linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/compiler.h>
  19#include <linux/time.h>
  20#include <linux/bug.h>
  21#include <linux/cache.h>
  22#include <linux/rbtree.h>
  23#include <linux/socket.h>
  24#include <linux/refcount.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <linux/sched/clock.h>
  38#include <net/flow_dissector.h>
  39#include <linux/splice.h>
  40#include <linux/in6.h>
  41#include <linux/if_packet.h>
  42#include <net/flow.h>
  43
  44/* The interface for checksum offload between the stack and networking drivers
  45 * is as follows...
  46 *
  47 * A. IP checksum related features
  48 *
  49 * Drivers advertise checksum offload capabilities in the features of a device.
  50 * From the stack's point of view these are capabilities offered by the driver,
  51 * a driver typically only advertises features that it is capable of offloading
  52 * to its device.
  53 *
  54 * The checksum related features are:
  55 *
  56 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  57 *                        IP (one's complement) checksum for any combination
  58 *                        of protocols or protocol layering. The checksum is
  59 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  60 *                        interface (see below).
  61 *
  62 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  63 *                        TCP or UDP packets over IPv4. These are specifically
  64 *                        unencapsulated packets of the form IPv4|TCP or
  65 *                        IPv4|UDP where the Protocol field in the IPv4 header
  66 *                        is TCP or UDP. The IPv4 header may contain IP options
  67 *                        This feature cannot be set in features for a device
  68 *                        with NETIF_F_HW_CSUM also set. This feature is being
  69 *                        DEPRECATED (see below).
  70 *
  71 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  72 *                        TCP or UDP packets over IPv6. These are specifically
  73 *                        unencapsulated packets of the form IPv6|TCP or
  74 *                        IPv4|UDP where the Next Header field in the IPv6
  75 *                        header is either TCP or UDP. IPv6 extension headers
  76 *                        are not supported with this feature. This feature
  77 *                        cannot be set in features for a device with
  78 *                        NETIF_F_HW_CSUM also set. This feature is being
  79 *                        DEPRECATED (see below).
  80 *
  81 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  82 *                       This flag is used only used to disable the RX checksum
  83 *                       feature for a device. The stack will accept receive
  84 *                       checksum indication in packets received on a device
  85 *                       regardless of whether NETIF_F_RXCSUM is set.
  86 *
  87 * B. Checksumming of received packets by device. Indication of checksum
  88 *    verification is in set skb->ip_summed. Possible values are:
  89 *
  90 * CHECKSUM_NONE:
  91 *
  92 *   Device did not checksum this packet e.g. due to lack of capabilities.
  93 *   The packet contains full (though not verified) checksum in packet but
  94 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  95 *
  96 * CHECKSUM_UNNECESSARY:
  97 *
  98 *   The hardware you're dealing with doesn't calculate the full checksum
  99 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 100 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 101 *   if their checksums are okay. skb->csum is still undefined in this case
 102 *   though. A driver or device must never modify the checksum field in the
 103 *   packet even if checksum is verified.
 104 *
 105 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 106 *     TCP: IPv6 and IPv4.
 107 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 108 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 109 *       may perform further validation in this case.
 110 *     GRE: only if the checksum is present in the header.
 111 *     SCTP: indicates the CRC in SCTP header has been validated.
 112 *     FCOE: indicates the CRC in FC frame has been validated.
 113 *
 114 *   skb->csum_level indicates the number of consecutive checksums found in
 115 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 116 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 117 *   and a device is able to verify the checksums for UDP (possibly zero),
 118 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 119 *   two. If the device were only able to verify the UDP checksum and not
 120 *   GRE, either because it doesn't support GRE checksum of because GRE
 121 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 122 *   not considered in this case).
 123 *
 124 * CHECKSUM_COMPLETE:
 125 *
 126 *   This is the most generic way. The device supplied checksum of the _whole_
 127 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 128 *   hardware doesn't need to parse L3/L4 headers to implement this.
 129 *
 130 *   Notes:
 131 *   - Even if device supports only some protocols, but is able to produce
 132 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 133 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
 134 *
 135 * CHECKSUM_PARTIAL:
 136 *
 137 *   A checksum is set up to be offloaded to a device as described in the
 138 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 139 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 140 *   on the same host, or it may be set in the input path in GRO or remote
 141 *   checksum offload. For the purposes of checksum verification, the checksum
 142 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 143 *   checksums in the packet are considered verified. Any checksums in the
 144 *   packet that are after the checksum being offloaded are not considered to
 145 *   be verified.
 146 *
 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 148 *    in the skb->ip_summed for a packet. Values are:
 149 *
 150 * CHECKSUM_PARTIAL:
 151 *
 152 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 153 *   from skb->csum_start up to the end, and to record/write the checksum at
 154 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 155 *   csum_start and csum_offset values are valid values given the length and
 156 *   offset of the packet, however they should not attempt to validate that the
 157 *   checksum refers to a legitimate transport layer checksum-- it is the
 158 *   purview of the stack to validate that csum_start and csum_offset are set
 159 *   correctly.
 160 *
 161 *   When the stack requests checksum offload for a packet, the driver MUST
 162 *   ensure that the checksum is set correctly. A driver can either offload the
 163 *   checksum calculation to the device, or call skb_checksum_help (in the case
 164 *   that the device does not support offload for a particular checksum).
 165 *
 166 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 167 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 168 *   checksum offload capability.
 169 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 170 *   on network device checksumming capabilities: if a packet does not match
 171 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 172 *   csum_not_inet, see item D.) is called to resolve the checksum.
 173 *
 174 * CHECKSUM_NONE:
 175 *
 176 *   The skb was already checksummed by the protocol, or a checksum is not
 177 *   required.
 178 *
 179 * CHECKSUM_UNNECESSARY:
 180 *
 181 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 182 *   output.
 183 *
 184 * CHECKSUM_COMPLETE:
 185 *   Not used in checksum output. If a driver observes a packet with this value
 186 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 187 *
 188 * D. Non-IP checksum (CRC) offloads
 189 *
 190 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 191 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 192 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 193 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 194 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 195 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 196 *     must verify which offload is configured for a packet by testing the
 197 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 198 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
 199 *
 200 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 201 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 202 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 203 *     accordingly. Note the there is no indication in the skbuff that the
 204 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 205 *     both IP checksum offload and FCOE CRC offload must verify which offload
 206 *     is configured for a packet presumably by inspecting packet headers.
 207 *
 208 * E. Checksumming on output with GSO.
 209 *
 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 213 * part of the GSO operation is implied. If a checksum is being offloaded
 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 215 * are set to refer to the outermost checksum being offload (two offloaded
 216 * checksums are possible with UDP encapsulation).
 217 */
 218
 219/* Don't change this without changing skb_csum_unnecessary! */
 220#define CHECKSUM_NONE           0
 221#define CHECKSUM_UNNECESSARY    1
 222#define CHECKSUM_COMPLETE       2
 223#define CHECKSUM_PARTIAL        3
 224
 225/* Maximum value in skb->csum_level */
 226#define SKB_MAX_CSUM_LEVEL      3
 227
 228#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 229#define SKB_WITH_OVERHEAD(X)    \
 230        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 231#define SKB_MAX_ORDER(X, ORDER) \
 232        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 233#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 234#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 235
 236/* return minimum truesize of one skb containing X bytes of data */
 237#define SKB_TRUESIZE(X) ((X) +                                          \
 238                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 239                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 240
 241struct net_device;
 242struct scatterlist;
 243struct pipe_inode_info;
 244struct iov_iter;
 245struct napi_struct;
 246
 247#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 248struct nf_conntrack {
 249        atomic_t use;
 250};
 251#endif
 252
 253#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 254struct nf_bridge_info {
 255        refcount_t              use;
 256        enum {
 257                BRNF_PROTO_UNCHANGED,
 258                BRNF_PROTO_8021Q,
 259                BRNF_PROTO_PPPOE
 260        } orig_proto:8;
 261        u8                      pkt_otherhost:1;
 262        u8                      in_prerouting:1;
 263        u8                      bridged_dnat:1;
 264        __u16                   frag_max_size;
 265        struct net_device       *physindev;
 266
 267        /* always valid & non-NULL from FORWARD on, for physdev match */
 268        struct net_device       *physoutdev;
 269        union {
 270                /* prerouting: detect dnat in orig/reply direction */
 271                __be32          ipv4_daddr;
 272                struct in6_addr ipv6_daddr;
 273
 274                /* after prerouting + nat detected: store original source
 275                 * mac since neigh resolution overwrites it, only used while
 276                 * skb is out in neigh layer.
 277                 */
 278                char neigh_header[8];
 279        };
 280};
 281#endif
 282
 283struct sk_buff_head {
 284        /* These two members must be first. */
 285        struct sk_buff  *next;
 286        struct sk_buff  *prev;
 287
 288        __u32           qlen;
 289        spinlock_t      lock;
 290};
 291
 292struct sk_buff;
 293
 294/* To allow 64K frame to be packed as single skb without frag_list we
 295 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 296 * buffers which do not start on a page boundary.
 297 *
 298 * Since GRO uses frags we allocate at least 16 regardless of page
 299 * size.
 300 */
 301#if (65536/PAGE_SIZE + 1) < 16
 302#define MAX_SKB_FRAGS 16UL
 303#else
 304#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 305#endif
 306extern int sysctl_max_skb_frags;
 307
 308/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 309 * segment using its current segmentation instead.
 310 */
 311#define GSO_BY_FRAGS    0xFFFF
 312
 313typedef struct skb_frag_struct skb_frag_t;
 314
 315struct skb_frag_struct {
 316        struct {
 317                struct page *p;
 318        } page;
 319#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 320        __u32 page_offset;
 321        __u32 size;
 322#else
 323        __u16 page_offset;
 324        __u16 size;
 325#endif
 326};
 327
 328static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 329{
 330        return frag->size;
 331}
 332
 333static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 334{
 335        frag->size = size;
 336}
 337
 338static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 339{
 340        frag->size += delta;
 341}
 342
 343static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 344{
 345        frag->size -= delta;
 346}
 347
 348static inline bool skb_frag_must_loop(struct page *p)
 349{
 350#if defined(CONFIG_HIGHMEM)
 351        if (PageHighMem(p))
 352                return true;
 353#endif
 354        return false;
 355}
 356
 357/**
 358 *      skb_frag_foreach_page - loop over pages in a fragment
 359 *
 360 *      @f:             skb frag to operate on
 361 *      @f_off:         offset from start of f->page.p
 362 *      @f_len:         length from f_off to loop over
 363 *      @p:             (temp var) current page
 364 *      @p_off:         (temp var) offset from start of current page,
 365 *                                 non-zero only on first page.
 366 *      @p_len:         (temp var) length in current page,
 367 *                                 < PAGE_SIZE only on first and last page.
 368 *      @copied:        (temp var) length so far, excluding current p_len.
 369 *
 370 *      A fragment can hold a compound page, in which case per-page
 371 *      operations, notably kmap_atomic, must be called for each
 372 *      regular page.
 373 */
 374#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
 375        for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),            \
 376             p_off = (f_off) & (PAGE_SIZE - 1),                         \
 377             p_len = skb_frag_must_loop(p) ?                            \
 378             min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,              \
 379             copied = 0;                                                \
 380             copied < f_len;                                            \
 381             copied += p_len, p++, p_off = 0,                           \
 382             p_len = min_t(u32, f_len - copied, PAGE_SIZE))             \
 383
 384#define HAVE_HW_TIME_STAMP
 385
 386/**
 387 * struct skb_shared_hwtstamps - hardware time stamps
 388 * @hwtstamp:   hardware time stamp transformed into duration
 389 *              since arbitrary point in time
 390 *
 391 * Software time stamps generated by ktime_get_real() are stored in
 392 * skb->tstamp.
 393 *
 394 * hwtstamps can only be compared against other hwtstamps from
 395 * the same device.
 396 *
 397 * This structure is attached to packets as part of the
 398 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 399 */
 400struct skb_shared_hwtstamps {
 401        ktime_t hwtstamp;
 402};
 403
 404/* Definitions for tx_flags in struct skb_shared_info */
 405enum {
 406        /* generate hardware time stamp */
 407        SKBTX_HW_TSTAMP = 1 << 0,
 408
 409        /* generate software time stamp when queueing packet to NIC */
 410        SKBTX_SW_TSTAMP = 1 << 1,
 411
 412        /* device driver is going to provide hardware time stamp */
 413        SKBTX_IN_PROGRESS = 1 << 2,
 414
 415        /* device driver supports TX zero-copy buffers */
 416        SKBTX_DEV_ZEROCOPY = 1 << 3,
 417
 418        /* generate wifi status information (where possible) */
 419        SKBTX_WIFI_STATUS = 1 << 4,
 420
 421        /* This indicates at least one fragment might be overwritten
 422         * (as in vmsplice(), sendfile() ...)
 423         * If we need to compute a TX checksum, we'll need to copy
 424         * all frags to avoid possible bad checksum
 425         */
 426        SKBTX_SHARED_FRAG = 1 << 5,
 427
 428        /* generate software time stamp when entering packet scheduling */
 429        SKBTX_SCHED_TSTAMP = 1 << 6,
 430};
 431
 432#define SKBTX_ZEROCOPY_FRAG     (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
 433#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 434                                 SKBTX_SCHED_TSTAMP)
 435#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 436
 437/*
 438 * The callback notifies userspace to release buffers when skb DMA is done in
 439 * lower device, the skb last reference should be 0 when calling this.
 440 * The zerocopy_success argument is true if zero copy transmit occurred,
 441 * false on data copy or out of memory error caused by data copy attempt.
 442 * The ctx field is used to track device context.
 443 * The desc field is used to track userspace buffer index.
 444 */
 445struct ubuf_info {
 446        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 447        union {
 448                struct {
 449                        unsigned long desc;
 450                        void *ctx;
 451                };
 452                struct {
 453                        u32 id;
 454                        u16 len;
 455                        u16 zerocopy:1;
 456                        u32 bytelen;
 457                };
 458        };
 459        refcount_t refcnt;
 460
 461        struct mmpin {
 462                struct user_struct *user;
 463                unsigned int num_pg;
 464        } mmp;
 465};
 466
 467#define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
 468
 469struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
 470struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
 471                                        struct ubuf_info *uarg);
 472
 473static inline void sock_zerocopy_get(struct ubuf_info *uarg)
 474{
 475        refcount_inc(&uarg->refcnt);
 476}
 477
 478void sock_zerocopy_put(struct ubuf_info *uarg);
 479void sock_zerocopy_put_abort(struct ubuf_info *uarg);
 480
 481void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
 482
 483int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
 484                             struct msghdr *msg, int len,
 485                             struct ubuf_info *uarg);
 486
 487/* This data is invariant across clones and lives at
 488 * the end of the header data, ie. at skb->end.
