linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/wake_q.h>
  65#include <linux/sched/mm.h>
  66#include <linux/hugetlb.h>
  67#include <linux/freezer.h>
  68#include <linux/bootmem.h>
  69#include <linux/fault-inject.h>
  70
  71#include <asm/futex.h>
  72
  73#include "locking/rtmutex_common.h"
  74
  75/*
  76 * READ this before attempting to hack on futexes!
  77 *
  78 * Basic futex operation and ordering guarantees
  79 * =============================================
  80 *
  81 * The waiter reads the futex value in user space and calls
  82 * futex_wait(). This function computes the hash bucket and acquires
  83 * the hash bucket lock. After that it reads the futex user space value
  84 * again and verifies that the data has not changed. If it has not changed
  85 * it enqueues itself into the hash bucket, releases the hash bucket lock
  86 * and schedules.
  87 *
  88 * The waker side modifies the user space value of the futex and calls
  89 * futex_wake(). This function computes the hash bucket and acquires the
  90 * hash bucket lock. Then it looks for waiters on that futex in the hash
  91 * bucket and wakes them.
  92 *
  93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  94 * the hb spinlock can be avoided and simply return. In order for this
  95 * optimization to work, ordering guarantees must exist so that the waiter
  96 * being added to the list is acknowledged when the list is concurrently being
  97 * checked by the waker, avoiding scenarios like the following:
  98 *
  99 * CPU 0                               CPU 1
 100 * val = *futex;
 101 * sys_futex(WAIT, futex, val);
 102 *   futex_wait(futex, val);
 103 *   uval = *futex;
 104 *                                     *futex = newval;
 105 *                                     sys_futex(WAKE, futex);
 106 *                                       futex_wake(futex);
 107 *                                       if (queue_empty())
 108 *                                         return;
 109 *   if (uval == val)
 110 *      lock(hash_bucket(futex));
 111 *      queue();
 112 *     unlock(hash_bucket(futex));
 113 *     schedule();
 114 *
 115 * This would cause the waiter on CPU 0 to wait forever because it
 116 * missed the transition of the user space value from val to newval
 117 * and the waker did not find the waiter in the hash bucket queue.
 118 *
 119 * The correct serialization ensures that a waiter either observes
 120 * the changed user space value before blocking or is woken by a
 121 * concurrent waker:
 122 *
 123 * CPU 0                                 CPU 1
 124 * val = *futex;
 125 * sys_futex(WAIT, futex, val);
 126 *   futex_wait(futex, val);
 127 *
 128 *   waiters++; (a)
 129 *   smp_mb(); (A) <-- paired with -.
 130 *                                  |
 131 *   lock(hash_bucket(futex));      |
 132 *                                  |
 133 *   uval = *futex;                 |
 134 *                                  |        *futex = newval;
 135 *                                  |        sys_futex(WAKE, futex);
 136 *                                  |          futex_wake(futex);
 137 *                                  |
 138 *                                  `--------> smp_mb(); (B)
 139 *   if (uval == val)
 140 *     queue();
 141 *     unlock(hash_bucket(futex));
 142 *     schedule();                         if (waiters)
 143 *                                           lock(hash_bucket(futex));
 144 *   else                                    wake_waiters(futex);
 145 *     waiters--; (b)                        unlock(hash_bucket(futex));
 146 *
 147 * Where (A) orders the waiters increment and the futex value read through
 148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 149 * to futex and the waiters read -- this is done by the barriers for both
 150 * shared and private futexes in get_futex_key_refs().
 151 *
 152 * This yields the following case (where X:=waiters, Y:=futex):
 153 *
 154 *      X = Y = 0
 155 *
 156 *      w[X]=1          w[Y]=1
 157 *      MB              MB
 158 *      r[Y]=y          r[X]=x
 159 *
 160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 161 * the guarantee that we cannot both miss the futex variable change and the
 162 * enqueue.
 163 *
 164 * Note that a new waiter is accounted for in (a) even when it is possible that
 165 * the wait call can return error, in which case we backtrack from it in (b).
 166 * Refer to the comment in queue_lock().
 167 *
 168 * Similarly, in order to account for waiters being requeued on another
 169 * address we always increment the waiters for the destination bucket before
 170 * acquiring the lock. It then decrements them again  after releasing it -
 171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 172 * will do the additional required waiter count housekeeping. This is done for
 173 * double_lock_hb() and double_unlock_hb(), respectively.
 174 */
 175
 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 177int __read_mostly futex_cmpxchg_enabled;
 178#endif
 179
 180/*
 181 * Futex flags used to encode options to functions and preserve them across
 182 * restarts.
 183 */
 184#ifdef CONFIG_MMU
 185# define FLAGS_SHARED           0x01
 186#else
 187/*
 188 * NOMMU does not have per process address space. Let the compiler optimize
 189 * code away.
 190 */
 191# define FLAGS_SHARED           0x00
 192#endif
 193#define FLAGS_CLOCKRT           0x02
 194#define FLAGS_HAS_TIMEOUT       0x04
 195
 196/*
 197 * Priority Inheritance state:
 198 */
 199struct futex_pi_state {
 200        /*
 201         * list of 'owned' pi_state instances - these have to be
 202         * cleaned up in do_exit() if the task exits prematurely:
 203         */
 204        struct list_head list;
 205
 206        /*
 207         * The PI object:
 208         */
 209        struct rt_mutex pi_mutex;
 210
 211        struct task_struct *owner;
 212        atomic_t refcount;
 213
 214        union futex_key key;
 215} __randomize_layout;
 216
 217/**
 218 * struct futex_q - The hashed futex queue entry, one per waiting task
 219 * @list:               priority-sorted list of tasks waiting on this futex
 220 * @task:               the task waiting on the futex
 221 * @lock_ptr:           the hash bucket lock
 222 * @key:                the key the futex is hashed on
 223 * @pi_state:           optional priority inheritance state
 224 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 225 * @requeue_pi_key:     the requeue_pi target futex key
 226 * @bitset:             bitset for the optional bitmasked wakeup
 227 *
 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 229 * we can wake only the relevant ones (hashed queues may be shared).
 230 *
 231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 233 * The order of wakeup is always to make the first condition true, then
 234 * the second.
 235 *
 236 * PI futexes are typically woken before they are removed from the hash list via
 237 * the rt_mutex code. See unqueue_me_pi().
 238 */
 239struct futex_q {
 240        struct plist_node list;
 241
 242        struct task_struct *task;
 243        spinlock_t *lock_ptr;
 244        union futex_key key;
 245        struct futex_pi_state *pi_state;
 246        struct rt_mutex_waiter *rt_waiter;
 247        union futex_key *requeue_pi_key;
 248        u32 bitset;
 249} __randomize_layout;
 250
 251static const struct futex_q futex_q_init = {
 252        /* list gets initialized in queue_me()*/
 253        .key = FUTEX_KEY_INIT,
 254        .bitset = FUTEX_BITSET_MATCH_ANY
 255};
 256
 257/*
 258 * Hash buckets are shared by all the futex_keys that hash to the same
 259 * location.  Each key may have multiple futex_q structures, one for each task
 260 * waiting on a futex.
 261 */
 262struct futex_hash_bucket {
 263        atomic_t waiters;
 264        spinlock_t lock;
 265        struct plist_head chain;
 266} ____cacheline_aligned_in_smp;
 267
 268/*
 269 * The base of the bucket array and its size are always used together
 270 * (after initialization only in hash_futex()), so ensure that they
 271 * reside in the same cacheline.
 272 */
 273static struct {
 274        struct futex_hash_bucket *queues;
 275        unsigned long            hashsize;
 276} __futex_data __read_mostly __aligned(2*sizeof(long));
 277#define futex_queues   (__futex_data.queues)
 278#define futex_hashsize (__futex_data.hashsize)
 279
 280
 281/*
 282 * Fault injections for futexes.
 283 */
 284#ifdef CONFIG_FAIL_FUTEX
 285
 286static struct {
 287        struct fault_attr attr;
 288
 289        bool ignore_private;
 290} fail_futex = {
 291        .attr = FAULT_ATTR_INITIALIZER,
 292        .ignore_private = false,
 293};
 294
 295static int __init setup_fail_futex(char *str)
 296{
 297        return setup_fault_attr(&fail_futex.attr, str);
 298}
 299__setup("fail_futex=", setup_fail_futex);
 300
 301static bool should_fail_futex(bool fshared)
 302{
 303        if (fail_futex.ignore_private && !fshared)
 304                return false;
 305
 306        return should_fail(&fail_futex.attr, 1);
 307}
 308
 309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 310
 311static int __init fail_futex_debugfs(void)
 312{
 313        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 314        struct dentry *dir;
 315
 316        dir = fault_create_debugfs_attr("fail_futex", NULL,
 317                                        &fail_futex.attr);
 318        if (IS_ERR(dir))
 319                return PTR_ERR(dir);
 320
 321        if (!debugfs_create_bool("ignore-private", mode, dir,
 322                                 &fail_futex.ignore_private)) {
 323                debugfs_remove_recursive(dir);
 324                return -ENOMEM;
 325        }
 326
 327        return 0;
 328}
 329
 330late_initcall(fail_futex_debugfs);
 331
 332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 333
 334#else
 335static inline bool should_fail_futex(bool fshared)
 336{
 337        return false;
 338}
 339#endif /* CONFIG_FAIL_FUTEX */
 340
 341static inline void futex_get_mm(union futex_key *key)
 342{
 343        mmgrab(key->private.mm);
 344        /*
 345         * Ensure futex_get_mm() implies a full barrier such that
 346         * get_futex_key() implies a full barrier. This is relied upon
 347         * as smp_mb(); (B), see the ordering comment above.
 348         */
 349        smp_mb__after_atomic();
 350}
 351
 352/*
 353 * Reflects a new waiter being added to the waitqueue.
 354 */
 355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 356{
 357#ifdef CONFIG_SMP
 358        atomic_inc(&hb->waiters);
 359        /*
 360         * Full barrier (A), see the ordering comment above.
 361         */
 362        smp_mb__after_atomic();
 363#endif
 364}
 365
 366/*
 367 * Reflects a waiter being removed from the waitqueue by wakeup
 368 * paths.
 369 */
 370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 371{
 372#ifdef CONFIG_SMP
 373        atomic_dec(&hb->waiters);
 374#endif
 375}
 376
 377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 378{
 379#ifdef CONFIG_SMP
 380        return atomic_read(&hb->waiters);
 381#else
 382        return 1;
 383#endif
 384}
 385
 386/**
 387 * hash_futex - Return the hash bucket in the global hash
 388 * @key:        Pointer to the futex key for which the hash is calculated
 389 *
 390 * We hash on the keys returned from get_futex_key (see below) and return the
 391 * corresponding hash bucket in the global hash.
