical log,
1791                 * so the distance from the head to the tail is just
1792                 * the tail block minus the head block.
1793                 */
1794                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1795                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796                                         XFS_ERRLEVEL_LOW, log->l_mp);
1797                        return -EFSCORRUPTED;
1798                }
1799                tail_distance = tail_block - head_block;
1800        }
1801
1802        /*
1803         * If the head is right up against the tail, we can't clear
1804         * anything.
1805         */
1806        if (tail_distance <= 0) {
1807                ASSERT(tail_distance == 0);
1808                return 0;
1809        }
1810
1811        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1812        /*
1813         * Take the smaller of the maximum amount of outstanding I/O
1814         * we could have and the distance to the tail to clear out.
1815         * We take the smaller so that we don't overwrite the tail and
1816         * we don't waste all day writing from the head to the tail
1817         * for no reason.
1818         */
1819        max_distance = MIN(max_distance, tail_distance);
1820
1821        if ((head_block + max_distance) <= log->l_logBBsize) {
1822                /*
1823                 * We can stomp all the blocks we need to without
1824                 * wrapping around the end of the log.  Just do it
1825                 * in a single write.  Use the cycle number of the
1826                 * current cycle minus one so that the log will look like:
1827                 *     n ... | n - 1 ...
1828                 */
1829                error = xlog_write_log_records(log, (head_cycle - 1),
1830                                head_block, max_distance, tail_cycle,
1831                                tail_block);
1832                if (error)
1833                        return error;
1834        } else {
1835                /*
1836                 * We need to wrap around the end of the physical log in
1837                 * order to clear all the blocks.  Do it in two separate
1838                 * I/Os.  The first write should be from the head to the
1839                 * end of the physical log, and it should use the current
1840                 * cycle number minus one just like above.
1841                 */
1842                distance = log->l_logBBsize - head_block;
1843                error = xlog_write_log_records(log, (head_cycle - 1),
1844                                head_block, distance, tail_cycle,
1845                                tail_block);
1846
1847                if (error)
1848                        return error;
1849
1850                /*
1851                 * Now write the blocks at the start of the physical log.
1852                 * This writes the remainder of the blocks we want to clear.
1853                 * It uses the current cycle number since we're now on the
1854                 * same cycle as the head so that we get:
1855                 *    n ... n ... | n - 1 ...
1856                 *    ^^^^^ blocks we're writing
1857                 */
1858                distance = max_distance - (log->l_logBBsize - head_block);
1859                error = xlog_write_log_records(log, head_cycle, 0, distance,
1860                                tail_cycle, tail_block);
1861                if (error)
1862                        return error;
1863        }
1864
1865        return 0;
1866}
1867
1868/******************************************************************************
1869 *
1870 *              Log recover routines
1871 *
1872 ******************************************************************************
1873 */
1874
1875/*
1876 * Sort the log items in the transaction.
1877 *
1878 * The ordering constraints are defined by the inode allocation and unlink
1879 * behaviour. The rules are:
1880 *
1881 *      1. Every item is only logged once in a given transaction. Hence it
1882 *         represents the last logged state of the item. Hence ordering is
1883 *         dependent on the order in which operations need to be performed so
1884 *         required initial conditions are always met.
1885 *
1886 *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1887 *         there's nothing to replay from them so we can simply cull them
1888 *         from the transaction. However, we can't do that until after we've
1889 *         replayed all the other items because they may be dependent on the
1890 *         cancelled buffer and replaying the cancelled buffer can remove it
1891 *         form the cancelled buffer table. Hence they have tobe done last.
1892 *
1893 *      3. Inode allocation buffers must be replayed before inode items that
1894 *         read the buffer and replay changes into it. For filesystems using the
1895 *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896 *         treated the same as inode allocation buffers as they create and
1897 *         initialise the buffers directly.
1898 *
1899 *      4. Inode unlink buffers must be replayed after inode items are replayed.
1900 *         This ensures that inodes are completely flushed to the inode buffer
1901 *         in a "free" state before we remove the unlinked inode list pointer.
1902 *
1903 * Hence the ordering needs to be inode allocation buffers first, inode items
1904 * second, inode unlink buffers third and cancelled buffers last.
1905 *
1906 * But there's a problem with that - we can't tell an inode allocation buffer
1907 * apart from a regular buffer, so we can't separate them. We can, however,
1908 * tell an inode unlink buffer from the others, and so we can separate them out
1909 * from all the other buffers and move them to last.
1910 *
1911 * Hence, 4 lists, in order from head to tail:
1912 *      - buffer_list for all buffers except cancelled/inode unlink buffers
1913 *      - item_list for all non-buffer items
1914 *      - inode_buffer_list for inode unlink buffers
1915 *      - cancel_list for the cancelled buffers
1916 *
1917 * Note that we add objects to the tail of the lists so that first-to-last
1918 * ordering is preserved within the lists. Adding objects to the head of the
1919 * list means when we traverse from the head we walk them in last-to-first
1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921 * but for all other items there may be specific ordering that we need to
1922 * preserve.
1923 */
1924STATIC int
1925xlog_recover_reorder_trans(
1926        struct xlog             *log,
1927        struct xlog_recover     *trans,
1928        int                     pass)
1929{
1930        xlog_recover_item_t     *item, *n;
1931        int                     error = 0;
1932        LIST_HEAD(sort_list);
1933        LIST_HEAD(cancel_list);
1934        LIST_HEAD(buffer_list);
1935        LIST_HEAD(inode_buffer_list);
1936        LIST_HEAD(inode_list);
1937
1938        list_splice_init(&trans->r_itemq, &sort_list);
1939        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1940                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1941
1942                switch (ITEM_TYPE(item)) {
1943                case XFS_LI_ICREATE:
1944                        list_move_tail(&item->ri_list, &buffer_list);
1945                        break;
1946                case XFS_LI_BUF:
1947                        if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1948                                trace_xfs_log_recover_item_reorder_head(log,
1949                                                        trans, item, pass);
1950                                list_move(&item->ri_list, &cancel_list);
1951                                break;
1952                        }
1953                        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1954                                list_move(&item->ri_list, &inode_buffer_list);
1955                                break;
1956                        }
1957                        list_move_tail(&item->ri_list, &buffer_list);
1958                        break;
1959                case XFS_LI_INODE:
1960                case XFS_LI_DQUOT:
1961                case XFS_LI_QUOTAOFF:
1962                case XFS_LI_EFD:
1963                case XFS_LI_EFI:
1964                case XFS_LI_RUI:
1965                case XFS_LI_RUD:
1966                case XFS_LI_CUI:
1967                case XFS_LI_CUD:
1968                case XFS_LI_BUI:
1969                case XFS_LI_BUD:
1970                        trace_xfs_log_recover_item_reorder_tail(log,
1971                                                        trans, item, pass);
1972                        list_move_tail(&item->ri_list, &inode_list);
1973                        break;
1974                default:
1975                        xfs_warn(log->l_mp,
1976                                "%s: unrecognized type of log operation",
1977                                __func__);
1978                        ASSERT(0);
1979                        /*
1980                         * return the remaining items back to the transaction
1981                         * item list so they can be freed in caller.
1982                         */
1983                        if (!list_empty(&sort_list))
1984                                list_splice_init(&sort_list, &trans->r_itemq);
1985                        error = -EIO;
1986                        goto out;
1987                }
1988        }
1989out:
1990        ASSERT(list_empty(&sort_list));
1991        if (!list_empty(&buffer_list))
1992                list_splice(&buffer_list, &trans->r_itemq);
1993        if (!list_empty(&inode_list))
1994                list_splice_tail(&inode_list, &trans->r_itemq);
1995        if (!list_empty(&inode_buffer_list))
1996                list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1997        if (!list_empty(&cancel_list))
1998                list_splice_tail(&cancel_list, &trans->r_itemq);
1999        return error;
2000}
2001
2002/*
2003 * Build up the table of buf cancel records so that we don't replay
2004 * cancelled data in the second pass.  For buffer records that are
2005 * not cancel records, there is nothing to do here so we just return.
2006 *
2007 * If we get a cancel record which is already in the table, this indicates
2008 * that the buffer was cancelled multiple times.  In order to ensure
2009 * that during pass 2 we keep the record in the table until we reach its
2010 * last occurrence in the log, we keep a reference count in the cancel
2011 * record in the table to tell us how many times we expect to see this
2012 * record during the second pass.
2013 */
2014STATIC int
2015xlog_recover_buffer_pass1(
2016        struct xlog                     *log,
2017        struct xlog_recover_item        *item)
2018{
2019        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2020        struct list_head        *bucket;
2021        struct xfs_buf_cancel   *bcp;
2022
2023        /*
2024         * If this isn't a cancel buffer item, then just return.
2025         */
2026        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2027                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2028                return 0;
2029        }
2030
2031        /*
2032         * Insert an xfs_buf_cancel record into the hash table of them.
2033         * If there is already an identical record, bump its reference count.
2034         */
2035        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2036        list_for_each_entry(bcp, bucket, bc_list) {
2037                if (bcp->bc_blkno == buf_f->blf_blkno &&
2038                    bcp->bc_len == buf_f->blf_len) {
2039                        bcp->bc_refcount++;
2040                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2041                        return 0;
2042                }
2043        }
2044
2045        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2046        bcp->bc_blkno = buf_f->blf_blkno;
2047        bcp->bc_len = buf_f->blf_len;
2048        bcp->bc_refcount = 1;
2049        list_add_tail(&bcp->bc_list, bucket);
2050
2051        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2052        return 0;
2053}
2054
2055/*
2056 * Check to see whether the buffer being recovered has a corresponding
2057 * entry in the buffer cancel record table. If it is, return the cancel
2058 * buffer structure to the caller.
2059 */
2060STATIC struct xfs_buf_cancel *
2061xlog_peek_buffer_cancelled(
2062        struct xlog             *log,
2063        xfs_daddr_t             blkno,
2064        uint                    len,
2065        unsigned short                  flags)
2066{
2067        struct list_head        *bucket;
2068        struct xfs_buf_cancel   *bcp;
2069
2070        if (!log->l_buf_cancel_table) {
2071                /* empty table means no cancelled buffers in the log */
2072                ASSERT(!(flags & XFS_BLF_CANCEL));
2073                return NULL;
2074        }
2075
2076        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2077        list_for_each_entry(bcp, bucket, bc_list) {
2078                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2079                        return bcp;
2080        }
2081
2082        /*
2083         * We didn't find a corresponding entry in the table, so return 0 so
2084         * that the buffer is NOT cancelled.
2085         */
2086        ASSERT(!(flags & XFS_BLF_CANCEL));
2087        return NULL;
2088}
2089
2090/*
2091 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092 * otherwise return 0.  If the buffer is actually a buffer cancel item
2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094 * table and remove it from the table if this is the last reference.
2095 *
2096 * We remove the cancel record from the table when we encounter its last
2097 * occurrence in the log so that if the same buffer is re-used again after its
2098 * last cancellation we actually replay the changes made at that point.
2099 */
2100STATIC int
2101xlog_check_buffer_cancelled(
2102        struct xlog             *log,
2103        xfs_daddr_t             blkno,
2104        uint                    len,
2105        unsigned short                  flags)
2106{
2107        struct xfs_buf_cancel   *bcp;
2108
2109        bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2110        if (!bcp)
2111                return 0;
2112
2113        /*
2114         * We've go a match, so return 1 so that the recovery of this buffer
2115         * is cancelled.  If this buffer is actually a buffer cancel log
2116         * item, then decrement the refcount on the one in the table and
2117         * remove it if this is the last reference.
2118         */
2119        if (flags & XFS_BLF_CANCEL) {
2120                if (--bcp->bc_refcount == 0) {
2121                        list_del(&bcp->bc_list);
2122                        kmem_free(bcp);
2123                }
2124        }
2125        return 1;
2126}
2127
2128/*
2129 * Perform recovery for a buffer full of inodes.  In these buffers, the only
2130 * data which should be recovered is that which corresponds to the
2131 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2132 * data for the inodes is always logged through the inodes themselves rather
2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2134 *
2135 * The only time when buffers full of inodes are fully recovered is when the
2136 * buffer is full of newly allocated inodes.  In this case the buffer will
2137 * not be marked as an inode buffer and so will be sent to
2138 * xlog_recover_do_reg_buffer() below during recovery.
2139 */
2140STATIC int
2141xlog_recover_do_inode_buffer(
2142        struct xfs_mount        *mp,
2143        xlog_recover_item_t     *item,
2144        struct xfs_buf          *bp,
2145        xfs_buf_log_format_t    *buf_f)
2146{
2147        int                     i;
2148        int                     item_index = 0;
2149        int                     bit = 0;
2150        int                     nbits = 0;
2151        int                     reg_buf_offset = 0;
2152        int                     reg_buf_bytes = 0;
2153        int                     next_unlinked_offset;
2154        int                     inodes_per_buf;
2155        xfs_agino_t             *logged_nextp;
2156        xfs_agino_t             *buffer_nextp;
2157
2158        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2159
2160        /*
2161         * Post recovery validation only works properly on CRC enabled
2162         * filesystems.
2163         */
2164        if (xfs_sb_version_hascrc(&mp->m_sb))
2165                bp->b_ops = &xfs_inode_buf_ops;
2166
2167        inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2168        for (i = 0; i < inodes_per_buf; i++) {
2169                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2170                        offsetof(xfs_dinode_t, di_next_unlinked);
2171
2172                while (next_unlinked_offset >=
2173                       (reg_buf_offset + reg_buf_bytes)) {
2174                        /*
2175                         * The next di_next_unlinked field is beyond
2176                         * the current logged region.  Find the next
2177                         * logged region that contains or is beyond
2178                         * the current di_next_unlinked field.
2179                         */
2180                        bit += nbits;
2181                        bit = xfs_next_bit(buf_f->blf_data_map,
2182                                           buf_f->blf_map_size, bit);
2183
2184                        /*
2185                         * If there are no more logged regions in the
2186                         * buffer, then we're done.
2187                         */
2188                        if (bit == -1)
2189                                return 0;
2190
2191                        nbits = xfs_contig_bits(buf_f->blf_data_map,
2192                                                buf_f->blf_map_size, bit);
2193                        ASSERT(nbits > 0);
2194                        reg_buf_offset = bit << XFS_BLF_SHIFT;
2195                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2196                        item_index++;
2197                }
2198
2199                /*
2200                 * If the current logged region starts after the current
2201                 * di_next_unlinked field, then move on to the next
2202                 * di_next_unlinked field.
2203                 */
2204                if (next_unlinked_offset < reg_buf_offset)
2205                        continue;
2206
2207                ASSERT(item->ri_buf[item_index].i_addr != NULL);
2208                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2209                ASSERT((reg_buf_offset + reg_buf_bytes) <=
2210                                                        BBTOB(bp->b_io_length));
2211
2212                /*
2213                 * The current logged region contains a copy of the
2214                 * current di_next_unlinked field.  Extract its value
2215                 * and copy it to the buffer copy.
2216                 */
2217                logged_nextp = item->ri_buf[item_index].i_addr +
2218                                next_unlinked_offset - reg_buf_offset;
2219                if (unlikely(*logged_nextp == 0)) {
2220                        xfs_alert(mp,
2221                "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2222                "Trying to replay bad (0) inode di_next_unlinked field.",
2223                                item, bp);
2224                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225                                         XFS_ERRLEVEL_LOW, mp);
2226                        return -EFSCORRUPTED;
2227                }
2228
2229                buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2230                *buffer_nextp = *logged_nextp;
2231
2232                /*
2233                 * If necessary, recalculate the CRC in the on-disk inode. We
2234                 * have to leave the inode in a consistent state for whoever
2235                 * reads it next....
2236                 */
2237                xfs_dinode_calc_crc(mp,
2238                                xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2239
2240        }
2241
2242        return 0;
2243}
2244
2245/*
2246 * V5 filesystems know the age of the buffer on disk being recovered. We can
2247 * have newer objects on disk than we are replaying, and so for these cases we
2248 * don't want to replay the current change as that will make the buffer contents
2249 * temporarily invalid on disk.
2250 *
2251 * The magic number might not match the buffer type we are going to recover
2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2253 * extract the LSN of the existing object in the buffer based on it's current
2254 * magic number.  If we don't recognise the magic number in the buffer, then
2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256 * so can recover the buffer.
2257 *
2258 * Note: we cannot rely solely on magic number matches to determine that the
2259 * buffer has a valid LSN - we also need to verify that it belongs to this
2260 * filesystem, so we need to extract the object's LSN and compare it to that
2261 * which we read from the superblock. If the UUIDs don't match, then we've got a
2262 * stale metadata block from an old filesystem instance that we need to recover
2263 * over the top of.