 489 */
 490struct skb_shared_info {
 491        __u8            __unused;
 492        __u8            meta_len;
 493        __u8            nr_frags;
 494        __u8            tx_flags;
 495        unsigned short  gso_size;
 496        /* Warning: this field is not always filled in (UFO)! */
 497        unsigned short  gso_segs;
 498        struct sk_buff  *frag_list;
 499        struct skb_shared_hwtstamps hwtstamps;
 500        unsigned int    gso_type;
 501        u32             tskey;
 502
 503        /*
 504         * Warning : all fields before dataref are cleared in __alloc_skb()
 505         */
 506        atomic_t        dataref;
 507
 508        /* Intermediate layers must ensure that destructor_arg
 509         * remains valid until skb destructor */
 510        void *          destructor_arg;
 511
 512        /* must be last field, see pskb_expand_head() */
 513        skb_frag_t      frags[MAX_SKB_FRAGS];
 514};
 515
 516/* We divide dataref into two halves.  The higher 16 bits hold references
 517 * to the payload part of skb->data.  The lower 16 bits hold references to
 518 * the entire skb->data.  A clone of a headerless skb holds the length of
 519 * the header in skb->hdr_len.
 520 *
 521 * All users must obey the rule that the skb->data reference count must be
 522 * greater than or equal to the payload reference count.
 523 *
 524 * Holding a reference to the payload part means that the user does not
 525 * care about modifications to the header part of skb->data.
 526 */
 527#define SKB_DATAREF_SHIFT 16
 528#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 529
 530
 531enum {
 532        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 533        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 534        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 535};
 536
 537enum {
 538        SKB_GSO_TCPV4 = 1 << 0,
 539
 540        /* This indicates the skb is from an untrusted source. */
 541        SKB_GSO_DODGY = 1 << 1,
 542
 543        /* This indicates the tcp segment has CWR set. */
 544        SKB_GSO_TCP_ECN = 1 << 2,
 545
 546        SKB_GSO_TCP_FIXEDID = 1 << 3,
 547
 548        SKB_GSO_TCPV6 = 1 << 4,
 549
 550        SKB_GSO_FCOE = 1 << 5,
 551
 552        SKB_GSO_GRE = 1 << 6,
 553
 554        SKB_GSO_GRE_CSUM = 1 << 7,
 555
 556        SKB_GSO_IPXIP4 = 1 << 8,
 557
 558        SKB_GSO_IPXIP6 = 1 << 9,
 559
 560        SKB_GSO_UDP_TUNNEL = 1 << 10,
 561
 562        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
 563
 564        SKB_GSO_PARTIAL = 1 << 12,
 565
 566        SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
 567
 568        SKB_GSO_SCTP = 1 << 14,
 569
 570        SKB_GSO_ESP = 1 << 15,
 571
 572        SKB_GSO_UDP = 1 << 16,
 573};
 574
 575#if BITS_PER_LONG > 32
 576#define NET_SKBUFF_DATA_USES_OFFSET 1
 577#endif
 578
 579#ifdef NET_SKBUFF_DATA_USES_OFFSET
 580typedef unsigned int sk_buff_data_t;
 581#else
 582typedef unsigned char *sk_buff_data_t;
 583#endif
 584
 585/** 
 586 *      struct sk_buff - socket buffer
 587 *      @next: Next buffer in list
 588 *      @prev: Previous buffer in list
 589 *      @tstamp: Time we arrived/left
 590 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 591 *      @sk: Socket we are owned by
 592 *      @dev: Device we arrived on/are leaving by
 593 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 594 *      @_skb_refdst: destination entry (with norefcount bit)
 595 *      @sp: the security path, used for xfrm
 596 *      @len: Length of actual data
 597 *      @data_len: Data length
 598 *      @mac_len: Length of link layer header
 599 *      @hdr_len: writable header length of cloned skb
 600 *      @csum: Checksum (must include start/offset pair)
 601 *      @csum_start: Offset from skb->head where checksumming should start
 602 *      @csum_offset: Offset from csum_start where checksum should be stored
 603 *      @priority: Packet queueing priority
 604 *      @ignore_df: allow local fragmentation
 605 *      @cloned: Head may be cloned (check refcnt to be sure)
 606 *      @ip_summed: Driver fed us an IP checksum
 607 *      @nohdr: Payload reference only, must not modify header
 608 *      @pkt_type: Packet class
 609 *      @fclone: skbuff clone status
 610 *      @ipvs_property: skbuff is owned by ipvs
 611 *      @tc_skip_classify: do not classify packet. set by IFB device
 612 *      @tc_at_ingress: used within tc_classify to distinguish in/egress
 613 *      @tc_redirected: packet was redirected by a tc action
 614 *      @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
 615 *      @peeked: this packet has been seen already, so stats have been
 616 *              done for it, don't do them again
 617 *      @nf_trace: netfilter packet trace flag
 618 *      @protocol: Packet protocol from driver
 619 *      @destructor: Destruct function
 620 *      @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
 621 *      @_nfct: Associated connection, if any (with nfctinfo bits)
 622 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 623 *      @skb_iif: ifindex of device we arrived on
 624 *      @tc_index: Traffic control index
 625 *      @hash: the packet hash
 626 *      @queue_mapping: Queue mapping for multiqueue devices
 627 *      @xmit_more: More SKBs are pending for this queue
 628 *      @ndisc_nodetype: router type (from link layer)
 629 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 630 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 631 *              ports.
 632 *      @sw_hash: indicates hash was computed in software stack
 633 *      @wifi_acked_valid: wifi_acked was set
 634 *      @wifi_acked: whether frame was acked on wifi or not
 635 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 636 *      @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
 637 *      @dst_pending_confirm: need to confirm neighbour
 638  *     @napi_id: id of the NAPI struct this skb came from
 639 *      @secmark: security marking
 640 *      @mark: Generic packet mark
 641 *      @vlan_proto: vlan encapsulation protocol
 642 *      @vlan_tci: vlan tag control information
 643 *      @inner_protocol: Protocol (encapsulation)
 644 *      @inner_transport_header: Inner transport layer header (encapsulation)
 645 *      @inner_network_header: Network layer header (encapsulation)
 646 *      @inner_mac_header: Link layer header (encapsulation)
 647 *      @transport_header: Transport layer header
 648 *      @network_header: Network layer header
 649 *      @mac_header: Link layer header
 650 *      @tail: Tail pointer
 651 *      @end: End pointer
 652 *      @head: Head of buffer
 653 *      @data: Data head pointer
 654 *      @truesize: Buffer size
 655 *      @users: User count - see {datagram,tcp}.c
 656 */
 657
 658struct sk_buff {
 659        union {
 660                struct {
 661                        /* These two members must be first. */
 662                        struct sk_buff          *next;
 663                        struct sk_buff          *prev;
 664
 665                        union {
 666                                struct net_device       *dev;
 667                                /* Some protocols might use this space to store information,
 668                                 * while device pointer would be NULL.
 669                                 * UDP receive path is one user.
 670                                 */
 671                                unsigned long           dev_scratch;
 672                        };
 673                };
 674                struct rb_node  rbnode; /* used in netem & tcp stack */
 675        };
 676        struct sock             *sk;
 677
 678        union {
 679                ktime_t         tstamp;
 680                u64             skb_mstamp;
 681        };
 682        /*
 683         * This is the control buffer. It is free to use for every
 684         * layer. Please put your private variables there. If you
 685         * want to keep them across layers you have to do a skb_clone()
 686         * first. This is owned by whoever has the skb queued ATM.
 687         */
 688        char                    cb[48] __aligned(8);
 689
 690        union {
 691                struct {
 692                        unsigned long   _skb_refdst;
 693                        void            (*destructor)(struct sk_buff *skb);
 694                };
 695                struct list_head        tcp_tsorted_anchor;
 696        };
 697
 698#ifdef CONFIG_XFRM
 699        struct  sec_path        *sp;
 700#endif
 701#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 702        unsigned long            _nfct;
 703#endif
 704#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 705        struct nf_bridge_info   *nf_bridge;
 706#endif
 707        unsigned int            len,
 708                                data_len;
 709        __u16                   mac_len,
 710                                hdr_len;
 711
 712        /* Following fields are _not_ copied in __copy_skb_header()
 713         * Note that queue_mapping is here mostly to fill a hole.
 714         */
 715        __u16                   queue_mapping;
 716
 717/* if you move cloned around you also must adapt those constants */
 718#ifdef __BIG_ENDIAN_BITFIELD
 719#define CLONED_MASK     (1 << 7)
 720#else
 721#define CLONED_MASK     1
 722#endif
 723#define CLONED_OFFSET()         offsetof(struct sk_buff, __cloned_offset)
 724
 725        __u8                    __cloned_offset[0];
 726        __u8                    cloned:1,
 727                                nohdr:1,
 728                                fclone:2,
 729                                peeked:1,
 730                                head_frag:1,
 731                                xmit_more:1,
 732                                __unused:1; /* one bit hole */
 733
 734        /* fields enclosed in headers_start/headers_end are copied
 735         * using a single memcpy() in __copy_skb_header()
 736         */
 737        /* private: */
 738        __u32                   headers_start[0];
 739        /* public: */
 740
 741/* if you move pkt_type around you also must adapt those constants */
 742#ifdef __BIG_ENDIAN_BITFIELD
 743#define PKT_TYPE_MAX    (7 << 5)
 744#else
 745#define PKT_TYPE_MAX    7
 746#endif
 747#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 748
 749        __u8                    __pkt_type_offset[0];
 750        __u8                    pkt_type:3;
 751        __u8                    pfmemalloc:1;
 752        __u8                    ignore_df:1;
 753
 754        __u8                    nf_trace:1;
 755        __u8                    ip_summed:2;
 756        __u8                    ooo_okay:1;
 757        __u8                    l4_hash:1;
 758        __u8                    sw_hash:1;
 759        __u8                    wifi_acked_valid:1;
 760        __u8                    wifi_acked:1;
 761
 762        __u8                    no_fcs:1;
 763        /* Indicates the inner headers are valid in the skbuff. */
 764        __u8                    encapsulation:1;
 765        __u8                    encap_hdr_csum:1;
 766        __u8                    csum_valid:1;
 767        __u8                    csum_complete_sw:1;
 768        __u8                    csum_level:2;
 769        __u8                    csum_not_inet:1;
 770
 771        __u8                    dst_pending_confirm:1;
 772#ifdef CONFIG_IPV6_NDISC_NODETYPE
 773        __u8                    ndisc_nodetype:2;
 774#endif
 775        __u8                    ipvs_property:1;
 776        __u8                    inner_protocol_type:1;
 777        __u8                    remcsum_offload:1;
 778#ifdef CONFIG_NET_SWITCHDEV
 779        __u8                    offload_fwd_mark:1;
 780        __u8                    offload_mr_fwd_mark:1;
 781#endif
 782#ifdef CONFIG_NET_CLS_ACT
 783        __u8                    tc_skip_classify:1;
 784        __u8                    tc_at_ingress:1;
 785        __u8                    tc_redirected:1;
 786        __u8                    tc_from_ingress:1;
 787#endif
 788
 789#ifdef CONFIG_NET_SCHED
 790        __u16                   tc_index;       /* traffic control index */
 791#endif
 792
 793        union {
 794                __wsum          csum;
 795                struct {
 796                        __u16   csum_start;
 797                        __u16   csum_offset;
 798                };
 799        };
 800        __u32                   priority;
 801        int                     skb_iif;
 802        __u32                   hash;
 803        __be16                  vlan_proto;
 804        __u16                   vlan_tci;
 805#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 806        union {
 807                unsigned int    napi_id;
 808                unsigned int    sender_cpu;
 809        };
 810#endif
 811#ifdef CONFIG_NETWORK_SECMARK
 812        __u32           secmark;
 813#endif
 814
 815        union {
 816                __u32           mark;
 817                __u32           reserved_tailroom;
 818        };
 819
 820        union {
 821                __be16          inner_protocol;
 822                __u8            inner_ipproto;
 823        };
 824
 825        __u16                   inner_transport_header;
 826        __u16                   inner_network_header;
 827        __u16                   inner_mac_header;
 828
 829        __be16                  protocol;
 830        __u16                   transport_header;
 831        __u16                   network_header;
 832        __u16                   mac_header;
 833
 834        /* private: */
 835        __u32                   headers_end[0];
 836        /* public: */
 837
 838        /* These elements must be at the end, see alloc_skb() for details.  */
 839        sk_buff_data_t          tail;
 840        sk_buff_data_t          end;
 841        unsigned char           *head,
 842                                *data;
 843        unsigned int            truesize;
 844        refcount_t              users;
 845};
 846
 847#ifdef __KERNEL__
 848/*
 849 *      Handling routines are only of interest to the kernel
 850 */
 851#include <linux/slab.h>
 852
 853
 854#define SKB_ALLOC_FCLONE        0x01
 855#define SKB_ALLOC_RX            0x02
 856#define SKB_ALLOC_NAPI          0x04
 857
 858/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 859static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 860{
 861        return unlikely(skb->pfmemalloc);
 862}
 863
 864/*
 865 * skb might have a dst pointer attached, refcounted or not.
 866 * _skb_refdst low order bit is set if refcount was _not_ taken
 867 */
 868#define SKB_DST_NOREF   1UL
 869#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 870
 871#define SKB_NFCT_PTRMASK        ~(7UL)
 872/**
 873 * skb_dst - returns skb dst_entry
 874 * @skb: buffer
 875 *
 876 * Returns skb dst_entry, regardless of reference taken or not.
 877 */
 878static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 879{
 880        /* If refdst was not refcounted, check we still are in a 
 881         * rcu_read_lock section
 882         */
 883        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 884                !rcu_read_lock_held() &&
 885                !rcu_read_lock_bh_held());
 886        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 887}
 888
 889/**
 890 * skb_dst_set - sets skb dst
 891 * @skb: buffer
 892 * @dst: dst entry
 893 *
 894 * Sets skb dst, assuming a reference was taken on dst and should
 895 * be released by skb_dst_drop()
 896 */
 897static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 898{
 899        skb->_skb_refdst = (unsigned long)dst;
 900}
 901
 902/**
 903 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 904 * @skb: buffer
 905 * @dst: dst entry
 906 *
 907 * Sets skb dst, assuming a reference was not taken on dst.
 908 * If dst entry is cached, we do not take reference and dst_release
 909 * will be avoided by refdst_drop. If dst entry is not cached, we take
 910 * reference, so that last dst_release can destroy the dst immediately.
 911 */
 912static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 913{
 914        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 915        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 916}
 917
 918/**
 919 * skb_dst_is_noref - Test if skb dst isn't refcounted
 920 * @skb: buffer
 921 */
 922static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 923{
 924        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 925}
 926
 927static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 928{
 929        return (struct rtable *)skb_dst(skb);
 930}
 931
 932/* For mangling skb->pkt_type from user space side from applications
 933 * such as nft, tc, etc, we only allow a conservative subset of
 934 * possible pkt_types to be set.
