linux/include/linux/radix-tree.h
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2006 Nick Piggin
   5 * Copyright (C) 2012 Konstantin Khlebnikov
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation; either version 2, or (at
  10 * your option) any later version.
  11 * 
  12 * This program is distributed in the hope that it will be useful, but
  13 * WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 * 
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21#ifndef _LINUX_RADIX_TREE_H
  22#define _LINUX_RADIX_TREE_H
  23
  24#include <linux/bitops.h>
  25#include <linux/kernel.h>
  26#include <linux/list.h>
  27#include <linux/preempt.h>
  28#include <linux/rcupdate.h>
  29#include <linux/spinlock.h>
  30#include <linux/types.h>
  31
  32/*
  33 * The bottom two bits of the slot determine how the remaining bits in the
  34 * slot are interpreted:
  35 *
  36 * 00 - data pointer
  37 * 01 - internal entry
  38 * 10 - exceptional entry
  39 * 11 - this bit combination is currently unused/reserved
  40 *
  41 * The internal entry may be a pointer to the next level in the tree, a
  42 * sibling entry, or an indicator that the entry in this slot has been moved
  43 * to another location in the tree and the lookup should be restarted.  While
  44 * NULL fits the 'data pointer' pattern, it means that there is no entry in
  45 * the tree for this index (no matter what level of the tree it is found at).
  46 * This means that you cannot store NULL in the tree as a value for the index.
  47 */
  48#define RADIX_TREE_ENTRY_MASK           3UL
  49#define RADIX_TREE_INTERNAL_NODE        1UL
  50
  51/*
  52 * Most users of the radix tree store pointers but shmem/tmpfs stores swap
  53 * entries in the same tree.  They are marked as exceptional entries to
  54 * distinguish them from pointers to struct page.
  55 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
  56 */
  57#define RADIX_TREE_EXCEPTIONAL_ENTRY    2
  58#define RADIX_TREE_EXCEPTIONAL_SHIFT    2
  59
  60static inline bool radix_tree_is_internal_node(void *ptr)
  61{
  62        return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
  63                                RADIX_TREE_INTERNAL_NODE;
  64}
  65
  66/*** radix-tree API starts here ***/
  67
  68#define RADIX_TREE_MAX_TAGS 3
  69
  70#ifndef RADIX_TREE_MAP_SHIFT
  71#define RADIX_TREE_MAP_SHIFT    (CONFIG_BASE_SMALL ? 4 : 6)
  72#endif
  73
  74#define RADIX_TREE_MAP_SIZE     (1UL << RADIX_TREE_MAP_SHIFT)
  75#define RADIX_TREE_MAP_MASK     (RADIX_TREE_MAP_SIZE-1)
  76
  77#define RADIX_TREE_TAG_LONGS    \
  78        ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
  79
  80#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
  81#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
  82                                          RADIX_TREE_MAP_SHIFT))
  83
  84/*
  85 * @count is the count of every non-NULL element in the ->slots array
  86 * whether that is an exceptional entry, a retry entry, a user pointer,
  87 * a sibling entry or a pointer to the next level of the tree.
  88 * @exceptional is the count of every element in ->slots which is
  89 * either radix_tree_exceptional_entry() or is a sibling entry for an
  90 * exceptional entry.
