linux/include/linux/mm_types.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MM_TYPES_H
   3#define _LINUX_MM_TYPES_H
   4
   5#include <linux/mm_types_task.h>
   6
   7#include <linux/auxvec.h>
   8#include <linux/list.h>
   9#include <linux/spinlock.h>
  10#include <linux/rbtree.h>
  11#include <linux/rwsem.h>
  12#include <linux/completion.h>
  13#include <linux/cpumask.h>
  14#include <linux/uprobes.h>
  15#include <linux/page-flags-layout.h>
  16#include <linux/workqueue.h>
  17
  18#include <asm/mmu.h>
  19
  20#ifndef AT_VECTOR_SIZE_ARCH
  21#define AT_VECTOR_SIZE_ARCH 0
  22#endif
  23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
  24
  25struct address_space;
  26struct mem_cgroup;
  27struct hmm;
  28
  29/*
  30 * Each physical page in the system has a struct page associated with
  31 * it to keep track of whatever it is we are using the page for at the
  32 * moment. Note that we have no way to track which tasks are using
  33 * a page, though if it is a pagecache page, rmap structures can tell us
  34 * who is mapping it.
  35 *
  36 * The objects in struct page are organized in double word blocks in
  37 * order to allows us to use atomic double word operations on portions
  38 * of struct page. That is currently only used by slub but the arrangement
  39 * allows the use of atomic double word operations on the flags/mapping
  40 * and lru list pointers also.
  41 */
  42struct page {
  43        /* First double word block */
  44        unsigned long flags;            /* Atomic flags, some possibly
  45                                         * updated asynchronously */
  46        union {
  47                struct address_space *mapping;  /* If low bit clear, points to
  48                                                 * inode address_space, or NULL.
  49                                                 * If page mapped as anonymous
  50                                                 * memory, low bit is set, and
  51                                                 * it points to anon_vma object
  52                                                 * or KSM private structure. See
  53                                                 * PAGE_MAPPING_ANON and
  54                                                 * PAGE_MAPPING_KSM.
  55                                                 */
  56                void *s_mem;                    /* slab first object */
  57                atomic_t compound_mapcount;     /* first tail page */
  58                /* page_deferred_list().next     -- second tail page */
  59        };
  60
  61        /* Second double word */
  62        union {
  63                pgoff_t index;          /* Our offset within mapping. */
  64                void *freelist;         /* sl[aou]b first free object */
  65                /* page_deferred_list().prev    -- second tail page */
  66        };
  67
  68        union {
  69#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  70        defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  71                /* Used for cmpxchg_double in slub */
  72                unsigned long counters;
  73#else
  74                /*
  75                 * Keep _refcount separate from slub cmpxchg_double data.
  76                 * As the rest of the double word is protected by slab_lock
  77                 * but _refcount is not.
  78                 */
  79                unsigned counters;
  80#endif
  81                struct {
  82
  83                        union {
  84                                /*
  85                                 * Count of ptes mapped in mms, to show when
  86                                 * page is mapped & limit reverse map searches.
  87                                 *
  88                                 * Extra information about page type may be
  89                                 * stored here for pages that are never mapped,
  90                                 * in which case the value MUST BE <= -2.
  91                                 * See page-flags.h for more details.
  92                                 */
  93                                atomic_t _mapcount;
  94
  95                                unsigned int active;            /* SLAB */
  96                                struct {                        /* SLUB */
  97                                        unsigned inuse:16;
  98                                        unsigned objects:15;
  99                                        unsigned frozen:1;
 100                                };
 101                                int units;                      /* SLOB */
 102                        };
 103                        /*
 104                         * Usage count, *USE WRAPPER FUNCTION* when manual
 105                         * accounting. See page_ref.h
 106                         */
 107                        atomic_t _refcount;
 108                };
 109        };
 110
 111        /*
 112         * Third double word block
 113         *
 114         * WARNING: bit 0 of the first word encode PageTail(). That means
 115         * the rest users of the storage space MUST NOT use the bit to
 116         * avoid collision and false-positive PageTail().