 935*/
 936static inline bool skb_pkt_type_ok(u32 ptype)
 937{
 938        return ptype <= PACKET_OTHERHOST;
 939}
 940
 941static inline unsigned int skb_napi_id(const struct sk_buff *skb)
 942{
 943#ifdef CONFIG_NET_RX_BUSY_POLL
 944        return skb->napi_id;
 945#else
 946        return 0;
 947#endif
 948}
 949
 950/* decrement the reference count and return true if we can free the skb */
 951static inline bool skb_unref(struct sk_buff *skb)
 952{
 953        if (unlikely(!skb))
 954                return false;
 955        if (likely(refcount_read(&skb->users) == 1))
 956                smp_rmb();
 957        else if (likely(!refcount_dec_and_test(&skb->users)))
 958                return false;
 959
 960        return true;
 961}
 962
 963void skb_release_head_state(struct sk_buff *skb);
 964void kfree_skb(struct sk_buff *skb);
 965void kfree_skb_list(struct sk_buff *segs);
 966void skb_tx_error(struct sk_buff *skb);
 967void consume_skb(struct sk_buff *skb);
 968void __consume_stateless_skb(struct sk_buff *skb);
 969void  __kfree_skb(struct sk_buff *skb);
 970extern struct kmem_cache *skbuff_head_cache;
 971
 972void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 973bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 974                      bool *fragstolen, int *delta_truesize);
 975
 976struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 977                            int node);
 978struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 979struct sk_buff *build_skb(void *data, unsigned int frag_size);
 980static inline struct sk_buff *alloc_skb(unsigned int size,
 981                                        gfp_t priority)
 982{
 983        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 984}
 985
 986struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 987                                     unsigned long data_len,
 988                                     int max_page_order,
 989                                     int *errcode,
 990                                     gfp_t gfp_mask);
 991
 992/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 993struct sk_buff_fclones {
 994        struct sk_buff  skb1;
 995
 996        struct sk_buff  skb2;
 997
 998        refcount_t      fclone_ref;
 999};
1000
1001/**
1002 *      skb_fclone_busy - check if fclone is busy
1003 *      @sk: socket
1004 *      @skb: buffer
1005 *
1006 * Returns true if skb is a fast clone, and its clone is not freed.
1007 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1008 * so we also check that this didnt happen.
1009 */
1010static inline bool skb_fclone_busy(const struct sock *sk,
1011                                   const struct sk_buff *skb)
1012{
1013        const struct sk_buff_fclones *fclones;
1014
1015        fclones = container_of(skb, struct sk_buff_fclones, skb1);
1016
1017        return skb->fclone == SKB_FCLONE_ORIG &&
1018               refcount_read(&fclones->fclone_ref) > 1 &&
1019               fclones->skb2.sk == sk;
1020}
1021
1022static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1023                                               gfp_t priority)
1024{
1025        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1026}
1027
1028struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1029int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1030struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1031struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1032struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1033                                   gfp_t gfp_mask, bool fclone);
1034static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1035                                          gfp_t gfp_mask)
1036{
1037        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1038}
1039
1040int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1041struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1042                                     unsigned int headroom);
1043struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1044                                int newtailroom, gfp_t priority);
1045int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1046                                     int offset, int len);
1047int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1048                              int offset, int len);
1049int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1050int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1051
1052/**
1053 *      skb_pad                 -       zero pad the tail of an skb
1054 *      @skb: buffer to pad
1055 *      @pad: space to pad
1056 *
1057 *      Ensure that a buffer is followed by a padding area that is zero
1058 *      filled. Used by network drivers which may DMA or transfer data
1059 *      beyond the buffer end onto the wire.
1060 *
1061 *      May return error in out of memory cases. The skb is freed on error.
1062 */
1063static inline int skb_pad(struct sk_buff *skb, int pad)
1064{
1065        return __skb_pad(skb, pad, true);
1066}
1067#define dev_kfree_skb(a)        consume_skb(a)
1068
1069int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1070                            int getfrag(void *from, char *to, int offset,
1071                                        int len, int odd, struct sk_buff *skb),
1072                            void *from, int length);
1073
1074int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1075                         int offset, size_t size);
1076
1077struct skb_seq_state {
1078        __u32           lower_offset;
1079        __u32           upper_offset;
1080        __u32           frag_idx;
1081        __u32           stepped_offset;
1082        struct sk_buff  *root_skb;
1083        struct sk_buff  *cur_skb;
1084        __u8            *frag_data;
1085};
1086
1087void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1088                          unsigned int to, struct skb_seq_state *st);
1089unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1090                          struct skb_seq_state *st);
1091void skb_abort_seq_read(struct skb_seq_state *st);
1092
1093unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1094                           unsigned int to, struct ts_config *config);
1095
1096/*
1097 * Packet hash types specify the type of hash in skb_set_hash.
1098 *
1099 * Hash types refer to the protocol layer addresses which are used to
1100 * construct a packet's hash. The hashes are used to differentiate or identify
1101 * flows of the protocol layer for the hash type. Hash types are either
1102 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1103 *
1104 * Properties of hashes:
1105 *
1106 * 1) Two packets in different flows have different hash values
1107 * 2) Two packets in the same flow should have the same hash value
1108 *
1109 * A hash at a higher layer is considered to be more specific. A driver should
1110 * set the most specific hash possible.
1111 *
1112 * A driver cannot indicate a more specific hash than the layer at which a hash
1113 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1114 *
1115 * A driver may indicate a hash level which is less specific than the
1116 * actual layer the hash was computed on. For instance, a hash computed
1117 * at L4 may be considered an L3 hash. This should only be done if the
1118 * driver can't unambiguously determine that the HW computed the hash at
1119 * the higher layer. Note that the "should" in the second property above
1120 * permits this.
1121 */
1122enum pkt_hash_types {
1123        PKT_HASH_TYPE_NONE,     /* Undefined type */
1124        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1125        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1126        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1127};
1128
1129static inline void skb_clear_hash(struct sk_buff *skb)
1130{
1131        skb->hash = 0;
1132        skb->sw_hash = 0;
1133        skb->l4_hash = 0;
1134}
1135
1136static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1137{
1138        if (!skb->l4_hash)
1139                skb_clear_hash(skb);
1140}
1141
1142static inline void
1143__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1144{
1145        skb->l4_hash = is_l4;
1146        skb->sw_hash = is_sw;
1147        skb->hash = hash;
1148}
1149
1150static inline void
1151skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1152{
1153        /* Used by drivers to set hash from HW */
1154        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1155}
1156
1157static inline void
1158__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1159{
1160        __skb_set_hash(skb, hash, true, is_l4);
1161}
1162
1163void __skb_get_hash(struct sk_buff *skb);
1164u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1165u32 skb_get_poff(const struct sk_buff *skb);
1166u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1167                   const struct flow_keys *keys, int hlen);
1168__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1169                            void *data, int hlen_proto);
1170
1171static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1172                                        int thoff, u8 ip_proto)
1173{
1174        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1175}
1176
1177void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1178                             const struct flow_dissector_key *key,
1179                             unsigned int key_count);
1180
1181bool __skb_flow_dissect(const struct sk_buff *skb,
1182                        struct flow_dissector *flow_dissector,
1183                        void *target_container,
1184                        void *data, __be16 proto, int nhoff, int hlen,
1185                        unsigned int flags);
1186
1187static inline bool skb_flow_dissect(const struct sk_buff *skb,
1188                                    struct flow_dissector *flow_dissector,
1189                                    void *target_container, unsigned int flags)
1190{
1191        return __skb_flow_dissect(skb, flow_dissector, target_container,
1192                                  NULL, 0, 0, 0, flags);
1193}
1194
1195static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1196                                              struct flow_keys *flow,
1197                                              unsigned int flags)
1198{
1199        memset(flow, 0, sizeof(*flow));
1200        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1201                                  NULL, 0, 0, 0, flags);
1202}
1203
1204static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1205                                                  void *data, __be16 proto,
1206                                                  int nhoff, int hlen,
1207                                                  unsigned int flags)
1208{
1209        memset(flow, 0, sizeof(*flow));
1210        return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1211                                  data, proto, nhoff, hlen, flags);
1212}
1213
1214static inline __u32 skb_get_hash(struct sk_buff *skb)
1215{
1216        if (!skb->l4_hash && !skb->sw_hash)
1217                __skb_get_hash(skb);
1218
1219        return skb->hash;
1220}
1221
1222static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1223{
1224        if (!skb->l4_hash && !skb->sw_hash) {
1225                struct flow_keys keys;
1226                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1227
1228                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1229        }
1230
1231        return skb->hash;
1232}
1233
1234__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1235
1236static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1237{
1238        return skb->hash;
1239}
1240
1241static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1242{
1243        to->hash = from->hash;
1244        to->sw_hash = from->sw_hash;
1245        to->l4_hash = from->l4_hash;
1246};
1247
1248#ifdef NET_SKBUFF_DATA_USES_OFFSET
1249static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1250{
1251        return skb->head + skb->end;
1252}
1253
1254static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1255{
1256        return skb->end;
1257}
1258#else
1259static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1260{
1261        return skb->end;
1262}
1263
1264static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1265{
1266        return skb->end - skb->head;
1267}
1268#endif
1269
1270/* Internal */
1271#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1272
1273static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1274{
1275        return &skb_shinfo(skb)->hwtstamps;
1276}
1277
1278static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1279{
1280        bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1281
1282        return is_zcopy ? skb_uarg(skb) : NULL;
1283}
1284
1285static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1286{
1287        if (skb && uarg && !skb_zcopy(skb)) {
1288                sock_zerocopy_get(uarg);
1289                skb_shinfo(skb)->destructor_arg = uarg;
1290                skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1291        }
1292}
1293
1294/* Release a reference on a zerocopy structure */
1295static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1296{
1297        struct ubuf_info *uarg = skb_zcopy(skb);
1298
1299        if (uarg) {
1300                if (uarg->callback == sock_zerocopy_callback) {
1301                        uarg->zerocopy = uarg->zerocopy && zerocopy;
1302                        sock_zerocopy_put(uarg);
1303                } else {
1304                        uarg->callback(uarg, zerocopy);
1305                }
1306
1307                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1308        }
1309}
1310
1311/* Abort a zerocopy operation and revert zckey on error in send syscall */
1312static inline void skb_zcopy_abort(struct sk_buff *skb)
1313{
1314        struct ubuf_info *uarg = skb_zcopy(skb);
1315
1316        if (uarg) {
1317                sock_zerocopy_put_abort(uarg);
1318                skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1319        }
1320}
1321
1322/**
1323 *      skb_queue_empty - check if a queue is empty
1324 *      @list: queue head
1325 *
1326 *      Returns true if the queue is empty, false otherwise.
1327 */
1328static inline int skb_queue_empty(const struct sk_buff_head *list)
1329{
1330        return list->next == (const struct sk_buff *) list;
1331}
1332
1333/**
1334 *      skb_queue_is_last - check if skb is the last entry in the queue
1335 *      @list: queue head
1336 *      @skb: buffer
1337 *
1338 *      Returns true if @skb is the last buffer on the list.
1339 */
1340static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1341                                     const struct sk_buff *skb)
1342{
1343        return skb->next == (const struct sk_buff *) list;
1344}
1345
1346/**
1347 *      skb_queue_is_first - check if skb is the first entry in the queue
1348 *      @list: queue head
1349 *      @skb: buffer
1350 *
1351 *      Returns true if @skb is the first buffer on the list.
1352 */
1353static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1354                                      const struct sk_buff *skb)
1355{
1356        return skb->prev == (const struct sk_buff *) list;
1357}
1358
1359/**
1360 *      skb_queue_next - return the next packet in the queue
1361 *      @list: queue head
1362 *      @skb: current buffer
1363 *
1364 *      Return the next packet in @list after @skb.  It is only valid to
1365 *      call this if skb_queue_is_last() evaluates to false.
1366 */
1367static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1368                                             const struct sk_buff *skb)
1369{
1370        /* This BUG_ON may seem severe, but if we just return then we
1371         * are going to dereference garbage.
1372         */
1373        BUG_ON(skb_queue_is_last(list, skb));
1374        return skb->next;
1375}
1376
1377/**
1378 *      skb_queue_prev - return the prev packet in the queue
1379 *      @list: queue head
1380 *      @skb: current buffer
1381 *
1382 *      Return the prev packet in @list before @skb.  It is only valid to
1383 *      call this if skb_queue_is_first() evaluates to false.
1384 */
1385static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1386                                             const struct sk_buff *skb)
1387{
1388        /* This BUG_ON may seem severe, but if we just return then we
1389         * are going to dereference garbage.
1390         */
1391        BUG_ON(skb_queue_is_first(list, skb));
1392        return skb->prev;
1393}
1394
1395/**
1396 *      skb_get - reference buffer
1397 *      @skb: buffer to reference
1398 *
1399 *      Makes another reference to a socket buffer and returns a pointer
1400 *      to the buffer.
1401 */
1402static inline struct sk_buff *skb_get(struct sk_buff *skb)
1403{
1404        refcount_inc(&skb->users);
1405        return skb;
1406}
1407
1408/*
1409 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1410 */
1411
1412/**
1413 *      skb_cloned - is the buffer a clone
1414 *      @skb: buffer to check
1415 *
1416 *      Returns true if the buffer was generated with skb_clone() and is
1417 *      one of multiple shared copies of the buffer. Cloned buffers are
1418 *      shared data so must not be written to under normal circumstances.
1419 */
1420static inline int skb_cloned(const struct sk_buff *skb)
1421{
1422        return skb->cloned &&
1423               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1424}
1425
1426static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1427{
1428        might_sleep_if(gfpflags_allow_blocking(pri));
1429
1430        if (skb_cloned(skb))
1431                return pskb_expand_head(skb, 0, 0, pri);
1432
1433        return 0;
1434}
1435
1436/**
1437 *      skb_header_cloned - is the header a clone
1438 *      @skb: buffer to check
1439 *
1440 *      Returns true if modifying the header part of the buffer requires
1441 *      the data to be copied.
1442 */
1443static inline int skb_header_cloned(const struct sk_buff *skb)
1444{
1445        int dataref;
1446
1447        if (!skb->cloned)
1448                return 0;
1449
1450        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1451        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1452        return dataref != 1;
1453}
1454
1455static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1456{
1457        might_sleep_if(gfpflags_allow_blocking(pri));
1458
1459        if (skb_header_cloned(skb))
1460                return pskb_expand_head(skb, 0, 0, pri);
1461
1462        return 0;
1463}
1464
1465/**
1466 *      __skb_header_release - release reference to header
1467 *      @skb: buffer to operate on
1468 */
1469static inline void __skb_header_release(struct sk_buff *skb)
1470{
1471        skb->nohdr = 1;
1472        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1473}
1474
1475
1476/**
1477 *      skb_shared - is the buffer shared
1478 *      @skb: buffer to check
1479 *
1480 *      Returns true if more than one person has a reference to this
1481 *      buffer.