  91 */
  92struct radix_tree_node {
  93        unsigned char   shift;          /* Bits remaining in each slot */
  94        unsigned char   offset;         /* Slot offset in parent */
  95        unsigned char   count;          /* Total entry count */
  96        unsigned char   exceptional;    /* Exceptional entry count */
  97        struct radix_tree_node *parent;         /* Used when ascending tree */
  98        struct radix_tree_root *root;           /* The tree we belong to */
  99        union {
 100                struct list_head private_list;  /* For tree user */
 101                struct rcu_head rcu_head;       /* Used when freeing node */
 102        };
 103        void __rcu      *slots[RADIX_TREE_MAP_SIZE];
 104        unsigned long   tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
 105};
 106
 107/* The top bits of gfp_mask are used to store the root tags and the IDR flag */
 108#define ROOT_IS_IDR     ((__force gfp_t)(1 << __GFP_BITS_SHIFT))
 109#define ROOT_TAG_SHIFT  (__GFP_BITS_SHIFT + 1)
 110
 111struct radix_tree_root {
 112        gfp_t                   gfp_mask;
 113        struct radix_tree_node  __rcu *rnode;
 114};
 115
 116#define RADIX_TREE_INIT(mask)   {                                       \
 117        .gfp_mask = (mask),                                             \
 118        .rnode = NULL,                                                  \
 119}
 120
 121#define RADIX_TREE(name, mask) \
 122        struct radix_tree_root name = RADIX_TREE_INIT(mask)
 123
 124#define INIT_RADIX_TREE(root, mask)                                     \
 125do {                                                                    \
 126        (root)->gfp_mask = (mask);                                      \
 127        (root)->rnode = NULL;                                           \
 128} while (0)
 129
 130static inline bool radix_tree_empty(const struct radix_tree_root *root)
 131{
 132        return root->rnode == NULL;
 133}
 134
 135/**
 136 * struct radix_tree_iter - radix tree iterator state
 137 *
 138 * @index:      index of current slot
 139 * @next_index: one beyond the last index for this chunk
 140 * @tags:       bit-mask for tag-iterating
 141 * @node:       node that contains current slot
 142 * @shift:      shift for the node that holds our slots
 143 *
 144 * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
 145 * subinterval of slots contained within one radix tree leaf node.  It is
 146 * described by a pointer to its first slot and a struct radix_tree_iter
 147 * which holds the chunk's position in the tree and its size.  For tagged
 148 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
 149 * radix tree tag.
 150 */
 151struct radix_tree_iter {
 152        unsigned long   index;
 153        unsigned long   next_index;
 154        unsigned long   tags;
 155        struct radix_tree_node *node;
 156#ifdef CONFIG_RADIX_TREE_MULTIORDER
 157        unsigned int    shift;
 158#endif
 159};
 160
 161static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
 162{
 163#ifdef CONFIG_RADIX_TREE_MULTIORDER
 164        return iter->shift;
 165#else
 166        return 0;
 167#endif
 168}
 169
 170/**
 171 * Radix-tree synchronization
 172 *
 173 * The radix-tree API requires that users provide all synchronisation (with
 174 * specific exceptions, noted below).
 175 *
 176 * Synchronization of access to the data items being stored in the tree, and
 177 * management of their lifetimes must be completely managed by API users.
 178 *
 179 * For API usage, in general,
 180 * - any function _modifying_ the tree or tags (inserting or deleting
 181 *   items, setting or clearing tags) must exclude other modifications, and
 182 *   exclude any functions reading the tree.
 183 * - any function _reading_ the tree or tags (looking up items or tags,
 184 *   gang lookups) must exclude modifications to the tree, but may occur
 185 *   concurrently with other readers.
 186 *
 187 * The notable exceptions to this rule are the following functions:
 188 * __radix_tree_lookup
 189 * radix_tree_lookup
 190 * radix_tree_lookup_slot
 191 * radix_tree_tag_get
 192 * radix_tree_gang_lookup
 193 * radix_tree_gang_lookup_slot
 194 * radix_tree_gang_lookup_tag
 195 * radix_tree_gang_lookup_tag_slot
 196 * radix_tree_tagged
 197 *
 198 * The first 8 functions are able to be called locklessly, using RCU. The
 199 * caller must ensure calls to these functions are made within rcu_read_lock()
 200 * regions. Other readers (lock-free or otherwise) and modifications may be
 201 * running concurrently.
 202 *
 203 * It is still required that the caller manage the synchronization and lifetimes
 204 * of the items. So if RCU lock-free lookups are used, typically this would mean
 205 * that the items have their own locks, or are amenable to lock-free access; and
 206 * that the items are freed by RCU (or only freed after having been deleted from
 207 * the radix tree *and* a synchronize_rcu() grace period).