 392 */
 393static struct futex_hash_bucket *hash_futex(union futex_key *key)
 394{
 395        u32 hash = jhash2((u32*)&key->both.word,
 396                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 397                          key->both.offset);
 398        return &futex_queues[hash & (futex_hashsize - 1)];
 399}
 400
 401
 402/**
 403 * match_futex - Check whether two futex keys are equal
 404 * @key1:       Pointer to key1
 405 * @key2:       Pointer to key2
 406 *
 407 * Return 1 if two futex_keys are equal, 0 otherwise.
 408 */
 409static inline int match_futex(union futex_key *key1, union futex_key *key2)
 410{
 411        return (key1 && key2
 412                && key1->both.word == key2->both.word
 413                && key1->both.ptr == key2->both.ptr
 414                && key1->both.offset == key2->both.offset);
 415}
 416
 417/*
 418 * Take a reference to the resource addressed by a key.
 419 * Can be called while holding spinlocks.
 420 *
 421 */
 422static void get_futex_key_refs(union futex_key *key)
 423{
 424        if (!key->both.ptr)
 425                return;
 426
 427        /*
 428         * On MMU less systems futexes are always "private" as there is no per
 429         * process address space. We need the smp wmb nevertheless - yes,
 430         * arch/blackfin has MMU less SMP ...
 431         */
 432        if (!IS_ENABLED(CONFIG_MMU)) {
 433                smp_mb(); /* explicit smp_mb(); (B) */
 434                return;
 435        }
 436
 437        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 438        case FUT_OFF_INODE:
 439                ihold(key->shared.inode); /* implies smp_mb(); (B) */
 440                break;
 441        case FUT_OFF_MMSHARED:
 442                futex_get_mm(key); /* implies smp_mb(); (B) */
 443                break;
 444        default:
 445                /*
 446                 * Private futexes do not hold reference on an inode or
 447                 * mm, therefore the only purpose of calling get_futex_key_refs
 448                 * is because we need the barrier for the lockless waiter check.
 449                 */
 450                smp_mb(); /* explicit smp_mb(); (B) */
 451        }
 452}
 453
 454/*
 455 * Drop a reference to the resource addressed by a key.
 456 * The hash bucket spinlock must not be held. This is
 457 * a no-op for private futexes, see comment in the get
 458 * counterpart.
 459 */
 460static void drop_futex_key_refs(union futex_key *key)
 461{
 462        if (!key->both.ptr) {
 463                /* If we're here then we tried to put a key we failed to get */
 464                WARN_ON_ONCE(1);
 465                return;
 466        }
 467
 468        if (!IS_ENABLED(CONFIG_MMU))
 469                return;
 470
 471        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 472        case FUT_OFF_INODE:
 473                iput(key->shared.inode);
 474                break;
 475        case FUT_OFF_MMSHARED:
 476                mmdrop(key->private.mm);
 477                break;
 478        }
 479}
 480
 481/**
 482 * get_futex_key() - Get parameters which are the keys for a futex
 483 * @uaddr:      virtual address of the futex
 484 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 485 * @key:        address where result is stored.
 486 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 487 *              VERIFY_WRITE)
 488 *
 489 * Return: a negative error code or 0
 490 *
 491 * The key words are stored in @key on success.
 492 *
 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 494 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 495 * We can usually work out the index without swapping in the page.
 496 *
 497 * lock_page() might sleep, the caller should not hold a spinlock.
 498 */
 499static int
 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 501{
 502        unsigned long address = (unsigned long)uaddr;
 503        struct mm_struct *mm = current->mm;
 504        struct page *page, *tail;
 505        struct address_space *mapping;
 506        int err, ro = 0;
 507
 508        /*
 509         * The futex address must be "naturally" aligned.
 510         */
 511        key->both.offset = address % PAGE_SIZE;
 512        if (unlikely((address % sizeof(u32)) != 0))
 513                return -EINVAL;
 514        address -= key->both.offset;
 515
 516        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 517                return -EFAULT;
 518
 519        if (unlikely(should_fail_futex(fshared)))
 520                return -EFAULT;
 521
 522        /*
 523         * PROCESS_PRIVATE futexes are fast.
 524         * As the mm cannot disappear under us and the 'key' only needs
 525         * virtual address, we dont even have to find the underlying vma.
 526         * Note : We do have to check 'uaddr' is a valid user address,
 527         *        but access_ok() should be faster than find_vma()
 528         */
 529        if (!fshared) {
 530                key->private.mm = mm;
 531                key->private.address = address;
 532                get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 533                return 0;
 534        }
 535
 536again:
 537        /* Ignore any VERIFY_READ mapping (futex common case) */
 538        if (unlikely(should_fail_futex(fshared)))
 539                return -EFAULT;
 540
 541        err = get_user_pages_fast(address, 1, 1, &page);
 542        /*
 543         * If write access is not required (eg. FUTEX_WAIT), try
 544         * and get read-only access.
 545         */
 546        if (err == -EFAULT && rw == VERIFY_READ) {
 547                err = get_user_pages_fast(address, 1, 0, &page);
 548                ro = 1;
 549        }
 550        if (err < 0)
 551                return err;
 552        else
 553                err = 0;
 554
 555        /*
 556         * The treatment of mapping from this point on is critical. The page
 557         * lock protects many things but in this context the page lock
 558         * stabilizes mapping, prevents inode freeing in the shared
 559         * file-backed region case and guards against movement to swap cache.
 560         *
 561         * Strictly speaking the page lock is not needed in all cases being
 562         * considered here and page lock forces unnecessarily serialization
 563         * From this point on, mapping will be re-verified if necessary and
 564         * page lock will be acquired only if it is unavoidable
 565         *
 566         * Mapping checks require the head page for any compound page so the
 567         * head page and mapping is looked up now. For anonymous pages, it
 568         * does not matter if the page splits in the future as the key is
 569         * based on the address. For filesystem-backed pages, the tail is
 570         * required as the index of the page determines the key. For
 571         * base pages, there is no tail page and tail == page.
 572         */
 573        tail = page;
 574        page = compound_head(page);
 575        mapping = READ_ONCE(page->mapping);
 576
 577        /*
 578         * If page->mapping is NULL, then it cannot be a PageAnon
 579         * page; but it might be the ZERO_PAGE or in the gate area or
 580         * in a special mapping (all cases which we are happy to fail);
 581         * or it may have been a good file page when get_user_pages_fast
 582         * found it, but truncated or holepunched or subjected to
 583         * invalidate_complete_page2 before we got the page lock (also
 584         * cases which we are happy to fail).  And we hold a reference,
 585         * so refcount care in invalidate_complete_page's remove_mapping
 586         * prevents drop_caches from setting mapping to NULL beneath us.
 587         *
 588         * The case we do have to guard against is when memory pressure made
 589         * shmem_writepage move it from filecache to swapcache beneath us:
 590         * an unlikely race, but we do need to retry for page->mapping.
 591         */
 592        if (unlikely(!mapping)) {
 593                int shmem_swizzled;
 594
 595                /*
 596                 * Page lock is required to identify which special case above
 597                 * applies. If this is really a shmem page then the page lock
 598                 * will prevent unexpected transitions.
 599                 */
 600                lock_page(page);
 601                shmem_swizzled = PageSwapCache(page) || page->mapping;
 602                unlock_page(page);
 603                put_page(page);
 604
 605                if (shmem_swizzled)
 606                        goto again;
 607
 608                return -EFAULT;
 609        }
 610
 611        /*
 612         * Private mappings are handled in a simple way.
 613         *
 614         * If the futex key is stored on an anonymous page, then the associated
 615         * object is the mm which is implicitly pinned by the calling process.
 616         *
 617         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 618         * it's a read-only handle, it's expected that futexes attach to
 619         * the object not the particular process.
 620         */
 621        if (PageAnon(page)) {
 622                /*
 623                 * A RO anonymous page will never change and thus doesn't make
 624                 * sense for futex operations.
 625                 */
 626                if (unlikely(should_fail_futex(fshared)) || ro) {
 627                        err = -EFAULT;
 628                        goto out;
 629                }
 630
 631                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 632                key->private.mm = mm;
 633                key->private.address = address;
 634
 635                get_futex_key_refs(key); /* implies smp_mb(); (B) */
 636
 637        } else {
 638                struct inode *inode;
 639
 640                /*
 641                 * The associated futex object in this case is the inode and
 642                 * the page->mapping must be traversed. Ordinarily this should
 643                 * be stabilised under page lock but it's not strictly
 644                 * necessary in this case as we just want to pin the inode, not
 645                 * update the radix tree or anything like that.
 646                 *
 647                 * The RCU read lock is taken as the inode is finally freed
 648                 * under RCU. If the mapping still matches expectations then the
 649                 * mapping->host can be safely accessed as being a valid inode.
 650                 */
 651                rcu_read_lock();
 652
 653                if (READ_ONCE(page->mapping) != mapping) {
 654                        rcu_read_unlock();
 655                        put_page(page);
 656
 657                        goto again;
 658                }
 659
 660                inode = READ_ONCE(mapping->host);
 661                if (!inode) {
 662                        rcu_read_unlock();
 663                        put_page(page);
 664
 665                        goto again;
 666                }
 667
 668                /*
 669                 * Take a reference unless it is about to be freed. Previously
 670                 * this reference was taken by ihold under the page lock
 671                 * pinning the inode in place so i_lock was unnecessary. The
 672                 * only way for this check to fail is if the inode was
 673                 * truncated in parallel which is almost certainly an
 674                 * application bug. In such a case, just retry.
 675                 *
 676                 * We are not calling into get_futex_key_refs() in file-backed
 677                 * cases, therefore a successful atomic_inc return below will
 678                 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 679                 */
 680                if (!atomic_inc_not_zero(&inode->i_count)) {
 681                        rcu_read_unlock();
 682                        put_page(page);
 683
 684                        goto again;
 685                }
 686
 687                /* Should be impossible but lets be paranoid for now */
 688                if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 689                        err = -EFAULT;
 690                        rcu_read_unlock();
 691                        iput(inode);
 692
 693                        goto out;
 694                }
 695
 696                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 697                key->shared.inode = inode;
 698                key->shared.pgoff = basepage_index(tail);
 699                rcu_read_unlock();
 700        }
 701
 702out:
 703        put_page(page);
 704        return err;
 705}
 706
 707static inline void put_futex_key(union futex_key *key)
 708{
 709        drop_futex_key_refs(key);
 710}
 711
 712/**
 713 * fault_in_user_writeable() - Fault in user address and verify RW access
 714 * @uaddr:      pointer to faulting user space address
 715 *
 716 * Slow path to fixup the fault we just took in the atomic write
 717 * access to @uaddr.