1482 */
1483static inline int skb_shared(const struct sk_buff *skb)
1484{
1485        return refcount_read(&skb->users) != 1;
1486}
1487
1488/**
1489 *      skb_share_check - check if buffer is shared and if so clone it
1490 *      @skb: buffer to check
1491 *      @pri: priority for memory allocation
1492 *
1493 *      If the buffer is shared the buffer is cloned and the old copy
1494 *      drops a reference. A new clone with a single reference is returned.
1495 *      If the buffer is not shared the original buffer is returned. When
1496 *      being called from interrupt status or with spinlocks held pri must
1497 *      be GFP_ATOMIC.
1498 *
1499 *      NULL is returned on a memory allocation failure.
1500 */
1501static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1502{
1503        might_sleep_if(gfpflags_allow_blocking(pri));
1504        if (skb_shared(skb)) {
1505                struct sk_buff *nskb = skb_clone(skb, pri);
1506
1507                if (likely(nskb))
1508                        consume_skb(skb);
1509                else
1510                        kfree_skb(skb);
1511                skb = nskb;
1512        }
1513        return skb;
1514}
1515
1516/*
1517 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1518 *      packets to handle cases where we have a local reader and forward
1519 *      and a couple of other messy ones. The normal one is tcpdumping
1520 *      a packet thats being forwarded.
1521 */
1522
1523/**
1524 *      skb_unshare - make a copy of a shared buffer
1525 *      @skb: buffer to check
1526 *      @pri: priority for memory allocation
1527 *
1528 *      If the socket buffer is a clone then this function creates a new
1529 *      copy of the data, drops a reference count on the old copy and returns
1530 *      the new copy with the reference count at 1. If the buffer is not a clone
1531 *      the original buffer is returned. When called with a spinlock held or
1532 *      from interrupt state @pri must be %GFP_ATOMIC
1533 *
1534 *      %NULL is returned on a memory allocation failure.
1535 */
1536static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1537                                          gfp_t pri)
1538{
1539        might_sleep_if(gfpflags_allow_blocking(pri));
1540        if (skb_cloned(skb)) {
1541                struct sk_buff *nskb = skb_copy(skb, pri);
1542
1543                /* Free our shared copy */
1544                if (likely(nskb))
1545                        consume_skb(skb);
1546                else
1547                        kfree_skb(skb);
1548                skb = nskb;
1549        }
1550        return skb;
1551}
1552
1553/**
1554 *      skb_peek - peek at the head of an &sk_buff_head
1555 *      @list_: list to peek at
1556 *
1557 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1558 *      be careful with this one. A peek leaves the buffer on the
1559 *      list and someone else may run off with it. You must hold
1560 *      the appropriate locks or have a private queue to do this.
1561 *
1562 *      Returns %NULL for an empty list or a pointer to the head element.
1563 *      The reference count is not incremented and the reference is therefore
1564 *      volatile. Use with caution.
1565 */
1566static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1567{
1568        struct sk_buff *skb = list_->next;
1569
1570        if (skb == (struct sk_buff *)list_)
1571                skb = NULL;
1572        return skb;
1573}
1574
1575/**
1576 *      skb_peek_next - peek skb following the given one from a queue
1577 *      @skb: skb to start from
1578 *      @list_: list to peek at
1579 *
1580 *      Returns %NULL when the end of the list is met or a pointer to the
1581 *      next element. The reference count is not incremented and the
1582 *      reference is therefore volatile. Use with caution.
1583 */
1584static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1585                const struct sk_buff_head *list_)
1586{
1587        struct sk_buff *next = skb->next;
1588
1589        if (next == (struct sk_buff *)list_)
1590                next = NULL;
1591        return next;
1592}
1593
1594/**
1595 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1596 *      @list_: list to peek at
1597 *
1598 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1599 *      be careful with this one. A peek leaves the buffer on the
1600 *      list and someone else may run off with it. You must hold
1601 *      the appropriate locks or have a private queue to do this.
1602 *
1603 *      Returns %NULL for an empty list or a pointer to the tail element.
1604 *      The reference count is not incremented and the reference is therefore
1605 *      volatile. Use with caution.
1606 */
1607static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1608{
1609        struct sk_buff *skb = list_->prev;
1610
1611        if (skb == (struct sk_buff *)list_)
1612                skb = NULL;
1613        return skb;
1614
1615}
1616
1617/**
1618 *      skb_queue_len   - get queue length
1619 *      @list_: list to measure
1620 *
1621 *      Return the length of an &sk_buff queue.
1622 */
1623static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1624{
1625        return list_->qlen;
1626}
1627
1628/**
1629 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1630 *      @list: queue to initialize
1631 *
1632 *      This initializes only the list and queue length aspects of
1633 *      an sk_buff_head object.  This allows to initialize the list
1634 *      aspects of an sk_buff_head without reinitializing things like
1635 *      the spinlock.  It can also be used for on-stack sk_buff_head
1636 *      objects where the spinlock is known to not be used.
1637 */
1638static inline void __skb_queue_head_init(struct sk_buff_head *list)
1639{
1640        list->prev = list->next = (struct sk_buff *)list;
1641        list->qlen = 0;
1642}
1643
1644/*
1645 * This function creates a split out lock class for each invocation;
1646 * this is needed for now since a whole lot of users of the skb-queue
1647 * infrastructure in drivers have different locking usage (in hardirq)
1648 * than the networking core (in softirq only). In the long run either the
1649 * network layer or drivers should need annotation to consolidate the
1650 * main types of usage into 3 classes.
1651 */
1652static inline void skb_queue_head_init(struct sk_buff_head *list)
1653{
1654        spin_lock_init(&list->lock);
1655        __skb_queue_head_init(list);
1656}
1657
1658static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1659                struct lock_class_key *class)
1660{
1661        skb_queue_head_init(list);
1662        lockdep_set_class(&list->lock, class);
1663}
1664
1665/*
1666 *      Insert an sk_buff on a list.
1667 *
1668 *      The "__skb_xxxx()" functions are the non-atomic ones that
1669 *      can only be called with interrupts disabled.
1670 */
1671void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1672                struct sk_buff_head *list);
1673static inline void __skb_insert(struct sk_buff *newsk,
1674                                struct sk_buff *prev, struct sk_buff *next,
1675                                struct sk_buff_head *list)
1676{
1677        newsk->next = next;
1678        newsk->prev = prev;
1679        next->prev  = prev->next = newsk;
1680        list->qlen++;
1681}
1682
1683static inline void __skb_queue_splice(const struct sk_buff_head *list,
1684                                      struct sk_buff *prev,
1685                                      struct sk_buff *next)
1686{
1687        struct sk_buff *first = list->next;
1688        struct sk_buff *last = list->prev;
1689
1690        first->prev = prev;
1691        prev->next = first;
1692
1693        last->next = next;
1694        next->prev = last;
1695}
1696
1697/**
1698 *      skb_queue_splice - join two skb lists, this is designed for stacks
1699 *      @list: the new list to add
1700 *      @head: the place to add it in the first list
1701 */
1702static inline void skb_queue_splice(const struct sk_buff_head *list,
1703                                    struct sk_buff_head *head)
1704{
1705        if (!skb_queue_empty(list)) {
1706                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1707                head->qlen += list->qlen;
1708        }
1709}
1710
1711/**
1712 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1713 *      @list: the new list to add
1714 *      @head: the place to add it in the first list
1715 *
1716 *      The list at @list is reinitialised
1717 */
1718static inline void skb_queue_splice_init(struct sk_buff_head *list,
1719                                         struct sk_buff_head *head)
1720{
1721        if (!skb_queue_empty(list)) {
1722                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1723                head->qlen += list->qlen;
1724                __skb_queue_head_init(list);
1725        }
1726}
1727
1728/**
1729 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1730 *      @list: the new list to add
1731 *      @head: the place to add it in the first list
1732 */
1733static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1734                                         struct sk_buff_head *head)
1735{
1736        if (!skb_queue_empty(list)) {
1737                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1738                head->qlen += list->qlen;
1739        }
1740}
1741
1742/**
1743 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1744 *      @list: the new list to add
1745 *      @head: the place to add it in the first list
1746 *
1747 *      Each of the lists is a queue.
1748 *      The list at @list is reinitialised
1749 */
1750static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1751                                              struct sk_buff_head *head)
1752{
1753        if (!skb_queue_empty(list)) {
1754                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1755                head->qlen += list->qlen;
1756                __skb_queue_head_init(list);
1757        }
1758}
1759
1760/**
1761 *      __skb_queue_after - queue a buffer at the list head
1762 *      @list: list to use
1763 *      @prev: place after this buffer
1764 *      @newsk: buffer to queue
1765 *
1766 *      Queue a buffer int the middle of a list. This function takes no locks
1767 *      and you must therefore hold required locks before calling it.
1768 *
1769 *      A buffer cannot be placed on two lists at the same time.
1770 */
1771static inline void __skb_queue_after(struct sk_buff_head *list,
1772                                     struct sk_buff *prev,
1773                                     struct sk_buff *newsk)
1774{
1775        __skb_insert(newsk, prev, prev->next, list);
1776}
1777
1778void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1779                struct sk_buff_head *list);
1780
1781static inline void __skb_queue_before(struct sk_buff_head *list,
1782                                      struct sk_buff *next,
1783                                      struct sk_buff *newsk)
1784{
1785        __skb_insert(newsk, next->prev, next, list);
1786}
1787
1788/**
1789 *      __skb_queue_head - queue a buffer at the list head
1790 *      @list: list to use
1791 *      @newsk: buffer to queue
1792 *
1793 *      Queue a buffer at the start of a list. This function takes no locks
1794 *      and you must therefore hold required locks before calling it.
1795 *
1796 *      A buffer cannot be placed on two lists at the same time.
1797 */
1798void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1799static inline void __skb_queue_head(struct sk_buff_head *list,
1800                                    struct sk_buff *newsk)
1801{
1802        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1803}
1804
1805/**
1806 *      __skb_queue_tail - queue a buffer at the list tail
1807 *      @list: list to use
1808 *      @newsk: buffer to queue
1809 *
1810 *      Queue a buffer at the end of a list. This function takes no locks
1811 *      and you must therefore hold required locks before calling it.
1812 *
1813 *      A buffer cannot be placed on two lists at the same time.
1814 */
1815void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1816static inline void __skb_queue_tail(struct sk_buff_head *list,
1817                                   struct sk_buff *newsk)
1818{
1819        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1820}
1821
1822/*
1823 * remove sk_buff from list. _Must_ be called atomically, and with
1824 * the list known..
1825 */
1826void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1827static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1828{
1829        struct sk_buff *next, *prev;
1830
1831        list->qlen--;
1832        next       = skb->next;
1833        prev       = skb->prev;
1834        skb->next  = skb->prev = NULL;
1835        next->prev = prev;
1836        prev->next = next;
1837}
1838
1839/**
1840 *      __skb_dequeue - remove from the head of the queue
1841 *      @list: list to dequeue from
1842 *
1843 *      Remove the head of the list. This function does not take any locks
1844 *      so must be used with appropriate locks held only. The head item is
1845 *      returned or %NULL if the list is empty.
1846 */
1847struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1848static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1849{
1850        struct sk_buff *skb = skb_peek(list);
1851        if (skb)
1852                __skb_unlink(skb, list);
1853        return skb;
1854}
1855
1856/**
1857 *      __skb_dequeue_tail - remove from the tail of the queue
1858 *      @list: list to dequeue from
1859 *
1860 *      Remove the tail of the list. This function does not take any locks
1861 *      so must be used with appropriate locks held only. The tail item is
1862 *      returned or %NULL if the list is empty.
1863 */
1864struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1865static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1866{
1867        struct sk_buff *skb = skb_peek_tail(list);
1868        if (skb)
1869                __skb_unlink(skb, list);
1870        return skb;
1871}
1872
1873
1874static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1875{
1876        return skb->data_len;
1877}
1878
1879static inline unsigned int skb_headlen(const struct sk_buff *skb)
1880{
1881        return skb->len - skb->data_len;
1882}
1883
1884static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1885{
1886        unsigned int i, len = 0;
1887
1888        for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
1889                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1890        return len;
1891}
1892
1893static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1894{
1895        return skb_headlen(skb) + __skb_pagelen(skb);
1896}
1897
1898/**
1899 * __skb_fill_page_desc - initialise a paged fragment in an skb
1900 * @skb: buffer containing fragment to be initialised
1901 * @i: paged fragment index to initialise
1902 * @page: the page to use for this fragment
1903 * @off: the offset to the data with @page
1904 * @size: the length of the data
1905 *
1906 * Initialises the @i'th fragment of @skb to point to &size bytes at
1907 * offset @off within @page.
1908 *
1909 * Does not take any additional reference on the fragment.
1910 */
1911static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1912                                        struct page *page, int off, int size)
1913{
1914        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1915
1916        /*
1917         * Propagate page pfmemalloc to the skb if we can. The problem is
1918         * that not all callers have unique ownership of the page but rely
1919         * on page_is_pfmemalloc doing the right thing(tm).
1920         */
1921        frag->page.p              = page;
1922        frag->page_offset         = off;
1923        skb_frag_size_set(frag, size);
1924
1925        page = compound_head(page);
1926        if (page_is_pfmemalloc(page))
1927                skb->pfmemalloc = true;
1928}
1929
1930/**
1931 * skb_fill_page_desc - initialise a paged fragment in an skb
1932 * @skb: buffer containing fragment to be initialised
1933 * @i: paged fragment index to initialise
1934 * @page: the page to use for this fragment
1935 * @off: the offset to the data with @page
1936 * @size: the length of the data
1937 *
1938 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1939 * @skb to point to @size bytes at offset @off within @page. In
1940 * addition updates @skb such that @i is the last fragment.
1941 *
1942 * Does not take any additional reference on the fragment.