 208 *
 209 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
 210 * access to data items when inserting into or looking up from the radix tree)
 211 *
 212 * Note that the value returned by radix_tree_tag_get() may not be relied upon
 213 * if only the RCU read lock is held.  Functions to set/clear tags and to
 214 * delete nodes running concurrently with it may affect its result such that
 215 * two consecutive reads in the same locked section may return different
 216 * values.  If reliability is required, modification functions must also be
 217 * excluded from concurrency.
 218 *
 219 * radix_tree_tagged is able to be called without locking or RCU.
 220 */
 221
 222/**
 223 * radix_tree_deref_slot - dereference a slot
 224 * @slot: slot pointer, returned by radix_tree_lookup_slot
 225 *
 226 * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
 227 * locked across slot lookup and dereference. Not required if write lock is
 228 * held (ie. items cannot be concurrently inserted).
 229 *
 230 * radix_tree_deref_retry must be used to confirm validity of the pointer if
 231 * only the read lock is held.
 232 *
 233 * Return: entry stored in that slot.
 234 */
 235static inline void *radix_tree_deref_slot(void __rcu **slot)
 236{
 237        return rcu_dereference(*slot);
 238}
 239
 240/**
 241 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
 242 * @slot: slot pointer, returned by radix_tree_lookup_slot
 243 *
 244 * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
 245 * lock but it must hold the tree lock to prevent parallel updates.
 246 *
 247 * Return: entry stored in that slot.
 248 */
 249static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
 250                                                        spinlock_t *treelock)
 251{
 252        return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
 253}
 254
 255/**
 256 * radix_tree_deref_retry       - check radix_tree_deref_slot
 257 * @arg:        pointer returned by radix_tree_deref_slot
 258 * Returns:     0 if retry is not required, otherwise retry is required
 259 *
 260 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
 261 */
 262static inline int radix_tree_deref_retry(void *arg)
 263{
 264        return unlikely(radix_tree_is_internal_node(arg));
 265}
 266
 267/**
 268 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
 269 * @arg:        value returned by radix_tree_deref_slot
 270 * Returns:     0 if well-aligned pointer, non-0 if exceptional entry.
 271 */
 272static inline int radix_tree_exceptional_entry(void *arg)
 273{
 274        /* Not unlikely because radix_tree_exception often tested first */
 275        return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
 276}
 277
 278/**
 279 * radix_tree_exception - radix_tree_deref_slot returned either exception?
 280 * @arg:        value returned by radix_tree_deref_slot
 281 * Returns:     0 if well-aligned pointer, non-0 if either kind of exception.
 282 */
 283static inline int radix_tree_exception(void *arg)
 284{
 285        return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
 286}
 287
 288int __radix_tree_create(struct radix_tree_root *, unsigned long index,
 289                        unsigned order, struct radix_tree_node **nodep,
 290                        void __rcu ***slotp);
 291int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
 292                        unsigned order, void *);
 293static inline int radix_tree_insert(struct radix_tree_root *root,
 294                        unsigned long index, void *entry)
 295{
 296        return __radix_tree_insert(root, index, 0, entry);
 297}
 298void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
 299                          struct radix_tree_node **nodep, void __rcu ***slotp);
 300void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
 301void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
 302                                        unsigned long index);
 303typedef void (*radix_tree_update_node_t)(struct radix_tree_node *);
 304void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
 305                          void __rcu **slot, void *entry,
 306                          radix_tree_update_node_t update_node);
 307void radix_tree_iter_replace(struct radix_tree_root *,
 308                const struct radix_tree_iter *, void __rcu **slot, void *entry);
 309void radix_tree_replace_slot(struct radix_tree_root *,
 310                             void __rcu **slot, void *entry);
 311void __radix_tree_delete_node(struct radix_tree_root *,
 312                              struct radix_tree_node *,
 313                              radix_tree_update_node_t update_node);
 314void radix_tree_iter_delete(struct radix_tree_root *,
 315                        struct radix_tree_iter *iter, void __rcu **slot);