 718 *
 719 * We have no generic implementation of a non-destructive write to the
 720 * user address. We know that we faulted in the atomic pagefault
 721 * disabled section so we can as well avoid the #PF overhead by
 722 * calling get_user_pages() right away.
 723 */
 724static int fault_in_user_writeable(u32 __user *uaddr)
 725{
 726        struct mm_struct *mm = current->mm;
 727        int ret;
 728
 729        down_read(&mm->mmap_sem);
 730        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 731                               FAULT_FLAG_WRITE, NULL);
 732        up_read(&mm->mmap_sem);
 733
 734        return ret < 0 ? ret : 0;
 735}
 736
 737/**
 738 * futex_top_waiter() - Return the highest priority waiter on a futex
 739 * @hb:         the hash bucket the futex_q's reside in
 740 * @key:        the futex key (to distinguish it from other futex futex_q's)
 741 *
 742 * Must be called with the hb lock held.
 743 */
 744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 745                                        union futex_key *key)
 746{
 747        struct futex_q *this;
 748
 749        plist_for_each_entry(this, &hb->chain, list) {
 750                if (match_futex(&this->key, key))
 751                        return this;
 752        }
 753        return NULL;
 754}
 755
 756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 757                                      u32 uval, u32 newval)
 758{
 759        int ret;
 760
 761        pagefault_disable();
 762        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 763        pagefault_enable();
 764
 765        return ret;
 766}
 767
 768static int get_futex_value_locked(u32 *dest, u32 __user *from)
 769{
 770        int ret;
 771
 772        pagefault_disable();
 773        ret = __get_user(*dest, from);
 774        pagefault_enable();
 775
 776        return ret ? -EFAULT : 0;
 777}
 778
 779
 780/*
 781 * PI code:
 782 */
 783static int refill_pi_state_cache(void)
 784{
 785        struct futex_pi_state *pi_state;
 786
 787        if (likely(current->pi_state_cache))
 788                return 0;
 789
 790        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 791
 792        if (!pi_state)
 793                return -ENOMEM;
 794
 795        INIT_LIST_HEAD(&pi_state->list);
 796        /* pi_mutex gets initialized later */
 797        pi_state->owner = NULL;
 798        atomic_set(&pi_state->refcount, 1);
 799        pi_state->key = FUTEX_KEY_INIT;
 800
 801        current->pi_state_cache = pi_state;
 802
 803        return 0;
 804}
 805
 806static struct futex_pi_state *alloc_pi_state(void)
 807{
 808        struct futex_pi_state *pi_state = current->pi_state_cache;
 809
 810        WARN_ON(!pi_state);
 811        current->pi_state_cache = NULL;
 812
 813        return pi_state;
 814}
 815
 816static void get_pi_state(struct futex_pi_state *pi_state)
 817{
 818        WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
 819}
 820
 821/*
 822 * Drops a reference to the pi_state object and frees or caches it
 823 * when the last reference is gone.
 824 */
 825static void put_pi_state(struct futex_pi_state *pi_state)
 826{
 827        if (!pi_state)
 828                return;
 829
 830        if (!atomic_dec_and_test(&pi_state->refcount))
 831                return;
 832
 833        /*
 834         * If pi_state->owner is NULL, the owner is most probably dying
 835         * and has cleaned up the pi_state already
 836         */
 837        if (pi_state->owner) {
 838                struct task_struct *owner;
 839
 840                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 841                owner = pi_state->owner;
 842                if (owner) {
 843                        raw_spin_lock(&owner->pi_lock);
 844                        list_del_init(&pi_state->list);
 845                        raw_spin_unlock(&owner->pi_lock);
 846                }
 847                rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 848                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 849        }
 850
 851        if (current->pi_state_cache) {
 852                kfree(pi_state);
 853        } else {
 854                /*
 855                 * pi_state->list is already empty.
 856                 * clear pi_state->owner.
 857                 * refcount is at 0 - put it back to 1.
 858                 */
 859                pi_state->owner = NULL;
 860                atomic_set(&pi_state->refcount, 1);
 861                current->pi_state_cache = pi_state;
 862        }
 863}
 864
 865/*
 866 * Look up the task based on what TID userspace gave us.
 867 * We dont trust it.
 868 */
 869static struct task_struct *futex_find_get_task(pid_t pid)
 870{
 871        struct task_struct *p;
 872
 873        rcu_read_lock();
 874        p = find_task_by_vpid(pid);
 875        if (p)
 876                get_task_struct(p);
 877
 878        rcu_read_unlock();
 879
 880        return p;
 881}
 882
 883#ifdef CONFIG_FUTEX_PI
 884
 885/*
 886 * This task is holding PI mutexes at exit time => bad.
 887 * Kernel cleans up PI-state, but userspace is likely hosed.
 888 * (Robust-futex cleanup is separate and might save the day for userspace.)
 889 */
 890void exit_pi_state_list(struct task_struct *curr)
 891{
 892        struct list_head *next, *head = &curr->pi_state_list;
 893        struct futex_pi_state *pi_state;
 894        struct futex_hash_bucket *hb;
 895        union futex_key key = FUTEX_KEY_INIT;
 896
 897        if (!futex_cmpxchg_enabled)
 898                return;
 899        /*
 900         * We are a ZOMBIE and nobody can enqueue itself on
 901         * pi_state_list anymore, but we have to be careful
 902         * versus waiters unqueueing themselves:
 903         */
 904        raw_spin_lock_irq(&curr->pi_lock);
 905        while (!list_empty(head)) {
 906                next = head->next;
 907                pi_state = list_entry(next, struct futex_pi_state, list);
 908                key = pi_state->key;
 909                hb = hash_futex(&key);
 910
 911                /*
 912                 * We can race against put_pi_state() removing itself from the
 913                 * list (a waiter going away). put_pi_state() will first
 914                 * decrement the reference count and then modify the list, so
 915                 * its possible to see the list entry but fail this reference
 916                 * acquire.
 917                 *
 918                 * In that case; drop the locks to let put_pi_state() make
 919                 * progress and retry the loop.
 920                 */
 921                if (!atomic_inc_not_zero(&pi_state->refcount)) {
 922                        raw_spin_unlock_irq(&curr->pi_lock);
 923                        cpu_relax();
 924                        raw_spin_lock_irq(&curr->pi_lock);
 925                        continue;
 926                }
 927                raw_spin_unlock_irq(&curr->pi_lock);
 928
 929                spin_lock(&hb->lock);
 930                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 931                raw_spin_lock(&curr->pi_lock);
 932                /*
 933                 * We dropped the pi-lock, so re-check whether this
 934                 * task still owns the PI-state:
 935                 */
 936                if (head->next != next) {
 937                        /* retain curr->pi_lock for the loop invariant */
 938                        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 939                        spin_unlock(&hb->lock);
 940                        put_pi_state(pi_state);
 941                        continue;
 942                }
 943
 944                WARN_ON(pi_state->owner != curr);
 945                WARN_ON(list_empty(&pi_state->list));
 946                list_del_init(&pi_state->list);
 947                pi_state->owner = NULL;
 948
 949                raw_spin_unlock(&curr->pi_lock);
 950                raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 951                spin_unlock(&hb->lock);
 952
 953                rt_mutex_futex_unlock(&pi_state->pi_mutex);
 954                put_pi_state(pi_state);
 955
 956                raw_spin_lock_irq(&curr->pi_lock);
 957        }
 958        raw_spin_unlock_irq(&curr->pi_lock);
 959}
 960
 961#endif
 962
 963/*
 964 * We need to check the following states:
 965 *
 966 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 967 *
 968 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 969 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 970 *
 971 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 972 *
 973 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 974 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 975 *
 976 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 977 *
 978 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 979 *
 980 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 981 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 982 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 983 *
 984 * [1]  Indicates that the kernel can acquire the futex atomically. We
 985 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 986 *
 987 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 988 *      thread is found then it indicates that the owner TID has died.
 989 *
 990 * [3]  Invalid. The waiter is queued on a non PI futex
 991 *
 992 * [4]  Valid state after exit_robust_list(), which sets the user space
 993 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 994 *
 995 * [5]  The user space value got manipulated between exit_robust_list()
 996 *      and exit_pi_state_list()
 997 *
 998 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 999 *      the pi_state but cannot access the user space value.
1000 *
1001 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1002 *
1003 * [8]  Owner and user space value match
1004 *
1005 * [9]  There is no transient state which sets the user space TID to 0
1006 *      except exit_robust_list(), but this is indicated by the
1007 *      FUTEX_OWNER_DIED bit. See [4]
1008 *
1009 * [10] There is no transient state which leaves owner and user space
1010 *      TID out of sync.
1011 *
1012 *
1013 * Serialization and lifetime rules:
1014 *
1015 * hb->lock:
1016 *
1017 *      hb -> futex_q, relation
1018 *      futex_q -> pi_state, relation
1019 *
1020 *      (cannot be raw because hb can contain arbitrary amount
1021 *       of futex_q's)
1022 *
1023 * pi_mutex->wait_lock:
1024 *
1025 *      {uval, pi_state}
1026 *
1027 *      (and pi_mutex 'obviously')
1028 *
1029 * p->pi_lock:
1030 *
1031 *      p->pi_state_list -> pi_state->list, relation
1032 *
1033 * pi_state->refcount:
1034 *
1035 *      pi_state lifetime
1036 *
1037 *
1038 * Lock order:
1039 *
1040 *   hb->lock
1041 *     pi_mutex->wait_lock
1042 *       p->pi_lock
1043 *
1044 */
1045
1046/*
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1050 */
1051static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052                              struct futex_pi_state *pi_state,
1053                              struct futex_pi_state **ps)
1054{
1055        pid_t pid = uval & FUTEX_TID_MASK;
1056        u32 uval2;
1057        int ret;
1058
1059        /*
1060         * Userspace might have messed up non-PI and PI futexes [3]
1061         */
1062        if (unlikely(!pi_state))
1063                return -EINVAL;
1064
1065        /*
1066         * We get here with hb->lock held, and having found a
1067         * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068         * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069         * which in turn means that futex_lock_pi() still has a reference on
1070         * our pi_state.