1943 */
1944static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1945                                      struct page *page, int off, int size)
1946{
1947        __skb_fill_page_desc(skb, i, page, off, size);
1948        skb_shinfo(skb)->nr_frags = i + 1;
1949}
1950
1951void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1952                     int size, unsigned int truesize);
1953
1954void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1955                          unsigned int truesize);
1956
1957#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1958#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1959#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1960
1961#ifdef NET_SKBUFF_DATA_USES_OFFSET
1962static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1963{
1964        return skb->head + skb->tail;
1965}
1966
1967static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1968{
1969        skb->tail = skb->data - skb->head;
1970}
1971
1972static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1973{
1974        skb_reset_tail_pointer(skb);
1975        skb->tail += offset;
1976}
1977
1978#else /* NET_SKBUFF_DATA_USES_OFFSET */
1979static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1980{
1981        return skb->tail;
1982}
1983
1984static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1985{
1986        skb->tail = skb->data;
1987}
1988
1989static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1990{
1991        skb->tail = skb->data + offset;
1992}
1993
1994#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1995
1996/*
1997 *      Add data to an sk_buff
1998 */
1999void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2000void *skb_put(struct sk_buff *skb, unsigned int len);
2001static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2002{
2003        void *tmp = skb_tail_pointer(skb);
2004        SKB_LINEAR_ASSERT(skb);
2005        skb->tail += len;
2006        skb->len  += len;
2007        return tmp;
2008}
2009
2010static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2011{
2012        void *tmp = __skb_put(skb, len);
2013
2014        memset(tmp, 0, len);
2015        return tmp;
2016}
2017
2018static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2019                                   unsigned int len)
2020{
2021        void *tmp = __skb_put(skb, len);
2022
2023        memcpy(tmp, data, len);
2024        return tmp;
2025}
2026
2027static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2028{
2029        *(u8 *)__skb_put(skb, 1) = val;
2030}
2031
2032static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2033{
2034        void *tmp = skb_put(skb, len);
2035
2036        memset(tmp, 0, len);
2037
2038        return tmp;
2039}
2040
2041static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2042                                 unsigned int len)
2043{
2044        void *tmp = skb_put(skb, len);
2045
2046        memcpy(tmp, data, len);
2047
2048        return tmp;
2049}
2050
2051static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2052{
2053        *(u8 *)skb_put(skb, 1) = val;
2054}
2055
2056void *skb_push(struct sk_buff *skb, unsigned int len);
2057static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2058{
2059        skb->data -= len;
2060        skb->len  += len;
2061        return skb->data;
2062}
2063
2064void *skb_pull(struct sk_buff *skb, unsigned int len);
2065static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2066{
2067        skb->len -= len;
2068        BUG_ON(skb->len < skb->data_len);
2069        return skb->data += len;
2070}
2071
2072static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2073{
2074        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2075}
2076
2077void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2078
2079static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2080{
2081        if (len > skb_headlen(skb) &&
2082            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2083                return NULL;
2084        skb->len -= len;
2085        return skb->data += len;
2086}
2087
2088static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2089{
2090        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2091}
2092
2093static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2094{
2095        if (likely(len <= skb_headlen(skb)))
2096                return 1;
2097        if (unlikely(len > skb->len))
2098                return 0;
2099        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2100}
2101
2102void skb_condense(struct sk_buff *skb);
2103
2104/**
2105 *      skb_headroom - bytes at buffer head
2106 *      @skb: buffer to check
2107 *
2108 *      Return the number of bytes of free space at the head of an &sk_buff.
2109 */
2110static inline unsigned int skb_headroom(const struct sk_buff *skb)
2111{
2112        return skb->data - skb->head;
2113}
2114
2115/**
2116 *      skb_tailroom - bytes at buffer end
2117 *      @skb: buffer to check
2118 *
2119 *      Return the number of bytes of free space at the tail of an sk_buff
2120 */
2121static inline int skb_tailroom(const struct sk_buff *skb)
2122{
2123        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2124}
2125
2126/**
2127 *      skb_availroom - bytes at buffer end
2128 *      @skb: buffer to check
2129 *
2130 *      Return the number of bytes of free space at the tail of an sk_buff
2131 *      allocated by sk_stream_alloc()
2132 */
2133static inline int skb_availroom(const struct sk_buff *skb)
2134{
2135        if (skb_is_nonlinear(skb))
2136                return 0;
2137
2138        return skb->end - skb->tail - skb->reserved_tailroom;
2139}
2140
2141/**
2142 *      skb_reserve - adjust headroom
2143 *      @skb: buffer to alter
2144 *      @len: bytes to move
2145 *
2146 *      Increase the headroom of an empty &sk_buff by reducing the tail
2147 *      room. This is only allowed for an empty buffer.
2148 */
2149static inline void skb_reserve(struct sk_buff *skb, int len)
2150{
2151        skb->data += len;
2152        skb->tail += len;
2153}
2154
2155/**
2156 *      skb_tailroom_reserve - adjust reserved_tailroom
2157 *      @skb: buffer to alter
2158 *      @mtu: maximum amount of headlen permitted
2159 *      @needed_tailroom: minimum amount of reserved_tailroom
2160 *
2161 *      Set reserved_tailroom so that headlen can be as large as possible but
2162 *      not larger than mtu and tailroom cannot be smaller than
2163 *      needed_tailroom.
2164 *      The required headroom should already have been reserved before using
2165 *      this function.
2166 */
2167static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2168                                        unsigned int needed_tailroom)
2169{
2170        SKB_LINEAR_ASSERT(skb);
2171        if (mtu < skb_tailroom(skb) - needed_tailroom)
2172                /* use at most mtu */
2173                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2174        else
2175                /* use up to all available space */
2176                skb->reserved_tailroom = needed_tailroom;
2177}
2178
2179#define ENCAP_TYPE_ETHER        0
2180#define ENCAP_TYPE_IPPROTO      1
2181
2182static inline void skb_set_inner_protocol(struct sk_buff *skb,
2183                                          __be16 protocol)
2184{
2185        skb->inner_protocol = protocol;
2186        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2187}
2188
2189static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2190                                         __u8 ipproto)
2191{
2192        skb->inner_ipproto = ipproto;
2193        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2194}
2195
2196static inline void skb_reset_inner_headers(struct sk_buff *skb)
2197{
2198        skb->inner_mac_header = skb->mac_header;
2199        skb->inner_network_header = skb->network_header;
2200        skb->inner_transport_header = skb->transport_header;
2201}
2202
2203static inline void skb_reset_mac_len(struct sk_buff *skb)
2204{
2205        skb->mac_len = skb->network_header - skb->mac_header;
2206}
2207
2208static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2209                                                        *skb)
2210{
2211        return skb->head + skb->inner_transport_header;
2212}
2213
2214static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2215{
2216        return skb_inner_transport_header(skb) - skb->data;
2217}
2218
2219static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2220{
2221        skb->inner_transport_header = skb->data - skb->head;
2222}
2223
2224static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2225                                                   const int offset)
2226{
2227        skb_reset_inner_transport_header(skb);
2228        skb->inner_transport_header += offset;
2229}
2230
2231static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2232{
2233        return skb->head + skb->inner_network_header;
2234}
2235
2236static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2237{
2238        skb->inner_network_header = skb->data - skb->head;
2239}
2240
2241static inline void skb_set_inner_network_header(struct sk_buff *skb,
2242                                                const int offset)
2243{
2244        skb_reset_inner_network_header(skb);
2245        skb->inner_network_header += offset;
2246}
2247
2248static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2249{
2250        return skb->head + skb->inner_mac_header;
2251}
2252
2253static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2254{
2255        skb->inner_mac_header = skb->data - skb->head;
2256}
2257
2258static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2259                                            const int offset)
2260{
2261        skb_reset_inner_mac_header(skb);
2262        skb->inner_mac_header += offset;
2263}
2264static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2265{
2266        return skb->transport_header != (typeof(skb->transport_header))~0U;
2267}
2268
2269static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2270{
2271        return skb->head + skb->transport_header;
2272}
2273
2274static inline void skb_reset_transport_header(struct sk_buff *skb)
2275{
2276        skb->transport_header = skb->data - skb->head;
2277}
2278
2279static inline void skb_set_transport_header(struct sk_buff *skb,
2280                                            const int offset)
2281{
2282        skb_reset_transport_header(skb);
2283        skb->transport_header += offset;
2284}
2285
2286static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2287{
2288        return skb->head + skb->network_header;
2289}
2290
2291static inline void skb_reset_network_header(struct sk_buff *skb)
2292{
2293        skb->network_header = skb->data - skb->head;
2294}
2295
2296static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2297{
2298        skb_reset_network_header(skb);
2299        skb->network_header += offset;
2300}
2301
2302static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2303{
2304        return skb->head + skb->mac_header;
2305}
2306
2307static inline int skb_mac_offset(const struct sk_buff *skb)
2308{
2309        return skb_mac_header(skb) - skb->data;
2310}
2311
2312static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2313{
2314        return skb->network_header - skb->mac_header;
2315}
2316
2317static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2318{
2319        return skb->mac_header != (typeof(skb->mac_header))~0U;
2320}
2321
2322static inline void skb_reset_mac_header(struct sk_buff *skb)
2323{
2324        skb->mac_header = skb->data - skb->head;
2325}
2326
2327static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2328{
2329        skb_reset_mac_header(skb);
2330        skb->mac_header += offset;
2331}
2332
2333static inline void skb_pop_mac_header(struct sk_buff *skb)
2334{
2335        skb->mac_header = skb->network_header;
2336}
2337
2338static inline void skb_probe_transport_header(struct sk_buff *skb,
2339                                              const int offset_hint)
2340{
2341        struct flow_keys keys;
2342
2343        if (skb_transport_header_was_set(skb))
2344                return;
2345        else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2346                skb_set_transport_header(skb, keys.control.thoff);
2347        else
2348                skb_set_transport_header(skb, offset_hint);
2349}
2350
2351static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2352{
2353        if (skb_mac_header_was_set(skb)) {
2354                const unsigned char *old_mac = skb_mac_header(skb);
2355
2356                skb_set_mac_header(skb, -skb->mac_len);
2357                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2358        }
2359}
2360
2361static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2362{
2363        return skb->csum_start - skb_headroom(skb);
2364}
2365
2366static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2367{
2368        return skb->head + skb->csum_start;
2369}
2370
2371static inline int skb_transport_offset(const struct sk_buff *skb)
2372{
2373        return skb_transport_header(skb) - skb->data;
2374}
2375
2376static inline u32 skb_network_header_len(const struct sk_buff *skb)
2377{
2378        return skb->transport_header - skb->network_header;
2379}
2380
2381static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2382{
2383        return skb->inner_transport_header - skb->inner_network_header;
2384}
2385
2386static inline int skb_network_offset(const struct sk_buff *skb)
2387{
2388        return skb_network_header(skb) - skb->data;
2389}
2390
2391static inline int skb_inner_network_offset(const struct sk_buff *skb)
2392{
2393        return skb_inner_network_header(skb) - skb->data;
2394}
2395
2396static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2397{
2398        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2399}
2400
2401/*
2402 * CPUs often take a performance hit when accessing unaligned memory
2403 * locations. The actual performance hit varies, it can be small if the
2404 * hardware handles it or large if we have to take an exception and fix it
2405 * in software.
2406 *
2407 * Since an ethernet header is 14 bytes network drivers often end up with
2408 * the IP header at an unaligned offset. The IP header can be aligned by
2409 * shifting the start of the packet by 2 bytes. Drivers should do this
2410 * with:
2411 *
2412 * skb_reserve(skb, NET_IP_ALIGN);
2413 *
2414 * The downside to this alignment of the IP header is that the DMA is now
2415 * unaligned. On some architectures the cost of an unaligned DMA is high
2416 * and this cost outweighs the gains made by aligning the IP header.
2417 *
2418 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2419 * to be overridden.
2420 */
2421#ifndef NET_IP_ALIGN
2422#define NET_IP_ALIGN    2
2423#endif
2424
2425/*
2426 * The networking layer reserves some headroom in skb data (via
2427 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2428 * the header has to grow. In the default case, if the header has to grow
2429 * 32 bytes or less we avoid the reallocation.
2430 *
2431 * Unfortunately this headroom changes the DMA alignment of the resulting
2432 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2433 * on some architectures. An architecture can override this value,
2434 * perhaps setting it to a cacheline in size (since that will maintain
2435 * cacheline alignment of the DMA). It must be a power of 2.
2436 *
2437 * Various parts of the networking layer expect at least 32 bytes of
2438 * headroom, you should not reduce this.
2439 *
2440 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2441 * to reduce average number of cache lines per packet.
2442 * get_rps_cpus() for example only access one 64 bytes aligned block :
2443 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2444 */
2445#ifndef NET_SKB_PAD
2446#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2447#endif
2448
2449int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2450
2451static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2452{
2453        if (unlikely(skb_is_nonlinear(skb))) {
2454                WARN_ON(1);
2455                return;
2456        }
2457        skb->len = len;
2458        skb_set_tail_pointer(skb, len);
2459}
2460
2461static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2462{
2463        __skb_set_length(skb, len);
2464}
2465
2466void skb_trim(struct sk_buff *skb, unsigned int len);
2467
2468static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2469{
2470        if (skb->data_len)
2471                return ___pskb_trim(skb, len);
2472        __skb_trim(skb, len);
2473        return 0;
2474}
2475
2476static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2477{
2478        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2479}
2480
2481/**
2482 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2483 *      @skb: buffer to alter
2484 *      @len: new length
2485 *
2486 *      This is identical to pskb_trim except that the caller knows that
2487 *      the skb is not cloned so we should never get an error due to out-
2488 *      of-memory.
2489 */
2490static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2491{
2492        int err = pskb_trim(skb, len);
2493        BUG_ON(err);
2494}
2495
2496static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2497{
2498        unsigned int diff = len - skb->len;
2499
2500        if (skb_tailroom(skb) < diff) {
2501                int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2502                                           GFP_ATOMIC);
2503                if (ret)
2504                        return ret;
2505        }
2506        __skb_set_length(skb, len);
2507        return 0;
2508}
2509
2510/**
2511 *      skb_orphan - orphan a buffer
2512 *      @skb: buffer to orphan
2513 *
2514 *      If a buffer currently has an owner then we call the owner's
2515 *      destructor function and make the @skb unowned. The buffer continues
2516 *      to exist but is no longer charged to its former owner.
2517 */
2518static inline void skb_orphan(struct sk_buff *skb)
2519{
2520        if (skb->destructor) {
2521                skb->destructor(skb);
2522                skb->destructor = NULL;
2523                skb->sk         = NULL;
2524        } else {
2525                BUG_ON(skb->sk);
2526        }
2527}
2528
2529/**
2530 *      skb_orphan_frags - orphan the frags contained in a buffer
2531 *      @skb: buffer to orphan frags from
2532 *      @gfp_mask: allocation mask for replacement pages
2533 *
2534 *      For each frag in the SKB which needs a destructor (i.e. has an
2535 *      owner) create a copy of that frag and release the original
2536 *      page by calling the destructor.
2537 */
2538static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2539{
2540        if (likely(!skb_zcopy(skb)))
2541                return 0;
2542        if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2543                return 0;
2544        return skb_copy_ubufs(skb, gfp_mask);
2545}
2546
2547/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2548static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2549{
2550        if (likely(!skb_zcopy(skb)))
2551                return 0;
2552        return skb_copy_ubufs(skb, gfp_mask);
2553}
2554
2555/**
2556 *      __skb_queue_purge - empty a list
2557 *      @list: list to empty
2558 *
2559 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2560 *      the list and one reference dropped. This function does not take the
2561 *      list lock and the caller must hold the relevant locks to use it.