 316void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
 317void *radix_tree_delete(struct radix_tree_root *, unsigned long);
 318void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *,
 319                           void __rcu **slot);
 320unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
 321                        void **results, unsigned long first_index,
 322                        unsigned int max_items);
 323unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *,
 324                        void __rcu ***results, unsigned long *indices,
 325                        unsigned long first_index, unsigned int max_items);
 326int radix_tree_preload(gfp_t gfp_mask);
 327int radix_tree_maybe_preload(gfp_t gfp_mask);
 328int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
 329void radix_tree_init(void);
 330void *radix_tree_tag_set(struct radix_tree_root *,
 331                        unsigned long index, unsigned int tag);
 332void *radix_tree_tag_clear(struct radix_tree_root *,
 333                        unsigned long index, unsigned int tag);
 334int radix_tree_tag_get(const struct radix_tree_root *,
 335                        unsigned long index, unsigned int tag);
 336void radix_tree_iter_tag_set(struct radix_tree_root *,
 337                const struct radix_tree_iter *iter, unsigned int tag);
 338void radix_tree_iter_tag_clear(struct radix_tree_root *,
 339                const struct radix_tree_iter *iter, unsigned int tag);
 340unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
 341                void **results, unsigned long first_index,
 342                unsigned int max_items, unsigned int tag);
 343unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
 344                void __rcu ***results, unsigned long first_index,
 345                unsigned int max_items, unsigned int tag);
 346int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
 347
 348static inline void radix_tree_preload_end(void)
 349{
 350        preempt_enable();
 351}
 352
 353int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t);
 354int radix_tree_split(struct radix_tree_root *, unsigned long index,
 355                        unsigned new_order);
 356int radix_tree_join(struct radix_tree_root *, unsigned long index,
 357                        unsigned new_order, void *);
 358
 359void __rcu **idr_get_free_cmn(struct radix_tree_root *root,
 360                              struct radix_tree_iter *iter, gfp_t gfp,
 361                              unsigned long max);
 362static inline void __rcu **idr_get_free(struct radix_tree_root *root,
 363                                        struct radix_tree_iter *iter,
 364                                        gfp_t gfp,
 365                                        int end)
 366{
 367        return idr_get_free_cmn(root, iter, gfp, end > 0 ? end - 1 : INT_MAX);
 368}
 369
 370static inline void __rcu **idr_get_free_ext(struct radix_tree_root *root,
 371                                            struct radix_tree_iter *iter,
 372                                            gfp_t gfp,
 373                                            unsigned long end)
 374{
 375        return idr_get_free_cmn(root, iter, gfp, end - 1);
 376}
 377
 378enum {
 379        RADIX_TREE_ITER_TAG_MASK = 0x0f,        /* tag index in lower nybble */
 380        RADIX_TREE_ITER_TAGGED   = 0x10,        /* lookup tagged slots */
 381        RADIX_TREE_ITER_CONTIG   = 0x20,        /* stop at first hole */
 382};
 383
 384/**
 385 * radix_tree_iter_init - initialize radix tree iterator
 386 *
 387 * @iter:       pointer to iterator state
 388 * @start:      iteration starting index
 389 * Returns:     NULL
 390 */
 391static __always_inline void __rcu **
 392radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
 393{
 394        /*
 395         * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
 396         * in the case of a successful tagged chunk lookup.  If the lookup was
 397         * unsuccessful or non-tagged then nobody cares about ->tags.
 398         *
 399         * Set index to zero to bypass next_index overflow protection.
 400         * See the comment in radix_tree_next_chunk() for details.
 401         */
 402        iter->index = 0;
 403        iter->next_index = start;
 404        return NULL;
 405}
 406
 407/**
 408 * radix_tree_next_chunk - find next chunk of slots for iteration
 409 *
 410 * @root:       radix tree root
 411 * @iter:       iterator state
 412 * @flags:      RADIX_TREE_ITER_* flags and tag index
 413 * Returns:     pointer to chunk first slot, or NULL if there no more left
 414 *
 415 * This function looks up the next chunk in the radix tree starting from
 416 * @iter->next_index.  It returns a pointer to the chunk's first slot.