1071         *
1072         * The waiter holding a reference on @pi_state also protects against
1073         * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074         * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075         * free pi_state before we can take a reference ourselves.
1076         */
1077        WARN_ON(!atomic_read(&pi_state->refcount));
1078
1079        /*
1080         * Now that we have a pi_state, we can acquire wait_lock
1081         * and do the state validation.
1082         */
1083        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1084
1085        /*
1086         * Since {uval, pi_state} is serialized by wait_lock, and our current
1087         * uval was read without holding it, it can have changed. Verify it
1088         * still is what we expect it to be, otherwise retry the entire
1089         * operation.
1090         */
1091        if (get_futex_value_locked(&uval2, uaddr))
1092                goto out_efault;
1093
1094        if (uval != uval2)
1095                goto out_eagain;
1096
1097        /*
1098         * Handle the owner died case:
1099         */
1100        if (uval & FUTEX_OWNER_DIED) {
1101                /*
1102                 * exit_pi_state_list sets owner to NULL and wakes the
1103                 * topmost waiter. The task which acquires the
1104                 * pi_state->rt_mutex will fixup owner.
1105                 */
1106                if (!pi_state->owner) {
1107                        /*
1108                         * No pi state owner, but the user space TID
1109                         * is not 0. Inconsistent state. [5]
1110                         */
1111                        if (pid)
1112                                goto out_einval;
1113                        /*
1114                         * Take a ref on the state and return success. [4]
1115                         */
1116                        goto out_attach;
1117                }
1118
1119                /*
1120                 * If TID is 0, then either the dying owner has not
1121                 * yet executed exit_pi_state_list() or some waiter
1122                 * acquired the rtmutex in the pi state, but did not
1123                 * yet fixup the TID in user space.
1124                 *
1125                 * Take a ref on the state and return success. [6]
1126                 */
1127                if (!pid)
1128                        goto out_attach;
1129        } else {
1130                /*
1131                 * If the owner died bit is not set, then the pi_state
1132                 * must have an owner. [7]
1133                 */
1134                if (!pi_state->owner)
1135                        goto out_einval;
1136        }
1137
1138        /*
1139         * Bail out if user space manipulated the futex value. If pi
1140         * state exists then the owner TID must be the same as the
1141         * user space TID. [9/10]
1142         */
1143        if (pid != task_pid_vnr(pi_state->owner))
1144                goto out_einval;
1145
1146out_attach:
1147        get_pi_state(pi_state);
1148        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149        *ps = pi_state;
1150        return 0;
1151
1152out_einval:
1153        ret = -EINVAL;
1154        goto out_error;
1155
1156out_eagain:
1157        ret = -EAGAIN;
1158        goto out_error;
1159
1160out_efault:
1161        ret = -EFAULT;
1162        goto out_error;
1163
1164out_error:
1165        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166        return ret;
1167}
1168
1169/*
1170 * Lookup the task for the TID provided from user space and attach to
1171 * it after doing proper sanity checks.
1172 */
1173static int attach_to_pi_owner(u32 uval, union futex_key *key,
1174                              struct futex_pi_state **ps)
1175{
1176        pid_t pid = uval & FUTEX_TID_MASK;
1177        struct futex_pi_state *pi_state;
1178        struct task_struct *p;
1179
1180        /*
1181         * We are the first waiter - try to look up the real owner and attach
1182         * the new pi_state to it, but bail out when TID = 0 [1]
1183         */
1184        if (!pid)
1185                return -ESRCH;
1186        p = futex_find_get_task(pid);
1187        if (!p)
1188                return -ESRCH;
1189
1190        if (unlikely(p->flags & PF_KTHREAD)) {
1191                put_task_struct(p);
1192                return -EPERM;
1193        }
1194
1195        /*
1196         * We need to look at the task state flags to figure out,
1197         * whether the task is exiting. To protect against the do_exit
1198         * change of the task flags, we do this protected by
1199         * p->pi_lock:
1200         */
1201        raw_spin_lock_irq(&p->pi_lock);
1202        if (unlikely(p->flags & PF_EXITING)) {
1203                /*
1204                 * The task is on the way out. When PF_EXITPIDONE is
1205                 * set, we know that the task has finished the
1206                 * cleanup:
1207                 */
1208                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1209
1210                raw_spin_unlock_irq(&p->pi_lock);
1211                put_task_struct(p);
1212                return ret;
1213        }
1214
1215        /*
1216         * No existing pi state. First waiter. [2]
1217         *
1218         * This creates pi_state, we have hb->lock held, this means nothing can
1219         * observe this state, wait_lock is irrelevant.
1220         */
1221        pi_state = alloc_pi_state();
1222
1223        /*
1224         * Initialize the pi_mutex in locked state and make @p
1225         * the owner of it:
1226         */
1227        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1228
1229        /* Store the key for possible exit cleanups: */
1230        pi_state->key = *key;
1231
1232        WARN_ON(!list_empty(&pi_state->list));
1233        list_add(&pi_state->list, &p->pi_state_list);
1234        /*
1235         * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1236         * because there is no concurrency as the object is not published yet.
1237         */
1238        pi_state->owner = p;
1239        raw_spin_unlock_irq(&p->pi_lock);
1240
1241        put_task_struct(p);
1242
1243        *ps = pi_state;
1244
1245        return 0;
1246}
1247
1248static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1249                           struct futex_hash_bucket *hb,
1250                           union futex_key *key, struct futex_pi_state **ps)
1251{
1252        struct futex_q *top_waiter = futex_top_waiter(hb, key);
1253
1254        /*
1255         * If there is a waiter on that futex, validate it and
1256         * attach to the pi_state when the validation succeeds.
1257         */
1258        if (top_waiter)
1259                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1260
1261        /*
1262         * We are the first waiter - try to look up the owner based on
1263         * @uval and attach to it.
1264         */
1265        return attach_to_pi_owner(uval, key, ps);
1266}
1267
1268static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1269{
1270        u32 uninitialized_var(curval);
1271
1272        if (unlikely(should_fail_futex(true)))
1273                return -EFAULT;
1274
1275        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1276                return -EFAULT;
1277
1278        /* If user space value changed, let the caller retry */
1279        return curval != uval ? -EAGAIN : 0;
1280}
1281
1282/**
1283 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1284 * @uaddr:              the pi futex user address
1285 * @hb:                 the pi futex hash bucket
1286 * @key:                the futex key associated with uaddr and hb
1287 * @ps:                 the pi_state pointer where we store the result of the
1288 *                      lookup
1289 * @task:               the task to perform the atomic lock work for.  This will
1290 *                      be "current" except in the case of requeue pi.
1291 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1292 *
1293 * Return:
1294 *  -  0 - ready to wait;
1295 *  -  1 - acquired the lock;
1296 *  - <0 - error
1297 *
1298 * The hb->lock and futex_key refs shall be held by the caller.
1299 */
1300static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1301                                union futex_key *key,
1302                                struct futex_pi_state **ps,
1303                                struct task_struct *task, int set_waiters)
1304{
1305        u32 uval, newval, vpid = task_pid_vnr(task);
1306        struct futex_q *top_waiter;
1307        int ret;
1308
1309        /*
1310         * Read the user space value first so we can validate a few
1311         * things before proceeding further.
1312         */
1313        if (get_futex_value_locked(&uval, uaddr))
1314                return -EFAULT;
1315
1316        if (unlikely(should_fail_futex(true)))
1317                return -EFAULT;
1318
1319        /*
1320         * Detect deadlocks.
1321         */
1322        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1323                return -EDEADLK;
1324
1325        if ((unlikely(should_fail_futex(true))))
1326                return -EDEADLK;
1327
1328        /*
1329         * Lookup existing state first. If it exists, try to attach to
1330         * its pi_state.
1331         */
1332        top_waiter = futex_top_waiter(hb, key);
1333        if (top_waiter)
1334                return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1335
1336        /*
1337         * No waiter and user TID is 0. We are here because the
1338         * waiters or the owner died bit is set or called from
1339         * requeue_cmp_pi or for whatever reason something took the
1340         * syscall.
1341         */
1342        if (!(uval & FUTEX_TID_MASK)) {
1343                /*
1344                 * We take over the futex. No other waiters and the user space
1345                 * TID is 0. We preserve the owner died bit.
1346                 */
1347                newval = uval & FUTEX_OWNER_DIED;
1348                newval |= vpid;
1349
1350                /* The futex requeue_pi code can enforce the waiters bit */
1351                if (set_waiters)
1352                        newval |= FUTEX_WAITERS;
1353
1354                ret = lock_pi_update_atomic(uaddr, uval, newval);
1355                /* If the take over worked, return 1 */
1356                return ret < 0 ? ret : 1;
1357        }
1358
1359        /*
1360         * First waiter. Set the waiters bit before attaching ourself to
1361         * the owner. If owner tries to unlock, it will be forced into
1362         * the kernel and blocked on hb->lock.
1363         */
1364        newval = uval | FUTEX_WAITERS;
1365        ret = lock_pi_update_atomic(uaddr, uval, newval);
1366        if (ret)
1367                return ret;
1368        /*
1369         * If the update of the user space value succeeded, we try to
1370         * attach to the owner. If that fails, no harm done, we only
1371         * set the FUTEX_WAITERS bit in the user space variable.
1372         */
1373        return attach_to_pi_owner(uval, key, ps);
1374}
1375
1376/**
1377 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1378 * @q:  The futex_q to unqueue
1379 *
1380 * The q->lock_ptr must not be NULL and must be held by the caller.
1381 */
1382static void __unqueue_futex(struct futex_q *q)
1383{
1384        struct futex_hash_bucket *hb;
1385
1386        if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1387            || WARN_ON(plist_node_empty(&q->list)))
1388                return;
1389
1390        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1391        plist_del(&q->list, &hb->chain);
1392        hb_waiters_dec(hb);
1393}
1394
1395/*
1396 * The hash bucket lock must be held when this is called.
1397 * Afterwards, the futex_q must not be accessed. Callers
1398 * must ensure to later call wake_up_q() for the actual
1399 * wakeups to occur.
1400 */
1401static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1402{
1403        struct task_struct *p = q->task;
1404
1405        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1406                return;
1407
1408        /*
1409         * Queue the task for later wakeup for after we've released
1410         * the hb->lock. wake_q_add() grabs reference to p.
1411         */
1412        wake_q_add(wake_q, p);
1413        __unqueue_futex(q);
1414        /*
1415         * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1416         * is written, without taking any locks. This is possible in the event
1417         * of a spurious wakeup, for example. A memory barrier is required here
1418         * to prevent the following store to lock_ptr from getting ahead of the
1419         * plist_del in __unqueue_futex().