2264 */
2265static xfs_lsn_t
2266xlog_recover_get_buf_lsn(
2267        struct xfs_mount        *mp,
2268        struct xfs_buf          *bp)
2269{
2270        uint32_t                magic32;
2271        uint16_t                magic16;
2272        uint16_t                magicda;
2273        void                    *blk = bp->b_addr;
2274        uuid_t                  *uuid;
2275        xfs_lsn_t               lsn = -1;
2276
2277        /* v4 filesystems always recover immediately */
2278        if (!xfs_sb_version_hascrc(&mp->m_sb))
2279                goto recover_immediately;
2280
2281        magic32 = be32_to_cpu(*(__be32 *)blk);
2282        switch (magic32) {
2283        case XFS_ABTB_CRC_MAGIC:
2284        case XFS_ABTC_CRC_MAGIC:
2285        case XFS_ABTB_MAGIC:
2286        case XFS_ABTC_MAGIC:
2287        case XFS_RMAP_CRC_MAGIC:
2288        case XFS_REFC_CRC_MAGIC:
2289        case XFS_IBT_CRC_MAGIC:
2290        case XFS_IBT_MAGIC: {
2291                struct xfs_btree_block *btb = blk;
2292
2293                lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2294                uuid = &btb->bb_u.s.bb_uuid;
2295                break;
2296        }
2297        case XFS_BMAP_CRC_MAGIC:
2298        case XFS_BMAP_MAGIC: {
2299                struct xfs_btree_block *btb = blk;
2300
2301                lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2302                uuid = &btb->bb_u.l.bb_uuid;
2303                break;
2304        }
2305        case XFS_AGF_MAGIC:
2306                lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2307                uuid = &((struct xfs_agf *)blk)->agf_uuid;
2308                break;
2309        case XFS_AGFL_MAGIC:
2310                lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2311                uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312                break;
2313        case XFS_AGI_MAGIC:
2314                lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2315                uuid = &((struct xfs_agi *)blk)->agi_uuid;
2316                break;
2317        case XFS_SYMLINK_MAGIC:
2318                lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2319                uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2320                break;
2321        case XFS_DIR3_BLOCK_MAGIC:
2322        case XFS_DIR3_DATA_MAGIC:
2323        case XFS_DIR3_FREE_MAGIC:
2324                lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2325                uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2326                break;
2327        case XFS_ATTR3_RMT_MAGIC:
2328                /*
2329                 * Remote attr blocks are written synchronously, rather than
2330                 * being logged. That means they do not contain a valid LSN
2331                 * (i.e. transactionally ordered) in them, and hence any time we
2332                 * see a buffer to replay over the top of a remote attribute
2333                 * block we should simply do so.
2334                 */
2335                goto recover_immediately;
2336        case XFS_SB_MAGIC:
2337                /*
2338                 * superblock uuids are magic. We may or may not have a
2339                 * sb_meta_uuid on disk, but it will be set in the in-core
2340                 * superblock. We set the uuid pointer for verification
2341                 * according to the superblock feature mask to ensure we check
2342                 * the relevant UUID in the superblock.
2343                 */
2344                lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2345                if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2346                        uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2347                else
2348                        uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2349                break;
2350        default:
2351                break;
2352        }
2353
2354        if (lsn != (xfs_lsn_t)-1) {
2355                if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2356                        goto recover_immediately;
2357                return lsn;
2358        }
2359
2360        magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2361        switch (magicda) {
2362        case XFS_DIR3_LEAF1_MAGIC:
2363        case XFS_DIR3_LEAFN_MAGIC:
2364        case XFS_DA3_NODE_MAGIC:
2365                lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2366                uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2367                break;
2368        default:
2369                break;
2370        }
2371
2372        if (lsn != (xfs_lsn_t)-1) {
2373                if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2374                        goto recover_immediately;
2375                return lsn;
2376        }
2377
2378        /*
2379         * We do individual object checks on dquot and inode buffers as they
2380         * have their own individual LSN records. Also, we could have a stale
2381         * buffer here, so we have to at least recognise these buffer types.
2382         *
2383         * A notd complexity here is inode unlinked list processing - it logs
2384         * the inode directly in the buffer, but we don't know which inodes have
2385         * been modified, and there is no global buffer LSN. Hence we need to
2386         * recover all inode buffer types immediately. This problem will be
2387         * fixed by logical logging of the unlinked list modifications.
2388         */
2389        magic16 = be16_to_cpu(*(__be16 *)blk);
2390        switch (magic16) {
2391        case XFS_DQUOT_MAGIC:
2392        case XFS_DINODE_MAGIC:
2393                goto recover_immediately;
2394        default:
2395                break;
2396        }
2397
2398        /* unknown buffer contents, recover immediately */
2399
2400recover_immediately:
2401        return (xfs_lsn_t)-1;
2402
2403}
2404
2405/*
2406 * Validate the recovered buffer is of the correct type and attach the
2407 * appropriate buffer operations to them for writeback. Magic numbers are in a
2408 * few places:
2409 *      the first 16 bits of the buffer (inode buffer, dquot buffer),
2410 *      the first 32 bits of the buffer (most blocks),
2411 *      inside a struct xfs_da_blkinfo at the start of the buffer.
2412 */
2413static void
2414xlog_recover_validate_buf_type(
2415        struct xfs_mount        *mp,
2416        struct xfs_buf          *bp,
2417        xfs_buf_log_format_t    *buf_f,
2418        xfs_lsn_t               current_lsn)
2419{
2420        struct xfs_da_blkinfo   *info = bp->b_addr;
2421        uint32_t                magic32;
2422        uint16_t                magic16;
2423        uint16_t                magicda;
2424        char                    *warnmsg = NULL;
2425
2426        /*
2427         * We can only do post recovery validation on items on CRC enabled
2428         * fielsystems as we need to know when the buffer was written to be able
2429         * to determine if we should have replayed the item. If we replay old
2430         * metadata over a newer buffer, then it will enter a temporarily
2431         * inconsistent state resulting in verification failures. Hence for now
2432         * just avoid the verification stage for non-crc filesystems
2433         */
2434        if (!xfs_sb_version_hascrc(&mp->m_sb))
2435                return;
2436
2437        magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2438        magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2439        magicda = be16_to_cpu(info->magic);
2440        switch (xfs_blft_from_flags(buf_f)) {
2441        case XFS_BLFT_BTREE_BUF:
2442                switch (magic32) {
2443                case XFS_ABTB_CRC_MAGIC:
2444                case XFS_ABTC_CRC_MAGIC:
2445                case XFS_ABTB_MAGIC:
2446                case XFS_ABTC_MAGIC:
2447                        bp->b_ops = &xfs_allocbt_buf_ops;
2448                        break;
2449                case XFS_IBT_CRC_MAGIC:
2450                case XFS_FIBT_CRC_MAGIC:
2451                case XFS_IBT_MAGIC:
2452                case XFS_FIBT_MAGIC:
2453                        bp->b_ops = &xfs_inobt_buf_ops;
2454                        break;
2455                case XFS_BMAP_CRC_MAGIC:
2456                case XFS_BMAP_MAGIC:
2457                        bp->b_ops = &xfs_bmbt_buf_ops;
2458                        break;
2459                case XFS_RMAP_CRC_MAGIC:
2460                        bp->b_ops = &xfs_rmapbt_buf_ops;
2461                        break;
2462                case XFS_REFC_CRC_MAGIC:
2463                        bp->b_ops = &xfs_refcountbt_buf_ops;
2464                        break;
2465                default:
2466                        warnmsg = "Bad btree block magic!";
2467                        break;
2468                }
2469                break;
2470        case XFS_BLFT_AGF_BUF:
2471                if (magic32 != XFS_AGF_MAGIC) {
2472                        warnmsg = "Bad AGF block magic!";
2473                        break;
2474                }
2475                bp->b_ops = &xfs_agf_buf_ops;
2476                break;
2477        case XFS_BLFT_AGFL_BUF:
2478                if (magic32 != XFS_AGFL_MAGIC) {
2479                        warnmsg = "Bad AGFL block magic!";
2480                        break;
2481                }
2482                bp->b_ops = &xfs_agfl_buf_ops;
2483                break;
2484        case XFS_BLFT_AGI_BUF:
2485                if (magic32 != XFS_AGI_MAGIC) {
2486                        warnmsg = "Bad AGI block magic!";
2487                        break;
2488                }
2489                bp->b_ops = &xfs_agi_buf_ops;
2490                break;
2491        case XFS_BLFT_UDQUOT_BUF:
2492        case XFS_BLFT_PDQUOT_BUF:
2493        case XFS_BLFT_GDQUOT_BUF:
2494#ifdef CONFIG_XFS_QUOTA
2495                if (magic16 != XFS_DQUOT_MAGIC) {
2496                        warnmsg = "Bad DQUOT block magic!";
2497                        break;
2498                }
2499                bp->b_ops = &xfs_dquot_buf_ops;
2500#else
2501                xfs_alert(mp,
2502        "Trying to recover dquots without QUOTA support built in!");
2503                ASSERT(0);
2504#endif
2505                break;
2506        case XFS_BLFT_DINO_BUF:
2507                if (magic16 != XFS_DINODE_MAGIC) {
2508                        warnmsg = "Bad INODE block magic!";
2509                        break;
2510                }
2511                bp->b_ops = &xfs_inode_buf_ops;
2512                break;
2513        case XFS_BLFT_SYMLINK_BUF:
2514                if (magic32 != XFS_SYMLINK_MAGIC) {
2515                        warnmsg = "Bad symlink block magic!";
2516                        break;
2517                }
2518                bp->b_ops = &xfs_symlink_buf_ops;
2519                break;
2520        case XFS_BLFT_DIR_BLOCK_BUF:
2521                if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2522                    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2523                        warnmsg = "Bad dir block magic!";
2524                        break;
2525                }
2526                bp->b_ops = &xfs_dir3_block_buf_ops;
2527                break;
2528        case XFS_BLFT_DIR_DATA_BUF:
2529                if (magic32 != XFS_DIR2_DATA_MAGIC &&
2530                    magic32 != XFS_DIR3_DATA_MAGIC) {
2531                        warnmsg = "Bad dir data magic!";
2532                        break;
2533                }
2534                bp->b_ops = &xfs_dir3_data_buf_ops;
2535                break;
2536        case XFS_BLFT_DIR_FREE_BUF:
2537                if (magic32 != XFS_DIR2_FREE_MAGIC &&
2538                    magic32 != XFS_DIR3_FREE_MAGIC) {
2539                        warnmsg = "Bad dir3 free magic!";
2540                        break;
2541                }
2542                bp->b_ops = &xfs_dir3_free_buf_ops;
2543                break;
2544        case XFS_BLFT_DIR_LEAF1_BUF:
2545                if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2546                    magicda != XFS_DIR3_LEAF1_MAGIC) {
2547                        warnmsg = "Bad dir leaf1 magic!";
2548                        break;
2549                }
2550                bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2551                break;
2552        case XFS_BLFT_DIR_LEAFN_BUF:
2553                if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2554                    magicda != XFS_DIR3_LEAFN_MAGIC) {
2555                        warnmsg = "Bad dir leafn magic!";
2556                        break;
2557                }
2558                bp->b_ops = &xfs_dir3_leafn_buf_ops;
2559                break;
2560        case XFS_BLFT_DA_NODE_BUF:
2561                if (magicda != XFS_DA_NODE_MAGIC &&
2562                    magicda != XFS_DA3_NODE_MAGIC) {
2563                        warnmsg = "Bad da node magic!";
2564                        break;
2565                }
2566                bp->b_ops = &xfs_da3_node_buf_ops;
2567                break;
2568        case XFS_BLFT_ATTR_LEAF_BUF:
2569                if (magicda != XFS_ATTR_LEAF_MAGIC &&
2570                    magicda != XFS_ATTR3_LEAF_MAGIC) {
2571                        warnmsg = "Bad attr leaf magic!";
2572                        break;
2573                }
2574                bp->b_ops = &xfs_attr3_leaf_buf_ops;
2575                break;
2576        case XFS_BLFT_ATTR_RMT_BUF:
2577                if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2578                        warnmsg = "Bad attr remote magic!";
2579                        break;
2580                }
2581                bp->b_ops = &xfs_attr3_rmt_buf_ops;
2582                break;
2583        case XFS_BLFT_SB_BUF:
2584                if (magic32 != XFS_SB_MAGIC) {
2585                        warnmsg = "Bad SB block magic!";
2586                        break;
2587                }
2588                bp->b_ops = &xfs_sb_buf_ops;
2589                break;
2590#ifdef CONFIG_XFS_RT
2591        case XFS_BLFT_RTBITMAP_BUF:
2592        case XFS_BLFT_RTSUMMARY_BUF:
2593                /* no magic numbers for verification of RT buffers */
2594                bp->b_ops = &xfs_rtbuf_ops;
2595                break;
2596#endif /* CONFIG_XFS_RT */
2597        default:
2598                xfs_warn(mp, "Unknown buffer type %d!",
2599                         xfs_blft_from_flags(buf_f));
2600                break;
2601        }
2602
2603        /*
2604         * Nothing else to do in the case of a NULL current LSN as this means
2605         * the buffer is more recent than the change in the log and will be
2606         * skipped.
2607         */
2608        if (current_lsn == NULLCOMMITLSN)
2609                return;
2610
2611        if (warnmsg) {
2612                xfs_warn(mp, warnmsg);
2613                ASSERT(0);
2614        }
2615
2616        /*
2617         * We must update the metadata LSN of the buffer as it is written out to
2618         * ensure that older transactions never replay over this one and corrupt
2619         * the buffer. This can occur if log recovery is interrupted at some
2620         * point after the current transaction completes, at which point a
2621         * subsequent mount starts recovery from the beginning.
2622         *
2623         * Write verifiers update the metadata LSN from log items attached to
2624         * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625         * the verifier. We'll clean it up in our ->iodone() callback.
2626         */
2627        if (bp->b_ops) {
2628                struct xfs_buf_log_item *bip;
2629
2630                ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2631                bp->b_iodone = xlog_recover_iodone;
2632                xfs_buf_item_init(bp, mp);
2633                bip = bp->b_fspriv;
2634                bip->bli_item.li_lsn = current_lsn;
2635        }
2636}
2637
2638/*
2639 * Perform a 'normal' buffer recovery.  Each logged region of the
2640 * buffer should be copied over the corresponding region in the
2641 * given buffer.  The bitmap in the buf log format structure indicates
2642 * where to place the logged data.
2643 */
2644STATIC void
2645xlog_recover_do_reg_buffer(
2646        struct xfs_mount        *mp,
2647        xlog_recover_item_t     *item,
2648        struct xfs_buf          *bp,
2649        xfs_buf_log_format_t    *buf_f,
2650        xfs_lsn_t               current_lsn)
2651{
2652        int                     i;
2653        int                     bit;
2654        int                     nbits;
2655        int                     error;
2656
2657        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2658
2659        bit = 0;
2660        i = 1;  /* 0 is the buf format structure */
2661        while (1) {
2662                bit = xfs_next_bit(buf_f->blf_data_map,
2663                                   buf_f->blf_map_size, bit);
2664                if (bit == -1)
2665                        break;
2666                nbits = xfs_contig_bits(buf_f->blf_data_map,
2667                                        buf_f->blf_map_size, bit);
2668                ASSERT(nbits > 0);
2669                ASSERT(item->ri_buf[i].i_addr != NULL);
2670                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2671                ASSERT(BBTOB(bp->b_io_length) >=
2672                       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2673
2674                /*
2675                 * The dirty regions logged in the buffer, even though
2676                 * contiguous, may span multiple chunks. This is because the
2677                 * dirty region may span a physical page boundary in a buffer
2678                 * and hence be split into two separate vectors for writing into
2679                 * the log. Hence we need to trim nbits back to the length of
2680                 * the current region being copied out of the log.
2681                 */
2682                if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2683                        nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2684
2685                /*
2686                 * Do a sanity check if this is a dquot buffer. Just checking
2687                 * the first dquot in the buffer should do. XXXThis is
2688                 * probably a good thing to do for other buf types also.
2689                 */
2690                error = 0;
2691                if (buf_f->blf_flags &
2692                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2693                        if (item->ri_buf[i].i_addr == NULL) {
2694                                xfs_alert(mp,
2695                                        "XFS: NULL dquot in %s.", __func__);
2696                                goto next;
2697                        }
2698                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2699                                xfs_alert(mp,
2700                                        "XFS: dquot too small (%d) in %s.",
2701                                        item->ri_buf[i].i_len, __func__);
2702                                goto next;
2703                        }
2704                        error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2705                                               -1, 0, XFS_QMOPT_DOWARN,
2706                                               "dquot_buf_recover");
2707                        if (error)
2708                                goto next;
2709                }
2710
2711                memcpy(xfs_buf_offset(bp,
2712                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
2713                        item->ri_buf[i].i_addr,         /* source */
2714                        nbits<<XFS_BLF_SHIFT);          /* length */
2715 next:
2716                i++;
2717                bit += nbits;
2718        }
2719
2720        /* Shouldn't be any more regions */
2721        ASSERT(i == item->ri_total);
2722
2723        xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2724}
2725
2726/*
2727 * Perform a dquot buffer recovery.
2728 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2729 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2730 * Else, treat it as a regular buffer and do recovery.
2731 *
2732 * Return false if the buffer was tossed and true if we recovered the buffer to
2733 * indicate to the caller if the buffer needs writing.