 117         */
 118        union {
 119                struct list_head lru;   /* Pageout list, eg. active_list
 120                                         * protected by zone_lru_lock !
 121                                         * Can be used as a generic list
 122                                         * by the page owner.
 123                                         */
 124                struct dev_pagemap *pgmap; /* ZONE_DEVICE pages are never on an
 125                                            * lru or handled by a slab
 126                                            * allocator, this points to the
 127                                            * hosting device page map.
 128                                            */
 129                struct {                /* slub per cpu partial pages */
 130                        struct page *next;      /* Next partial slab */
 131#ifdef CONFIG_64BIT
 132                        int pages;      /* Nr of partial slabs left */
 133                        int pobjects;   /* Approximate # of objects */
 134#else
 135                        short int pages;
 136                        short int pobjects;
 137#endif
 138                };
 139
 140                struct rcu_head rcu_head;       /* Used by SLAB
 141                                                 * when destroying via RCU
 142                                                 */
 143                /* Tail pages of compound page */
 144                struct {
 145                        unsigned long compound_head; /* If bit zero is set */
 146
 147                        /* First tail page only */
 148#ifdef CONFIG_64BIT
 149                        /*
 150                         * On 64 bit system we have enough space in struct page
 151                         * to encode compound_dtor and compound_order with
 152                         * unsigned int. It can help compiler generate better or
 153                         * smaller code on some archtectures.
 154                         */
 155                        unsigned int compound_dtor;
 156                        unsigned int compound_order;
 157#else
 158                        unsigned short int compound_dtor;
 159                        unsigned short int compound_order;
 160#endif
 161                };
 162
 163#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
 164                struct {
 165                        unsigned long __pad;    /* do not overlay pmd_huge_pte
 166                                                 * with compound_head to avoid
 167                                                 * possible bit 0 collision.
 168                                                 */
 169                        pgtable_t pmd_huge_pte; /* protected by page->ptl */
 170                };
 171#endif
 172        };
 173
 174        /* Remainder is not double word aligned */
 175        union {
 176                unsigned long private;          /* Mapping-private opaque data:
 177                                                 * usually used for buffer_heads
 178                                                 * if PagePrivate set; used for
 179                                                 * swp_entry_t if PageSwapCache;
 180                                                 * indicates order in the buddy
 181                                                 * system if PG_buddy is set.
 182                                                 */
 183#if USE_SPLIT_PTE_PTLOCKS
 184#if ALLOC_SPLIT_PTLOCKS
 185                spinlock_t *ptl;
 186#else
 187                spinlock_t ptl;
 188#endif
 189#endif
 190                struct kmem_cache *slab_cache;  /* SL[AU]B: Pointer to slab */
 191        };
 192
 193#ifdef CONFIG_MEMCG
 194        struct mem_cgroup *mem_cgroup;
 195#endif
 196
 197        /*
 198         * On machines where all RAM is mapped into kernel address space,
 199         * we can simply calculate the virtual address. On machines with
 200         * highmem some memory is mapped into kernel virtual memory
 201         * dynamically, so we need a place to store that address.
 202         * Note that this field could be 16 bits on x86 ... ;)
 203         *
 204         * Architectures with slow multiplication can define
 205         * WANT_PAGE_VIRTUAL in asm/page.h
 206         */
 207#if defined(WANT_PAGE_VIRTUAL)
 208        void *virtual;                  /* Kernel virtual address (NULL if
 209                                           not kmapped, ie. highmem) */
 210#endif /* WANT_PAGE_VIRTUAL */
 211
 212#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 213        int _last_cpupid;
 214#endif
 215}
 216/*
 217 * The struct page can be forced to be double word aligned so that atomic ops
 218 * on double words work. The SLUB allocator can make use of such a feature.