1420         */
1421        smp_store_release(&q->lock_ptr, NULL);
1422}
1423
1424/*
1425 * Caller must hold a reference on @pi_state.
1426 */
1427static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1428{
1429        u32 uninitialized_var(curval), newval;
1430        struct task_struct *new_owner;
1431        bool postunlock = false;
1432        DEFINE_WAKE_Q(wake_q);
1433        int ret = 0;
1434
1435        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1436        if (WARN_ON_ONCE(!new_owner)) {
1437                /*
1438                 * As per the comment in futex_unlock_pi() this should not happen.
1439                 *
1440                 * When this happens, give up our locks and try again, giving
1441                 * the futex_lock_pi() instance time to complete, either by
1442                 * waiting on the rtmutex or removing itself from the futex
1443                 * queue.
1444                 */
1445                ret = -EAGAIN;
1446                goto out_unlock;
1447        }
1448
1449        /*
1450         * We pass it to the next owner. The WAITERS bit is always kept
1451         * enabled while there is PI state around. We cleanup the owner
1452         * died bit, because we are the owner.
1453         */
1454        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1455
1456        if (unlikely(should_fail_futex(true)))
1457                ret = -EFAULT;
1458
1459        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1460                ret = -EFAULT;
1461
1462        } else if (curval != uval) {
1463                /*
1464                 * If a unconditional UNLOCK_PI operation (user space did not
1465                 * try the TID->0 transition) raced with a waiter setting the
1466                 * FUTEX_WAITERS flag between get_user() and locking the hash
1467                 * bucket lock, retry the operation.
1468                 */
1469                if ((FUTEX_TID_MASK & curval) == uval)
1470                        ret = -EAGAIN;
1471                else
1472                        ret = -EINVAL;
1473        }
1474
1475        if (ret)
1476                goto out_unlock;
1477
1478        /*
1479         * This is a point of no return; once we modify the uval there is no
1480         * going back and subsequent operations must not fail.
1481         */
1482
1483        raw_spin_lock(&pi_state->owner->pi_lock);
1484        WARN_ON(list_empty(&pi_state->list));
1485        list_del_init(&pi_state->list);
1486        raw_spin_unlock(&pi_state->owner->pi_lock);
1487
1488        raw_spin_lock(&new_owner->pi_lock);
1489        WARN_ON(!list_empty(&pi_state->list));
1490        list_add(&pi_state->list, &new_owner->pi_state_list);
1491        pi_state->owner = new_owner;
1492        raw_spin_unlock(&new_owner->pi_lock);
1493
1494        postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1495
1496out_unlock:
1497        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1498
1499        if (postunlock)
1500                rt_mutex_postunlock(&wake_q);
1501
1502        return ret;
1503}
1504
1505/*
1506 * Express the locking dependencies for lockdep:
1507 */
1508static inline void
1509double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1510{
1511        if (hb1 <= hb2) {
1512                spin_lock(&hb1->lock);
1513                if (hb1 < hb2)
1514                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1515        } else { /* hb1 > hb2 */
1516                spin_lock(&hb2->lock);
1517                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1518        }
1519}
1520
1521static inline void
1522double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1523{
1524        spin_unlock(&hb1->lock);
1525        if (hb1 != hb2)
1526                spin_unlock(&hb2->lock);
1527}
1528
1529/*
1530 * Wake up waiters matching bitset queued on this futex (uaddr).
1531 */
1532static int
1533futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1534{
1535        struct futex_hash_bucket *hb;
1536        struct futex_q *this, *next;
1537        union futex_key key = FUTEX_KEY_INIT;
1538        int ret;
1539        DEFINE_WAKE_Q(wake_q);
1540
1541        if (!bitset)
1542                return -EINVAL;
1543
1544        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1545        if (unlikely(ret != 0))
1546                goto out;
1547
1548        hb = hash_futex(&key);
1549
1550        /* Make sure we really have tasks to wakeup */
1551        if (!hb_waiters_pending(hb))
1552                goto out_put_key;
1553
1554        spin_lock(&hb->lock);
1555
1556        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1557                if (match_futex (&this->key, &key)) {
1558                        if (this->pi_state || this->rt_waiter) {
1559                                ret = -EINVAL;
1560                                break;
1561                        }
1562
1563                        /* Check if one of the bits is set in both bitsets */
1564                        if (!(this->bitset & bitset))
1565                                continue;
1566
1567                        mark_wake_futex(&wake_q, this);
1568                        if (++ret >= nr_wake)
1569                                break;
1570                }
1571        }
1572
1573        spin_unlock(&hb->lock);
1574        wake_up_q(&wake_q);
1575out_put_key:
1576        put_futex_key(&key);
1577out:
1578        return ret;
1579}
1580
1581static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1582{
1583        unsigned int op =         (encoded_op & 0x70000000) >> 28;
1584        unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1585        int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1586        int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1587        int oldval, ret;
1588
1589        if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1590                if (oparg < 0 || oparg > 31) {
1591                        char comm[sizeof(current->comm)];
1592                        /*
1593                         * kill this print and return -EINVAL when userspace
1594                         * is sane again
1595                         */
1596                        pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1597                                        get_task_comm(comm, current), oparg);
1598                        oparg &= 31;
1599                }
1600                oparg = 1 << oparg;
1601        }
1602
1603        if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1604                return -EFAULT;
1605
1606        ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1607        if (ret)
1608                return ret;
1609
1610        switch (cmp) {
1611        case FUTEX_OP_CMP_EQ:
1612                return oldval == cmparg;
1613        case FUTEX_OP_CMP_NE:
1614                return oldval != cmparg;
1615        case FUTEX_OP_CMP_LT:
1616                return oldval < cmparg;
1617        case FUTEX_OP_CMP_GE:
1618                return oldval >= cmparg;
1619        case FUTEX_OP_CMP_LE:
1620                return oldval <= cmparg;
1621        case FUTEX_OP_CMP_GT:
1622                return oldval > cmparg;
1623        default:
1624                return -ENOSYS;
1625        }
1626}
1627
1628/*
1629 * Wake up all waiters hashed on the physical page that is mapped
1630 * to this virtual address:
1631 */
1632static int
1633futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1634              int nr_wake, int nr_wake2, int op)
1635{
1636        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1637        struct futex_hash_bucket *hb1, *hb2;
1638        struct futex_q *this, *next;
1639        int ret, op_ret;
1640        DEFINE_WAKE_Q(wake_q);
1641
1642retry:
1643        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1644        if (unlikely(ret != 0))
1645                goto out;
1646        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1647        if (unlikely(ret != 0))
1648                goto out_put_key1;
1649
1650        hb1 = hash_futex(&key1);
1651        hb2 = hash_futex(&key2);
1652
1653retry_private:
1654        double_lock_hb(hb1, hb2);
1655        op_ret = futex_atomic_op_inuser(op, uaddr2);
1656        if (unlikely(op_ret < 0)) {
1657
1658                double_unlock_hb(hb1, hb2);
1659
1660#ifndef CONFIG_MMU
1661                /*
1662                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1663                 * but we might get them from range checking
1664                 */
1665                ret = op_ret;
1666                goto out_put_keys;
1667#endif
1668
1669                if (unlikely(op_ret != -EFAULT)) {
1670                        ret = op_ret;
1671                        goto out_put_keys;
1672                }
1673
1674                ret = fault_in_user_writeable(uaddr2);
1675                if (ret)
1676                        goto out_put_keys;
1677
1678                if (!(flags & FLAGS_SHARED))
1679                        goto retry_private;
1680
1681                put_futex_key(&key2);
1682                put_futex_key(&key1);
1683                goto retry;
1684        }
1685
1686        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1687                if (match_futex (&this->key, &key1)) {
1688                        if (this->pi_state || this->rt_waiter) {
1689                                ret = -EINVAL;
1690                                goto out_unlock;
1691                        }
1692                        mark_wake_futex(&wake_q, this);
1693                        if (++ret >= nr_wake)
1694                                break;
1695                }
1696        }
1697
1698        if (op_ret > 0) {
1699                op_ret = 0;
1700                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1701                        if (match_futex (&this->key, &key2)) {
1702                                if (this->pi_state || this->rt_waiter) {
1703                                        ret = -EINVAL;
1704                                        goto out_unlock;
1705                                }
1706                                mark_wake_futex(&wake_q, this);
1707                                if (++op_ret >= nr_wake2)
1708                                        break;
1709                        }
1710                }
1711                ret += op_ret;
1712        }
1713
1714out_unlock:
1715        double_unlock_hb(hb1, hb2);
1716        wake_up_q(&wake_q);
1717out_put_keys:
1718        put_futex_key(&key2);
1719out_put_key1:
1720        put_futex_key(&key1);
1721out:
1722        return ret;
1723}
1724
1725/**
1726 * requeue_futex() - Requeue a futex_q from one hb to another
1727 * @q:          the futex_q to requeue
1728 * @hb1:        the source hash_bucket
1729 * @hb2:        the target hash_bucket
1730 * @key2:       the new key for the requeued futex_q
1731 */
1732static inline
1733void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1734                   struct futex_hash_bucket *hb2, union futex_key *key2)
1735{
1736
1737        /*
1738         * If key1 and key2 hash to the same bucket, no need to
1739         * requeue.
1740         */
1741        if (likely(&hb1->chain != &hb2->chain)) {
1742                plist_del(&q->list, &hb1->chain);
1743                hb_waiters_dec(hb1);
1744                hb_waiters_inc(hb2);
1745                plist_add(&q->list, &hb2->chain);
1746                q->lock_ptr = &hb2->lock;
1747        }
1748        get_futex_key_refs(key2);
1749        q->key = *key2;
1750}
1751
1752/**
1753 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1754 * @q:          the futex_q
1755 * @key:        the key of the requeue target futex
1756 * @hb:         the hash_bucket of the requeue target futex
1757 *
1758 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1759 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1760 * to the requeue target futex so the waiter can detect the wakeup on the right
1761 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1762 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1763 * to protect access to the pi_state to fixup the owner later.  Must be called
1764 * with both q->lock_ptr and hb->lock held.