2734 */
2735STATIC bool
2736xlog_recover_do_dquot_buffer(
2737        struct xfs_mount                *mp,
2738        struct xlog                     *log,
2739        struct xlog_recover_item        *item,
2740        struct xfs_buf                  *bp,
2741        struct xfs_buf_log_format       *buf_f)
2742{
2743        uint                    type;
2744
2745        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2746
2747        /*
2748         * Filesystems are required to send in quota flags at mount time.
2749         */
2750        if (!mp->m_qflags)
2751                return false;
2752
2753        type = 0;
2754        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2755                type |= XFS_DQ_USER;
2756        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2757                type |= XFS_DQ_PROJ;
2758        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2759                type |= XFS_DQ_GROUP;
2760        /*
2761         * This type of quotas was turned off, so ignore this buffer
2762         */
2763        if (log->l_quotaoffs_flag & type)
2764                return false;
2765
2766        xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2767        return true;
2768}
2769
2770/*
2771 * This routine replays a modification made to a buffer at runtime.
2772 * There are actually two types of buffer, regular and inode, which
2773 * are handled differently.  Inode buffers are handled differently
2774 * in that we only recover a specific set of data from them, namely
2775 * the inode di_next_unlinked fields.  This is because all other inode
2776 * data is actually logged via inode records and any data we replay
2777 * here which overlaps that may be stale.
2778 *
2779 * When meta-data buffers are freed at run time we log a buffer item
2780 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2781 * of the buffer in the log should not be replayed at recovery time.
2782 * This is so that if the blocks covered by the buffer are reused for
2783 * file data before we crash we don't end up replaying old, freed
2784 * meta-data into a user's file.
2785 *
2786 * To handle the cancellation of buffer log items, we make two passes
2787 * over the log during recovery.  During the first we build a table of
2788 * those buffers which have been cancelled, and during the second we
2789 * only replay those buffers which do not have corresponding cancel
2790 * records in the table.  See xlog_recover_buffer_pass[1,2] above
2791 * for more details on the implementation of the table of cancel records.
2792 */
2793STATIC int
2794xlog_recover_buffer_pass2(
2795        struct xlog                     *log,
2796        struct list_head                *buffer_list,
2797        struct xlog_recover_item        *item,
2798        xfs_lsn_t                       current_lsn)
2799{
2800        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2801        xfs_mount_t             *mp = log->l_mp;
2802        xfs_buf_t               *bp;
2803        int                     error;
2804        uint                    buf_flags;
2805        xfs_lsn_t               lsn;
2806
2807        /*
2808         * In this pass we only want to recover all the buffers which have
2809         * not been cancelled and are not cancellation buffers themselves.
2810         */
2811        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2812                        buf_f->blf_len, buf_f->blf_flags)) {
2813                trace_xfs_log_recover_buf_cancel(log, buf_f);
2814                return 0;
2815        }
2816
2817        trace_xfs_log_recover_buf_recover(log, buf_f);
2818
2819        buf_flags = 0;
2820        if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2821                buf_flags |= XBF_UNMAPPED;
2822
2823        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2824                          buf_flags, NULL);
2825        if (!bp)
2826                return -ENOMEM;
2827        error = bp->b_error;
2828        if (error) {
2829                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2830                goto out_release;
2831        }
2832
2833        /*
2834         * Recover the buffer only if we get an LSN from it and it's less than
2835         * the lsn of the transaction we are replaying.
2836         *
2837         * Note that we have to be extremely careful of readahead here.
2838         * Readahead does not attach verfiers to the buffers so if we don't
2839         * actually do any replay after readahead because of the LSN we found
2840         * in the buffer if more recent than that current transaction then we
2841         * need to attach the verifier directly. Failure to do so can lead to
2842         * future recovery actions (e.g. EFI and unlinked list recovery) can
2843         * operate on the buffers and they won't get the verifier attached. This
2844         * can lead to blocks on disk having the correct content but a stale
2845         * CRC.
2846         *
2847         * It is safe to assume these clean buffers are currently up to date.
2848         * If the buffer is dirtied by a later transaction being replayed, then
2849         * the verifier will be reset to match whatever recover turns that
2850         * buffer into.
2851         */
2852        lsn = xlog_recover_get_buf_lsn(mp, bp);
2853        if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2854                trace_xfs_log_recover_buf_skip(log, buf_f);
2855                xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2856                goto out_release;
2857        }
2858
2859        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2860                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2861                if (error)
2862                        goto out_release;
2863        } else if (buf_f->blf_flags &
2864                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2865                bool    dirty;
2866
2867                dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2868                if (!dirty)
2869                        goto out_release;
2870        } else {
2871                xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2872        }
2873
2874        /*
2875         * Perform delayed write on the buffer.  Asynchronous writes will be
2876         * slower when taking into account all the buffers to be flushed.
2877         *
2878         * Also make sure that only inode buffers with good sizes stay in
2879         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2880         * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2881         * buffers in the log can be a different size if the log was generated
2882         * by an older kernel using unclustered inode buffers or a newer kernel
2883         * running with a different inode cluster size.  Regardless, if the
2884         * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2885         * for *our* value of mp->m_inode_cluster_size, then we need to keep
2886         * the buffer out of the buffer cache so that the buffer won't
2887         * overlap with future reads of those inodes.
2888         */
2889        if (XFS_DINODE_MAGIC ==
2890            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2891            (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2892                        (uint32_t)log->l_mp->m_inode_cluster_size))) {
2893                xfs_buf_stale(bp);
2894                error = xfs_bwrite(bp);
2895        } else {
2896                ASSERT(bp->b_target->bt_mount == mp);
2897                bp->b_iodone = xlog_recover_iodone;
2898                xfs_buf_delwri_queue(bp, buffer_list);
2899        }
2900
2901out_release:
2902        xfs_buf_relse(bp);
2903        return error;
2904}
2905
2906/*
2907 * Inode fork owner changes
2908 *
2909 * If we have been told that we have to reparent the inode fork, it's because an
2910 * extent swap operation on a CRC enabled filesystem has been done and we are
2911 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2912 * owners of it.
2913 *
2914 * The complexity here is that we don't have an inode context to work with, so
2915 * after we've replayed the inode we need to instantiate one.  This is where the
2916 * fun begins.
2917 *
2918 * We are in the middle of log recovery, so we can't run transactions. That
2919 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2920 * that will result in the corresponding iput() running the inode through
2921 * xfs_inactive(). If we've just replayed an inode core that changes the link
2922 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2923 * transactions (bad!).
2924 *
2925 * So, to avoid this, we instantiate an inode directly from the inode core we've
2926 * just recovered. We have the buffer still locked, and all we really need to
2927 * instantiate is the inode core and the forks being modified. We can do this
2928 * manually, then run the inode btree owner change, and then tear down the
2929 * xfs_inode without having to run any transactions at all.
2930 *
2931 * Also, because we don't have a transaction context available here but need to
2932 * gather all the buffers we modify for writeback so we pass the buffer_list
2933 * instead for the operation to use.
2934 */
2935
2936STATIC int
2937xfs_recover_inode_owner_change(
2938        struct xfs_mount        *mp,
2939        struct xfs_dinode       *dip,
2940        struct xfs_inode_log_format *in_f,
2941        struct list_head        *buffer_list)
2942{
2943        struct xfs_inode        *ip;
2944        int                     error;
2945
2946        ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2947
2948        ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2949        if (!ip)
2950                return -ENOMEM;
2951
2952        /* instantiate the inode */
2953        xfs_inode_from_disk(ip, dip);
2954        ASSERT(ip->i_d.di_version >= 3);
2955
2956        error = xfs_iformat_fork(ip, dip);
2957        if (error)
2958                goto out_free_ip;
2959
2960
2961        if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2962                ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2963                error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2964                                              ip->i_ino, buffer_list);
2965                if (error)
2966                        goto out_free_ip;
2967        }
2968
2969        if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2970                ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2971                error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2972                                              ip->i_ino, buffer_list);
2973                if (error)
2974                        goto out_free_ip;
2975        }
2976
2977out_free_ip:
2978        xfs_inode_free(ip);
2979        return error;
2980}
2981
2982STATIC int
2983xlog_recover_inode_pass2(
2984        struct xlog                     *log,
2985        struct list_head                *buffer_list,
2986        struct xlog_recover_item        *item,
2987        xfs_lsn_t                       current_lsn)
2988{
2989        struct xfs_inode_log_format     *in_f;
2990        xfs_mount_t             *mp = log->l_mp;
2991        xfs_buf_t               *bp;
2992        xfs_dinode_t            *dip;
2993        int                     len;
2994        char                    *src;
2995        char                    *dest;
2996        int                     error;
2997        int                     attr_index;
2998        uint                    fields;
2999        struct xfs_log_dinode   *ldip;
3000        uint                    isize;
3001        int                     need_free = 0;
3002
3003        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3004                in_f = item->ri_buf[0].i_addr;
3005        } else {
3006                in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3007                need_free = 1;
3008                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3009                if (error)
3010                        goto error;
3011        }
3012
3013        /*
3014         * Inode buffers can be freed, look out for it,
3015         * and do not replay the inode.
3016         */
3017        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3018                                        in_f->ilf_len, 0)) {
3019                error = 0;
3020                trace_xfs_log_recover_inode_cancel(log, in_f);
3021                goto error;
3022        }
3023        trace_xfs_log_recover_inode_recover(log, in_f);
3024
3025        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3026                          &xfs_inode_buf_ops);
3027        if (!bp) {
3028                error = -ENOMEM;
3029                goto error;
3030        }
3031        error = bp->b_error;
3032        if (error) {
3033                xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3034                goto out_release;
3035        }
3036        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3037        dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3038
3039        /*
3040         * Make sure the place we're flushing out to really looks
3041         * like an inode!
3042         */
3043        if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3044                xfs_alert(mp,
3045        "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3046                        __func__, dip, bp, in_f->ilf_ino);
3047                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3048                                 XFS_ERRLEVEL_LOW, mp);
3049                error = -EFSCORRUPTED;
3050                goto out_release;
3051        }
3052        ldip = item->ri_buf[1].i_addr;
3053        if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3054                xfs_alert(mp,
3055                        "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3056                        __func__, item, in_f->ilf_ino);
3057                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3058                                 XFS_ERRLEVEL_LOW, mp);
3059                error = -EFSCORRUPTED;
3060                goto out_release;
3061        }
3062
3063        /*
3064         * If the inode has an LSN in it, recover the inode only if it's less
3065         * than the lsn of the transaction we are replaying. Note: we still
3066         * need to replay an owner change even though the inode is more recent
3067         * than the transaction as there is no guarantee that all the btree
3068         * blocks are more recent than this transaction, too.
3069         */
3070        if (dip->di_version >= 3) {
3071                xfs_lsn_t       lsn = be64_to_cpu(dip->di_lsn);
3072
3073                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3074                        trace_xfs_log_recover_inode_skip(log, in_f);
3075                        error = 0;
3076                        goto out_owner_change;
3077                }
3078        }
3079
3080        /*
3081         * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3082         * are transactional and if ordering is necessary we can determine that
3083         * more accurately by the LSN field in the V3 inode core. Don't trust
3084         * the inode versions we might be changing them here - use the
3085         * superblock flag to determine whether we need to look at di_flushiter
3086         * to skip replay when the on disk inode is newer than the log one
3087         */
3088        if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3089            ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3090                /*
3091                 * Deal with the wrap case, DI_MAX_FLUSH is less
3092                 * than smaller numbers
3093                 */
3094                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3095                    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3096                        /* do nothing */
3097                } else {
3098                        trace_xfs_log_recover_inode_skip(log, in_f);
3099                        error = 0;
3100                        goto out_release;
3101                }
3102        }
3103
3104        /* Take the opportunity to reset the flush iteration count */
3105        ldip->di_flushiter = 0;
3106
3107        if (unlikely(S_ISREG(ldip->di_mode))) {
3108                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3109                    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3110                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3111                                         XFS_ERRLEVEL_LOW, mp, ldip);
3112                        xfs_alert(mp,
3113                "%s: Bad regular inode log record, rec ptr 0x%p, "
3114                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3115                                __func__, item, dip, bp, in_f->ilf_ino);
3116                        error = -EFSCORRUPTED;
3117                        goto out_release;
3118                }
3119        } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3120                if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3121                    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3122                    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3123                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3124                                             XFS_ERRLEVEL_LOW, mp, ldip);
3125                        xfs_alert(mp,
3126                "%s: Bad dir inode log record, rec ptr 0x%p, "
3127                "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3128                                __func__, item, dip, bp, in_f->ilf_ino);
3129                        error = -EFSCORRUPTED;
3130                        goto out_release;
3131                }
3132        }
3133        if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3134                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3135                                     XFS_ERRLEVEL_LOW, mp, ldip);
3136                xfs_alert(mp,
3137        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3138        "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3139                        __func__, item, dip, bp, in_f->ilf_ino,
3140                        ldip->di_nextents + ldip->di_anextents,
3141                        ldip->di_nblocks);
3142                error = -EFSCORRUPTED;
3143                goto out_release;
3144        }
3145        if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3146                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3147                                     XFS_ERRLEVEL_LOW, mp, ldip);
3148                xfs_alert(mp,
3149        "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3150        "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3151                        item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3152                error = -EFSCORRUPTED;
3153                goto out_release;
3154        }
3155        isize = xfs_log_dinode_size(ldip->di_version);
3156        if (unlikely(item->ri_buf[1].i_len > isize)) {
3157                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3158                                     XFS_ERRLEVEL_LOW, mp, ldip);
3159                xfs_alert(mp,
3160                        "%s: Bad inode log record length %d, rec ptr 0x%p",
3161                        __func__, item->ri_buf[1].i_len, item);
3162                error = -EFSCORRUPTED;
3163                goto out_release;
3164        }
3165
3166        /* recover the log dinode inode into the on disk inode */
3167        xfs_log_dinode_to_disk(ldip, dip);
3168
3169        /* the rest is in on-disk format */
3170        if (item->ri_buf[1].i_len > isize) {
3171                memcpy((char *)dip + isize,
3172                        item->ri_buf[1].i_addr + isize,
3173                        item->ri_buf[1].i_len - isize);
3174        }
3175
3176        fields = in_f->ilf_fields;
3177        if (fields & XFS_ILOG_DEV)
3178                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3179
3180        if (in_f->ilf_size == 2)
3181                goto out_owner_change;
3182        len = item->ri_buf[2].i_len;
3183        src = item->ri_buf[2].i_addr;
3184        ASSERT(in_f->ilf_size <= 4);
3185        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3186        ASSERT(!(fields & XFS_ILOG_DFORK) ||
3187               (len == in_f->ilf_dsize));
3188
3189        switch (fields & XFS_ILOG_DFORK) {
3190        case XFS_ILOG_DDATA:
3191        case XFS_ILOG_DEXT:
3192                memcpy(XFS_DFORK_DPTR(dip), src, len);
3193                break;
3194
3195        case XFS_ILOG_DBROOT:
3196                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3197                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3198                                 XFS_DFORK_DSIZE(dip, mp));
3199                break;
3200
3201        default:
3202                /*
3203                 * There are no data fork flags set.
3204                 */
3205                ASSERT((fields & XFS_ILOG_DFORK) == 0);
3206                break;
3207        }
3208
3209        /*
3210         * If we logged any attribute data, recover it.  There may or
3211         * may not have been any other non-core data logged in this
3212         * transaction.
3213         */
3214        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3215                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3216                        attr_index = 3;
3217                } else {
3218                        attr_index = 2;
3219                }
3220                len = item->ri_buf[attr_index].i_len;
3221                src = item->ri_buf[attr_index].i_addr;
3222                ASSERT(len == in_f->ilf_asize);
3223
3224                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3225                case XFS_ILOG_ADATA:
3226                case XFS_ILOG_AEXT:
3227                        dest = XFS_DFORK_APTR(dip);
3228                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3229                        memcpy(dest, src, len);
3230                        break;
3231
3232                case XFS_ILOG_ABROOT:
3233                        dest = XFS_DFORK_APTR(dip);
3234                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3235                                         len, (xfs_bmdr_block_t*)dest,
3236                                         XFS_DFORK_ASIZE(dip, mp));
3237                        break;
3238
3239                default:
3240                        xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3241                        ASSERT(0);
3242                        error = -EIO;
3243                        goto out_release;
3244                }
3245        }
3246
3247out_owner_change:
3248        if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3249                error = xfs_recover_inode_owner_change(mp, dip, in_f,
3250                                                       buffer_list);
3251        /* re-generate the checksum. */
3252        xfs_dinode_calc_crc(log->l_mp, dip);
3253
3254        ASSERT(bp->b_target->bt_mount == mp);
3255        bp->b_iodone = xlog_recover_iodone;
3256        xfs_buf_delwri_queue(bp, buffer_list);
3257
3258out_release:
3259        xfs_buf_relse(bp);
3260error:
3261        if (need_free)
3262                kmem_free(in_f);
3263        return error;
3264}
3265
3266/*
3267 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3268 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3269 * of that type.