2562 */
2563void skb_queue_purge(struct sk_buff_head *list);
2564static inline void __skb_queue_purge(struct sk_buff_head *list)
2565{
2566        struct sk_buff *skb;
2567        while ((skb = __skb_dequeue(list)) != NULL)
2568                kfree_skb(skb);
2569}
2570
2571void skb_rbtree_purge(struct rb_root *root);
2572
2573void *netdev_alloc_frag(unsigned int fragsz);
2574
2575struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2576                                   gfp_t gfp_mask);
2577
2578/**
2579 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2580 *      @dev: network device to receive on
2581 *      @length: length to allocate
2582 *
2583 *      Allocate a new &sk_buff and assign it a usage count of one. The
2584 *      buffer has unspecified headroom built in. Users should allocate
2585 *      the headroom they think they need without accounting for the
2586 *      built in space. The built in space is used for optimisations.
2587 *
2588 *      %NULL is returned if there is no free memory. Although this function
2589 *      allocates memory it can be called from an interrupt.
2590 */
2591static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2592                                               unsigned int length)
2593{
2594        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2595}
2596
2597/* legacy helper around __netdev_alloc_skb() */
2598static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2599                                              gfp_t gfp_mask)
2600{
2601        return __netdev_alloc_skb(NULL, length, gfp_mask);
2602}
2603
2604/* legacy helper around netdev_alloc_skb() */
2605static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2606{
2607        return netdev_alloc_skb(NULL, length);
2608}
2609
2610
2611static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2612                unsigned int length, gfp_t gfp)
2613{
2614        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2615
2616        if (NET_IP_ALIGN && skb)
2617                skb_reserve(skb, NET_IP_ALIGN);
2618        return skb;
2619}
2620
2621static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2622                unsigned int length)
2623{
2624        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2625}
2626
2627static inline void skb_free_frag(void *addr)
2628{
2629        page_frag_free(addr);
2630}
2631
2632void *napi_alloc_frag(unsigned int fragsz);
2633struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2634                                 unsigned int length, gfp_t gfp_mask);
2635static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2636                                             unsigned int length)
2637{
2638        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2639}
2640void napi_consume_skb(struct sk_buff *skb, int budget);
2641
2642void __kfree_skb_flush(void);
2643void __kfree_skb_defer(struct sk_buff *skb);
2644
2645/**
2646 * __dev_alloc_pages - allocate page for network Rx
2647 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2648 * @order: size of the allocation
2649 *
2650 * Allocate a new page.
2651 *
2652 * %NULL is returned if there is no free memory.
2653*/
2654static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2655                                             unsigned int order)
2656{
2657        /* This piece of code contains several assumptions.
2658         * 1.  This is for device Rx, therefor a cold page is preferred.
2659         * 2.  The expectation is the user wants a compound page.
2660         * 3.  If requesting a order 0 page it will not be compound
2661         *     due to the check to see if order has a value in prep_new_page
2662         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2663         *     code in gfp_to_alloc_flags that should be enforcing this.
2664         */
2665        gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2666
2667        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2668}
2669
2670static inline struct page *dev_alloc_pages(unsigned int order)
2671{
2672        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2673}
2674
2675/**
2676 * __dev_alloc_page - allocate a page for network Rx
2677 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2678 *
2679 * Allocate a new page.
2680 *
2681 * %NULL is returned if there is no free memory.
2682 */
2683static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2684{
2685        return __dev_alloc_pages(gfp_mask, 0);
2686}
2687
2688static inline struct page *dev_alloc_page(void)
2689{
2690        return dev_alloc_pages(0);
2691}
2692
2693/**
2694 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2695 *      @page: The page that was allocated from skb_alloc_page
2696 *      @skb: The skb that may need pfmemalloc set
2697 */
2698static inline void skb_propagate_pfmemalloc(struct page *page,
2699                                             struct sk_buff *skb)
2700{
2701        if (page_is_pfmemalloc(page))
2702                skb->pfmemalloc = true;
2703}
2704
2705/**
2706 * skb_frag_page - retrieve the page referred to by a paged fragment
2707 * @frag: the paged fragment
2708 *
2709 * Returns the &struct page associated with @frag.
2710 */
2711static inline struct page *skb_frag_page(const skb_frag_t *frag)
2712{
2713        return frag->page.p;
2714}
2715
2716/**
2717 * __skb_frag_ref - take an addition reference on a paged fragment.
2718 * @frag: the paged fragment
2719 *
2720 * Takes an additional reference on the paged fragment @frag.
2721 */
2722static inline void __skb_frag_ref(skb_frag_t *frag)
2723{
2724        get_page(skb_frag_page(frag));
2725}
2726
2727/**
2728 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2729 * @skb: the buffer
2730 * @f: the fragment offset.
2731 *
2732 * Takes an additional reference on the @f'th paged fragment of @skb.
2733 */
2734static inline void skb_frag_ref(struct sk_buff *skb, int f)
2735{
2736        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2737}
2738
2739/**
2740 * __skb_frag_unref - release a reference on a paged fragment.
2741 * @frag: the paged fragment
2742 *
2743 * Releases a reference on the paged fragment @frag.
2744 */
2745static inline void __skb_frag_unref(skb_frag_t *frag)
2746{
2747        put_page(skb_frag_page(frag));
2748}
2749
2750/**
2751 * skb_frag_unref - release a reference on a paged fragment of an skb.
2752 * @skb: the buffer
2753 * @f: the fragment offset
2754 *
2755 * Releases a reference on the @f'th paged fragment of @skb.
2756 */
2757static inline void skb_frag_unref(struct sk_buff *skb, int f)
2758{
2759        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2760}
2761
2762/**
2763 * skb_frag_address - gets the address of the data contained in a paged fragment
2764 * @frag: the paged fragment buffer
2765 *
2766 * Returns the address of the data within @frag. The page must already
2767 * be mapped.
2768 */
2769static inline void *skb_frag_address(const skb_frag_t *frag)
2770{
2771        return page_address(skb_frag_page(frag)) + frag->page_offset;
2772}
2773
2774/**
2775 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2776 * @frag: the paged fragment buffer
2777 *
2778 * Returns the address of the data within @frag. Checks that the page
2779 * is mapped and returns %NULL otherwise.
2780 */
2781static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2782{
2783        void *ptr = page_address(skb_frag_page(frag));
2784        if (unlikely(!ptr))
2785                return NULL;
2786
2787        return ptr + frag->page_offset;
2788}
2789
2790/**
2791 * __skb_frag_set_page - sets the page contained in a paged fragment
2792 * @frag: the paged fragment
2793 * @page: the page to set
2794 *
2795 * Sets the fragment @frag to contain @page.
2796 */
2797static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2798{
2799        frag->page.p = page;
2800}
2801
2802/**
2803 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2804 * @skb: the buffer
2805 * @f: the fragment offset
2806 * @page: the page to set
2807 *
2808 * Sets the @f'th fragment of @skb to contain @page.
2809 */
2810static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2811                                     struct page *page)
2812{
2813        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2814}
2815
2816bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2817
2818/**
2819 * skb_frag_dma_map - maps a paged fragment via the DMA API
2820 * @dev: the device to map the fragment to
2821 * @frag: the paged fragment to map
2822 * @offset: the offset within the fragment (starting at the
2823 *          fragment's own offset)
2824 * @size: the number of bytes to map
2825 * @dir: the direction of the mapping (``PCI_DMA_*``)
2826 *
2827 * Maps the page associated with @frag to @device.
2828 */
2829static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2830                                          const skb_frag_t *frag,
2831                                          size_t offset, size_t size,
2832                                          enum dma_data_direction dir)
2833{
2834        return dma_map_page(dev, skb_frag_page(frag),
2835                            frag->page_offset + offset, size, dir);
2836}
2837
2838static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2839                                        gfp_t gfp_mask)
2840{
2841        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2842}
2843
2844
2845static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2846                                                  gfp_t gfp_mask)
2847{
2848        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2849}
2850
2851
2852/**
2853 *      skb_clone_writable - is the header of a clone writable
2854 *      @skb: buffer to check
2855 *      @len: length up to which to write
2856 *
2857 *      Returns true if modifying the header part of the cloned buffer
2858 *      does not requires the data to be copied.
2859 */
2860static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2861{
2862        return !skb_header_cloned(skb) &&
2863               skb_headroom(skb) + len <= skb->hdr_len;
2864}
2865
2866static inline int skb_try_make_writable(struct sk_buff *skb,
2867                                        unsigned int write_len)
2868{
2869        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2870               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2871}
2872
2873static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2874                            int cloned)
2875{
2876        int delta = 0;
2877
2878        if (headroom > skb_headroom(skb))
2879                delta = headroom - skb_headroom(skb);
2880
2881        if (delta || cloned)
2882                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2883                                        GFP_ATOMIC);
2884        return 0;
2885}
2886
2887/**
2888 *      skb_cow - copy header of skb when it is required
2889 *      @skb: buffer to cow
2890 *      @headroom: needed headroom
2891 *
2892 *      If the skb passed lacks sufficient headroom or its data part
2893 *      is shared, data is reallocated. If reallocation fails, an error
2894 *      is returned and original skb is not changed.
2895 *
2896 *      The result is skb with writable area skb->head...skb->tail
2897 *      and at least @headroom of space at head.
2898 */
2899static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2900{
2901        return __skb_cow(skb, headroom, skb_cloned(skb));
2902}
2903
2904/**
2905 *      skb_cow_head - skb_cow but only making the head writable
2906 *      @skb: buffer to cow
2907 *      @headroom: needed headroom
2908 *
2909 *      This function is identical to skb_cow except that we replace the
2910 *      skb_cloned check by skb_header_cloned.  It should be used when
2911 *      you only need to push on some header and do not need to modify
2912 *      the data.
2913 */
2914static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2915{
2916        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2917}
2918
2919/**
2920 *      skb_padto       - pad an skbuff up to a minimal size
2921 *      @skb: buffer to pad
2922 *      @len: minimal length
2923 *
2924 *      Pads up a buffer to ensure the trailing bytes exist and are
2925 *      blanked. If the buffer already contains sufficient data it
2926 *      is untouched. Otherwise it is extended. Returns zero on
2927 *      success. The skb is freed on error.
2928 */
2929static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2930{
2931        unsigned int size = skb->len;
2932        if (likely(size >= len))
2933                return 0;
2934        return skb_pad(skb, len - size);
2935}
2936
2937/**
2938 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2939 *      @skb: buffer to pad
2940 *      @len: minimal length
2941 *      @free_on_error: free buffer on error
2942 *
2943 *      Pads up a buffer to ensure the trailing bytes exist and are
2944 *      blanked. If the buffer already contains sufficient data it
2945 *      is untouched. Otherwise it is extended. Returns zero on
2946 *      success. The skb is freed on error if @free_on_error is true.
2947 */
2948static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2949                                  bool free_on_error)
2950{
2951        unsigned int size = skb->len;
2952
2953        if (unlikely(size < len)) {
2954                len -= size;
2955                if (__skb_pad(skb, len, free_on_error))
2956                        return -ENOMEM;
2957                __skb_put(skb, len);
2958        }
2959        return 0;
2960}
2961
2962/**
2963 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2964 *      @skb: buffer to pad
2965 *      @len: minimal length
2966 *
2967 *      Pads up a buffer to ensure the trailing bytes exist and are
2968 *      blanked. If the buffer already contains sufficient data it
2969 *      is untouched. Otherwise it is extended. Returns zero on
2970 *      success. The skb is freed on error.
2971 */
2972static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2973{
2974        return __skb_put_padto(skb, len, true);
2975}
2976
2977static inline int skb_add_data(struct sk_buff *skb,
2978                               struct iov_iter *from, int copy)
2979{
2980        const int off = skb->len;
2981
2982        if (skb->ip_summed == CHECKSUM_NONE) {
2983                __wsum csum = 0;
2984                if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2985                                                 &csum, from)) {
2986                        skb->csum = csum_block_add(skb->csum, csum, off);
2987                        return 0;
2988                }
2989        } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
2990                return 0;
2991
2992        __skb_trim(skb, off);
2993        return -EFAULT;
2994}
2995
2996static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2997                                    const struct page *page, int off)
2998{
2999        if (skb_zcopy(skb))
3000                return false;
3001        if (i) {
3002                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
3003
3004                return page == skb_frag_page(frag) &&
3005                       off == frag->page_offset + skb_frag_size(frag);
3006        }
3007        return false;
3008}
3009
3010static inline int __skb_linearize(struct sk_buff *skb)
3011{
3012        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3013}
3014
3015/**
3016 *      skb_linearize - convert paged skb to linear one
3017 *      @skb: buffer to linarize
3018 *
3019 *      If there is no free memory -ENOMEM is returned, otherwise zero
3020 *      is returned and the old skb data released.
3021 */
3022static inline int skb_linearize(struct sk_buff *skb)
3023{
3024        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3025}
3026
3027/**
3028 * skb_has_shared_frag - can any frag be overwritten
3029 * @skb: buffer to test
3030 *
3031 * Return true if the skb has at least one frag that might be modified
3032 * by an external entity (as in vmsplice()/sendfile())
3033 */
3034static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3035{
3036        return skb_is_nonlinear(skb) &&
3037               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3038}
3039
3040/**
3041 *      skb_linearize_cow - make sure skb is linear and writable
3042 *      @skb: buffer to process
3043 *
3044 *      If there is no free memory -ENOMEM is returned, otherwise zero
3045 *      is returned and the old skb data released.
3046 */
3047static inline int skb_linearize_cow(struct sk_buff *skb)
3048{
3049        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3050               __skb_linearize(skb) : 0;
3051}
3052
3053static __always_inline void
3054__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3055                     unsigned int off)
3056{
3057        if (skb->ip_summed == CHECKSUM_COMPLETE)
3058                skb->csum = csum_block_sub(skb->csum,
3059                                           csum_partial(start, len, 0), off);
3060        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3061                 skb_checksum_start_offset(skb) < 0)
3062                skb->ip_summed = CHECKSUM_NONE;
3063}
3064
3065/**
3066 *      skb_postpull_rcsum - update checksum for received skb after pull
3067 *      @skb: buffer to update
3068 *      @start: start of data before pull
3069 *      @len: length of data pulled
3070 *
3071 *      After doing a pull on a received packet, you need to call this to
3072 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3073 *      CHECKSUM_NONE so that it can be recomputed from scratch.