1765 */
1766static inline
1767void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1768                           struct futex_hash_bucket *hb)
1769{
1770        get_futex_key_refs(key);
1771        q->key = *key;
1772
1773        __unqueue_futex(q);
1774
1775        WARN_ON(!q->rt_waiter);
1776        q->rt_waiter = NULL;
1777
1778        q->lock_ptr = &hb->lock;
1779
1780        wake_up_state(q->task, TASK_NORMAL);
1781}
1782
1783/**
1784 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1785 * @pifutex:            the user address of the to futex
1786 * @hb1:                the from futex hash bucket, must be locked by the caller
1787 * @hb2:                the to futex hash bucket, must be locked by the caller
1788 * @key1:               the from futex key
1789 * @key2:               the to futex key
1790 * @ps:                 address to store the pi_state pointer
1791 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1792 *
1793 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1794 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1795 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1796 * hb1 and hb2 must be held by the caller.
1797 *
1798 * Return:
1799 *  -  0 - failed to acquire the lock atomically;
1800 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1801 *  - <0 - error
1802 */
1803static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1804                                 struct futex_hash_bucket *hb1,
1805                                 struct futex_hash_bucket *hb2,
1806                                 union futex_key *key1, union futex_key *key2,
1807                                 struct futex_pi_state **ps, int set_waiters)
1808{
1809        struct futex_q *top_waiter = NULL;
1810        u32 curval;
1811        int ret, vpid;
1812
1813        if (get_futex_value_locked(&curval, pifutex))
1814                return -EFAULT;
1815
1816        if (unlikely(should_fail_futex(true)))
1817                return -EFAULT;
1818
1819        /*
1820         * Find the top_waiter and determine if there are additional waiters.
1821         * If the caller intends to requeue more than 1 waiter to pifutex,
1822         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1823         * as we have means to handle the possible fault.  If not, don't set
1824         * the bit unecessarily as it will force the subsequent unlock to enter
1825         * the kernel.
1826         */
1827        top_waiter = futex_top_waiter(hb1, key1);
1828
1829        /* There are no waiters, nothing for us to do. */
1830        if (!top_waiter)
1831                return 0;
1832
1833        /* Ensure we requeue to the expected futex. */
1834        if (!match_futex(top_waiter->requeue_pi_key, key2))
1835                return -EINVAL;
1836
1837        /*
1838         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1839         * the contended case or if set_waiters is 1.  The pi_state is returned
1840         * in ps in contended cases.
1841         */
1842        vpid = task_pid_vnr(top_waiter->task);
1843        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1844                                   set_waiters);
1845        if (ret == 1) {
1846                requeue_pi_wake_futex(top_waiter, key2, hb2);
1847                return vpid;
1848        }
1849        return ret;
1850}
1851
1852/**
1853 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1854 * @uaddr1:     source futex user address
1855 * @flags:      futex flags (FLAGS_SHARED, etc.)
1856 * @uaddr2:     target futex user address
1857 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1858 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1859 * @cmpval:     @uaddr1 expected value (or %NULL)
1860 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1861 *              pi futex (pi to pi requeue is not supported)
1862 *
1863 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1864 * uaddr2 atomically on behalf of the top waiter.
1865 *
1866 * Return:
1867 *  - >=0 - on success, the number of tasks requeued or woken;
1868 *  -  <0 - on error
1869 */
1870static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1871                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1872                         u32 *cmpval, int requeue_pi)
1873{
1874        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1875        int drop_count = 0, task_count = 0, ret;
1876        struct futex_pi_state *pi_state = NULL;
1877        struct futex_hash_bucket *hb1, *hb2;
1878        struct futex_q *this, *next;
1879        DEFINE_WAKE_Q(wake_q);
1880
1881        if (nr_wake < 0 || nr_requeue < 0)
1882                return -EINVAL;
1883
1884        /*
1885         * When PI not supported: return -ENOSYS if requeue_pi is true,
1886         * consequently the compiler knows requeue_pi is always false past
1887         * this point which will optimize away all the conditional code
1888         * further down.
1889         */
1890        if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1891                return -ENOSYS;
1892
1893        if (requeue_pi) {
1894                /*
1895                 * Requeue PI only works on two distinct uaddrs. This
1896                 * check is only valid for private futexes. See below.
1897                 */
1898                if (uaddr1 == uaddr2)
1899                        return -EINVAL;
1900
1901                /*
1902                 * requeue_pi requires a pi_state, try to allocate it now
1903                 * without any locks in case it fails.
1904                 */
1905                if (refill_pi_state_cache())
1906                        return -ENOMEM;
1907                /*
1908                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1909                 * + nr_requeue, since it acquires the rt_mutex prior to
1910                 * returning to userspace, so as to not leave the rt_mutex with
1911                 * waiters and no owner.  However, second and third wake-ups
1912                 * cannot be predicted as they involve race conditions with the
1913                 * first wake and a fault while looking up the pi_state.  Both
1914                 * pthread_cond_signal() and pthread_cond_broadcast() should
1915                 * use nr_wake=1.
1916                 */
1917                if (nr_wake != 1)
1918                        return -EINVAL;
1919        }
1920
1921retry:
1922        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1923        if (unlikely(ret != 0))
1924                goto out;
1925        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1926                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1927        if (unlikely(ret != 0))
1928                goto out_put_key1;
1929
1930        /*
1931         * The check above which compares uaddrs is not sufficient for
1932         * shared futexes. We need to compare the keys:
1933         */
1934        if (requeue_pi && match_futex(&key1, &key2)) {
1935                ret = -EINVAL;
1936                goto out_put_keys;
1937        }
1938
1939        hb1 = hash_futex(&key1);
1940        hb2 = hash_futex(&key2);
1941
1942retry_private:
1943        hb_waiters_inc(hb2);
1944        double_lock_hb(hb1, hb2);
1945
1946        if (likely(cmpval != NULL)) {
1947                u32 curval;
1948
1949                ret = get_futex_value_locked(&curval, uaddr1);
1950
1951                if (unlikely(ret)) {
1952                        double_unlock_hb(hb1, hb2);
1953                        hb_waiters_dec(hb2);
1954
1955                        ret = get_user(curval, uaddr1);
1956                        if (ret)
1957                                goto out_put_keys;
1958
1959                        if (!(flags & FLAGS_SHARED))
1960                                goto retry_private;
1961
1962                        put_futex_key(&key2);
1963                        put_futex_key(&key1);
1964                        goto retry;
1965                }
1966                if (curval != *cmpval) {
1967                        ret = -EAGAIN;
1968                        goto out_unlock;
1969                }
1970        }
1971
1972        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1973                /*
1974                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1975                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1976                 * bit.  We force this here where we are able to easily handle
1977                 * faults rather in the requeue loop below.
1978                 */
1979                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1980                                                 &key2, &pi_state, nr_requeue);
1981
1982                /*
1983                 * At this point the top_waiter has either taken uaddr2 or is
1984                 * waiting on it.  If the former, then the pi_state will not
1985                 * exist yet, look it up one more time to ensure we have a
1986                 * reference to it. If the lock was taken, ret contains the
1987                 * vpid of the top waiter task.
1988                 * If the lock was not taken, we have pi_state and an initial
1989                 * refcount on it. In case of an error we have nothing.
1990                 */
1991                if (ret > 0) {
1992                        WARN_ON(pi_state);
1993                        drop_count++;
1994                        task_count++;
1995                        /*
1996                         * If we acquired the lock, then the user space value
1997                         * of uaddr2 should be vpid. It cannot be changed by
1998                         * the top waiter as it is blocked on hb2 lock if it
1999                         * tries to do so. If something fiddled with it behind
2000                         * our back the pi state lookup might unearth it. So
2001                         * we rather use the known value than rereading and
2002                         * handing potential crap to lookup_pi_state.
2003                         *
2004                         * If that call succeeds then we have pi_state and an
2005                         * initial refcount on it.
2006                         */
2007                        ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2008                }
2009
2010                switch (ret) {
2011                case 0:
2012                        /* We hold a reference on the pi state. */
2013                        break;
2014
2015                        /* If the above failed, then pi_state is NULL */
2016                case -EFAULT:
2017                        double_unlock_hb(hb1, hb2);
2018                        hb_waiters_dec(hb2);
2019                        put_futex_key(&key2);
2020                        put_futex_key(&key1);
2021                        ret = fault_in_user_writeable(uaddr2);
2022                        if (!ret)
2023                                goto retry;
2024                        goto out;
2025                case -EAGAIN:
2026                        /*
2027                         * Two reasons for this:
2028                         * - Owner is exiting and we just wait for the
2029                         *   exit to complete.
2030                         * - The user space value changed.
2031                         */
2032                        double_unlock_hb(hb1, hb2);
2033                        hb_waiters_dec(hb2);
2034                        put_futex_key(&key2);
2035                        put_futex_key(&key1);
2036                        cond_resched();
2037                        goto retry;
2038                default:
2039                        goto out_unlock;
2040                }
2041        }
2042
2043        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2044                if (task_count - nr_wake >= nr_requeue)
2045                        break;
2046
2047                if (!match_futex(&this->key, &key1))
2048                        continue;
2049
2050                /*
2051                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2052                 * be paired with each other and no other futex ops.
2053                 *
2054                 * We should never be requeueing a futex_q with a pi_state,
2055                 * which is awaiting a futex_unlock_pi().
2056                 */
2057                if ((requeue_pi && !this->rt_waiter) ||
2058                    (!requeue_pi && this->rt_waiter) ||
2059                    this->pi_state) {
2060                        ret = -EINVAL;
2061                        break;
2062                }
2063
2064                /*
2065                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2066                 * lock, we already woke the top_waiter.  If not, it will be
2067                 * woken by futex_unlock_pi().
2068                 */
2069                if (++task_count <= nr_wake && !requeue_pi) {
2070                        mark_wake_futex(&wake_q, this);
2071                        continue;
2072                }
2073
2074                /* Ensure we requeue to the expected futex for requeue_pi. */
2075                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2076                        ret = -EINVAL;
2077                        break;
2078                }
2079
2080                /*
2081                 * Requeue nr_requeue waiters and possibly one more in the case
2082                 * of requeue_pi if we couldn't acquire the lock atomically.
2083                 */
2084                if (requeue_pi) {
2085                        /*
2086                         * Prepare the waiter to take the rt_mutex. Take a
2087                         * refcount on the pi_state and store the pointer in
2088                         * the futex_q object of the waiter.
2089                         */
2090                        get_pi_state(pi_state);
2091                        this->pi_state = pi_state;
2092                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2093                                                        this->rt_waiter,
2094                                                        this->task);
2095                        if (ret == 1) {
2096                                /*
2097                                 * We got the lock. We do neither drop the
2098                                 * refcount on pi_state nor clear
2099                                 * this->pi_state because the waiter needs the
2100                                 * pi_state for cleaning up the user space
2101                                 * value. It will drop the refcount after
2102                                 * doing so.