3270 */
3271STATIC int
3272xlog_recover_quotaoff_pass1(
3273        struct xlog                     *log,
3274        struct xlog_recover_item        *item)
3275{
3276        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
3277        ASSERT(qoff_f);
3278
3279        /*
3280         * The logitem format's flag tells us if this was user quotaoff,
3281         * group/project quotaoff or both.
3282         */
3283        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3284                log->l_quotaoffs_flag |= XFS_DQ_USER;
3285        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3286                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3287        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3288                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3289
3290        return 0;
3291}
3292
3293/*
3294 * Recover a dquot record
3295 */
3296STATIC int
3297xlog_recover_dquot_pass2(
3298        struct xlog                     *log,
3299        struct list_head                *buffer_list,
3300        struct xlog_recover_item        *item,
3301        xfs_lsn_t                       current_lsn)
3302{
3303        xfs_mount_t             *mp = log->l_mp;
3304        xfs_buf_t               *bp;
3305        struct xfs_disk_dquot   *ddq, *recddq;
3306        int                     error;
3307        xfs_dq_logformat_t      *dq_f;
3308        uint                    type;
3309
3310
3311        /*
3312         * Filesystems are required to send in quota flags at mount time.
3313         */
3314        if (mp->m_qflags == 0)
3315                return 0;
3316
3317        recddq = item->ri_buf[1].i_addr;
3318        if (recddq == NULL) {
3319                xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3320                return -EIO;
3321        }
3322        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3323                xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3324                        item->ri_buf[1].i_len, __func__);
3325                return -EIO;
3326        }
3327
3328        /*
3329         * This type of quotas was turned off, so ignore this record.
3330         */
3331        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3332        ASSERT(type);
3333        if (log->l_quotaoffs_flag & type)
3334                return 0;
3335
3336        /*
3337         * At this point we know that quota was _not_ turned off.
3338         * Since the mount flags are not indicating to us otherwise, this
3339         * must mean that quota is on, and the dquot needs to be replayed.
3340         * Remember that we may not have fully recovered the superblock yet,
3341         * so we can't do the usual trick of looking at the SB quota bits.
3342         *
3343         * The other possibility, of course, is that the quota subsystem was
3344         * removed since the last mount - ENOSYS.
3345         */
3346        dq_f = item->ri_buf[0].i_addr;
3347        ASSERT(dq_f);
3348        error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3349                           "xlog_recover_dquot_pass2 (log copy)");
3350        if (error)
3351                return -EIO;
3352        ASSERT(dq_f->qlf_len == 1);
3353
3354        /*
3355         * At this point we are assuming that the dquots have been allocated
3356         * and hence the buffer has valid dquots stamped in it. It should,
3357         * therefore, pass verifier validation. If the dquot is bad, then the
3358         * we'll return an error here, so we don't need to specifically check
3359         * the dquot in the buffer after the verifier has run.
3360         */
3361        error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3362                                   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3363                                   &xfs_dquot_buf_ops);
3364        if (error)
3365                return error;
3366
3367        ASSERT(bp);
3368        ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3369
3370        /*
3371         * If the dquot has an LSN in it, recover the dquot only if it's less
3372         * than the lsn of the transaction we are replaying.
3373         */
3374        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3375                struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3376                xfs_lsn_t       lsn = be64_to_cpu(dqb->dd_lsn);
3377
3378                if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3379                        goto out_release;
3380                }
3381        }
3382
3383        memcpy(ddq, recddq, item->ri_buf[1].i_len);
3384        if (xfs_sb_version_hascrc(&mp->m_sb)) {
3385                xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3386                                 XFS_DQUOT_CRC_OFF);
3387        }
3388
3389        ASSERT(dq_f->qlf_size == 2);
3390        ASSERT(bp->b_target->bt_mount == mp);
3391        bp->b_iodone = xlog_recover_iodone;
3392        xfs_buf_delwri_queue(bp, buffer_list);
3393
3394out_release:
3395        xfs_buf_relse(bp);
3396        return 0;
3397}
3398
3399/*
3400 * This routine is called to create an in-core extent free intent
3401 * item from the efi format structure which was logged on disk.
3402 * It allocates an in-core efi, copies the extents from the format
3403 * structure into it, and adds the efi to the AIL with the given
3404 * LSN.
3405 */
3406STATIC int
3407xlog_recover_efi_pass2(
3408        struct xlog                     *log,
3409        struct xlog_recover_item        *item,
3410        xfs_lsn_t                       lsn)
3411{
3412        int                             error;
3413        struct xfs_mount                *mp = log->l_mp;
3414        struct xfs_efi_log_item         *efip;
3415        struct xfs_efi_log_format       *efi_formatp;
3416
3417        efi_formatp = item->ri_buf[0].i_addr;
3418
3419        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3420        error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3421        if (error) {
3422                xfs_efi_item_free(efip);
3423                return error;
3424        }
3425        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3426
3427        spin_lock(&log->l_ailp->xa_lock);
3428        /*
3429         * The EFI has two references. One for the EFD and one for EFI to ensure
3430         * it makes it into the AIL. Insert the EFI into the AIL directly and
3431         * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3432         * AIL lock.
3433         */
3434        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3435        xfs_efi_release(efip);
3436        return 0;
3437}
3438
3439
3440/*
3441 * This routine is called when an EFD format structure is found in a committed
3442 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3443 * was still in the log. To do this it searches the AIL for the EFI with an id
3444 * equal to that in the EFD format structure. If we find it we drop the EFD
3445 * reference, which removes the EFI from the AIL and frees it.
3446 */
3447STATIC int
3448xlog_recover_efd_pass2(
3449        struct xlog                     *log,
3450        struct xlog_recover_item        *item)
3451{
3452        xfs_efd_log_format_t    *efd_formatp;
3453        xfs_efi_log_item_t      *efip = NULL;
3454        xfs_log_item_t          *lip;
3455        uint64_t                efi_id;
3456        struct xfs_ail_cursor   cur;
3457        struct xfs_ail          *ailp = log->l_ailp;
3458
3459        efd_formatp = item->ri_buf[0].i_addr;
3460        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3461                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3462               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3463                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3464        efi_id = efd_formatp->efd_efi_id;
3465
3466        /*
3467         * Search for the EFI with the id in the EFD format structure in the
3468         * AIL.
3469         */
3470        spin_lock(&ailp->xa_lock);
3471        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3472        while (lip != NULL) {
3473                if (lip->li_type == XFS_LI_EFI) {
3474                        efip = (xfs_efi_log_item_t *)lip;
3475                        if (efip->efi_format.efi_id == efi_id) {
3476                                /*
3477                                 * Drop the EFD reference to the EFI. This
3478                                 * removes the EFI from the AIL and frees it.
3479                                 */
3480                                spin_unlock(&ailp->xa_lock);
3481                                xfs_efi_release(efip);
3482                                spin_lock(&ailp->xa_lock);
3483                                break;
3484                        }
3485                }
3486                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3487        }
3488
3489        xfs_trans_ail_cursor_done(&cur);
3490        spin_unlock(&ailp->xa_lock);
3491
3492        return 0;
3493}
3494
3495/*
3496 * This routine is called to create an in-core extent rmap update
3497 * item from the rui format structure which was logged on disk.
3498 * It allocates an in-core rui, copies the extents from the format
3499 * structure into it, and adds the rui to the AIL with the given
3500 * LSN.
3501 */
3502STATIC int
3503xlog_recover_rui_pass2(
3504        struct xlog                     *log,
3505        struct xlog_recover_item        *item,
3506        xfs_lsn_t                       lsn)
3507{
3508        int                             error;
3509        struct xfs_mount                *mp = log->l_mp;
3510        struct xfs_rui_log_item         *ruip;
3511        struct xfs_rui_log_format       *rui_formatp;
3512
3513        rui_formatp = item->ri_buf[0].i_addr;
3514
3515        ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3516        error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3517        if (error) {
3518                xfs_rui_item_free(ruip);
3519                return error;
3520        }
3521        atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3522
3523        spin_lock(&log->l_ailp->xa_lock);
3524        /*
3525         * The RUI has two references. One for the RUD and one for RUI to ensure
3526         * it makes it into the AIL. Insert the RUI into the AIL directly and
3527         * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3528         * AIL lock.
3529         */
3530        xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3531        xfs_rui_release(ruip);
3532        return 0;
3533}
3534
3535
3536/*
3537 * This routine is called when an RUD format structure is found in a committed
3538 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3539 * was still in the log. To do this it searches the AIL for the RUI with an id
3540 * equal to that in the RUD format structure. If we find it we drop the RUD
3541 * reference, which removes the RUI from the AIL and frees it.
3542 */
3543STATIC int
3544xlog_recover_rud_pass2(
3545        struct xlog                     *log,
3546        struct xlog_recover_item        *item)
3547{
3548        struct xfs_rud_log_format       *rud_formatp;
3549        struct xfs_rui_log_item         *ruip = NULL;
3550        struct xfs_log_item             *lip;
3551        uint64_t                        rui_id;
3552        struct xfs_ail_cursor           cur;
3553        struct xfs_ail                  *ailp = log->l_ailp;
3554
3555        rud_formatp = item->ri_buf[0].i_addr;
3556        ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3557        rui_id = rud_formatp->rud_rui_id;
3558
3559        /*
3560         * Search for the RUI with the id in the RUD format structure in the
3561         * AIL.
3562         */
3563        spin_lock(&ailp->xa_lock);
3564        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3565        while (lip != NULL) {
3566                if (lip->li_type == XFS_LI_RUI) {
3567                        ruip = (struct xfs_rui_log_item *)lip;
3568                        if (ruip->rui_format.rui_id == rui_id) {
3569                                /*
3570                                 * Drop the RUD reference to the RUI. This
3571                                 * removes the RUI from the AIL and frees it.
3572                                 */
3573                                spin_unlock(&ailp->xa_lock);
3574                                xfs_rui_release(ruip);
3575                                spin_lock(&ailp->xa_lock);
3576                                break;
3577                        }
3578                }
3579                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3580        }
3581
3582        xfs_trans_ail_cursor_done(&cur);
3583        spin_unlock(&ailp->xa_lock);
3584
3585        return 0;
3586}
3587
3588/*
3589 * Copy an CUI format buffer from the given buf, and into the destination
3590 * CUI format structure.  The CUI/CUD items were designed not to need any
3591 * special alignment handling.
3592 */
3593static int
3594xfs_cui_copy_format(
3595        struct xfs_log_iovec            *buf,
3596        struct xfs_cui_log_format       *dst_cui_fmt)
3597{
3598        struct xfs_cui_log_format       *src_cui_fmt;
3599        uint                            len;
3600
3601        src_cui_fmt = buf->i_addr;
3602        len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3603
3604        if (buf->i_len == len) {
3605                memcpy(dst_cui_fmt, src_cui_fmt, len);
3606                return 0;
3607        }
3608        return -EFSCORRUPTED;
3609}
3610
3611/*
3612 * This routine is called to create an in-core extent refcount update
3613 * item from the cui format structure which was logged on disk.
3614 * It allocates an in-core cui, copies the extents from the format
3615 * structure into it, and adds the cui to the AIL with the given
3616 * LSN.
3617 */
3618STATIC int
3619xlog_recover_cui_pass2(
3620        struct xlog                     *log,
3621        struct xlog_recover_item        *item,
3622        xfs_lsn_t                       lsn)
3623{
3624        int                             error;
3625        struct xfs_mount                *mp = log->l_mp;
3626        struct xfs_cui_log_item         *cuip;
3627        struct xfs_cui_log_format       *cui_formatp;
3628
3629        cui_formatp = item->ri_buf[0].i_addr;
3630
3631        cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3632        error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3633        if (error) {
3634                xfs_cui_item_free(cuip);
3635                return error;
3636        }
3637        atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3638
3639        spin_lock(&log->l_ailp->xa_lock);
3640        /*
3641         * The CUI has two references. One for the CUD and one for CUI to ensure
3642         * it makes it into the AIL. Insert the CUI into the AIL directly and
3643         * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3644         * AIL lock.
3645         */
3646        xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3647        xfs_cui_release(cuip);
3648        return 0;
3649}
3650
3651
3652/*
3653 * This routine is called when an CUD format structure is found in a committed
3654 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3655 * was still in the log. To do this it searches the AIL for the CUI with an id
3656 * equal to that in the CUD format structure. If we find it we drop the CUD
3657 * reference, which removes the CUI from the AIL and frees it.
3658 */
3659STATIC int
3660xlog_recover_cud_pass2(
3661        struct xlog                     *log,
3662        struct xlog_recover_item        *item)
3663{
3664        struct xfs_cud_log_format       *cud_formatp;
3665        struct xfs_cui_log_item         *cuip = NULL;
3666        struct xfs_log_item             *lip;
3667        uint64_t                        cui_id;
3668        struct xfs_ail_cursor           cur;
3669        struct xfs_ail                  *ailp = log->l_ailp;
3670
3671        cud_formatp = item->ri_buf[0].i_addr;
3672        if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3673                return -EFSCORRUPTED;
3674        cui_id = cud_formatp->cud_cui_id;
3675
3676        /*
3677         * Search for the CUI with the id in the CUD format structure in the
3678         * AIL.
3679         */
3680        spin_lock(&ailp->xa_lock);
3681        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3682        while (lip != NULL) {
3683                if (lip->li_type == XFS_LI_CUI) {
3684                        cuip = (struct xfs_cui_log_item *)lip;
3685                        if (cuip->cui_format.cui_id == cui_id) {
3686                                /*
3687                                 * Drop the CUD reference to the CUI. This
3688                                 * removes the CUI from the AIL and frees it.
3689                                 */
3690                                spin_unlock(&ailp->xa_lock);
3691                                xfs_cui_release(cuip);
3692                                spin_lock(&ailp->xa_lock);
3693                                break;
3694                        }
3695                }
3696                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3697        }
3698
3699        xfs_trans_ail_cursor_done(&cur);
3700        spin_unlock(&ailp->xa_lock);
3701
3702        return 0;
3703}
3704
3705/*
3706 * Copy an BUI format buffer from the given buf, and into the destination
3707 * BUI format structure.  The BUI/BUD items were designed not to need any
3708 * special alignment handling.
3709 */
3710static int
3711xfs_bui_copy_format(
3712        struct xfs_log_iovec            *buf,
3713        struct xfs_bui_log_format       *dst_bui_fmt)
3714{
3715        struct xfs_bui_log_format       *src_bui_fmt;
3716        uint                            len;
3717
3718        src_bui_fmt = buf->i_addr;
3719        len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3720
3721        if (buf->i_len == len) {
3722                memcpy(dst_bui_fmt, src_bui_fmt, len);
3723                return 0;
3724        }
3725        return -EFSCORRUPTED;
3726}
3727
3728/*
3729 * This routine is called to create an in-core extent bmap update
3730 * item from the bui format structure which was logged on disk.
3731 * It allocates an in-core bui, copies the extents from the format
3732 * structure into it, and adds the bui to the AIL with the given
3733 * LSN.
3734 */
3735STATIC int
3736xlog_recover_bui_pass2(
3737        struct xlog                     *log,
3738        struct xlog_recover_item        *item,
3739        xfs_lsn_t                       lsn)
3740{
3741        int                             error;
3742        struct xfs_mount                *mp = log->l_mp;
3743        struct xfs_bui_log_item         *buip;
3744        struct xfs_bui_log_format       *bui_formatp;
3745
3746        bui_formatp = item->ri_buf[0].i_addr;
3747
3748        if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3749                return -EFSCORRUPTED;
3750        buip = xfs_bui_init(mp);
3751        error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3752        if (error) {
3753                xfs_bui_item_free(buip);
3754                return error;
3755        }
3756        atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3757
3758        spin_lock(&log->l_ailp->xa_lock);
3759        /*
3760         * The RUI has two references. One for the RUD and one for RUI to ensure
3761         * it makes it into the AIL. Insert the RUI into the AIL directly and
3762         * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3763         * AIL lock.
3764         */
3765        xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3766        xfs_bui_release(buip);
3767        return 0;
3768}
3769
3770
3771/*
3772 * This routine is called when an BUD format structure is found in a committed
3773 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3774 * was still in the log. To do this it searches the AIL for the BUI with an id
3775 * equal to that in the BUD format structure. If we find it we drop the BUD
3776 * reference, which removes the BUI from the AIL and frees it.
3777 */
3778STATIC int
3779xlog_recover_bud_pass2(
3780        struct xlog                     *log,
3781        struct xlog_recover_item        *item)
3782{
3783        struct xfs_bud_log_format       *bud_formatp;
3784        struct xfs_bui_log_item         *buip = NULL;
3785        struct xfs_log_item             *lip;
3786        uint64_t                        bui_id;
3787        struct xfs_ail_cursor           cur;
3788        struct xfs_ail                  *ailp = log->l_ailp;
3789
3790        bud_formatp = item->ri_buf[0].i_addr;
3791        if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3792                return -EFSCORRUPTED;
3793        bui_id = bud_formatp->bud_bui_id;
3794
3795        /*
3796         * Search for the BUI with the id in the BUD format structure in the
3797         * AIL.
