1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/list.h> 9#include <linux/spinlock.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/uprobes.h> 15#include <linux/page-flags-layout.h> 16#include <linux/workqueue.h> 17 18#include <asm/mmu.h> 19 20#ifndef AT_VECTOR_SIZE_ARCH 21#define AT_VECTOR_SIZE_ARCH 0 22#endif 23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25struct address_space; 26struct mem_cgroup; 27struct hmm; 28 29/* 30 * Each physical page in the system has a struct page associated with 31 * it to keep track of whatever it is we are using the page for at the 32 * moment. Note that we have no way to track which tasks are using 33 * a page, though if it is a pagecache page, rmap structures can tell us 34 * who is mapping it. 35 * 36 * The objects in struct page are organized in double word blocks in 37 * order to allows us to use atomic double word operations on portions 38 * of struct page. That is currently only used by slub but the arrangement 39 * allows the use of atomic double word operations on the flags/mapping 40 * and lru list pointers also. 41 */ 42struct page { 43 /* First double word block */ 44 unsigned long flags; /* Atomic flags, some possibly 45 * updated asynchronously */ 46 union { 47 struct address_space *mapping; /* If low bit clear, points to 48 * inode address_space, or NULL. 49 * If page mapped as anonymous 50 * memory, low bit is set, and 51 * it points to anon_vma object 52 * or KSM private structure. See 53 * PAGE_MAPPING_ANON and 54 * PAGE_MAPPING_KSM. 55 */ 56 void *s_mem; /* slab first object */ 57 atomic_t compound_mapcount; /* first tail page */ 58 /* page_deferred_list().next -- second tail page */ 59 }; 60 61 /* Second double word */ 62 union { 63 pgoff_t index; /* Our offset within mapping. */ 64 void *freelist; /* sl[aou]b first free object */ 65 /* page_deferred_list().prev -- second tail page */ 66 }; 67 68 union { 69#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 70 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 71 /* Used for cmpxchg_double in slub */ 72 unsigned long counters; 73#else 74 /* 75 * Keep _refcount separate from slub cmpxchg_double data. 76 * As the rest of the double word is protected by slab_lock 77 * but _refcount is not. 78 */ 79 unsigned counters; 80#endif 81 struct { 82 83 union { 84 /* 85 * Count of ptes mapped in mms, to show when 86 * page is mapped & limit reverse map searches. 87 * 88 * Extra information about page type may be 89 * stored here for pages that are never mapped, 90 * in which case the value MUST BE <= -2. 91 * See page-flags.h for more details. 92 */ 93 atomic_t _mapcount; 94 95 unsigned int active; /* SLAB */ 96 struct { /* SLUB */ 97 unsigned inuse:16; 98 unsigned objects:15; 99 unsigned frozen:1; 100 }; 101 int units; /* SLOB */ 102 }; 103 /* 104 * Usage count, *USE WRAPPER FUNCTION* when manual 105 * accounting. See page_ref.h 106 */ 107 atomic_t _refcount; 108 }; 109 }; 110 111 /* 112 * Third double word block 113 * 114 * WARNING: bit 0 of the first word encode PageTail(). That means 115 * the rest users of the storage space MUST NOT use the bit to 116 * avoid collision and false-positive PageTail(). 117 */ 118 union { 119 struct list_head lru; /* Pageout list, eg. active_list 120 * protected by zone_lru_lock ! 121 * Can be used as a generic list 122 * by the page owner. 123 */ 124 struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an 125 * lru or handled by a slab 126 * allocator, this points to the 127 * hosting device page map. 128 */ 129 struct { /* slub per cpu partial pages */ 130 struct page *next; /* Next partial slab */ 131#ifdef CONFIG_64BIT 132 int pages; /* Nr of partial slabs left */ 133 int pobjects; /* Approximate # of objects */ 134#else 135 short int pages; 136 short int pobjects; 137#endif 138 }; 139 140 struct rcu_head rcu_head; /* Used by SLAB 141 * when destroying via RCU 142 */ 143 /* Tail pages of compound page */ 144 struct { 145 unsigned long compound_head; /* If bit zero is set */ 146 147 /* First tail page only */ 148#ifdef CONFIG_64BIT 149 /* 150 * On 64 bit system we have enough space in struct page 151 * to encode compound_dtor and compound_order with 152 * unsigned int. It can help compiler generate better or 153 * smaller code on some archtectures. 