2103                                 */
2104                                requeue_pi_wake_futex(this, &key2, hb2);
2105                                drop_count++;
2106                                continue;
2107                        } else if (ret) {
2108                                /*
2109                                 * rt_mutex_start_proxy_lock() detected a
2110                                 * potential deadlock when we tried to queue
2111                                 * that waiter. Drop the pi_state reference
2112                                 * which we took above and remove the pointer
2113                                 * to the state from the waiters futex_q
2114                                 * object.
2115                                 */
2116                                this->pi_state = NULL;
2117                                put_pi_state(pi_state);
2118                                /*
2119                                 * We stop queueing more waiters and let user
2120                                 * space deal with the mess.
2121                                 */
2122                                break;
2123                        }
2124                }
2125                requeue_futex(this, hb1, hb2, &key2);
2126                drop_count++;
2127        }
2128
2129        /*
2130         * We took an extra initial reference to the pi_state either
2131         * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2132         * need to drop it here again.
2133         */
2134        put_pi_state(pi_state);
2135
2136out_unlock:
2137        double_unlock_hb(hb1, hb2);
2138        wake_up_q(&wake_q);
2139        hb_waiters_dec(hb2);
2140
2141        /*
2142         * drop_futex_key_refs() must be called outside the spinlocks. During
2143         * the requeue we moved futex_q's from the hash bucket at key1 to the
2144         * one at key2 and updated their key pointer.  We no longer need to
2145         * hold the references to key1.
2146         */
2147        while (--drop_count >= 0)
2148                drop_futex_key_refs(&key1);
2149
2150out_put_keys:
2151        put_futex_key(&key2);
2152out_put_key1:
2153        put_futex_key(&key1);
2154out:
2155        return ret ? ret : task_count;
2156}
2157
2158/* The key must be already stored in q->key. */
2159static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2160        __acquires(&hb->lock)
2161{
2162        struct futex_hash_bucket *hb;
2163
2164        hb = hash_futex(&q->key);
2165
2166        /*
2167         * Increment the counter before taking the lock so that
2168         * a potential waker won't miss a to-be-slept task that is
2169         * waiting for the spinlock. This is safe as all queue_lock()
2170         * users end up calling queue_me(). Similarly, for housekeeping,
2171         * decrement the counter at queue_unlock() when some error has
2172         * occurred and we don't end up adding the task to the list.
2173         */
2174        hb_waiters_inc(hb);
2175
2176        q->lock_ptr = &hb->lock;
2177
2178        spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2179        return hb;
2180}
2181
2182static inline void
2183queue_unlock(struct futex_hash_bucket *hb)
2184        __releases(&hb->lock)
2185{
2186        spin_unlock(&hb->lock);
2187        hb_waiters_dec(hb);
2188}
2189
2190static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2191{
2192        int prio;
2193
2194        /*
2195         * The priority used to register this element is
2196         * - either the real thread-priority for the real-time threads
2197         * (i.e. threads with a priority lower than MAX_RT_PRIO)
2198         * - or MAX_RT_PRIO for non-RT threads.
2199         * Thus, all RT-threads are woken first in priority order, and
2200         * the others are woken last, in FIFO order.
2201         */
2202        prio = min(current->normal_prio, MAX_RT_PRIO);
2203
2204        plist_node_init(&q->list, prio);
2205        plist_add(&q->list, &hb->chain);
2206        q->task = current;
2207}
2208
2209/**
2210 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2211 * @q:  The futex_q to enqueue
2212 * @hb: The destination hash bucket
2213 *
2214 * The hb->lock must be held by the caller, and is released here. A call to
2215 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2216 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2217 * or nothing if the unqueue is done as part of the wake process and the unqueue
2218 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2219 * an example).
2220 */
2221static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2222        __releases(&hb->lock)
2223{
2224        __queue_me(q, hb);
2225        spin_unlock(&hb->lock);
2226}
2227
2228/**
2229 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2230 * @q:  The futex_q to unqueue
2231 *
2232 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2233 * be paired with exactly one earlier call to queue_me().
2234 *
2235 * Return:
2236 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2237 *  - 0 - if the futex_q was already removed by the waking thread
2238 */
2239static int unqueue_me(struct futex_q *q)
2240{
2241        spinlock_t *lock_ptr;
2242        int ret = 0;
2243
2244        /* In the common case we don't take the spinlock, which is nice. */
2245retry:
2246        /*
2247         * q->lock_ptr can change between this read and the following spin_lock.
2248         * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2249         * optimizing lock_ptr out of the logic below.
2250         */
2251        lock_ptr = READ_ONCE(q->lock_ptr);
2252        if (lock_ptr != NULL) {
2253                spin_lock(lock_ptr);
2254                /*
2255                 * q->lock_ptr can change between reading it and
2256                 * spin_lock(), causing us to take the wrong lock.  This
2257                 * corrects the race condition.
2258                 *
2259                 * Reasoning goes like this: if we have the wrong lock,
2260                 * q->lock_ptr must have changed (maybe several times)
2261                 * between reading it and the spin_lock().  It can
2262                 * change again after the spin_lock() but only if it was
2263                 * already changed before the spin_lock().  It cannot,
2264                 * however, change back to the original value.  Therefore
2265                 * we can detect whether we acquired the correct lock.
2266                 */
2267                if (unlikely(lock_ptr != q->lock_ptr)) {
2268                        spin_unlock(lock_ptr);
2269                        goto retry;
2270                }
2271                __unqueue_futex(q);
2272
2273                BUG_ON(q->pi_state);
2274
2275                spin_unlock(lock_ptr);
2276                ret = 1;
2277        }
2278
2279        drop_futex_key_refs(&q->key);
2280        return ret;
2281}
2282
2283/*
2284 * PI futexes can not be requeued and must remove themself from the
2285 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2286 * and dropped here.
2287 */
2288static void unqueue_me_pi(struct futex_q *q)
2289        __releases(q->lock_ptr)
2290{
2291        __unqueue_futex(q);
2292
2293        BUG_ON(!q->pi_state);
2294        put_pi_state(q->pi_state);
2295        q->pi_state = NULL;
2296
2297        spin_unlock(q->lock_ptr);
2298}
2299
2300static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2301                                struct task_struct *argowner)
2302{
2303        struct futex_pi_state *pi_state = q->pi_state;
2304        u32 uval, uninitialized_var(curval), newval;
2305        struct task_struct *oldowner, *newowner;
2306        u32 newtid;
2307        int ret;
2308
2309        lockdep_assert_held(q->lock_ptr);
2310
2311        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2312
2313        oldowner = pi_state->owner;
2314
2315        /*
2316         * We are here because either:
2317         *
2318         *  - we stole the lock and pi_state->owner needs updating to reflect
2319         *    that (@argowner == current),
2320         *
2321         * or:
2322         *
2323         *  - someone stole our lock and we need to fix things to point to the
2324         *    new owner (@argowner == NULL).
2325         *
2326         * Either way, we have to replace the TID in the user space variable.
2327         * This must be atomic as we have to preserve the owner died bit here.
2328         *
2329         * Note: We write the user space value _before_ changing the pi_state
2330         * because we can fault here. Imagine swapped out pages or a fork
2331         * that marked all the anonymous memory readonly for cow.
2332         *
2333         * Modifying pi_state _before_ the user space value would leave the
2334         * pi_state in an inconsistent state when we fault here, because we
2335         * need to drop the locks to handle the fault. This might be observed
2336         * in the PID check in lookup_pi_state.
2337         */
2338retry:
2339        if (!argowner) {
2340                if (oldowner != current) {
2341                        /*
2342                         * We raced against a concurrent self; things are
2343                         * already fixed up. Nothing to do.
2344                         */
2345                        ret = 0;
2346                        goto out_unlock;
2347                }
2348
2349                if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2350                        /* We got the lock after all, nothing to fix. */
2351                        ret = 0;
2352                        goto out_unlock;
2353                }
2354
2355                /*
2356                 * Since we just failed the trylock; there must be an owner.
2357                 */
2358                newowner = rt_mutex_owner(&pi_state->pi_mutex);
2359                BUG_ON(!newowner);
2360        } else {
2361                WARN_ON_ONCE(argowner != current);
2362                if (oldowner == current) {
2363                        /*
2364                         * We raced against a concurrent self; things are
2365                         * already fixed up. Nothing to do.
2366                         */
2367                        ret = 0;
2368                        goto out_unlock;
2369                }
2370                newowner = argowner;
2371        }
2372
2373        newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2374        /* Owner died? */
2375        if (!pi_state->owner)
2376                newtid |= FUTEX_OWNER_DIED;
2377
2378        if (get_futex_value_locked(&uval, uaddr))
2379                goto handle_fault;
2380
2381        for (;;) {
2382                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2383
2384                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2385                        goto handle_fault;
2386                if (curval == uval)
2387                        break;
2388                uval = curval;
2389        }
2390
2391        /*
2392         * We fixed up user space. Now we need to fix the pi_state
2393         * itself.
2394         */
2395        if (pi_state->owner != NULL) {
2396                raw_spin_lock(&pi_state->owner->pi_lock);
2397                WARN_ON(list_empty(&pi_state->list));
2398                list_del_init(&pi_state->list);
2399                raw_spin_unlock(&pi_state->owner->pi_lock);
2400        }
2401
2402        pi_state->owner = newowner;
2403
2404        raw_spin_lock(&newowner->pi_lock);
2405        WARN_ON(!list_empty(&pi_state->list));
2406        list_add(&pi_state->list, &newowner->pi_state_list);
2407        raw_spin_unlock(&newowner->pi_lock);
2408        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409
2410        return 0;
2411
2412        /*
2413         * To handle the page fault we need to drop the locks here. That gives
2414         * the other task (either the highest priority waiter itself or the
2415         * task which stole the rtmutex) the chance to try the fixup of the
2416         * pi_state. So once we are back from handling the fault we need to
2417         * check the pi_state after reacquiring the locks and before trying to
2418         * do another fixup. When the fixup has been done already we simply
2419         * return.
2420         *
2421         * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2422         * drop hb->lock since the caller owns the hb -> futex_q relation.
2423         * Dropping the pi_mutex->wait_lock requires the state revalidate.