3074 */
3075static inline void skb_postpull_rcsum(struct sk_buff *skb,
3076                                      const void *start, unsigned int len)
3077{
3078        __skb_postpull_rcsum(skb, start, len, 0);
3079}
3080
3081static __always_inline void
3082__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3083                     unsigned int off)
3084{
3085        if (skb->ip_summed == CHECKSUM_COMPLETE)
3086                skb->csum = csum_block_add(skb->csum,
3087                                           csum_partial(start, len, 0), off);
3088}
3089
3090/**
3091 *      skb_postpush_rcsum - update checksum for received skb after push
3092 *      @skb: buffer to update
3093 *      @start: start of data after push
3094 *      @len: length of data pushed
3095 *
3096 *      After doing a push on a received packet, you need to call this to
3097 *      update the CHECKSUM_COMPLETE checksum.
3098 */
3099static inline void skb_postpush_rcsum(struct sk_buff *skb,
3100                                      const void *start, unsigned int len)
3101{
3102        __skb_postpush_rcsum(skb, start, len, 0);
3103}
3104
3105void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3106
3107/**
3108 *      skb_push_rcsum - push skb and update receive checksum
3109 *      @skb: buffer to update
3110 *      @len: length of data pulled
3111 *
3112 *      This function performs an skb_push on the packet and updates
3113 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3114 *      receive path processing instead of skb_push unless you know
3115 *      that the checksum difference is zero (e.g., a valid IP header)
3116 *      or you are setting ip_summed to CHECKSUM_NONE.
3117 */
3118static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3119{
3120        skb_push(skb, len);
3121        skb_postpush_rcsum(skb, skb->data, len);
3122        return skb->data;
3123}
3124
3125/**
3126 *      pskb_trim_rcsum - trim received skb and update checksum
3127 *      @skb: buffer to trim
3128 *      @len: new length
3129 *
3130 *      This is exactly the same as pskb_trim except that it ensures the
3131 *      checksum of received packets are still valid after the operation.
3132 */
3133
3134static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3135{
3136        if (likely(len >= skb->len))
3137                return 0;
3138        if (skb->ip_summed == CHECKSUM_COMPLETE)
3139                skb->ip_summed = CHECKSUM_NONE;
3140        return __pskb_trim(skb, len);
3141}
3142
3143static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3144{
3145        if (skb->ip_summed == CHECKSUM_COMPLETE)
3146                skb->ip_summed = CHECKSUM_NONE;
3147        __skb_trim(skb, len);
3148        return 0;
3149}
3150
3151static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3152{
3153        if (skb->ip_summed == CHECKSUM_COMPLETE)
3154                skb->ip_summed = CHECKSUM_NONE;
3155        return __skb_grow(skb, len);
3156}
3157
3158#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3159#define skb_rb_first(root) rb_to_skb(rb_first(root))
3160#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3161#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3162#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3163
3164#define skb_queue_walk(queue, skb) \
3165                for (skb = (queue)->next;                                       \
3166                     skb != (struct sk_buff *)(queue);                          \
3167                     skb = skb->next)
3168
3169#define skb_queue_walk_safe(queue, skb, tmp)                                    \
3170                for (skb = (queue)->next, tmp = skb->next;                      \
3171                     skb != (struct sk_buff *)(queue);                          \
3172                     skb = tmp, tmp = skb->next)
3173
3174#define skb_queue_walk_from(queue, skb)                                         \
3175                for (; skb != (struct sk_buff *)(queue);                        \
3176                     skb = skb->next)
3177
3178#define skb_rbtree_walk(skb, root)                                              \
3179                for (skb = skb_rb_first(root); skb != NULL;                     \
3180                     skb = skb_rb_next(skb))
3181
3182#define skb_rbtree_walk_from(skb)                                               \
3183                for (; skb != NULL;                                             \
3184                     skb = skb_rb_next(skb))
3185
3186#define skb_rbtree_walk_from_safe(skb, tmp)                                     \
3187                for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);      \
3188                     skb = tmp)
3189
3190#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
3191                for (tmp = skb->next;                                           \
3192                     skb != (struct sk_buff *)(queue);                          \
3193                     skb = tmp, tmp = skb->next)
3194
3195#define skb_queue_reverse_walk(queue, skb) \
3196                for (skb = (queue)->prev;                                       \
3197                     skb != (struct sk_buff *)(queue);                          \
3198                     skb = skb->prev)
3199
3200#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
3201                for (skb = (queue)->prev, tmp = skb->prev;                      \
3202                     skb != (struct sk_buff *)(queue);                          \
3203                     skb = tmp, tmp = skb->prev)
3204
3205#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
3206                for (tmp = skb->prev;                                           \
3207                     skb != (struct sk_buff *)(queue);                          \
3208                     skb = tmp, tmp = skb->prev)
3209
3210static inline bool skb_has_frag_list(const struct sk_buff *skb)
3211{
3212        return skb_shinfo(skb)->frag_list != NULL;
3213}
3214
3215static inline void skb_frag_list_init(struct sk_buff *skb)
3216{
3217        skb_shinfo(skb)->frag_list = NULL;
3218}
3219
3220#define skb_walk_frags(skb, iter)       \
3221        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3222
3223
3224int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3225                                const struct sk_buff *skb);
3226struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3227                                          struct sk_buff_head *queue,
3228                                          unsigned int flags,
3229                                          void (*destructor)(struct sock *sk,
3230                                                           struct sk_buff *skb),
3231                                          int *peeked, int *off, int *err,
3232                                          struct sk_buff **last);
3233struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3234                                        void (*destructor)(struct sock *sk,
3235                                                           struct sk_buff *skb),
3236                                        int *peeked, int *off, int *err,
3237                                        struct sk_buff **last);
3238struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3239                                    void (*destructor)(struct sock *sk,
3240                                                       struct sk_buff *skb),
3241                                    int *peeked, int *off, int *err);
3242struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3243                                  int *err);
3244unsigned int datagram_poll(struct file *file, struct socket *sock,
3245                           struct poll_table_struct *wait);
3246int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3247                           struct iov_iter *to, int size);
3248static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3249                                        struct msghdr *msg, int size)
3250{
3251        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3252}
3253int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3254                                   struct msghdr *msg);
3255int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3256                                 struct iov_iter *from, int len);
3257int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3258void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3259void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3260static inline void skb_free_datagram_locked(struct sock *sk,
3261                                            struct sk_buff *skb)
3262{
3263        __skb_free_datagram_locked(sk, skb, 0);
3264}
3265int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3266int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3267int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3268__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3269                              int len, __wsum csum);
3270int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3271                    struct pipe_inode_info *pipe, unsigned int len,
3272                    unsigned int flags);
3273int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3274                         int len);
3275int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3276void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3277unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3278int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3279                 int len, int hlen);
3280void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3281int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3282void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3283unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3284bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3285struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3286struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3287int skb_ensure_writable(struct sk_buff *skb, int write_len);
3288int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3289int skb_vlan_pop(struct sk_buff *skb);
3290int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3291struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3292                             gfp_t gfp);
3293
3294static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3295{
3296        return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3297}
3298
3299static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3300{
3301        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3302}
3303
3304struct skb_checksum_ops {
3305        __wsum (*update)(const void *mem, int len, __wsum wsum);
3306        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3307};
3308
3309extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3310
3311__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3312                      __wsum csum, const struct skb_checksum_ops *ops);
3313__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3314                    __wsum csum);
3315
3316static inline void * __must_check
3317__skb_header_pointer(const struct sk_buff *skb, int offset,
3318                     int len, void *data, int hlen, void *buffer)
3319{
3320        if (hlen - offset >= len)
3321                return data + offset;
3322
3323        if (!skb ||
3324            skb_copy_bits(skb, offset, buffer, len) < 0)
3325                return NULL;
3326
3327        return buffer;
3328}
3329
3330static inline void * __must_check
3331skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3332{
3333        return __skb_header_pointer(skb, offset, len, skb->data,
3334                                    skb_headlen(skb), buffer);
3335}
3336
3337/**
3338 *      skb_needs_linearize - check if we need to linearize a given skb
3339 *                            depending on the given device features.
3340 *      @skb: socket buffer to check
3341 *      @features: net device features
3342 *
3343 *      Returns true if either:
3344 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3345 *      2. skb is fragmented and the device does not support SG.
3346 */
3347static inline bool skb_needs_linearize(struct sk_buff *skb,
3348                                       netdev_features_t features)
3349{
3350        return skb_is_nonlinear(skb) &&
3351               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3352                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3353}
3354
3355static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3356                                             void *to,
3357                                             const unsigned int len)
3358{
3359        memcpy(to, skb->data, len);
3360}
3361
3362static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3363                                                    const int offset, void *to,
3364                                                    const unsigned int len)
3365{
3366        memcpy(to, skb->data + offset, len);
3367}
3368
3369static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3370                                           const void *from,
3371                                           const unsigned int len)
3372{
3373        memcpy(skb->data, from, len);
3374}
3375
3376static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3377                                                  const int offset,
3378                                                  const void *from,
3379                                                  const unsigned int len)
3380{
3381        memcpy(skb->data + offset, from, len);
3382}
3383
3384void skb_init(void);
3385
3386static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3387{
3388        return skb->tstamp;
3389}
3390
3391/**
3392 *      skb_get_timestamp - get timestamp from a skb
3393 *      @skb: skb to get stamp from
3394 *      @stamp: pointer to struct timeval to store stamp in
3395 *
3396 *      Timestamps are stored in the skb as offsets to a base timestamp.
3397 *      This function converts the offset back to a struct timeval and stores
3398 *      it in stamp.
3399 */
3400static inline void skb_get_timestamp(const struct sk_buff *skb,
3401                                     struct timeval *stamp)
3402{
3403        *stamp = ktime_to_timeval(skb->tstamp);
3404}
3405
3406static inline void skb_get_timestampns(const struct sk_buff *skb,
3407                                       struct timespec *stamp)
3408{
3409        *stamp = ktime_to_timespec(skb->tstamp);
3410}
3411
3412static inline void __net_timestamp(struct sk_buff *skb)
3413{
3414        skb->tstamp = ktime_get_real();
3415}
3416
3417static inline ktime_t net_timedelta(ktime_t t)
3418{
3419        return ktime_sub(ktime_get_real(), t);
3420}
3421
3422static inline ktime_t net_invalid_timestamp(void)
3423{
3424        return 0;
3425}
3426
3427static inline u8 skb_metadata_len(const struct sk_buff *skb)
3428{
3429        return skb_shinfo(skb)->meta_len;
3430}
3431
3432static inline void *skb_metadata_end(const struct sk_buff *skb)
3433{
3434        return skb_mac_header(skb);
3435}
3436
3437static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3438                                          const struct sk_buff *skb_b,
3439                                          u8 meta_len)
3440{
3441        const void *a = skb_metadata_end(skb_a);
3442        const void *b = skb_metadata_end(skb_b);
3443        /* Using more efficient varaiant than plain call to memcmp(). */
3444#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3445        u64 diffs = 0;
3446
3447        switch (meta_len) {
3448#define __it(x, op) (x -= sizeof(u##op))
3449#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3450        case 32: diffs |= __it_diff(a, b, 64);
3451        case 24: diffs |= __it_diff(a, b, 64);
3452        case 16: diffs |= __it_diff(a, b, 64);
3453        case  8: diffs |= __it_diff(a, b, 64);
3454                break;
3455        case 28: diffs |= __it_diff(a, b, 64);
3456        case 20: diffs |= __it_diff(a, b, 64);
3457        case 12: diffs |= __it_diff(a, b, 64);
3458        case  4: diffs |= __it_diff(a, b, 32);
3459                break;
3460        }
3461        return diffs;
3462#else
3463        return memcmp(a - meta_len, b - meta_len, meta_len);
3464#endif
3465}
3466
3467static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3468                                        const struct sk_buff *skb_b)
3469{
3470        u8 len_a = skb_metadata_len(skb_a);
3471        u8 len_b = skb_metadata_len(skb_b);
3472
3473        if (!(len_a | len_b))
3474                return false;
3475
3476        return len_a != len_b ?
3477               true : __skb_metadata_differs(skb_a, skb_b, len_a);
3478}
3479
3480static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3481{
3482        skb_shinfo(skb)->meta_len = meta_len;
3483}
3484
3485static inline void skb_metadata_clear(struct sk_buff *skb)
3486{
3487        skb_metadata_set(skb, 0);
3488}
3489
3490struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3491
3492#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3493
3494void skb_clone_tx_timestamp(struct sk_buff *skb);
3495bool skb_defer_rx_timestamp(struct sk_buff *skb);
3496
3497#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3498
3499static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3500{
3501}
3502
3503static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3504{
3505        return false;
3506}
3507
3508#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3509
3510/**
3511 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3512 *
3513 * PHY drivers may accept clones of transmitted packets for
3514 * timestamping via their phy_driver.txtstamp method. These drivers
3515 * must call this function to return the skb back to the stack with a
3516 * timestamp.
3517 *
3518 * @skb: clone of the the original outgoing packet
3519 * @hwtstamps: hardware time stamps
3520 *
3521 */
3522void skb_complete_tx_timestamp(struct sk_buff *skb,
3523                               struct skb_shared_hwtstamps *hwtstamps);
3524
3525void __skb_tstamp_tx(struct sk_buff *orig_skb,
3526                     struct skb_shared_hwtstamps *hwtstamps,
3527                     struct sock *sk, int tstype);
3528
3529/**
3530 * skb_tstamp_tx - queue clone of skb with send time stamps
3531 * @orig_skb:   the original outgoing packet
3532 * @hwtstamps:  hardware time stamps, may be NULL if not available
3533 *
3534 * If the skb has a socket associated, then this function clones the
3535 * skb (thus sharing the actual data and optional structures), stores
3536 * the optional hardware time stamping information (if non NULL) or
3537 * generates a software time stamp (otherwise), then queues the clone
3538 * to the error queue of the socket.  Errors are silently ignored.
3539 */
3540void skb_tstamp_tx(struct sk_buff *orig_skb,
3541                   struct skb_shared_hwtstamps *hwtstamps);
3542
3543/**
3544 * skb_tx_timestamp() - Driver hook for transmit timestamping
3545 *
3546 * Ethernet MAC Drivers should call this function in their hard_xmit()
3547 * function immediately before giving the sk_buff to the MAC hardware.
3548 *
3549 * Specifically, one should make absolutely sure that this function is
3550 * called before TX completion of this packet can trigger.  Otherwise
3551 * the packet could potentially already be freed.
3552 *
3553 * @skb: A socket buffer.
3554 */
3555static inline void skb_tx_timestamp(struct sk_buff *skb)
3556{
3557        skb_clone_tx_timestamp(skb);
3558        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3559                skb_tstamp_tx(skb, NULL);
3560}
3561
3562/**
3563 * skb_complete_wifi_ack - deliver skb with wifi status
3564 *
3565 * @skb: the original outgoing packet
3566 * @acked: ack status
3567 *
3568 */
3569void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3570
3571__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3572__sum16 __skb_checksum_complete(struct sk_buff *skb);
3573
3574static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3575{
3576        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3577                skb->csum_valid ||
3578                (skb->ip_summed == CHECKSUM_PARTIAL &&
3579                 skb_checksum_start_offset(skb) >= 0));
3580}
3581
3582/**
3583 *      skb_checksum_complete - Calculate checksum of an entire packet
3584 *      @skb: packet to process
3585 *
3586 *      This function calculates the checksum over the entire packet plus
3587 *      the value of skb->csum.  The latter can be used to supply the
3588 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3589 *      checksum.