154 */ 155 unsigned int compound_dtor; 156 unsigned int compound_order; 157#else 158 unsigned short int compound_dtor; 159 unsigned short int compound_order; 160#endif 161 }; 162 163#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS 164 struct { 165 unsigned long __pad; /* do not overlay pmd_huge_pte 166 * with compound_head to avoid 167 * possible bit 0 collision. 168 */ 169 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 170 }; 171#endif 172 }; 173 174 /* Remainder is not double word aligned */ 175 union { 176 unsigned long private; /* Mapping-private opaque data: 177 * usually used for buffer_heads 178 * if PagePrivate set; used for 179 * swp_entry_t if PageSwapCache; 180 * indicates order in the buddy 181 * system if PG_buddy is set. 182 */ 183#if USE_SPLIT_PTE_PTLOCKS 184#if ALLOC_SPLIT_PTLOCKS 185 spinlock_t *ptl; 186#else 187 spinlock_t ptl; 188#endif 189#endif 190 struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ 191 }; 192 193#ifdef CONFIG_MEMCG 194 struct mem_cgroup *mem_cgroup; 195#endif 196 197 /* 198 * On machines where all RAM is mapped into kernel address space, 199 * we can simply calculate the virtual address. On machines with 200 * highmem some memory is mapped into kernel virtual memory 201 * dynamically, so we need a place to store that address. 202 * Note that this field could be 16 bits on x86 ... ;) 203 * 204 * Architectures with slow multiplication can define 205 * WANT_PAGE_VIRTUAL in asm/page.h 206 */ 207#if defined(WANT_PAGE_VIRTUAL) 208 void *virtual; /* Kernel virtual address (NULL if 209 not kmapped, ie. highmem) */ 210#endif /* WANT_PAGE_VIRTUAL */ 211 212#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 213 int _last_cpupid; 214#endif 215} 216/* 217 * The struct page can be forced to be double word aligned so that atomic ops 218 * on double words work. The SLUB allocator can make use of such a feature. 219 */ 220#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 221 __aligned(2 * sizeof(unsigned long)) 222#endif 223; 224 225#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 226#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 227 228struct page_frag_cache { 229 void * va; 230#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 231 __u16 offset; 232 __u16 size; 233#else 234 __u32 offset; 235#endif 236 /* we maintain a pagecount bias, so that we dont dirty cache line 237 * containing page->_refcount every time we allocate a fragment. 238 */ 239 unsigned int pagecnt_bias; 240 bool pfmemalloc; 241}; 242 243typedef unsigned long vm_flags_t; 244 245/* 246 * A region containing a mapping of a non-memory backed file under NOMMU 247 * conditions. These are held in a global tree and are pinned by the VMAs that 248 * map parts of them. 249 */ 250struct vm_region { 251 struct rb_node vm_rb; /* link in global region tree */ 252 vm_flags_t vm_flags; /* VMA vm_flags */ 253 unsigned long vm_start; /* start address of region */ 254 unsigned long vm_end; /* region initialised to here */ 255 unsigned long vm_top; /* region allocated to here */ 256 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 257 struct file *vm_file; /* the backing file or NULL */ 258 259 int vm_usage; /* region usage count (access under nommu_region_sem) */ 260 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 261 * this region */ 262}; 263 264#ifdef CONFIG_USERFAULTFD 265#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 266struct vm_userfaultfd_ctx { 267 struct userfaultfd_ctx *ctx; 268}; 269#else /* CONFIG_USERFAULTFD */ 270#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 271struct vm_userfaultfd_ctx {}; 272#endif /* CONFIG_USERFAULTFD */ 273 274/* 275 * This struct defines a memory VMM memory area. There is one of these 276 * per VM-area/task. A VM area is any part of the process virtual memory 277 * space that has a special rule for the page-fault handlers (ie a shared 278 * library, the executable area etc). 