 219 */
 220#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
 221        __aligned(2 * sizeof(unsigned long))
 222#endif
 223;
 224
 225#define PAGE_FRAG_CACHE_MAX_SIZE        __ALIGN_MASK(32768, ~PAGE_MASK)
 226#define PAGE_FRAG_CACHE_MAX_ORDER       get_order(PAGE_FRAG_CACHE_MAX_SIZE)
 227
 228struct page_frag_cache {
 229        void * va;
 230#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
 231        __u16 offset;
 232        __u16 size;
 233#else
 234        __u32 offset;
 235#endif
 236        /* we maintain a pagecount bias, so that we dont dirty cache line
 237         * containing page->_refcount every time we allocate a fragment.
 238         */
 239        unsigned int            pagecnt_bias;
 240        bool pfmemalloc;
 241};
 242
 243typedef unsigned long vm_flags_t;
 244
 245/*
 246 * A region containing a mapping of a non-memory backed file under NOMMU
 247 * conditions.  These are held in a global tree and are pinned by the VMAs that
 248 * map parts of them.
 249 */
 250struct vm_region {
 251        struct rb_node  vm_rb;          /* link in global region tree */
 252        vm_flags_t      vm_flags;       /* VMA vm_flags */
 253        unsigned long   vm_start;       /* start address of region */
 254        unsigned long   vm_end;         /* region initialised to here */
 255        unsigned long   vm_top;         /* region allocated to here */
 256        unsigned long   vm_pgoff;       /* the offset in vm_file corresponding to vm_start */
 257        struct file     *vm_file;       /* the backing file or NULL */
 258
 259        int             vm_usage;       /* region usage count (access under nommu_region_sem) */
 260        bool            vm_icache_flushed : 1; /* true if the icache has been flushed for
 261                                                * this region */
 262};
 263
 264#ifdef CONFIG_USERFAULTFD
 265#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
 266struct vm_userfaultfd_ctx {
 267        struct userfaultfd_ctx *ctx;
 268};
 269#else /* CONFIG_USERFAULTFD */
 270#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
 271struct vm_userfaultfd_ctx {};
 272#endif /* CONFIG_USERFAULTFD */
 273
 274/*
 275 * This struct defines a memory VMM memory area. There is one of these
 276 * per VM-area/task.  A VM area is any part of the process virtual memory
 277 * space that has a special rule for the page-fault handlers (ie a shared
 278 * library, the executable area etc).
 279 */
 280struct vm_area_struct {
 281        /* The first cache line has the info for VMA tree walking. */
 282
 283        unsigned long vm_start;         /* Our start address within vm_mm. */
 284        unsigned long vm_end;           /* The first byte after our end address
 285                                           within vm_mm. */
 286
 287        /* linked list of VM areas per task, sorted by address */
 288        struct vm_area_struct *vm_next, *vm_prev;
 289
 290        struct rb_node vm_rb;
 291
 292        /*
 293         * Largest free memory gap in bytes to the left of this VMA.
 294         * Either between this VMA and vma->vm_prev, or between one of the
 295         * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
 296         * get_unmapped_area find a free area of the right size.
 297         */
 298        unsigned long rb_subtree_gap;
 299
 300        /* Second cache line starts here. */
 301
 302        struct mm_struct *vm_mm;        /* The address space we belong to. */
 303        pgprot_t vm_page_prot;          /* Access permissions of this VMA. */
 304        unsigned long vm_flags;         /* Flags, see mm.h. */
 305
 306        /*
 307         * For areas with an address space and backing store,
 308         * linkage into the address_space->i_mmap interval tree.
 309         */
 310        struct {
 311                struct rb_node rb;
 312                unsigned long rb_subtree_last;
 313        } shared;
 314
 315        /*
 316         * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
 317         * list, after a COW of one of the file pages.  A MAP_SHARED vma
 318         * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
 319         * or brk vma (with NULL file) can only be in an anon_vma list.