3798         */
3799        spin_lock(&ailp->xa_lock);
3800        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3801        while (lip != NULL) {
3802                if (lip->li_type == XFS_LI_BUI) {
3803                        buip = (struct xfs_bui_log_item *)lip;
3804                        if (buip->bui_format.bui_id == bui_id) {
3805                                /*
3806                                 * Drop the BUD reference to the BUI. This
3807                                 * removes the BUI from the AIL and frees it.
3808                                 */
3809                                spin_unlock(&ailp->xa_lock);
3810                                xfs_bui_release(buip);
3811                                spin_lock(&ailp->xa_lock);
3812                                break;
3813                        }
3814                }
3815                lip = xfs_trans_ail_cursor_next(ailp, &cur);
3816        }
3817
3818        xfs_trans_ail_cursor_done(&cur);
3819        spin_unlock(&ailp->xa_lock);
3820
3821        return 0;
3822}
3823
3824/*
3825 * This routine is called when an inode create format structure is found in a
3826 * committed transaction in the log.  It's purpose is to initialise the inodes
3827 * being allocated on disk. This requires us to get inode cluster buffers that
3828 * match the range to be initialised, stamped with inode templates and written
3829 * by delayed write so that subsequent modifications will hit the cached buffer
3830 * and only need writing out at the end of recovery.
3831 */
3832STATIC int
3833xlog_recover_do_icreate_pass2(
3834        struct xlog             *log,
3835        struct list_head        *buffer_list,
3836        xlog_recover_item_t     *item)
3837{
3838        struct xfs_mount        *mp = log->l_mp;
3839        struct xfs_icreate_log  *icl;
3840        xfs_agnumber_t          agno;
3841        xfs_agblock_t           agbno;
3842        unsigned int            count;
3843        unsigned int            isize;
3844        xfs_agblock_t           length;
3845        int                     blks_per_cluster;
3846        int                     bb_per_cluster;
3847        int                     cancel_count;
3848        int                     nbufs;
3849        int                     i;
3850
3851        icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3852        if (icl->icl_type != XFS_LI_ICREATE) {
3853                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3854                return -EINVAL;
3855        }
3856
3857        if (icl->icl_size != 1) {
3858                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3859                return -EINVAL;
3860        }
3861
3862        agno = be32_to_cpu(icl->icl_ag);
3863        if (agno >= mp->m_sb.sb_agcount) {
3864                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3865                return -EINVAL;
3866        }
3867        agbno = be32_to_cpu(icl->icl_agbno);
3868        if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3869                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3870                return -EINVAL;
3871        }
3872        isize = be32_to_cpu(icl->icl_isize);
3873        if (isize != mp->m_sb.sb_inodesize) {
3874                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3875                return -EINVAL;
3876        }
3877        count = be32_to_cpu(icl->icl_count);
3878        if (!count) {
3879                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3880                return -EINVAL;
3881        }
3882        length = be32_to_cpu(icl->icl_length);
3883        if (!length || length >= mp->m_sb.sb_agblocks) {
3884                xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3885                return -EINVAL;
3886        }
3887
3888        /*
3889         * The inode chunk is either full or sparse and we only support
3890         * m_ialloc_min_blks sized sparse allocations at this time.
3891         */
3892        if (length != mp->m_ialloc_blks &&
3893            length != mp->m_ialloc_min_blks) {
3894                xfs_warn(log->l_mp,
3895                         "%s: unsupported chunk length", __FUNCTION__);
3896                return -EINVAL;
3897        }
3898
3899        /* verify inode count is consistent with extent length */
3900        if ((count >> mp->m_sb.sb_inopblog) != length) {
3901                xfs_warn(log->l_mp,
3902                         "%s: inconsistent inode count and chunk length",
3903                         __FUNCTION__);
3904                return -EINVAL;
3905        }
3906
3907        /*
3908         * The icreate transaction can cover multiple cluster buffers and these
3909         * buffers could have been freed and reused. Check the individual
3910         * buffers for cancellation so we don't overwrite anything written after
3911         * a cancellation.
3912         */
3913        blks_per_cluster = xfs_icluster_size_fsb(mp);
3914        bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3915        nbufs = length / blks_per_cluster;
3916        for (i = 0, cancel_count = 0; i < nbufs; i++) {
3917                xfs_daddr_t     daddr;
3918
3919                daddr = XFS_AGB_TO_DADDR(mp, agno,
3920                                         agbno + i * blks_per_cluster);
3921                if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3922                        cancel_count++;
3923        }
3924
3925        /*
3926         * We currently only use icreate for a single allocation at a time. This
3927         * means we should expect either all or none of the buffers to be
3928         * cancelled. Be conservative and skip replay if at least one buffer is
3929         * cancelled, but warn the user that something is awry if the buffers
3930         * are not consistent.
3931         *
3932         * XXX: This must be refined to only skip cancelled clusters once we use
3933         * icreate for multiple chunk allocations.
3934         */
3935        ASSERT(!cancel_count || cancel_count == nbufs);
3936        if (cancel_count) {
3937                if (cancel_count != nbufs)
3938                        xfs_warn(mp,
3939        "WARNING: partial inode chunk cancellation, skipped icreate.");
3940                trace_xfs_log_recover_icreate_cancel(log, icl);
3941                return 0;
3942        }
3943
3944        trace_xfs_log_recover_icreate_recover(log, icl);
3945        return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3946                                     length, be32_to_cpu(icl->icl_gen));
3947}
3948
3949STATIC void
3950xlog_recover_buffer_ra_pass2(
3951        struct xlog                     *log,
3952        struct xlog_recover_item        *item)
3953{
3954        struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
3955        struct xfs_mount                *mp = log->l_mp;
3956
3957        if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3958                        buf_f->blf_len, buf_f->blf_flags)) {
3959                return;
3960        }
3961
3962        xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3963                                buf_f->blf_len, NULL);
3964}
3965
3966STATIC void
3967xlog_recover_inode_ra_pass2(
3968        struct xlog                     *log,
3969        struct xlog_recover_item        *item)
3970{
3971        struct xfs_inode_log_format     ilf_buf;
3972        struct xfs_inode_log_format     *ilfp;
3973        struct xfs_mount                *mp = log->l_mp;
3974        int                     error;
3975
3976        if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3977                ilfp = item->ri_buf[0].i_addr;
3978        } else {
3979                ilfp = &ilf_buf;
3980                memset(ilfp, 0, sizeof(*ilfp));
3981                error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3982                if (error)
3983                        return;
3984        }
3985
3986        if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3987                return;
3988
3989        xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3990                                ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3991}
3992
3993STATIC void
3994xlog_recover_dquot_ra_pass2(
3995        struct xlog                     *log,
3996        struct xlog_recover_item        *item)
3997{
3998        struct xfs_mount        *mp = log->l_mp;
3999        struct xfs_disk_dquot   *recddq;
4000        struct xfs_dq_logformat *dq_f;
4001        uint                    type;
4002        int                     len;
4003
4004
4005        if (mp->m_qflags == 0)
4006                return;
4007
4008        recddq = item->ri_buf[1].i_addr;
4009        if (recddq == NULL)
4010                return;
4011        if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4012                return;
4013
4014        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4015        ASSERT(type);
4016        if (log->l_quotaoffs_flag & type)
4017                return;
4018
4019        dq_f = item->ri_buf[0].i_addr;
4020        ASSERT(dq_f);
4021        ASSERT(dq_f->qlf_len == 1);
4022
4023        len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4024        if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4025                return;
4026
4027        xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4028                          &xfs_dquot_buf_ra_ops);
4029}
4030
4031STATIC void
4032xlog_recover_ra_pass2(
4033        struct xlog                     *log,
4034        struct xlog_recover_item        *item)
4035{
4036        switch (ITEM_TYPE(item)) {
4037        case XFS_LI_BUF:
4038                xlog_recover_buffer_ra_pass2(log, item);
4039                break;
4040        case XFS_LI_INODE:
4041                xlog_recover_inode_ra_pass2(log, item);
4042                break;
4043        case XFS_LI_DQUOT:
4044                xlog_recover_dquot_ra_pass2(log, item);
4045                break;
4046        case XFS_LI_EFI:
4047        case XFS_LI_EFD:
4048        case XFS_LI_QUOTAOFF:
4049        case XFS_LI_RUI:
4050        case XFS_LI_RUD:
4051        case XFS_LI_CUI:
4052        case XFS_LI_CUD:
4053        case XFS_LI_BUI:
4054        case XFS_LI_BUD:
4055        default:
4056                break;
4057        }
4058}
4059
4060STATIC int
4061xlog_recover_commit_pass1(
4062        struct xlog                     *log,
4063        struct xlog_recover             *trans,
4064        struct xlog_recover_item        *item)
4065{
4066        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4067
4068        switch (ITEM_TYPE(item)) {
4069        case XFS_LI_BUF:
4070                return xlog_recover_buffer_pass1(log, item);
4071        case XFS_LI_QUOTAOFF:
4072                return xlog_recover_quotaoff_pass1(log, item);
4073        case XFS_LI_INODE:
4074        case XFS_LI_EFI:
4075        case XFS_LI_EFD:
4076        case XFS_LI_DQUOT:
4077        case XFS_LI_ICREATE:
4078        case XFS_LI_RUI:
4079        case XFS_LI_RUD:
4080        case XFS_LI_CUI:
4081        case XFS_LI_CUD:
4082        case XFS_LI_BUI:
4083        case XFS_LI_BUD:
4084                /* nothing to do in pass 1 */
4085                return 0;
4086        default:
4087                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4088                        __func__, ITEM_TYPE(item));
4089                ASSERT(0);
4090                return -EIO;
4091        }
4092}
4093
4094STATIC int
4095xlog_recover_commit_pass2(
4096        struct xlog                     *log,
4097        struct xlog_recover             *trans,
4098        struct list_head                *buffer_list,
4099        struct xlog_recover_item        *item)
4100{
4101        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4102
4103        switch (ITEM_TYPE(item)) {
4104        case XFS_LI_BUF:
4105                return xlog_recover_buffer_pass2(log, buffer_list, item,
4106                                                 trans->r_lsn);
4107        case XFS_LI_INODE:
4108                return xlog_recover_inode_pass2(log, buffer_list, item,
4109                                                 trans->r_lsn);
4110        case XFS_LI_EFI:
4111                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4112        case XFS_LI_EFD:
4113                return xlog_recover_efd_pass2(log, item);
4114        case XFS_LI_RUI:
4115                return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4116        case XFS_LI_RUD:
4117                return xlog_recover_rud_pass2(log, item);
4118        case XFS_LI_CUI:
4119                return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4120        case XFS_LI_CUD:
4121                return xlog_recover_cud_pass2(log, item);
4122        case XFS_LI_BUI:
4123                return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4124        case XFS_LI_BUD:
4125                return xlog_recover_bud_pass2(log, item);
4126        case XFS_LI_DQUOT:
4127                return xlog_recover_dquot_pass2(log, buffer_list, item,
4128                                                trans->r_lsn);
4129        case XFS_LI_ICREATE:
4130                return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4131        case XFS_LI_QUOTAOFF:
4132                /* nothing to do in pass2 */
4133                return 0;
4134        default:
4135                xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4136                        __func__, ITEM_TYPE(item));
4137                ASSERT(0);
4138                return -EIO;
4139        }
4140}
4141
4142STATIC int
4143xlog_recover_items_pass2(
4144        struct xlog                     *log,
4145        struct xlog_recover             *trans,
4146        struct list_head                *buffer_list,
4147        struct list_head                *item_list)
4148{
4149        struct xlog_recover_item        *item;
4150        int                             error = 0;
4151
4152        list_for_each_entry(item, item_list, ri_list) {
4153                error = xlog_recover_commit_pass2(log, trans,
4154                                          buffer_list, item);
4155                if (error)
4156                        return error;
4157        }
4158
4159        return error;
4160}
4161
4162/*
4163 * Perform the transaction.
4164 *
4165 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4166 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4167 */
4168STATIC int
4169xlog_recover_commit_trans(
4170        struct xlog             *log,
4171        struct xlog_recover     *trans,
4172        int                     pass,
4173        struct list_head        *buffer_list)
4174{
4175        int                             error = 0;
4176        int                             items_queued = 0;
4177        struct xlog_recover_item        *item;
4178        struct xlog_recover_item        *next;
4179        LIST_HEAD                       (ra_list);
4180        LIST_HEAD                       (done_list);
4181
4182        #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4183
4184        hlist_del_init(&trans->r_list);
4185
4186        error = xlog_recover_reorder_trans(log, trans, pass);
4187        if (error)
4188                return error;
4189
4190        list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4191                switch (pass) {
4192                case XLOG_RECOVER_PASS1:
4193                        error = xlog_recover_commit_pass1(log, trans, item);
4194                        break;
4195                case XLOG_RECOVER_PASS2:
4196                        xlog_recover_ra_pass2(log, item);
4197                        list_move_tail(&item->ri_list, &ra_list);
4198                        items_queued++;
4199                        if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4200                                error = xlog_recover_items_pass2(log, trans,
4201                                                buffer_list, &ra_list);
4202                                list_splice_tail_init(&ra_list, &done_list);
4203                                items_queued = 0;
4204                        }
4205
4206                        break;
4207                default:
4208                        ASSERT(0);
4209                }
4210
4211                if (error)
4212                        goto out;
4213        }
4214
4215out:
4216        if (!list_empty(&ra_list)) {
4217                if (!error)
4218                        error = xlog_recover_items_pass2(log, trans,
4219                                        buffer_list, &ra_list);
4220                list_splice_tail_init(&ra_list, &done_list);
4221        }
4222
4223        if (!list_empty(&done_list))
4224                list_splice_init(&done_list, &trans->r_itemq);
4225
4226        return error;
4227}
4228
4229STATIC void
4230xlog_recover_add_item(
4231        struct list_head        *head)
4232{
4233        xlog_recover_item_t     *item;
4234
4235        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4236        INIT_LIST_HEAD(&item->ri_list);
4237        list_add_tail(&item->ri_list, head);
4238}
4239
4240STATIC int
4241xlog_recover_add_to_cont_trans(
4242        struct xlog             *log,
4243        struct xlog_recover     *trans,
4244        char                    *dp,
4245        int                     len)
4246{
4247        xlog_recover_item_t     *item;
4248        char                    *ptr, *old_ptr;
4249        int                     old_len;
4250
4251        /*
4252         * If the transaction is empty, the header was split across this and the
4253         * previous record. Copy the rest of the header.
4254         */
4255        if (list_empty(&trans->r_itemq)) {
4256                ASSERT(len <= sizeof(struct xfs_trans_header));
4257                if (len > sizeof(struct xfs_trans_header)) {
4258                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
4259                        return -EIO;
4260                }
4261
4262                xlog_recover_add_item(&trans->r_itemq);
4263                ptr = (char *)&trans->r_theader +
4264                                sizeof(struct xfs_trans_header) - len;
4265                memcpy(ptr, dp, len);
4266                return 0;
4267        }
4268
4269        /* take the tail entry */
4270        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4271
4272        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4273        old_len = item->ri_buf[item->ri_cnt-1].i_len;
4274
4275        ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4276        memcpy(&ptr[old_len], dp, len);
4277        item->ri_buf[item->ri_cnt-1].i_len += len;
4278        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4279        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4280        return 0;
4281}
4282
4283/*
4284 * The next region to add is the start of a new region.  It could be
4285 * a whole region or it could be the first part of a new region.  Because
4286 * of this, the assumption here is that the type and size fields of all
4287 * format structures fit into the first 32 bits of the structure.
4288 *
4289 * This works because all regions must be 32 bit aligned.  Therefore, we
4290 * either have both fields or we have neither field.  In the case we have
4291 * neither field, the data part of the region is zero length.  We only have
4292 * a log_op_header and can throw away the header since a new one will appear
4293 * later.  If we have at least 4 bytes, then we can determine how many regions
4294 * will appear in the current log item.
4295 */
4296STATIC int
4297xlog_recover_add_to_trans(
4298        struct xlog             *log,
4299        struct xlog_recover     *trans,
4300        char                    *dp,
4301        int                     len)
4302{
4303        struct xfs_inode_log_format     *in_f;                  /* any will do */
4304        xlog_recover_item_t     *item;
4305        char                    *ptr;
4306
4307        if (!len)
4308                return 0;
4309        if (list_empty(&trans->r_itemq)) {
4310                /* we need to catch log corruptions here */
4311                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4312                        xfs_warn(log->l_mp, "%s: bad header magic number",
4313                                __func__);
4314                        ASSERT(0);
4315                        return -EIO;
4316                }
4317
4318                if (len > sizeof(struct xfs_trans_header)) {
4319                        xfs_warn(log->l_mp, "%s: bad header length", __func__);
4320                        ASSERT(0);
4321                        return -EIO;
4322                }
4323
4324                /*
4325                 * The transaction header can be arbitrarily split across op
4326                 * records. If we don't have the whole thing here, copy what we
4327                 * do have and handle the rest in the next record.