279 */ 280struct vm_area_struct { 281 /* The first cache line has the info for VMA tree walking. */ 282 283 unsigned long vm_start; /* Our start address within vm_mm. */ 284 unsigned long vm_end; /* The first byte after our end address 285 within vm_mm. */ 286 287 /* linked list of VM areas per task, sorted by address */ 288 struct vm_area_struct *vm_next, *vm_prev; 289 290 struct rb_node vm_rb; 291 292 /* 293 * Largest free memory gap in bytes to the left of this VMA. 294 * Either between this VMA and vma->vm_prev, or between one of the 295 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 296 * get_unmapped_area find a free area of the right size. 297 */ 298 unsigned long rb_subtree_gap; 299 300 /* Second cache line starts here. */ 301 302 struct mm_struct *vm_mm; /* The address space we belong to. */ 303 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 304 unsigned long vm_flags; /* Flags, see mm.h. */ 305 306 /* 307 * For areas with an address space and backing store, 308 * linkage into the address_space->i_mmap interval tree. 309 */ 310 struct { 311 struct rb_node rb; 312 unsigned long rb_subtree_last; 313 } shared; 314 315 /* 316 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 317 * list, after a COW of one of the file pages. A MAP_SHARED vma 318 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 319 * or brk vma (with NULL file) can only be in an anon_vma list. 320 */ 321 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 322 * page_table_lock */ 323 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 324 325 /* Function pointers to deal with this struct. */ 326 const struct vm_operations_struct *vm_ops; 327 328 /* Information about our backing store: */ 329 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 330 units */ 331 struct file * vm_file; /* File we map to (can be NULL). */ 332 void * vm_private_data; /* was vm_pte (shared mem) */ 333 334 atomic_long_t swap_readahead_info; 335#ifndef CONFIG_MMU 336 struct vm_region *vm_region; /* NOMMU mapping region */ 337#endif 338#ifdef CONFIG_NUMA 339 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 340#endif 341 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 342} __randomize_layout; 343 344struct core_thread { 345 struct task_struct *task; 346 struct core_thread *next; 347}; 348 349struct core_state { 350 atomic_t nr_threads; 351 struct core_thread dumper; 352 struct completion startup; 353}; 354 355struct kioctx_table; 356struct mm_struct { 357 struct vm_area_struct *mmap; /* list of VMAs */ 358 struct rb_root mm_rb; 359 u32 vmacache_seqnum; /* per-thread vmacache */ 360#ifdef CONFIG_MMU 361 unsigned long (*get_unmapped_area) (struct file *filp, 362 unsigned long addr, unsigned long len, 363 unsigned long pgoff, unsigned long flags); 364#endif 365 unsigned long mmap_base; /* base of mmap area */ 366 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 367#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 368 /* Base adresses for compatible mmap() */ 369 unsigned long mmap_compat_base; 370 unsigned long mmap_compat_legacy_base; 371#endif 372 unsigned long task_size; /* size of task vm space */ 373 unsigned long highest_vm_end; /* highest vma end address */ 374 pgd_t * pgd; 375 376 /** 377 * @mm_users: The number of users including userspace. 378 * 379 * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops 380 * to 0 (i.e. when the task exits and there are no other temporary 381 * reference holders), we also release a reference on @mm_count 382 * (which may then free the &struct mm_struct if @mm_count also 383 * drops to 0). 384 */ 385 atomic_t mm_users; 386 387 /** 388 * @mm_count: The number of references to &struct mm_struct 389 * (@mm_users count as 1). 390 * 391 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 392 * &struct mm_struct is freed. 