 320         */
 321        struct list_head anon_vma_chain; /* Serialized by mmap_sem &
 322                                          * page_table_lock */
 323        struct anon_vma *anon_vma;      /* Serialized by page_table_lock */
 324
 325        /* Function pointers to deal with this struct. */
 326        const struct vm_operations_struct *vm_ops;
 327
 328        /* Information about our backing store: */
 329        unsigned long vm_pgoff;         /* Offset (within vm_file) in PAGE_SIZE
 330                                           units */
 331        struct file * vm_file;          /* File we map to (can be NULL). */
 332        void * vm_private_data;         /* was vm_pte (shared mem) */
 333
 334        atomic_long_t swap_readahead_info;
 335#ifndef CONFIG_MMU
 336        struct vm_region *vm_region;    /* NOMMU mapping region */
 337#endif
 338#ifdef CONFIG_NUMA
 339        struct mempolicy *vm_policy;    /* NUMA policy for the VMA */
 340#endif
 341        struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
 342} __randomize_layout;
 343
 344struct core_thread {
 345        struct task_struct *task;
 346        struct core_thread *next;
 347};
 348
 349struct core_state {
 350        atomic_t nr_threads;
 351        struct core_thread dumper;
 352        struct completion startup;
 353};
 354
 355struct kioctx_table;
 356struct mm_struct {
 357        struct vm_area_struct *mmap;            /* list of VMAs */
 358        struct rb_root mm_rb;
 359        u32 vmacache_seqnum;                   /* per-thread vmacache */
 360#ifdef CONFIG_MMU
 361        unsigned long (*get_unmapped_area) (struct file *filp,
 362                                unsigned long addr, unsigned long len,
 363                                unsigned long pgoff, unsigned long flags);
 364#endif
 365        unsigned long mmap_base;                /* base of mmap area */
 366        unsigned long mmap_legacy_base;         /* base of mmap area in bottom-up allocations */
 367#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
 368        /* Base adresses for compatible mmap() */
 369        unsigned long mmap_compat_base;
 370        unsigned long mmap_compat_legacy_base;
 371#endif
 372        unsigned long task_size;                /* size of task vm space */
 373        unsigned long highest_vm_end;           /* highest vma end address */
 374        pgd_t * pgd;
 375
 376        /**
 377         * @mm_users: The number of users including userspace.
 378         *
 379         * Use mmget()/mmget_not_zero()/mmput() to modify. When this drops
 380         * to 0 (i.e. when the task exits and there are no other temporary
 381         * reference holders), we also release a reference on @mm_count
 382         * (which may then free the &struct mm_struct if @mm_count also
 383         * drops to 0).
 384         */
 385        atomic_t mm_users;
 386
 387        /**
 388         * @mm_count: The number of references to &struct mm_struct
 389         * (@mm_users count as 1).
 390         *
 391         * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
 392         * &struct mm_struct is freed.
 393         */
 394        atomic_t mm_count;
 395
 396#ifdef CONFIG_MMU
 397        atomic_long_t pgtables_bytes;           /* PTE page table pages */
 398#endif
 399        int map_count;                          /* number of VMAs */
 400
 401        spinlock_t page_table_lock;             /* Protects page tables and some counters */
 402        struct rw_semaphore mmap_sem;
 403
 404        struct list_head mmlist;                /* List of maybe swapped mm's.  These are globally strung
 405                                                 * together off init_mm.mmlist, and are protected
 406                                                 * by mmlist_lock
 407                                                 */
 408
 409
 410        unsigned long hiwater_rss;      /* High-watermark of RSS usage */
 411        unsigned long hiwater_vm;       /* High-water virtual memory usage */
 412
 413        unsigned long total_vm;         /* Total pages mapped */
 414        unsigned long locked_vm;        /* Pages that have PG_mlocked set */
 415        unsigned long pinned_vm;        /* Refcount permanently increased */
 416        unsigned long data_vm;          /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
 417        unsigned long exec_vm;          /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
 418        unsigned long stack_vm;         /* VM_STACK */
 419        unsigned long def_flags;
 420        unsigned long start_code, end_code, start_data, end_data;
 421        unsigned long start_brk, brk, start_stack;
 422        unsigned long arg_start, arg_end, env_start, env_end;
 423
 424        unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
 425
 426        /*
 427         * Special counters, in some configurations protected by the
 428         * page_table_lock, in other configurations by being atomic.