4328                 */
4329                if (len == sizeof(struct xfs_trans_header))
4330                        xlog_recover_add_item(&trans->r_itemq);
4331                memcpy(&trans->r_theader, dp, len);
4332                return 0;
4333        }
4334
4335        ptr = kmem_alloc(len, KM_SLEEP);
4336        memcpy(ptr, dp, len);
4337        in_f = (struct xfs_inode_log_format *)ptr;
4338
4339        /* take the tail entry */
4340        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4341        if (item->ri_total != 0 &&
4342             item->ri_total == item->ri_cnt) {
4343                /* tail item is in use, get a new one */
4344                xlog_recover_add_item(&trans->r_itemq);
4345                item = list_entry(trans->r_itemq.prev,
4346                                        xlog_recover_item_t, ri_list);
4347        }
4348
4349        if (item->ri_total == 0) {              /* first region to be added */
4350                if (in_f->ilf_size == 0 ||
4351                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4352                        xfs_warn(log->l_mp,
4353                "bad number of regions (%d) in inode log format",
4354                                  in_f->ilf_size);
4355                        ASSERT(0);
4356                        kmem_free(ptr);
4357                        return -EIO;
4358                }
4359
4360                item->ri_total = in_f->ilf_size;
4361                item->ri_buf =
4362                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4363                                    KM_SLEEP);
4364        }
4365        ASSERT(item->ri_total > item->ri_cnt);
4366        /* Description region is ri_buf[0] */
4367        item->ri_buf[item->ri_cnt].i_addr = ptr;
4368        item->ri_buf[item->ri_cnt].i_len  = len;
4369        item->ri_cnt++;
4370        trace_xfs_log_recover_item_add(log, trans, item, 0);
4371        return 0;
4372}
4373
4374/*
4375 * Free up any resources allocated by the transaction
4376 *
4377 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4378 */
4379STATIC void
4380xlog_recover_free_trans(
4381        struct xlog_recover     *trans)
4382{
4383        xlog_recover_item_t     *item, *n;
4384        int                     i;
4385
4386        hlist_del_init(&trans->r_list);
4387
4388        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4389                /* Free the regions in the item. */
4390                list_del(&item->ri_list);
4391                for (i = 0; i < item->ri_cnt; i++)
4392                        kmem_free(item->ri_buf[i].i_addr);
4393                /* Free the item itself */
4394                kmem_free(item->ri_buf);
4395                kmem_free(item);
4396        }
4397        /* Free the transaction recover structure */
4398        kmem_free(trans);
4399}
4400
4401/*
4402 * On error or completion, trans is freed.
4403 */
4404STATIC int
4405xlog_recovery_process_trans(
4406        struct xlog             *log,
4407        struct xlog_recover     *trans,
4408        char                    *dp,
4409        unsigned int            len,
4410        unsigned int            flags,
4411        int                     pass,
4412        struct list_head        *buffer_list)
4413{
4414        int                     error = 0;
4415        bool                    freeit = false;
4416
4417        /* mask off ophdr transaction container flags */
4418        flags &= ~XLOG_END_TRANS;
4419        if (flags & XLOG_WAS_CONT_TRANS)
4420                flags &= ~XLOG_CONTINUE_TRANS;
4421
4422        /*
4423         * Callees must not free the trans structure. We'll decide if we need to
4424         * free it or not based on the operation being done and it's result.
4425         */
4426        switch (flags) {
4427        /* expected flag values */
4428        case 0:
4429        case XLOG_CONTINUE_TRANS:
4430                error = xlog_recover_add_to_trans(log, trans, dp, len);
4431                break;
4432        case XLOG_WAS_CONT_TRANS:
4433                error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4434                break;
4435        case XLOG_COMMIT_TRANS:
4436                error = xlog_recover_commit_trans(log, trans, pass,
4437                                                  buffer_list);
4438                /* success or fail, we are now done with this transaction. */
4439                freeit = true;
4440                break;
4441
4442        /* unexpected flag values */
4443        case XLOG_UNMOUNT_TRANS:
4444                /* just skip trans */
4445                xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4446                freeit = true;
4447                break;
4448        case XLOG_START_TRANS:
4449        default:
4450                xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4451                ASSERT(0);
4452                error = -EIO;
4453                break;
4454        }
4455        if (error || freeit)
4456                xlog_recover_free_trans(trans);
4457        return error;
4458}
4459
4460/*
4461 * Lookup the transaction recovery structure associated with the ID in the
4462 * current ophdr. If the transaction doesn't exist and the start flag is set in
4463 * the ophdr, then allocate a new transaction for future ID matches to find.
4464 * Either way, return what we found during the lookup - an existing transaction
4465 * or nothing.
4466 */
4467STATIC struct xlog_recover *
4468xlog_recover_ophdr_to_trans(
4469        struct hlist_head       rhash[],
4470        struct xlog_rec_header  *rhead,
4471        struct xlog_op_header   *ohead)
4472{
4473        struct xlog_recover     *trans;
4474        xlog_tid_t              tid;
4475        struct hlist_head       *rhp;
4476
4477        tid = be32_to_cpu(ohead->oh_tid);
4478        rhp = &rhash[XLOG_RHASH(tid)];
4479        hlist_for_each_entry(trans, rhp, r_list) {
4480                if (trans->r_log_tid == tid)
4481                        return trans;
4482        }
4483
4484        /*
4485         * skip over non-start transaction headers - we could be
4486         * processing slack space before the next transaction starts
4487         */
4488        if (!(ohead->oh_flags & XLOG_START_TRANS))
4489                return NULL;
4490
4491        ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4492
4493        /*
4494         * This is a new transaction so allocate a new recovery container to
4495         * hold the recovery ops that will follow.
4496         */
4497        trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4498        trans->r_log_tid = tid;
4499        trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4500        INIT_LIST_HEAD(&trans->r_itemq);
4501        INIT_HLIST_NODE(&trans->r_list);
4502        hlist_add_head(&trans->r_list, rhp);
4503
4504        /*
4505         * Nothing more to do for this ophdr. Items to be added to this new
4506         * transaction will be in subsequent ophdr containers.
4507         */
4508        return NULL;
4509}
4510
4511STATIC int
4512xlog_recover_process_ophdr(
4513        struct xlog             *log,
4514        struct hlist_head       rhash[],
4515        struct xlog_rec_header  *rhead,
4516        struct xlog_op_header   *ohead,
4517        char                    *dp,
4518        char                    *end,
4519        int                     pass,
4520        struct list_head        *buffer_list)
4521{
4522        struct xlog_recover     *trans;
4523        unsigned int            len;
4524        int                     error;
4525
4526        /* Do we understand who wrote this op? */
4527        if (ohead->oh_clientid != XFS_TRANSACTION &&
4528            ohead->oh_clientid != XFS_LOG) {
4529                xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4530                        __func__, ohead->oh_clientid);
4531                ASSERT(0);
4532                return -EIO;
4533        }
4534
4535        /*
4536         * Check the ophdr contains all the data it is supposed to contain.
4537         */
4538        len = be32_to_cpu(ohead->oh_len);
4539        if (dp + len > end) {
4540                xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4541                WARN_ON(1);
4542                return -EIO;
4543        }
4544
4545        trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4546        if (!trans) {
4547                /* nothing to do, so skip over this ophdr */
4548                return 0;
4549        }
4550
4551        /*
4552         * The recovered buffer queue is drained only once we know that all
4553         * recovery items for the current LSN have been processed. This is
4554         * required because:
4555         *
4556         * - Buffer write submission updates the metadata LSN of the buffer.
4557         * - Log recovery skips items with a metadata LSN >= the current LSN of
4558         *   the recovery item.
4559         * - Separate recovery items against the same metadata buffer can share
4560         *   a current LSN. I.e., consider that the LSN of a recovery item is
4561         *   defined as the starting LSN of the first record in which its
4562         *   transaction appears, that a record can hold multiple transactions,
4563         *   and/or that a transaction can span multiple records.
4564         *
4565         * In other words, we are allowed to submit a buffer from log recovery
4566         * once per current LSN. Otherwise, we may incorrectly skip recovery
4567         * items and cause corruption.
4568         *
4569         * We don't know up front whether buffers are updated multiple times per
4570         * LSN. Therefore, track the current LSN of each commit log record as it
4571         * is processed and drain the queue when it changes. Use commit records
4572         * because they are ordered correctly by the logging code.
4573         */
4574        if (log->l_recovery_lsn != trans->r_lsn &&
4575            ohead->oh_flags & XLOG_COMMIT_TRANS) {
4576                error = xfs_buf_delwri_submit(buffer_list);
4577                if (error)
4578                        return error;
4579                log->l_recovery_lsn = trans->r_lsn;
4580        }
4581
4582        return xlog_recovery_process_trans(log, trans, dp, len,
4583                                           ohead->oh_flags, pass, buffer_list);
4584}
4585
4586/*
4587 * There are two valid states of the r_state field.  0 indicates that the
4588 * transaction structure is in a normal state.  We have either seen the
4589 * start of the transaction or the last operation we added was not a partial
4590 * operation.  If the last operation we added to the transaction was a
4591 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4592 *
4593 * NOTE: skip LRs with 0 data length.
4594 */
4595STATIC int
4596xlog_recover_process_data(
4597        struct xlog             *log,
4598        struct hlist_head       rhash[],
4599        struct xlog_rec_header  *rhead,
4600        char                    *dp,
4601        int                     pass,
4602        struct list_head        *buffer_list)
4603{
4604        struct xlog_op_header   *ohead;
4605        char                    *end;
4606        int                     num_logops;
4607        int                     error;
4608
4609        end = dp + be32_to_cpu(rhead->h_len);
4610        num_logops = be32_to_cpu(rhead->h_num_logops);
4611
4612        /* check the log format matches our own - else we can't recover */
4613        if (xlog_header_check_recover(log->l_mp, rhead))
4614                return -EIO;
4615
4616        trace_xfs_log_recover_record(log, rhead, pass);
4617        while ((dp < end) && num_logops) {
4618
4619                ohead = (struct xlog_op_header *)dp;
4620                dp += sizeof(*ohead);
4621                ASSERT(dp <= end);
4622
4623                /* errors will abort recovery */
4624                error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4625                                                   dp, end, pass, buffer_list);
4626                if (error)
4627                        return error;
4628
4629                dp += be32_to_cpu(ohead->oh_len);
4630                num_logops--;
4631        }
4632        return 0;
4633}
4634
4635/* Recover the EFI if necessary. */
4636STATIC int
4637xlog_recover_process_efi(
4638        struct xfs_mount                *mp,
4639        struct xfs_ail                  *ailp,
4640        struct xfs_log_item             *lip)
4641{
4642        struct xfs_efi_log_item         *efip;
4643        int                             error;
4644
4645        /*
4646         * Skip EFIs that we've already processed.
4647         */
4648        efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4649        if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4650                return 0;
4651
4652        spin_unlock(&ailp->xa_lock);
4653        error = xfs_efi_recover(mp, efip);
4654        spin_lock(&ailp->xa_lock);
4655
4656        return error;
4657}
4658
4659/* Release the EFI since we're cancelling everything. */
4660STATIC void
4661xlog_recover_cancel_efi(
4662        struct xfs_mount                *mp,
4663        struct xfs_ail                  *ailp,
4664        struct xfs_log_item             *lip)
4665{
4666        struct xfs_efi_log_item         *efip;
4667
4668        efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4669
4670        spin_unlock(&ailp->xa_lock);
4671        xfs_efi_release(efip);
4672        spin_lock(&ailp->xa_lock);
4673}
4674
4675/* Recover the RUI if necessary. */
4676STATIC int
4677xlog_recover_process_rui(
4678        struct xfs_mount                *mp,
4679        struct xfs_ail                  *ailp,
4680        struct xfs_log_item             *lip)
4681{
4682        struct xfs_rui_log_item         *ruip;
4683        int                             error;
4684
4685        /*
4686         * Skip RUIs that we've already processed.
4687         */
4688        ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4689        if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4690                return 0;
4691
4692        spin_unlock(&ailp->xa_lock);
4693        error = xfs_rui_recover(mp, ruip);
4694        spin_lock(&ailp->xa_lock);
4695
4696        return error;
4697}
4698
4699/* Release the RUI since we're cancelling everything. */
4700STATIC void
4701xlog_recover_cancel_rui(
4702        struct xfs_mount                *mp,
4703        struct xfs_ail                  *ailp,
4704        struct xfs_log_item             *lip)
4705{
4706        struct xfs_rui_log_item         *ruip;
4707
4708        ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4709
4710        spin_unlock(&ailp->xa_lock);
4711        xfs_rui_release(ruip);
4712        spin_lock(&ailp->xa_lock);
4713}
4714
4715/* Recover the CUI if necessary. */
4716STATIC int
4717xlog_recover_process_cui(
4718        struct xfs_mount                *mp,
4719        struct xfs_ail                  *ailp,
4720        struct xfs_log_item             *lip,
4721        struct xfs_defer_ops            *dfops)
4722{
4723        struct xfs_cui_log_item         *cuip;
4724        int                             error;
4725
4726        /*
4727         * Skip CUIs that we've already processed.
4728         */
4729        cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4730        if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4731                return 0;
4732
4733        spin_unlock(&ailp->xa_lock);
4734        error = xfs_cui_recover(mp, cuip, dfops);
4735        spin_lock(&ailp->xa_lock);
4736
4737        return error;
4738}
4739
4740/* Release the CUI since we're cancelling everything. */
4741STATIC void
4742xlog_recover_cancel_cui(
4743        struct xfs_mount                *mp,
4744        struct xfs_ail                  *ailp,
4745        struct xfs_log_item             *lip)
4746{
4747        struct xfs_cui_log_item         *cuip;
4748
4749        cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4750
4751        spin_unlock(&ailp->xa_lock);
4752        xfs_cui_release(cuip);
4753        spin_lock(&ailp->xa_lock);
4754}
4755
4756/* Recover the BUI if necessary. */
4757STATIC int
4758xlog_recover_process_bui(
4759        struct xfs_mount                *mp,
4760        struct xfs_ail                  *ailp,
4761        struct xfs_log_item             *lip,
4762        struct xfs_defer_ops            *dfops)
4763{
4764        struct xfs_bui_log_item         *buip;
4765        int                             error;
4766
4767        /*
4768         * Skip BUIs that we've already processed.
4769         */
4770        buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4771        if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4772                return 0;
4773
4774        spin_unlock(&ailp->xa_lock);
4775        error = xfs_bui_recover(mp, buip, dfops);
4776        spin_lock(&ailp->xa_lock);
4777
4778        return error;
4779}
4780
4781/* Release the BUI since we're cancelling everything. */
4782STATIC void
4783xlog_recover_cancel_bui(
4784        struct xfs_mount                *mp,
4785        struct xfs_ail                  *ailp,
4786        struct xfs_log_item             *lip)
4787{
4788        struct xfs_bui_log_item         *buip;
4789
4790        buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4791
4792        spin_unlock(&ailp->xa_lock);
4793        xfs_bui_release(buip);
4794        spin_lock(&ailp->xa_lock);
4795}
4796
4797/* Is this log item a deferred action intent? */
4798static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4799{
4800        switch (lip->li_type) {
4801        case XFS_LI_EFI:
4802        case XFS_LI_RUI:
4803        case XFS_LI_CUI:
4804        case XFS_LI_BUI:
4805                return true;
4806        default:
4807                return false;
4808        }
4809}
4810
4811/* Take all the collected deferred ops and finish them in order. */
4812static int
4813xlog_finish_defer_ops(
4814        struct xfs_mount        *mp,
4815        struct xfs_defer_ops    *dfops)
4816{
4817        struct xfs_trans        *tp;
4818        int64_t                 freeblks;
4819        uint                    resblks;
4820        int                     error;
4821
4822        /*
4823         * We're finishing the defer_ops that accumulated as a result of
4824         * recovering unfinished intent items during log recovery.  We
4825         * reserve an itruncate transaction because it is the largest
4826         * permanent transaction type.  Since we're the only user of the fs
4827         * right now, take 93% (15/16) of the available free blocks.  Use
4828         * weird math to avoid a 64-bit division.
4829         */
4830        freeblks = percpu_counter_sum(&mp->m_fdblocks);
4831        if (freeblks <= 0)
4832                return -ENOSPC;
4833        resblks = min_t(int64_t, UINT_MAX, freeblks);
4834        resblks = (resblks * 15) >> 4;
4835        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4836                        0, XFS_TRANS_RESERVE, &tp);
4837        if (error)
4838                return error;
4839
4840        error = xfs_defer_finish(&tp, dfops);
4841        if (error)
4842                goto out_cancel;
4843
4844        return xfs_trans_commit(tp);
4845
4846out_cancel:
4847        xfs_trans_cancel(tp);
4848        return error;
4849}
4850
4851/*
4852 * When this is called, all of the log intent items which did not have
4853 * corresponding log done items should be in the AIL.  What we do now
4854 * is update the data structures associated with each one.
4855 *
4856 * Since we process the log intent items in normal transactions, they
4857 * will be removed at some point after the commit.  This prevents us
4858 * from just walking down the list processing each one.  We'll use a
4859 * flag in the intent item to skip those that we've already processed
4860 * and use the AIL iteration mechanism's generation count to try to
4861 * speed this up at least a bit.