3590 *
3591 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3592 *      this function can be used to verify that checksum on received
3593 *      packets.  In that case the function should return zero if the
3594 *      checksum is correct.  In particular, this function will return zero
3595 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3596 *      hardware has already verified the correctness of the checksum.
3597 */
3598static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3599{
3600        return skb_csum_unnecessary(skb) ?
3601               0 : __skb_checksum_complete(skb);
3602}
3603
3604static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3605{
3606        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3607                if (skb->csum_level == 0)
3608                        skb->ip_summed = CHECKSUM_NONE;
3609                else
3610                        skb->csum_level--;
3611        }
3612}
3613
3614static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3615{
3616        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3617                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3618                        skb->csum_level++;
3619        } else if (skb->ip_summed == CHECKSUM_NONE) {
3620                skb->ip_summed = CHECKSUM_UNNECESSARY;
3621                skb->csum_level = 0;
3622        }
3623}
3624
3625/* Check if we need to perform checksum complete validation.
3626 *
3627 * Returns true if checksum complete is needed, false otherwise
3628 * (either checksum is unnecessary or zero checksum is allowed).
3629 */
3630static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3631                                                  bool zero_okay,
3632                                                  __sum16 check)
3633{
3634        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3635                skb->csum_valid = 1;
3636                __skb_decr_checksum_unnecessary(skb);
3637                return false;
3638        }
3639
3640        return true;
3641}
3642
3643/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3644 * in checksum_init.
3645 */
3646#define CHECKSUM_BREAK 76
3647
3648/* Unset checksum-complete
3649 *
3650 * Unset checksum complete can be done when packet is being modified
3651 * (uncompressed for instance) and checksum-complete value is
3652 * invalidated.
3653 */
3654static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3655{
3656        if (skb->ip_summed == CHECKSUM_COMPLETE)
3657                skb->ip_summed = CHECKSUM_NONE;
3658}
3659
3660/* Validate (init) checksum based on checksum complete.
3661 *
3662 * Return values:
3663 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3664 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3665 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3666 *   non-zero: value of invalid checksum
3667 *
3668 */
3669static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3670                                                       bool complete,
3671                                                       __wsum psum)
3672{
3673        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3674                if (!csum_fold(csum_add(psum, skb->csum))) {
3675                        skb->csum_valid = 1;
3676                        return 0;
3677                }
3678        }
3679
3680        skb->csum = psum;
3681
3682        if (complete || skb->len <= CHECKSUM_BREAK) {
3683                __sum16 csum;
3684
3685                csum = __skb_checksum_complete(skb);
3686                skb->csum_valid = !csum;
3687                return csum;
3688        }
3689
3690        return 0;
3691}
3692
3693static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3694{
3695        return 0;
3696}
3697
3698/* Perform checksum validate (init). Note that this is a macro since we only
3699 * want to calculate the pseudo header which is an input function if necessary.
3700 * First we try to validate without any computation (checksum unnecessary) and
3701 * then calculate based on checksum complete calling the function to compute
3702 * pseudo header.
3703 *
3704 * Return values:
3705 *   0: checksum is validated or try to in skb_checksum_complete
3706 *   non-zero: value of invalid checksum
3707 */
3708#define __skb_checksum_validate(skb, proto, complete,                   \
3709                                zero_okay, check, compute_pseudo)       \
3710({                                                                      \
3711        __sum16 __ret = 0;                                              \
3712        skb->csum_valid = 0;                                            \
3713        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3714                __ret = __skb_checksum_validate_complete(skb,           \
3715                                complete, compute_pseudo(skb, proto));  \
3716        __ret;                                                          \
3717})
3718
3719#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3720        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3721
3722#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3723        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3724
3725#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3726        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3727
3728#define skb_checksum_validate_zero_check(skb, proto, check,             \
3729                                         compute_pseudo)                \
3730        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3731
3732#define skb_checksum_simple_validate(skb)                               \
3733        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3734
3735static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3736{
3737        return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3738}
3739
3740static inline void __skb_checksum_convert(struct sk_buff *skb,
3741                                          __sum16 check, __wsum pseudo)
3742{
3743        skb->csum = ~pseudo;
3744        skb->ip_summed = CHECKSUM_COMPLETE;
3745}
3746
3747#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3748do {                                                                    \
3749        if (__skb_checksum_convert_check(skb))                          \
3750                __skb_checksum_convert(skb, check,                      \
3751                                       compute_pseudo(skb, proto));     \
3752} while (0)
3753
3754static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3755                                              u16 start, u16 offset)
3756{
3757        skb->ip_summed = CHECKSUM_PARTIAL;
3758        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3759        skb->csum_offset = offset - start;
3760}
3761
3762/* Update skbuf and packet to reflect the remote checksum offload operation.
3763 * When called, ptr indicates the starting point for skb->csum when
3764 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3765 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3766 */
3767static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3768                                       int start, int offset, bool nopartial)
3769{
3770        __wsum delta;
3771
3772        if (!nopartial) {
3773                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3774                return;
3775        }
3776
3777         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3778                __skb_checksum_complete(skb);
3779                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3780        }
3781
3782        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3783
3784        /* Adjust skb->csum since we changed the packet */
3785        skb->csum = csum_add(skb->csum, delta);
3786}
3787
3788static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3789{
3790#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3791        return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3792#else
3793        return NULL;
3794#endif
3795}
3796
3797#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3798void nf_conntrack_destroy(struct nf_conntrack *nfct);
3799static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3800{
3801        if (nfct && atomic_dec_and_test(&nfct->use))
3802                nf_conntrack_destroy(nfct);
3803}
3804static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3805{
3806        if (nfct)
3807                atomic_inc(&nfct->use);
3808}
3809#endif
3810#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3811static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3812{
3813        if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
3814                kfree(nf_bridge);
3815}
3816static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3817{
3818        if (nf_bridge)
3819                refcount_inc(&nf_bridge->use);
3820}
3821#endif /* CONFIG_BRIDGE_NETFILTER */
3822static inline void nf_reset(struct sk_buff *skb)
3823{
3824#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3825        nf_conntrack_put(skb_nfct(skb));
3826        skb->_nfct = 0;
3827#endif
3828#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3829        nf_bridge_put(skb->nf_bridge);
3830        skb->nf_bridge = NULL;
3831#endif
3832}
3833
3834static inline void nf_reset_trace(struct sk_buff *skb)
3835{
3836#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3837        skb->nf_trace = 0;
3838#endif
3839}
3840
3841static inline void ipvs_reset(struct sk_buff *skb)
3842{
3843#if IS_ENABLED(CONFIG_IP_VS)
3844        skb->ipvs_property = 0;
3845#endif
3846}
3847
3848/* Note: This doesn't put any conntrack and bridge info in dst. */
3849static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3850                             bool copy)
3851{
3852#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3853        dst->_nfct = src->_nfct;
3854        nf_conntrack_get(skb_nfct(src));
3855#endif
3856#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3857        dst->nf_bridge  = src->nf_bridge;
3858        nf_bridge_get(src->nf_bridge);
3859#endif
3860#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3861        if (copy)
3862                dst->nf_trace = src->nf_trace;
3863#endif
3864}
3865
3866static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3867{
3868#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3869        nf_conntrack_put(skb_nfct(dst));
3870#endif
3871#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3872        nf_bridge_put(dst->nf_bridge);
3873#endif
3874        __nf_copy(dst, src, true);
3875}
3876
3877#ifdef CONFIG_NETWORK_SECMARK
3878static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3879{
3880        to->secmark = from->secmark;
3881}
3882
3883static inline void skb_init_secmark(struct sk_buff *skb)
3884{
3885        skb->secmark = 0;
3886}
3887#else
3888static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3889{ }
3890
3891static inline void skb_init_secmark(struct sk_buff *skb)
3892{ }
3893#endif
3894
3895static inline bool skb_irq_freeable(const struct sk_buff *skb)
3896{
3897        return !skb->destructor &&
3898#if IS_ENABLED(CONFIG_XFRM)
3899                !skb->sp &&
3900#endif
3901                !skb_nfct(skb) &&
3902                !skb->_skb_refdst &&
3903                !skb_has_frag_list(skb);
3904}
3905
3906static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3907{
3908        skb->queue_mapping = queue_mapping;
3909}
3910
3911static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3912{
3913        return skb->queue_mapping;
3914}
3915
3916static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3917{
3918        to->queue_mapping = from->queue_mapping;
3919}
3920
3921static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3922{
3923        skb->queue_mapping = rx_queue + 1;
3924}
3925
3926static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3927{
3928        return skb->queue_mapping - 1;
3929}
3930
3931static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3932{
3933        return skb->queue_mapping != 0;
3934}
3935
3936static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3937{
3938        skb->dst_pending_confirm = val;
3939}
3940
3941static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3942{
3943        return skb->dst_pending_confirm != 0;
3944}
3945
3946static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3947{
3948#ifdef CONFIG_XFRM
3949        return skb->sp;
3950#else
3951        return NULL;
3952#endif
3953}
3954
3955/* Keeps track of mac header offset relative to skb->head.
3956 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3957 * For non-tunnel skb it points to skb_mac_header() and for
3958 * tunnel skb it points to outer mac header.
3959 * Keeps track of level of encapsulation of network headers.
3960 */
3961struct skb_gso_cb {
3962        union {
3963                int     mac_offset;
3964                int     data_offset;
3965        };
3966        int     encap_level;
3967        __wsum  csum;
3968        __u16   csum_start;
3969};
3970#define SKB_SGO_CB_OFFSET       32
3971#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3972
3973static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3974{
3975        return (skb_mac_header(inner_skb) - inner_skb->head) -
3976                SKB_GSO_CB(inner_skb)->mac_offset;
3977}
3978
3979static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3980{
3981        int new_headroom, headroom;
3982        int ret;
3983
3984        headroom = skb_headroom(skb);
3985        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3986        if (ret)
3987                return ret;
3988
3989        new_headroom = skb_headroom(skb);
3990        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3991        return 0;
3992}
3993
3994static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3995{
3996        /* Do not update partial checksums if remote checksum is enabled. */
3997        if (skb->remcsum_offload)
3998                return;
3999
4000        SKB_GSO_CB(skb)->csum = res;
4001        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4002}
4003
4004/* Compute the checksum for a gso segment. First compute the checksum value
4005 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4006 * then add in skb->csum (checksum from csum_start to end of packet).
4007 * skb->csum and csum_start are then updated to reflect the checksum of the
4008 * resultant packet starting from the transport header-- the resultant checksum
4009 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4010 * header.
4011 */
4012static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4013{
4014        unsigned char *csum_start = skb_transport_header(skb);
4015        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4016        __wsum partial = SKB_GSO_CB(skb)->csum;
4017
4018        SKB_GSO_CB(skb)->csum = res;
4019        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4020
4021        return csum_fold(csum_partial(csum_start, plen, partial));
4022}
4023
4024static inline bool skb_is_gso(const struct sk_buff *skb)
4025{
4026        return skb_shinfo(skb)->gso_size;
4027}
4028
4029/* Note: Should be called only if skb_is_gso(skb) is true */
4030static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4031{
4032        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4033}
4034
4035static inline void skb_gso_reset(struct sk_buff *skb)
4036{
4037        skb_shinfo(skb)->gso_size = 0;
4038        skb_shinfo(skb)->gso_segs = 0;
4039        skb_shinfo(skb)->gso_type = 0;
4040}
4041
4042void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4043
4044static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4045{
4046        /* LRO sets gso_size but not gso_type, whereas if GSO is really
4047         * wanted then gso_type will be set. */
4048        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4049
4050        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4051            unlikely(shinfo->gso_type == 0)) {
4052                __skb_warn_lro_forwarding(skb);
4053                return true;
4054        }
4055        return false;
4056}
4057
4058static inline void skb_forward_csum(struct sk_buff *skb)
4059{
4060        /* Unfortunately we don't support this one.  Any brave souls? */
4061        if (skb->ip_summed == CHECKSUM_COMPLETE)
4062                skb->ip_summed = CHECKSUM_NONE;
4063}
4064
4065/**
4066 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4067 * @skb: skb to check
4068 *
4069 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4070 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4071 * use this helper, to document places where we make this assertion.
4072 */
4073static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4074{
4075#ifdef DEBUG
4076        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4077#endif
4078}
4079
4080bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4081
4082int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4083struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4084                                     unsigned int transport_len,
4085                                     __sum16(*skb_chkf)(struct sk_buff *skb));
4086
4087/**
4088 * skb_head_is_locked - Determine if the skb->head is locked down
4089 * @skb: skb to check
4090 *
4091 * The head on skbs build around a head frag can be removed if they are
4092 * not cloned.  This function returns true if the skb head is locked down
4093 * due to either being allocated via kmalloc, or by being a clone with
4094 * multiple references to the head.
4095 */
4096static inline bool skb_head_is_locked(const struct sk_buff *skb)
4097{
4098        return !skb->head_frag || skb_cloned(skb);
4099}
4100
4101/**
4102 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4103 *
4104 * @skb: GSO skb
4105 *
4106 * skb_gso_network_seglen is used to determine the real size of the
4107 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4108 *
4109 * The MAC/L2 header is not accounted for.
4110 */
4111static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4112{
4113        unsigned int hdr_len = skb_transport_header(skb) -
4114                               skb_network_header(skb);
4115        return hdr_len + skb_gso_transport_seglen(skb);
4116}
4117
4118/* Local Checksum Offload.
4119 * Compute outer checksum based on the assumption that the
4120 * inner checksum will be offloaded later.
4121 * See Documentation/networking/checksum-offloads.txt for
4122 * explanation of how this works.
4123 * Fill in outer checksum adjustment (e.g. with sum of outer
4124 * pseudo-header) before calling.
4125 * Also ensure that inner checksum is in linear data area.
4126 */
4127static inline __wsum lco_csum(struct sk_buff *skb)
4128{
4129        unsigned char *csum_start = skb_checksum_start(skb);
4130        unsigned char *l4_hdr = skb_transport_header(skb);
4131        __wsum partial;
4132
4133        /* Start with complement of inner checksum adjustment */
4134        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4135                                                    skb->csum_offset));
4136
4137        /* Add in checksum of our headers (incl. outer checksum
4138         * adjustment filled in by caller) and return result.
4139         */
4140        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4141}
4142
4143#endif  /* __KERNEL__ */
4144#endif  /* _LINUX_SKBUFF_H */
4145