 429         */
 430        struct mm_rss_stat rss_stat;
 431
 432        struct linux_binfmt *binfmt;
 433
 434        cpumask_var_t cpu_vm_mask_var;
 435
 436        /* Architecture-specific MM context */
 437        mm_context_t context;
 438
 439        unsigned long flags; /* Must use atomic bitops to access the bits */
 440
 441        struct core_state *core_state; /* coredumping support */
 442#ifdef CONFIG_MEMBARRIER
 443        atomic_t membarrier_state;
 444#endif
 445#ifdef CONFIG_AIO
 446        spinlock_t                      ioctx_lock;
 447        struct kioctx_table __rcu       *ioctx_table;
 448#endif
 449#ifdef CONFIG_MEMCG
 450        /*
 451         * "owner" points to a task that is regarded as the canonical
 452         * user/owner of this mm. All of the following must be true in
 453         * order for it to be changed:
 454         *
 455         * current == mm->owner
 456         * current->mm != mm
 457         * new_owner->mm == mm
 458         * new_owner->alloc_lock is held
 459         */
 460        struct task_struct __rcu *owner;
 461#endif
 462        struct user_namespace *user_ns;
 463
 464        /* store ref to file /proc/<pid>/exe symlink points to */
 465        struct file __rcu *exe_file;
 466#ifdef CONFIG_MMU_NOTIFIER
 467        struct mmu_notifier_mm *mmu_notifier_mm;
 468#endif
 469#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 470        pgtable_t pmd_huge_pte; /* protected by page_table_lock */
 471#endif
 472#ifdef CONFIG_CPUMASK_OFFSTACK
 473        struct cpumask cpumask_allocation;
 474#endif
 475#ifdef CONFIG_NUMA_BALANCING
 476        /*
 477         * numa_next_scan is the next time that the PTEs will be marked
 478         * pte_numa. NUMA hinting faults will gather statistics and migrate
 479         * pages to new nodes if necessary.
 480         */
 481        unsigned long numa_next_scan;
 482
 483        /* Restart point for scanning and setting pte_numa */
 484        unsigned long numa_scan_offset;
 485
 486        /* numa_scan_seq prevents two threads setting pte_numa */
 487        int numa_scan_seq;
 488#endif
 489        /*
 490         * An operation with batched TLB flushing is going on. Anything that
 491         * can move process memory needs to flush the TLB when moving a
 492         * PROT_NONE or PROT_NUMA mapped page.
 493         */
 494        atomic_t tlb_flush_pending;
 495#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 496        /* See flush_tlb_batched_pending() */
 497        bool tlb_flush_batched;
 498#endif
 499        struct uprobes_state uprobes_state;
 500#ifdef CONFIG_HUGETLB_PAGE
 501        atomic_long_t hugetlb_usage;
 502#endif
 503        struct work_struct async_put_work;
 504
 505#if IS_ENABLED(CONFIG_HMM)
 506        /* HMM needs to track a few things per mm */
 507        struct hmm *hmm;
 508#endif
 509} __randomize_layout;
 510
 511extern struct mm_struct init_mm;
 512
 513static inline void mm_init_cpumask(struct mm_struct *mm)
 514{
 515#ifdef CONFIG_CPUMASK_OFFSTACK
 516        mm->cpu_vm_mask_var = &mm->cpumask_allocation;
 517#endif
 518        cpumask_clear(mm->cpu_vm_mask_var);
 519}
 520
 521/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
 522static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
 523{
 524        return mm->cpu_vm_mask_var;
 525}
 526
 527struct mmu_gather;
 528extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 529                                unsigned long start, unsigned long end);
 530extern void tlb_finish_mmu(struct mmu_gather *tlb,
 531                                unsigned long start, unsigned long end);
 532
 533static inline void init_tlb_flush_pending(struct mm_struct *mm)
 534{
 535        atomic_set(&mm->tlb_flush_pending, 0);
 536}
 537
 538static inline void inc_tlb_flush_pending(struct mm_struct *mm)
 539{
 540        atomic_inc(&mm->tlb_flush_pending);
 541        /*
 542         * The only time this value is relevant is when there are indeed pages
 543         * to flush. And we'll only flush pages after changing them, which
 544         * requires the PTL.