393 */ 394 atomic_t mm_count; 395 396#ifdef CONFIG_MMU 397 atomic_long_t pgtables_bytes; /* PTE page table pages */ 398#endif 399 int map_count; /* number of VMAs */ 400 401 spinlock_t page_table_lock; /* Protects page tables and some counters */ 402 struct rw_semaphore mmap_sem; 403 404 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 405 * together off init_mm.mmlist, and are protected 406 * by mmlist_lock 407 */ 408 409 410 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 411 unsigned long hiwater_vm; /* High-water virtual memory usage */ 412 413 unsigned long total_vm; /* Total pages mapped */ 414 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 415 unsigned long pinned_vm; /* Refcount permanently increased */ 416 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 417 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 418 unsigned long stack_vm; /* VM_STACK */ 419 unsigned long def_flags; 420 unsigned long start_code, end_code, start_data, end_data; 421 unsigned long start_brk, brk, start_stack; 422 unsigned long arg_start, arg_end, env_start, env_end; 423 424 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 425 426 /* 427 * Special counters, in some configurations protected by the 428 * page_table_lock, in other configurations by being atomic. 429 */ 430 struct mm_rss_stat rss_stat; 431 432 struct linux_binfmt *binfmt; 433 434 cpumask_var_t cpu_vm_mask_var; 435 436 /* Architecture-specific MM context */ 437 mm_context_t context; 438 439 unsigned long flags; /* Must use atomic bitops to access the bits */ 440 441 struct core_state *core_state; /* coredumping support */ 442#ifdef CONFIG_MEMBARRIER 443 atomic_t membarrier_state; 444#endif 445#ifdef CONFIG_AIO 446 spinlock_t ioctx_lock; 447 struct kioctx_table __rcu *ioctx_table; 448#endif 449#ifdef CONFIG_MEMCG 450 /* 451 * "owner" points to a task that is regarded as the canonical 452 * user/owner of this mm. All of the following must be true in 453 * order for it to be changed: 454 * 455 * current == mm->owner 456 * current->mm != mm 457 * new_owner->mm == mm 458 * new_owner->alloc_lock is held 459 */ 460 struct task_struct __rcu *owner; 461#endif 462 struct user_namespace *user_ns; 463 464 /* store ref to file /proc/<pid>/exe symlink points to */ 465 struct file __rcu *exe_file; 466#ifdef CONFIG_MMU_NOTIFIER 467 struct mmu_notifier_mm *mmu_notifier_mm; 468#endif 469#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 470 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 471#endif 472#ifdef CONFIG_CPUMASK_OFFSTACK 473 struct cpumask cpumask_allocation; 474#endif 475#ifdef CONFIG_NUMA_BALANCING 476 /* 477 * numa_next_scan is the next time that the PTEs will be marked 478 * pte_numa. NUMA hinting faults will gather statistics and migrate 479 * pages to new nodes if necessary. 480 */ 481 unsigned long numa_next_scan; 482 483 /* Restart point for scanning and setting pte_numa */ 484 unsigned long numa_scan_offset; 485 486 /* numa_scan_seq prevents two threads setting pte_numa */ 487 int numa_scan_seq; 488#endif 489 /* 490 * An operation with batched TLB flushing is going on. Anything that 491 * can move process memory needs to flush the TLB when moving a 492 * PROT_NONE or PROT_NUMA mapped page. 493 */ 494 atomic_t tlb_flush_pending; 495#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 496 /* See flush_tlb_batched_pending() */ 497 bool tlb_flush_batched; 498#endif 499 struct uprobes_state uprobes_state; 500#ifdef CONFIG_HUGETLB_PAGE 501 atomic_long_t hugetlb_usage; 502#endif 503 struct work_struct async_put_work; 504 505#if IS_ENABLED(CONFIG_HMM) 506 /* HMM needs to track a few things per mm */ 507 struct hmm *hmm; 508#endif 509} __randomize_layout; 510 511extern struct mm_struct init_mm; 512 513static inline void mm_init_cpumask(struct mm_struct *mm) 514{ 515#ifdef CONFIG_CPUMASK_OFFSTACK 516 mm->cpu_vm_mask_var = &mm->cpumask_allocation; 517#endif 518 cpumask_clear(mm->cpu_vm_mask_var); 519} 520 521/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 522static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 523{ 524 return mm->cpu_vm_mask_var; 525} 526 527struct mmu_gather; 528extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 529 unsigned long start, unsigned long end); 530extern void tlb_finish_mmu(struct mmu_gather *tlb, 531 unsigned long start, unsigned long end); 532 533static inline void init_tlb_flush_pending(struct mm_struct *mm) 534{ 535 atomic_set(&mm->tlb_flush_pending, 0); 536} 537 538static inline void inc_tlb_flush_pending(struct mm_struct *mm) 539{ 540 atomic_inc(&mm->tlb_flush_pending); 541 /* 542 * The only time this value is relevant is when there are indeed pages 543 * to flush. And we'll only flush pages after changing them, which 544 * requires the PTL. 545 * 546 * So the ordering here is: 547 * 548 * atomic_inc(&mm->tlb_flush_pending); 549 * spin_lock(&ptl); 550 * ... 551 * set_pte_at(); 552 * spin_unlock(&ptl); 553 * 554 * spin_lock(&ptl) 555 * mm_tlb_flush_pending(); 556 * .... 557 * spin_unlock(&ptl); 558 * 559 * flush_tlb_range(); 560 * atomic_dec(&mm->tlb_flush_pending); 561 * 562 * Where the increment if constrained by the PTL unlock, it thus 563 * ensures that the increment is visible if the PTE modification is 564 * visible. After all, if there is no PTE modification, nobody cares 565 * about TLB flushes either. 566 * 567 * This very much relies on users (mm_tlb_flush_pending() and 568 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 569 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 570 * locks (PPC) the unlock of one doesn't order against the lock of 571 * another PTL. 572 * 573 * The decrement is ordered by the flush_tlb_range(), such that 574 * mm_tlb_flush_pending() will not return false unless all flushes have 575 * completed. 576 */ 577} 578 579static inline void dec_tlb_flush_pending(struct mm_struct *mm) 580{ 581 /* 582 * See inc_tlb_flush_pending(). 583 * 584 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 585 * not order against TLB invalidate completion, which is what we need. 586 * 587 * Therefore we must rely on tlb_flush_*() to guarantee order. 588 */ 589 atomic_dec(&mm->tlb_flush_pending); 590} 591 592static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 593{ 594 /* 595 * Must be called after having acquired the PTL; orders against that 596 * PTLs release and therefore ensures that if we observe the modified 597 * PTE we must also observe the increment from inc_tlb_flush_pending(). 598 * 599 * That is, it only guarantees to return true if there is a flush 600 * pending for _this_ PTL. 601 */ 602 return atomic_read(&mm->tlb_flush_pending); 603} 604 605static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 606{ 607 /* 608 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 609 * for which there is a TLB flush pending in order to guarantee 610 * we've seen both that PTE modification and the increment. 611 * 612 * (no requirement on actually still holding the PTL, that is irrelevant) 613 */ 614 return atomic_read(&mm->tlb_flush_pending) > 1; 615} 616 617struct vm_fault; 618 619struct vm_special_mapping { 620 const char *name; /* The name, e.g. "[vdso]". */ 621 622 /* 623 * If .fault is not provided, this points to a 624 * NULL-terminated array of pages that back the special mapping. 625 * 626 * This must not be NULL unless .fault is provided. 627 */ 628 struct page **pages; 629 630 /* 631 * If non-NULL, then this is called to resolve page faults 632 * on the special mapping. If used, .pages is not checked. 633 */ 634 int (*fault)(const struct vm_special_mapping *sm, 635 struct vm_area_struct *vma, 636 struct vm_fault *vmf); 637 638 int (*mremap)(const struct vm_special_mapping *sm, 639 struct vm_area_struct *new_vma); 640}; 641 642enum tlb_flush_reason { 643 TLB_FLUSH_ON_TASK_SWITCH, 644 TLB_REMOTE_SHOOTDOWN, 645 TLB_LOCAL_SHOOTDOWN, 646 TLB_LOCAL_MM_SHOOTDOWN, 647 TLB_REMOTE_SEND_IPI, 648 NR_TLB_FLUSH_REASONS, 649}; 650 651 /* 652 * A swap entry has to fit into a "unsigned long", as the entry is hidden 653 * in the "index" field of the swapper address space. 654 */ 655typedef struct { 656 unsigned long val; 657} swp_entry_t; 658 659#endif /* _LINUX_MM_TYPES_H */ 660