 417 * Also it fills @iter with data about chunk: position in the tree (index),
 418 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
 419 */
 420void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
 421                             struct radix_tree_iter *iter, unsigned flags);
 422
 423/**
 424 * radix_tree_iter_lookup - look up an index in the radix tree
 425 * @root: radix tree root
 426 * @iter: iterator state
 427 * @index: key to look up
 428 *
 429 * If @index is present in the radix tree, this function returns the slot
 430 * containing it and updates @iter to describe the entry.  If @index is not
 431 * present, it returns NULL.
 432 */
 433static inline void __rcu **
 434radix_tree_iter_lookup(const struct radix_tree_root *root,
 435                        struct radix_tree_iter *iter, unsigned long index)
 436{
 437        radix_tree_iter_init(iter, index);
 438        return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
 439}
 440
 441/**
 442 * radix_tree_iter_find - find a present entry
 443 * @root: radix tree root
 444 * @iter: iterator state
 445 * @index: start location
 446 *
 447 * This function returns the slot containing the entry with the lowest index
 448 * which is at least @index.  If @index is larger than any present entry, this
 449 * function returns NULL.  The @iter is updated to describe the entry found.
 450 */
 451static inline void __rcu **
 452radix_tree_iter_find(const struct radix_tree_root *root,
 453                        struct radix_tree_iter *iter, unsigned long index)
 454{
 455        radix_tree_iter_init(iter, index);
 456        return radix_tree_next_chunk(root, iter, 0);
 457}
 458
 459/**
 460 * radix_tree_iter_retry - retry this chunk of the iteration
 461 * @iter:       iterator state
 462 *
 463 * If we iterate over a tree protected only by the RCU lock, a race
 464 * against deletion or creation may result in seeing a slot for which
 465 * radix_tree_deref_retry() returns true.  If so, call this function
 466 * and continue the iteration.
 467 */
 468static inline __must_check
 469void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
 470{
 471        iter->next_index = iter->index;
 472        iter->tags = 0;
 473        return NULL;
 474}
 475
 476static inline unsigned long
 477__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
 478{
 479        return iter->index + (slots << iter_shift(iter));
 480}
 481
 482/**
 483 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
 484 * @slot: pointer to current slot
 485 * @iter: iterator state
 486 * Returns: New slot pointer
 487 *
 488 * If the iterator needs to release then reacquire a lock, the chunk may
 489 * have been invalidated by an insertion or deletion.  Call this function
 490 * before releasing the lock to continue the iteration from the next index.
 491 */
 492void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
 493                                        struct radix_tree_iter *iter);
 494
 495/**
 496 * radix_tree_chunk_size - get current chunk size
 497 *
 498 * @iter:       pointer to radix tree iterator
 499 * Returns:     current chunk size
 500 */
 501static __always_inline long
 502radix_tree_chunk_size(struct radix_tree_iter *iter)
 503{
 504        return (iter->next_index - iter->index) >> iter_shift(iter);
 505}
 506
 507#ifdef CONFIG_RADIX_TREE_MULTIORDER
 508void __rcu **__radix_tree_next_slot(void __rcu **slot,
 509                                struct radix_tree_iter *iter, unsigned flags);
 510#else
 511/* Can't happen without sibling entries, but the compiler can't tell that */
 512static inline void __rcu **__radix_tree_next_slot(void __rcu **slot,
 513                                struct radix_tree_iter *iter, unsigned flags)
 514{
 515        return slot;
 516}
 517#endif
 518
 519/**
 520 * radix_tree_next_slot - find next slot in chunk
 521 *
 522 * @slot:       pointer to current slot
 523 * @iter:       pointer to interator state
 524 * @flags:      RADIX_TREE_ITER_*, should be constant
 525 * Returns:     pointer to next slot, or NULL if there no more left
 526 *
 527 * This function updates @iter->index in the case of a successful lookup.
 528 * For tagged lookup it also eats @iter->tags.