4862 *
4863 * When we start, we know that the intents are the only things in the
4864 * AIL.  As we process them, however, other items are added to the
4865 * AIL.
4866 */
4867STATIC int
4868xlog_recover_process_intents(
4869        struct xlog             *log)
4870{
4871        struct xfs_defer_ops    dfops;
4872        struct xfs_ail_cursor   cur;
4873        struct xfs_log_item     *lip;
4874        struct xfs_ail          *ailp;
4875        xfs_fsblock_t           firstfsb;
4876        int                     error = 0;
4877#if defined(DEBUG) || defined(XFS_WARN)
4878        xfs_lsn_t               last_lsn;
4879#endif
4880
4881        ailp = log->l_ailp;
4882        spin_lock(&ailp->xa_lock);
4883        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4884#if defined(DEBUG) || defined(XFS_WARN)
4885        last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4886#endif
4887        xfs_defer_init(&dfops, &firstfsb);
4888        while (lip != NULL) {
4889                /*
4890                 * We're done when we see something other than an intent.
4891                 * There should be no intents left in the AIL now.
4892                 */
4893                if (!xlog_item_is_intent(lip)) {
4894#ifdef DEBUG
4895                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4896                                ASSERT(!xlog_item_is_intent(lip));
4897#endif
4898                        break;
4899                }
4900
4901                /*
4902                 * We should never see a redo item with a LSN higher than
4903                 * the last transaction we found in the log at the start
4904                 * of recovery.
4905                 */
4906                ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4907
4908                /*
4909                 * NOTE: If your intent processing routine can create more
4910                 * deferred ops, you /must/ attach them to the dfops in this
4911                 * routine or else those subsequent intents will get
4912                 * replayed in the wrong order!
4913                 */
4914                switch (lip->li_type) {
4915                case XFS_LI_EFI:
4916                        error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4917                        break;
4918                case XFS_LI_RUI:
4919                        error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4920                        break;
4921                case XFS_LI_CUI:
4922                        error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4923                                        &dfops);
4924                        break;
4925                case XFS_LI_BUI:
4926                        error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4927                                        &dfops);
4928                        break;
4929                }
4930                if (error)
4931                        goto out;
4932                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4933        }
4934out:
4935        xfs_trans_ail_cursor_done(&cur);
4936        spin_unlock(&ailp->xa_lock);
4937        if (error)
4938                xfs_defer_cancel(&dfops);
4939        else
4940                error = xlog_finish_defer_ops(log->l_mp, &dfops);
4941
4942        return error;
4943}
4944
4945/*
4946 * A cancel occurs when the mount has failed and we're bailing out.
4947 * Release all pending log intent items so they don't pin the AIL.
4948 */
4949STATIC int
4950xlog_recover_cancel_intents(
4951        struct xlog             *log)
4952{
4953        struct xfs_log_item     *lip;
4954        int                     error = 0;
4955        struct xfs_ail_cursor   cur;
4956        struct xfs_ail          *ailp;
4957
4958        ailp = log->l_ailp;
4959        spin_lock(&ailp->xa_lock);
4960        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4961        while (lip != NULL) {
4962                /*
4963                 * We're done when we see something other than an intent.
4964                 * There should be no intents left in the AIL now.
4965                 */
4966                if (!xlog_item_is_intent(lip)) {
4967#ifdef DEBUG
4968                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4969                                ASSERT(!xlog_item_is_intent(lip));
4970#endif
4971                        break;
4972                }
4973
4974                switch (lip->li_type) {
4975                case XFS_LI_EFI:
4976                        xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4977                        break;
4978                case XFS_LI_RUI:
4979                        xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4980                        break;
4981                case XFS_LI_CUI:
4982                        xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4983                        break;
4984                case XFS_LI_BUI:
4985                        xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4986                        break;
4987                }
4988
4989                lip = xfs_trans_ail_cursor_next(ailp, &cur);
4990        }
4991
4992        xfs_trans_ail_cursor_done(&cur);
4993        spin_unlock(&ailp->xa_lock);
4994        return error;
4995}
4996
4997/*
4998 * This routine performs a transaction to null out a bad inode pointer
4999 * in an agi unlinked inode hash bucket.
5000 */
5001STATIC void
5002xlog_recover_clear_agi_bucket(
5003        xfs_mount_t     *mp,
5004        xfs_agnumber_t  agno,
5005        int             bucket)
5006{
5007        xfs_trans_t     *tp;
5008        xfs_agi_t       *agi;
5009        xfs_buf_t       *agibp;
5010        int             offset;
5011        int             error;
5012
5013        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5014        if (error)
5015                goto out_error;
5016
5017        error = xfs_read_agi(mp, tp, agno, &agibp);
5018        if (error)
5019                goto out_abort;
5020
5021        agi = XFS_BUF_TO_AGI(agibp);
5022        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5023        offset = offsetof(xfs_agi_t, agi_unlinked) +
5024                 (sizeof(xfs_agino_t) * bucket);
5025        xfs_trans_log_buf(tp, agibp, offset,
5026                          (offset + sizeof(xfs_agino_t) - 1));
5027
5028        error = xfs_trans_commit(tp);
5029        if (error)
5030                goto out_error;
5031        return;
5032
5033out_abort:
5034        xfs_trans_cancel(tp);
5035out_error:
5036        xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5037        return;
5038}
5039
5040STATIC xfs_agino_t
5041xlog_recover_process_one_iunlink(
5042        struct xfs_mount                *mp,
5043        xfs_agnumber_t                  agno,
5044        xfs_agino_t                     agino,
5045        int                             bucket)
5046{
5047        struct xfs_buf                  *ibp;
5048        struct xfs_dinode               *dip;
5049        struct xfs_inode                *ip;
5050        xfs_ino_t                       ino;
5051        int                             error;
5052
5053        ino = XFS_AGINO_TO_INO(mp, agno, agino);
5054        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5055        if (error)
5056                goto fail;
5057
5058        /*
5059         * Get the on disk inode to find the next inode in the bucket.
5060         */
5061        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5062        if (error)
5063                goto fail_iput;
5064
5065        xfs_iflags_clear(ip, XFS_IRECOVERY);
5066        ASSERT(VFS_I(ip)->i_nlink == 0);
5067        ASSERT(VFS_I(ip)->i_mode != 0);
5068
5069        /* setup for the next pass */
5070        agino = be32_to_cpu(dip->di_next_unlinked);
5071        xfs_buf_relse(ibp);
5072
5073        /*
5074         * Prevent any DMAPI event from being sent when the reference on
5075         * the inode is dropped.
5076         */
5077        ip->i_d.di_dmevmask = 0;
5078
5079        IRELE(ip);
5080        return agino;
5081
5082 fail_iput:
5083        IRELE(ip);
5084 fail:
5085        /*
5086         * We can't read in the inode this bucket points to, or this inode
5087         * is messed up.  Just ditch this bucket of inodes.  We will lose
5088         * some inodes and space, but at least we won't hang.
5089         *
5090         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5091         * clear the inode pointer in the bucket.
5092         */
5093        xlog_recover_clear_agi_bucket(mp, agno, bucket);
5094        return NULLAGINO;
5095}
5096
5097/*
5098 * xlog_iunlink_recover
5099 *
5100 * This is called during recovery to process any inodes which
5101 * we unlinked but not freed when the system crashed.  These
5102 * inodes will be on the lists in the AGI blocks.  What we do
5103 * here is scan all the AGIs and fully truncate and free any
5104 * inodes found on the lists.  Each inode is removed from the
5105 * lists when it has been fully truncated and is freed.  The
5106 * freeing of the inode and its removal from the list must be
5107 * atomic.
5108 */
5109STATIC void
5110xlog_recover_process_iunlinks(
5111        struct xlog     *log)
5112{
5113        xfs_mount_t     *mp;
5114        xfs_agnumber_t  agno;
5115        xfs_agi_t       *agi;
5116        xfs_buf_t       *agibp;
5117        xfs_agino_t     agino;
5118        int             bucket;
5119        int             error;
5120        uint            mp_dmevmask;
5121
5122        mp = log->l_mp;
5123
5124        /*
5125         * Prevent any DMAPI event from being sent while in this function.
5126         */
5127        mp_dmevmask = mp->m_dmevmask;
5128        mp->m_dmevmask = 0;
5129
5130        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5131                /*
5132                 * Find the agi for this ag.
5133                 */
5134                error = xfs_read_agi(mp, NULL, agno, &agibp);
5135                if (error) {
5136                        /*
5137                         * AGI is b0rked. Don't process it.
5138                         *
5139                         * We should probably mark the filesystem as corrupt
5140                         * after we've recovered all the ag's we can....
5141                         */
5142                        continue;
5143                }
5144                /*
5145                 * Unlock the buffer so that it can be acquired in the normal
5146                 * course of the transaction to truncate and free each inode.
5147                 * Because we are not racing with anyone else here for the AGI
5148                 * buffer, we don't even need to hold it locked to read the
5149                 * initial unlinked bucket entries out of the buffer. We keep
5150                 * buffer reference though, so that it stays pinned in memory
5151                 * while we need the buffer.
5152                 */
5153                agi = XFS_BUF_TO_AGI(agibp);
5154                xfs_buf_unlock(agibp);
5155
5156                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5157                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5158                        while (agino != NULLAGINO) {
5159                                agino = xlog_recover_process_one_iunlink(mp,
5160                                                        agno, agino, bucket);
5161                        }
5162                }
5163                xfs_buf_rele(agibp);
5164        }
5165
5166        mp->m_dmevmask = mp_dmevmask;
5167}
5168
5169STATIC int
5170xlog_unpack_data(
5171        struct xlog_rec_header  *rhead,
5172        char                    *dp,
5173        struct xlog             *log)
5174{
5175        int                     i, j, k;
5176
5177        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5178                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5179                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5180                dp += BBSIZE;
5181        }
5182
5183        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5184                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5185                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5186                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5187                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5188                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5189                        dp += BBSIZE;
5190                }
5191        }
5192
5193        return 0;
5194}
5195
5196/*
5197 * CRC check, unpack and process a log record.
5198 */
5199STATIC int
5200xlog_recover_process(
5201        struct xlog             *log,
5202        struct hlist_head       rhash[],
5203        struct xlog_rec_header  *rhead,
5204        char                    *dp,
5205        int                     pass,
5206        struct list_head        *buffer_list)
5207{
5208        int                     error;
5209        __le32                  old_crc = rhead->h_crc;
5210        __le32                  crc;
5211
5212
5213        crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5214
5215        /*
5216         * Nothing else to do if this is a CRC verification pass. Just return
5217         * if this a record with a non-zero crc. Unfortunately, mkfs always
5218         * sets old_crc to 0 so we must consider this valid even on v5 supers.
5219         * Otherwise, return EFSBADCRC on failure so the callers up the stack
5220         * know precisely what failed.
5221         */
5222        if (pass == XLOG_RECOVER_CRCPASS) {
5223                if (old_crc && crc != old_crc)
5224                        return -EFSBADCRC;
5225                return 0;
5226        }
5227
5228        /*
5229         * We're in the normal recovery path. Issue a warning if and only if the
5230         * CRC in the header is non-zero. This is an advisory warning and the
5231         * zero CRC check prevents warnings from being emitted when upgrading
5232         * the kernel from one that does not add CRCs by default.
5233         */
5234        if (crc != old_crc) {
5235                if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5236                        xfs_alert(log->l_mp,
5237                "log record CRC mismatch: found 0x%x, expected 0x%x.",
5238                                        le32_to_cpu(old_crc),
5239                                        le32_to_cpu(crc));
5240                        xfs_hex_dump(dp, 32);
5241                }
5242
5243                /*
5244                 * If the filesystem is CRC enabled, this mismatch becomes a
5245                 * fatal log corruption failure.
5246                 */
5247                if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5248                        return -EFSCORRUPTED;
5249        }
5250
5251        error = xlog_unpack_data(rhead, dp, log);
5252        if (error)
5253                return error;
5254
5255        return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5256                                         buffer_list);
5257}
5258
5259STATIC int
5260xlog_valid_rec_header(
5261        struct xlog             *log,
5262        struct xlog_rec_header  *rhead,
5263        xfs_daddr_t             blkno)
5264{
5265        int                     hlen;
5266
5267        if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5268                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5269                                XFS_ERRLEVEL_LOW, log->l_mp);
5270                return -EFSCORRUPTED;
5271        }
5272        if (unlikely(
5273            (!rhead->h_version ||
5274            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5275                xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5276                        __func__, be32_to_cpu(rhead->h_version));
5277                return -EIO;
5278        }
5279
5280        /* LR body must have data or it wouldn't have been written */
5281        hlen = be32_to_cpu(rhead->h_len);
5282        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5283                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5284                                XFS_ERRLEVEL_LOW, log->l_mp);
5285                return -EFSCORRUPTED;
5286        }
5287        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5288                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5289                                XFS_ERRLEVEL_LOW, log->l_mp);
5290                return -EFSCORRUPTED;
5291        }
5292        return 0;
5293}
5294
5295/*
5296 * Read the log from tail to head and process the log records found.
5297 * Handle the two cases where the tail and head are in the same cycle
5298 * and where the active portion of the log wraps around the end of
5299 * the physical log separately.  The pass parameter is passed through
5300 * to the routines called to process the data and is not looked at
5301 * here.
5302 */
5303STATIC int
5304xlog_do_recovery_pass(
5305        struct xlog             *log,
5306        xfs_daddr_t             head_blk,
5307        xfs_daddr_t             tail_blk,
5308        int                     pass,
5309        xfs_daddr_t             *first_bad)     /* out: first bad log rec */
5310{
5311        xlog_rec_header_t       *rhead;
5312        xfs_daddr_t             blk_no, rblk_no;
5313        xfs_daddr_t             rhead_blk;
5314        char                    *offset;
5315        xfs_buf_t               *hbp, *dbp;
5316        int                     error = 0, h_size, h_len;
5317        int                     error2 = 0;
5318        int                     bblks, split_bblks;
5319        int                     hblks, split_hblks, wrapped_hblks;
5320        int                     i;
5321        struct hlist_head       rhash[XLOG_RHASH_SIZE];
5322        LIST_HEAD               (buffer_list);
5323
5324        ASSERT(head_blk != tail_blk);
5325        blk_no = rhead_blk = tail_blk;
5326
5327        for (i = 0; i < XLOG_RHASH_SIZE; i++)
5328                INIT_HLIST_HEAD(&rhash[i]);
5329
5330        /*
5331         * Read the header of the tail block and get the iclog buffer size from
5332         * h_size.  Use this to tell how many sectors make up the log header.
5333         */
5334        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5335                /*
5336                 * When using variable length iclogs, read first sector of
5337                 * iclog header and extract the header size from it.  Get a
5338                 * new hbp that is the correct size.
5339                 */
5340                hbp = xlog_get_bp(log, 1);
5341                if (!hbp)
5342                        return -ENOMEM;
5343
5344                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5345                if (error)
5346                        goto bread_err1;
5347
5348                rhead = (xlog_rec_header_t *)offset;
5349                error = xlog_valid_rec_header(log, rhead, tail_blk);
5350                if (error)
5351                        goto bread_err1;
5352
5353                /*
5354                 * xfsprogs has a bug where record length is based on lsunit but
5355                 * h_size (iclog size) is hardcoded to 32k. Now that we
5356                 * unconditionally CRC verify the unmount record, this means the
5357                 * log buffer can be too small for the record and cause an
5358                 * overrun.
5359                 *
5360                 * Detect this condition here. Use lsunit for the buffer size as
5361                 * long as this looks like the mkfs case. Otherwise, return an
5362                 * error to avoid a buffer overrun.
5363                 */
5364                h_size = be32_to_cpu(rhead->h_size);
5365                h_len = be32_to_cpu(rhead->h_len);
5366                if (h_len > h_size) {
5367                        if (h_len <= log->l_mp->m_logbsize &&
5368                            be32_to_cpu(rhead->h_num_logops) == 1) {
5369                                xfs_warn(log->l_mp,
5370                "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5371                                         h_size, log->l_mp->m_logbsize);
5372                                h_size = log->l_mp->m_logbsize;
5373                        } else
5374                                return -EFSCORRUPTED;
5375                }
5376
5377                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5378                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5379                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5380                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
5381                                hblks++;
5382                        xlog_put_bp(hbp);
5383                        hbp = xlog_get_bp(log, hblks);
5384                } else {
5385                        hblks = 1;
5386                }
5387        } else {
5388                ASSERT(log->l_sectBBsize == 1);
5389                hblks = 1;
5390                hbp = xlog_get_bp(log, 1);
5391                h_size = XLOG_BIG_RECORD_BSIZE;
5392        }
5393
5394        if (!hbp)
5395                return -ENOMEM;
5396        dbp = xlog_get_bp(log, BTOBB(h_size));
5397        if (!dbp) {
5398                xlog_put_bp(hbp);
5399                return -ENOMEM;
5400        }
5401
5402        memset(rhash, 0, sizeof(rhash));
5403        if (tail_blk > head_blk) {
5404                /*
5405                 * Perform recovery around the end of the physical log.
5406                 * When the head is not on the same cycle number as the tail,
5407                 * we can't do a sequential recovery.