 545         *
 546         * So the ordering here is:
 547         *
 548         *      atomic_inc(&mm->tlb_flush_pending);
 549         *      spin_lock(&ptl);
 550         *      ...
 551         *      set_pte_at();
 552         *      spin_unlock(&ptl);
 553         *
 554         *                              spin_lock(&ptl)
 555         *                              mm_tlb_flush_pending();
 556         *                              ....
 557         *                              spin_unlock(&ptl);
 558         *
 559         *      flush_tlb_range();
 560         *      atomic_dec(&mm->tlb_flush_pending);
 561         *
 562         * Where the increment if constrained by the PTL unlock, it thus
 563         * ensures that the increment is visible if the PTE modification is
 564         * visible. After all, if there is no PTE modification, nobody cares
 565         * about TLB flushes either.
 566         *
 567         * This very much relies on users (mm_tlb_flush_pending() and
 568         * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
 569         * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
 570         * locks (PPC) the unlock of one doesn't order against the lock of
 571         * another PTL.
 572         *
 573         * The decrement is ordered by the flush_tlb_range(), such that
 574         * mm_tlb_flush_pending() will not return false unless all flushes have
 575         * completed.
 576         */
 577}
 578
 579static inline void dec_tlb_flush_pending(struct mm_struct *mm)
 580{
 581        /*
 582         * See inc_tlb_flush_pending().
 583         *
 584         * This cannot be smp_mb__before_atomic() because smp_mb() simply does
 585         * not order against TLB invalidate completion, which is what we need.
 586         *
 587         * Therefore we must rely on tlb_flush_*() to guarantee order.
 588         */
 589        atomic_dec(&mm->tlb_flush_pending);
 590}
 591
 592static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
 593{
 594        /*
 595         * Must be called after having acquired the PTL; orders against that
 596         * PTLs release and therefore ensures that if we observe the modified
 597         * PTE we must also observe the increment from inc_tlb_flush_pending().
 598         *
 599         * That is, it only guarantees to return true if there is a flush
 600         * pending for _this_ PTL.
 601         */
 602        return atomic_read(&mm->tlb_flush_pending);
 603}
 604
 605static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
 606{
 607        /*
 608         * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
 609         * for which there is a TLB flush pending in order to guarantee
 610         * we've seen both that PTE modification and the increment.
 611         *
 612         * (no requirement on actually still holding the PTL, that is irrelevant)
 613         */
 614        return atomic_read(&mm->tlb_flush_pending) > 1;
 615}
 616
 617struct vm_fault;
 618
 619struct vm_special_mapping {
 620        const char *name;       /* The name, e.g. "[vdso]". */
 621
 622        /*
 623         * If .fault is not provided, this points to a
 624         * NULL-terminated array of pages that back the special mapping.
 625         *
 626         * This must not be NULL unless .fault is provided.
 627         */
 628        struct page **pages;
 629
 630        /*
 631         * If non-NULL, then this is called to resolve page faults
 632         * on the special mapping.  If used, .pages is not checked.
 633         */
 634        int (*fault)(const struct vm_special_mapping *sm,
 635                     struct vm_area_struct *vma,
 636                     struct vm_fault *vmf);
 637
 638        int (*mremap)(const struct vm_special_mapping *sm,
 639                     struct vm_area_struct *new_vma);
 640};
 641
 642enum tlb_flush_reason {
 643        TLB_FLUSH_ON_TASK_SWITCH,
 644        TLB_REMOTE_SHOOTDOWN,
 645        TLB_LOCAL_SHOOTDOWN,
 646        TLB_LOCAL_MM_SHOOTDOWN,
 647        TLB_REMOTE_SEND_IPI,
 648        NR_TLB_FLUSH_REASONS,
 649};
 650
 651 /*
 652  * A swap entry has to fit into a "unsigned long", as the entry is hidden
 653  * in the "index" field of the swapper address space.
 654  */
 655typedef struct {
 656        unsigned long val;
 657} swp_entry_t;
 658
 659#endif /* _LINUX_MM_TYPES_H */
 660