 529 *
 530 * There are several cases where 'slot' can be passed in as NULL to this
 531 * function.  These cases result from the use of radix_tree_iter_resume() or
 532 * radix_tree_iter_retry().  In these cases we don't end up dereferencing
 533 * 'slot' because either:
 534 * a) we are doing tagged iteration and iter->tags has been set to 0, or
 535 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
 536 *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
 537 */
 538static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
 539                                struct radix_tree_iter *iter, unsigned flags)
 540{
 541        if (flags & RADIX_TREE_ITER_TAGGED) {
 542                iter->tags >>= 1;
 543                if (unlikely(!iter->tags))
 544                        return NULL;
 545                if (likely(iter->tags & 1ul)) {
 546                        iter->index = __radix_tree_iter_add(iter, 1);
 547                        slot++;
 548                        goto found;
 549                }
 550                if (!(flags & RADIX_TREE_ITER_CONTIG)) {
 551                        unsigned offset = __ffs(iter->tags);
 552
 553                        iter->tags >>= offset++;
 554                        iter->index = __radix_tree_iter_add(iter, offset);
 555                        slot += offset;
 556                        goto found;
 557                }
 558        } else {
 559                long count = radix_tree_chunk_size(iter);
 560
 561                while (--count > 0) {
 562                        slot++;
 563                        iter->index = __radix_tree_iter_add(iter, 1);
 564
 565                        if (likely(*slot))
 566                                goto found;
 567                        if (flags & RADIX_TREE_ITER_CONTIG) {
 568                                /* forbid switching to the next chunk */
 569                                iter->next_index = 0;
 570                                break;
 571                        }
 572                }
 573        }
 574        return NULL;
 575
 576 found:
 577        if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot))))
 578                return __radix_tree_next_slot(slot, iter, flags);
 579        return slot;
 580}
 581
 582/**
 583 * radix_tree_for_each_slot - iterate over non-empty slots
 584 *
 585 * @slot:       the void** variable for pointer to slot
 586 * @root:       the struct radix_tree_root pointer
 587 * @iter:       the struct radix_tree_iter pointer
 588 * @start:      iteration starting index
 589 *
 590 * @slot points to radix tree slot, @iter->index contains its index.
 591 */
 592#define radix_tree_for_each_slot(slot, root, iter, start)               \
 593        for (slot = radix_tree_iter_init(iter, start) ;                 \
 594             slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;    \
 595             slot = radix_tree_next_slot(slot, iter, 0))
 596
 597/**
 598 * radix_tree_for_each_contig - iterate over contiguous slots
 599 *
 600 * @slot:       the void** variable for pointer to slot
 601 * @root:       the struct radix_tree_root pointer
 602 * @iter:       the struct radix_tree_iter pointer
 603 * @start:      iteration starting index
 604 *
 605 * @slot points to radix tree slot, @iter->index contains its index.
 606 */
 607#define radix_tree_for_each_contig(slot, root, iter, start)             \
 608        for (slot = radix_tree_iter_init(iter, start) ;                 \
 609             slot || (slot = radix_tree_next_chunk(root, iter,          \
 610                                RADIX_TREE_ITER_CONTIG)) ;              \
 611             slot = radix_tree_next_slot(slot, iter,                    \
 612                                RADIX_TREE_ITER_CONTIG))
 613
 614/**
 615 * radix_tree_for_each_tagged - iterate over tagged slots
 616 *
 617 * @slot:       the void** variable for pointer to slot
 618 * @root:       the struct radix_tree_root pointer
 619 * @iter:       the struct radix_tree_iter pointer
 620 * @start:      iteration starting index
 621 * @tag:        tag index
 622 *
 623 * @slot points to radix tree slot, @iter->index contains its index.
 624 */
 625#define radix_tree_for_each_tagged(slot, root, iter, start, tag)        \
 626        for (slot = radix_tree_iter_init(iter, start) ;                 \
 627             slot || (slot = radix_tree_next_chunk(root, iter,          \
 628                              RADIX_TREE_ITER_TAGGED | tag)) ;          \
 629             slot = radix_tree_next_slot(slot, iter,                    \
 630                                RADIX_TREE_ITER_TAGGED | tag))
 631
 632#endif /* _LINUX_RADIX_TREE_H */
 633