5408                 */
5409                while (blk_no < log->l_logBBsize) {
5410                        /*
5411                         * Check for header wrapping around physical end-of-log
5412                         */
5413                        offset = hbp->b_addr;
5414                        split_hblks = 0;
5415                        wrapped_hblks = 0;
5416                        if (blk_no + hblks <= log->l_logBBsize) {
5417                                /* Read header in one read */
5418                                error = xlog_bread(log, blk_no, hblks, hbp,
5419                                                   &offset);
5420                                if (error)
5421                                        goto bread_err2;
5422                        } else {
5423                                /* This LR is split across physical log end */
5424                                if (blk_no != log->l_logBBsize) {
5425                                        /* some data before physical log end */
5426                                        ASSERT(blk_no <= INT_MAX);
5427                                        split_hblks = log->l_logBBsize - (int)blk_no;
5428                                        ASSERT(split_hblks > 0);
5429                                        error = xlog_bread(log, blk_no,
5430                                                           split_hblks, hbp,
5431                                                           &offset);
5432                                        if (error)
5433                                                goto bread_err2;
5434                                }
5435
5436                                /*
5437                                 * Note: this black magic still works with
5438                                 * large sector sizes (non-512) only because:
5439                                 * - we increased the buffer size originally
5440                                 *   by 1 sector giving us enough extra space
5441                                 *   for the second read;
5442                                 * - the log start is guaranteed to be sector
5443                                 *   aligned;
5444                                 * - we read the log end (LR header start)
5445                                 *   _first_, then the log start (LR header end)
5446                                 *   - order is important.
5447                                 */
5448                                wrapped_hblks = hblks - split_hblks;
5449                                error = xlog_bread_offset(log, 0,
5450                                                wrapped_hblks, hbp,
5451                                                offset + BBTOB(split_hblks));
5452                                if (error)
5453                                        goto bread_err2;
5454                        }
5455                        rhead = (xlog_rec_header_t *)offset;
5456                        error = xlog_valid_rec_header(log, rhead,
5457                                                split_hblks ? blk_no : 0);
5458                        if (error)
5459                                goto bread_err2;
5460
5461                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5462                        blk_no += hblks;
5463
5464                        /*
5465                         * Read the log record data in multiple reads if it
5466                         * wraps around the end of the log. Note that if the
5467                         * header already wrapped, blk_no could point past the
5468                         * end of the log. The record data is contiguous in
5469                         * that case.
5470                         */
5471                        if (blk_no + bblks <= log->l_logBBsize ||
5472                            blk_no >= log->l_logBBsize) {
5473                                /* mod blk_no in case the header wrapped and
5474                                 * pushed it beyond the end of the log */
5475                                rblk_no = do_mod(blk_no, log->l_logBBsize);
5476                                error = xlog_bread(log, rblk_no, bblks, dbp,
5477                                                   &offset);
5478                                if (error)
5479                                        goto bread_err2;
5480                        } else {
5481                                /* This log record is split across the
5482                                 * physical end of log */
5483                                offset = dbp->b_addr;
5484                                split_bblks = 0;
5485                                if (blk_no != log->l_logBBsize) {
5486                                        /* some data is before the physical
5487                                         * end of log */
5488                                        ASSERT(!wrapped_hblks);
5489                                        ASSERT(blk_no <= INT_MAX);
5490                                        split_bblks =
5491                                                log->l_logBBsize - (int)blk_no;
5492                                        ASSERT(split_bblks > 0);
5493                                        error = xlog_bread(log, blk_no,
5494                                                        split_bblks, dbp,
5495                                                        &offset);
5496                                        if (error)
5497                                                goto bread_err2;
5498                                }
5499
5500                                /*
5501                                 * Note: this black magic still works with
5502                                 * large sector sizes (non-512) only because:
5503                                 * - we increased the buffer size originally
5504                                 *   by 1 sector giving us enough extra space
5505                                 *   for the second read;
5506                                 * - the log start is guaranteed to be sector
5507                                 *   aligned;
5508                                 * - we read the log end (LR header start)
5509                                 *   _first_, then the log start (LR header end)
5510                                 *   - order is important.
5511                                 */
5512                                error = xlog_bread_offset(log, 0,
5513                                                bblks - split_bblks, dbp,
5514                                                offset + BBTOB(split_bblks));
5515                                if (error)
5516                                        goto bread_err2;
5517                        }
5518
5519                        error = xlog_recover_process(log, rhash, rhead, offset,
5520                                                     pass, &buffer_list);
5521                        if (error)
5522                                goto bread_err2;
5523
5524                        blk_no += bblks;
5525                        rhead_blk = blk_no;
5526                }
5527
5528                ASSERT(blk_no >= log->l_logBBsize);
5529                blk_no -= log->l_logBBsize;
5530                rhead_blk = blk_no;
5531        }
5532
5533        /* read first part of physical log */
5534        while (blk_no < head_blk) {
5535                error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5536                if (error)
5537                        goto bread_err2;
5538
5539                rhead = (xlog_rec_header_t *)offset;
5540                error = xlog_valid_rec_header(log, rhead, blk_no);
5541                if (error)
5542                        goto bread_err2;
5543
5544                /* blocks in data section */
5545                bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5546                error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5547                                   &offset);
5548                if (error)
5549                        goto bread_err2;
5550
5551                error = xlog_recover_process(log, rhash, rhead, offset, pass,
5552                                             &buffer_list);
5553                if (error)
5554                        goto bread_err2;
5555
5556                blk_no += bblks + hblks;
5557                rhead_blk = blk_no;
5558        }
5559
5560 bread_err2:
5561        xlog_put_bp(dbp);
5562 bread_err1:
5563        xlog_put_bp(hbp);
5564
5565        /*
5566         * Submit buffers that have been added from the last record processed,
5567         * regardless of error status.
5568         */
5569        if (!list_empty(&buffer_list))
5570                error2 = xfs_buf_delwri_submit(&buffer_list);
5571
5572        if (error && first_bad)
5573                *first_bad = rhead_blk;
5574
5575        /*
5576         * Transactions are freed at commit time but transactions without commit
5577         * records on disk are never committed. Free any that may be left in the
5578         * hash table.
5579         */
5580        for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5581                struct hlist_node       *tmp;
5582                struct xlog_recover     *trans;
5583
5584                hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5585                        xlog_recover_free_trans(trans);
5586        }
5587
5588        return error ? error : error2;
5589}
5590
5591/*
5592 * Do the recovery of the log.  We actually do this in two phases.
5593 * The two passes are necessary in order to implement the function
5594 * of cancelling a record written into the log.  The first pass
5595 * determines those things which have been cancelled, and the
5596 * second pass replays log items normally except for those which
5597 * have been cancelled.  The handling of the replay and cancellations
5598 * takes place in the log item type specific routines.
5599 *
5600 * The table of items which have cancel records in the log is allocated
5601 * and freed at this level, since only here do we know when all of
5602 * the log recovery has been completed.
5603 */
5604STATIC int
5605xlog_do_log_recovery(
5606        struct xlog     *log,
5607        xfs_daddr_t     head_blk,
5608        xfs_daddr_t     tail_blk)
5609{
5610        int             error, i;
5611
5612        ASSERT(head_blk != tail_blk);
5613
5614        /*
5615         * First do a pass to find all of the cancelled buf log items.
5616         * Store them in the buf_cancel_table for use in the second pass.
5617         */
5618        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5619                                                 sizeof(struct list_head),
5620                                                 KM_SLEEP);
5621        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5622                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5623
5624        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5625                                      XLOG_RECOVER_PASS1, NULL);
5626        if (error != 0) {
5627                kmem_free(log->l_buf_cancel_table);
5628                log->l_buf_cancel_table = NULL;
5629                return error;
5630        }
5631        /*
5632         * Then do a second pass to actually recover the items in the log.
5633         * When it is complete free the table of buf cancel items.
5634         */
5635        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5636                                      XLOG_RECOVER_PASS2, NULL);
5637#ifdef DEBUG
5638        if (!error) {
5639                int     i;
5640
5641                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5642                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5643        }
5644#endif  /* DEBUG */
5645
5646        kmem_free(log->l_buf_cancel_table);
5647        log->l_buf_cancel_table = NULL;
5648
5649        return error;
5650}
5651
5652/*
5653 * Do the actual recovery
5654 */
5655STATIC int
5656xlog_do_recover(
5657        struct xlog     *log,
5658        xfs_daddr_t     head_blk,
5659        xfs_daddr_t     tail_blk)
5660{
5661        struct xfs_mount *mp = log->l_mp;
5662        int             error;
5663        xfs_buf_t       *bp;
5664        xfs_sb_t        *sbp;
5665
5666        trace_xfs_log_recover(log, head_blk, tail_blk);
5667
5668        /*
5669         * First replay the images in the log.
5670         */
5671        error = xlog_do_log_recovery(log, head_blk, tail_blk);
5672        if (error)
5673                return error;
5674
5675        /*
5676         * If IO errors happened during recovery, bail out.
5677         */
5678        if (XFS_FORCED_SHUTDOWN(mp)) {
5679                return -EIO;
5680        }
5681
5682        /*
5683         * We now update the tail_lsn since much of the recovery has completed
5684         * and there may be space available to use.  If there were no extent
5685         * or iunlinks, we can free up the entire log and set the tail_lsn to
5686         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5687         * lsn of the last known good LR on disk.  If there are extent frees
5688         * or iunlinks they will have some entries in the AIL; so we look at
5689         * the AIL to determine how to set the tail_lsn.
5690         */
5691        xlog_assign_tail_lsn(mp);
5692
5693        /*
5694         * Now that we've finished replaying all buffer and inode
5695         * updates, re-read in the superblock and reverify it.
5696         */
5697        bp = xfs_getsb(mp, 0);
5698        bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5699        ASSERT(!(bp->b_flags & XBF_WRITE));
5700        bp->b_flags |= XBF_READ;
5701        bp->b_ops = &xfs_sb_buf_ops;
5702
5703        error = xfs_buf_submit_wait(bp);
5704        if (error) {
5705                if (!XFS_FORCED_SHUTDOWN(mp)) {
5706                        xfs_buf_ioerror_alert(bp, __func__);
5707                        ASSERT(0);
5708                }
5709                xfs_buf_relse(bp);
5710                return error;
5711        }
5712
5713        /* Convert superblock from on-disk format */
5714        sbp = &mp->m_sb;
5715        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5716        xfs_buf_relse(bp);
5717
5718        /* re-initialise in-core superblock and geometry structures */
5719        xfs_reinit_percpu_counters(mp);
5720        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5721        if (error) {
5722                xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5723                return error;
5724        }
5725        mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5726
5727        xlog_recover_check_summary(log);
5728
5729        /* Normal transactions can now occur */
5730        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5731        return 0;
5732}
5733
5734/*
5735 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5736 *
5737 * Return error or zero.
5738 */
5739int
5740xlog_recover(
5741        struct xlog     *log)
5742{
5743        xfs_daddr_t     head_blk, tail_blk;
5744        int             error;
5745
5746        /* find the tail of the log */
5747        error = xlog_find_tail(log, &head_blk, &tail_blk);
5748        if (error)
5749                return error;
5750
5751        /*
5752         * The superblock was read before the log was available and thus the LSN
5753         * could not be verified. Check the superblock LSN against the current
5754         * LSN now that it's known.
5755         */
5756        if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5757            !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5758                return -EINVAL;
5759
5760        if (tail_blk != head_blk) {
5761                /* There used to be a comment here:
5762                 *
5763                 * disallow recovery on read-only mounts.  note -- mount
5764                 * checks for ENOSPC and turns it into an intelligent
5765                 * error message.
5766                 * ...but this is no longer true.  Now, unless you specify
5767                 * NORECOVERY (in which case this function would never be
5768                 * called), we just go ahead and recover.  We do this all
5769                 * under the vfs layer, so we can get away with it unless
5770                 * the device itself is read-only, in which case we fail.
5771                 */
5772                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5773                        return error;
5774                }
5775
5776                /*
5777                 * Version 5 superblock log feature mask validation. We know the
5778                 * log is dirty so check if there are any unknown log features
5779                 * in what we need to recover. If there are unknown features
5780                 * (e.g. unsupported transactions, then simply reject the
5781                 * attempt at recovery before touching anything.
5782                 */
5783                if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5784                    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5785                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5786                        xfs_warn(log->l_mp,
5787"Superblock has unknown incompatible log features (0x%x) enabled.",
5788                                (log->l_mp->m_sb.sb_features_log_incompat &
5789                                        XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5790                        xfs_warn(log->l_mp,
5791"The log can not be fully and/or safely recovered by this kernel.");
5792                        xfs_warn(log->l_mp,
5793"Please recover the log on a kernel that supports the unknown features.");
5794                        return -EINVAL;
5795                }
5796
5797                /*
5798                 * Delay log recovery if the debug hook is set. This is debug
5799                 * instrumention to coordinate simulation of I/O failures with
5800                 * log recovery.
5801                 */
5802                if (xfs_globals.log_recovery_delay) {
5803                        xfs_notice(log->l_mp,
5804                                "Delaying log recovery for %d seconds.",
5805                                xfs_globals.log_recovery_delay);
5806                        msleep(xfs_globals.log_recovery_delay * 1000);
5807                }
5808
5809                xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5810                                log->l_mp->m_logname ? log->l_mp->m_logname
5811                                                     : "internal");
5812
5813                error = xlog_do_recover(log, head_blk, tail_blk);
5814                log->l_flags |= XLOG_RECOVERY_NEEDED;
5815        }
5816        return error;
5817}
5818
5819/*
5820 * In the first part of recovery we replay inodes and buffers and build
5821 * up the list of extent free items which need to be processed.  Here
5822 * we process the extent free items and clean up the on disk unlinked
5823 * inode lists.  This is separated from the first part of recovery so
5824 * that the root and real-time bitmap inodes can be read in from disk in
5825 * between the two stages.  This is necessary so that we can free space
5826 * in the real-time portion of the file system.
5827 */
5828int
5829xlog_recover_finish(
5830        struct xlog     *log)
5831{
5832        /*
5833         * Now we're ready to do the transactions needed for the
5834         * rest of recovery.  Start with completing all the extent
5835         * free intent records and then process the unlinked inode
5836         * lists.  At this point, we essentially run in normal mode
5837         * except that we're still performing recovery actions
5838         * rather than accepting new requests.
5839         */
5840        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5841                int     error;
5842                error = xlog_recover_process_intents(log);
5843                if (error) {
5844                        xfs_alert(log->l_mp, "Failed to recover intents");
5845                        return error;
5846                }
5847
5848                /*
5849                 * Sync the log to get all the intents out of the AIL.
5850                 * This isn't absolutely necessary, but it helps in
5851                 * case the unlink transactions would have problems
5852                 * pushing the intents out of the way.
5853                 */
5854                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5855
5856                xlog_recover_process_iunlinks(log);
5857
5858                xlog_recover_check_summary(log);
5859
5860                xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5861                                log->l_mp->m_logname ? log->l_mp->m_logname
5862                                                     : "internal");
5863                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5864        } else {
5865                xfs_info(log->l_mp, "Ending clean mount");
5866        }
5867        return 0;
5868}
5869
5870int
5871xlog_recover_cancel(
5872        struct xlog     *log)
5873{
5874        int             error = 0;
5875
5876        if (log->l_flags & XLOG_RECOVERY_NEEDED)
5877                error = xlog_recover_cancel_intents(log);
5878
5879        return error;
5880}
5881
5882#if defined(DEBUG)
5883/*
5884 * Read all of the agf and agi counters and check that they
5885 * are consistent with the superblock counters.
5886 */
5887STATIC void
5888xlog_recover_check_summary(
5889        struct xlog     *log)
5890{
5891        xfs_mount_t     *mp;
5892        xfs_agf_t       *agfp;
5893        xfs_buf_t       *agfbp;
5894        xfs_buf_t       *agibp;
5895        xfs_agnumber_t  agno;
5896        uint64_t        freeblks;
5897        uint64_t        itotal;
5898        uint64_t        ifree;
5899        int             error;
5900
5901        mp = log->l_mp;
5902
5903        freeblks = 0LL;
5904        itotal = 0LL;
5905        ifree = 0LL;
5906        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5907                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5908                if (error) {
5909                        xfs_alert(mp, "%s agf read failed agno %d error %d",
5910                                                __func__, agno, error);
5911                } else {
5912                        agfp = XFS_BUF_TO_AGF(agfbp);
5913                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
5914                                    be32_to_cpu(agfp->agf_flcount);
5915                        xfs_buf_relse(agfbp);
5916                }
5917
5918                error = xfs_read_agi(mp, NULL, agno, &agibp);
5919                if (error) {
5920                        xfs_alert(mp, "%s agi read failed agno %d error %d",
5921                                                __func__, agno, error);
5922                } else {
5923                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
5924
5925                        itotal += be32_to_cpu(agi->agi_count);
5926                        ifree += be32_to_cpu(agi->agi_freecount);
5927                        xfs_buf_relse(agibp);
5928                }
5929        }
5930}
5931#endif /* DEBUG */
5932