2424         */
2425handle_fault:
2426        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2427        spin_unlock(q->lock_ptr);
2428
2429        ret = fault_in_user_writeable(uaddr);
2430
2431        spin_lock(q->lock_ptr);
2432        raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2433
2434        /*
2435         * Check if someone else fixed it for us:
2436         */
2437        if (pi_state->owner != oldowner) {
2438                ret = 0;
2439                goto out_unlock;
2440        }
2441
2442        if (ret)
2443                goto out_unlock;
2444
2445        goto retry;
2446
2447out_unlock:
2448        raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2449        return ret;
2450}
2451
2452static long futex_wait_restart(struct restart_block *restart);
2453
2454/**
2455 * fixup_owner() - Post lock pi_state and corner case management
2456 * @uaddr:      user address of the futex
2457 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2458 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2459 *
2460 * After attempting to lock an rt_mutex, this function is called to cleanup
2461 * the pi_state owner as well as handle race conditions that may allow us to
2462 * acquire the lock. Must be called with the hb lock held.
2463 *
2464 * Return:
2465 *  -  1 - success, lock taken;
2466 *  -  0 - success, lock not taken;
2467 *  - <0 - on error (-EFAULT)
2468 */
2469static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2470{
2471        int ret = 0;
2472
2473        if (locked) {
2474                /*
2475                 * Got the lock. We might not be the anticipated owner if we
2476                 * did a lock-steal - fix up the PI-state in that case:
2477                 *
2478                 * Speculative pi_state->owner read (we don't hold wait_lock);
2479                 * since we own the lock pi_state->owner == current is the
2480                 * stable state, anything else needs more attention.
2481                 */
2482                if (q->pi_state->owner != current)
2483                        ret = fixup_pi_state_owner(uaddr, q, current);
2484                goto out;
2485        }
2486
2487        /*
2488         * If we didn't get the lock; check if anybody stole it from us. In
2489         * that case, we need to fix up the uval to point to them instead of
2490         * us, otherwise bad things happen. [10]
2491         *
2492         * Another speculative read; pi_state->owner == current is unstable
2493         * but needs our attention.
2494         */
2495        if (q->pi_state->owner == current) {
2496                ret = fixup_pi_state_owner(uaddr, q, NULL);
2497                goto out;
2498        }
2499
2500        /*
2501         * Paranoia check. If we did not take the lock, then we should not be
2502         * the owner of the rt_mutex.
2503         */
2504        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2505                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2506                                "pi-state %p\n", ret,
2507                                q->pi_state->pi_mutex.owner,
2508                                q->pi_state->owner);
2509        }
2510
2511out:
2512        return ret ? ret : locked;
2513}
2514
2515/**
2516 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2517 * @hb:         the futex hash bucket, must be locked by the caller
2518 * @q:          the futex_q to queue up on
2519 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2520 */
2521static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2522                                struct hrtimer_sleeper *timeout)
2523{
2524        /*
2525         * The task state is guaranteed to be set before another task can
2526         * wake it. set_current_state() is implemented using smp_store_mb() and
2527         * queue_me() calls spin_unlock() upon completion, both serializing
2528         * access to the hash list and forcing another memory barrier.
2529         */
2530        set_current_state(TASK_INTERRUPTIBLE);
2531        queue_me(q, hb);
2532
2533        /* Arm the timer */
2534        if (timeout)
2535                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2536
2537        /*
2538         * If we have been removed from the hash list, then another task
2539         * has tried to wake us, and we can skip the call to schedule().
2540         */
2541        if (likely(!plist_node_empty(&q->list))) {
2542                /*
2543                 * If the timer has already expired, current will already be
2544                 * flagged for rescheduling. Only call schedule if there
2545                 * is no timeout, or if it has yet to expire.
2546                 */
2547                if (!timeout || timeout->task)
2548                        freezable_schedule();
2549        }
2550        __set_current_state(TASK_RUNNING);
2551}
2552
2553/**
2554 * futex_wait_setup() - Prepare to wait on a futex
2555 * @uaddr:      the futex userspace address
2556 * @val:        the expected value
2557 * @flags:      futex flags (FLAGS_SHARED, etc.)
2558 * @q:          the associated futex_q
2559 * @hb:         storage for hash_bucket pointer to be returned to caller
2560 *
2561 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2562 * compare it with the expected value.  Handle atomic faults internally.
2563 * Return with the hb lock held and a q.key reference on success, and unlocked
2564 * with no q.key reference on failure.
2565 *
2566 * Return:
2567 *  -  0 - uaddr contains val and hb has been locked;
2568 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2569 */
2570static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2571                           struct futex_q *q, struct futex_hash_bucket **hb)
2572{
2573        u32 uval;
2574        int ret;
2575
2576        /*
2577         * Access the page AFTER the hash-bucket is locked.
2578         * Order is important:
2579         *
2580         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2581         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2582         *
2583         * The basic logical guarantee of a futex is that it blocks ONLY
2584         * if cond(var) is known to be true at the time of blocking, for
2585         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2586         * would open a race condition where we could block indefinitely with
2587         * cond(var) false, which would violate the guarantee.
2588         *
2589         * On the other hand, we insert q and release the hash-bucket only
2590         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2591         * absorb a wakeup if *uaddr does not match the desired values
2592         * while the syscall executes.
2593         */
2594retry:
2595        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2596        if (unlikely(ret != 0))
2597                return ret;
2598
2599retry_private:
2600        *hb = queue_lock(q);
2601
2602        ret = get_futex_value_locked(&uval, uaddr);
2603
2604        if (ret) {
2605                queue_unlock(*hb);
2606
2607                ret = get_user(uval, uaddr);
2608                if (ret)
2609                        goto out;
2610
2611                if (!(flags & FLAGS_SHARED))
2612                        goto retry_private;
2613
2614                put_futex_key(&q->key);
2615                goto retry;
2616        }
2617
2618        if (uval != val) {
2619                queue_unlock(*hb);
2620                ret = -EWOULDBLOCK;
2621        }
2622
2623out:
2624        if (ret)
2625                put_futex_key(&q->key);
2626        return ret;
2627}
2628
2629static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2630                      ktime_t *abs_time, u32 bitset)
2631{
2632        struct hrtimer_sleeper timeout, *to = NULL;
2633        struct restart_block *restart;
2634        struct futex_hash_bucket *hb;
2635        struct futex_q q = futex_q_init;
2636        int ret;
2637
2638        if (!bitset)
2639                return -EINVAL;
2640        q.bitset = bitset;
2641
2642        if (abs_time) {
2643                to = &timeout;
2644
2645                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2646                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2647                                      HRTIMER_MODE_ABS);
2648                hrtimer_init_sleeper(to, current);
2649                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2650                                             current->timer_slack_ns);
2651        }
2652
2653retry:
2654        /*
2655         * Prepare to wait on uaddr. On success, holds hb lock and increments
2656         * q.key refs.
2657         */
2658        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2659        if (ret)
2660                goto out;
2661
2662        /* queue_me and wait for wakeup, timeout, or a signal. */
2663        futex_wait_queue_me(hb, &q, to);
2664
2665        /* If we were woken (and unqueued), we succeeded, whatever. */
2666        ret = 0;
2667        /* unqueue_me() drops q.key ref */
2668        if (!unqueue_me(&q))
2669                goto out;
2670        ret = -ETIMEDOUT;
2671        if (to && !to->task)
2672                goto out;
2673
2674        /*
2675         * We expect signal_pending(current), but we might be the
2676         * victim of a spurious wakeup as well.
2677         */
2678        if (!signal_pending(current))
2679                goto retry;
2680
2681        ret = -ERESTARTSYS;
2682        if (!abs_time)
2683                goto out;
2684
2685        restart = &current->restart_block;
2686        restart->fn = futex_wait_restart;
2687        restart->futex.uaddr = uaddr;
2688        restart->futex.val = val;
2689        restart->futex.time = *abs_time;
2690        restart->futex.bitset = bitset;
2691        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2692
2693        ret = -ERESTART_RESTARTBLOCK;
2694
2695out:
2696        if (to) {
2697                hrtimer_cancel(&to->timer);
2698                destroy_hrtimer_on_stack(&to->timer);
2699        }
2700        return ret;
2701}
2702
2703
2704static long futex_wait_restart(struct restart_block *restart)
2705{
2706        u32 __user *uaddr = restart->futex.uaddr;
2707        ktime_t t, *tp = NULL;
2708
2709        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2710                t = restart->futex.time;
2711                tp = &t;
2712        }
2713        restart->fn = do_no_restart_syscall;
2714
2715        return (long)futex_wait(uaddr, restart->futex.flags,
2716                                restart->futex.val, tp, restart->futex.bitset);
2717}
2718
2719
2720/*
2721 * Userspace tried a 0 -> TID atomic transition of the futex value
2722 * and failed. The kernel side here does the whole locking operation:
2723 * if there are waiters then it will block as a consequence of relying
2724 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2725 * a 0 value of the futex too.).
2726 *
2727 * Also serves as futex trylock_pi()'ing, and due semantics.
2728 */
2729static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2730                         ktime_t *time, int trylock)
2731{
2732        struct hrtimer_sleeper timeout, *to = NULL;
2733        struct futex_pi_state *pi_state = NULL;
2734        struct rt_mutex_waiter rt_waiter;
2735        struct futex_hash_bucket *hb;
2736        struct futex_q q = futex_q_init;
2737        int res, ret;
2738
2739        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2740                return -ENOSYS;
2741
2742        if (refill_pi_state_cache())
2743                return -ENOMEM;
2744
2745        if (time) {
2746                to = &timeout;
2747                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2748                                      HRTIMER_MODE_ABS);
2749                hrtimer_init_sleeper(to, current);
2750                hrtimer_set_expires(&to->timer, *time);
2751        }
2752
2753retry:
2754        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2755        if (unlikely(ret != 0))
2756                goto out;
2757
2758retry_private:
2759        hb = queue_lock(&q);
2760
2761        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2762        if (unlikely(ret)) {
2763                /*
2764                 * Atomic work succeeded and we got the lock,
2765                 * or failed. Either way, we do _not_ block.
2766                 */
2767                switch (ret) {
2768                case 1:
2769                        /* We got the lock. */
2770                        ret = 0;
2771                        goto out_unlock_put_key;
2772                case -EFAULT:
2773                        goto uaddr_faulted;
2774                case -EAGAIN:
2775                        /*
2776                         * Two reasons for this:
2777                         * - Task is exiting and we just wait for the
2778                         *   exit to complete.
2779                         * - The user space value changed.
2780                         */
2781                        queue_unlock(hb);
2782                        put_futex_key(&q.key);
2783                        cond_resched();
2784                        goto retry;
2785                default:
2786                        goto out_unlock_put_key;
2787                }
2788        }
2789
2790        WARN_ON(!q.pi_state);
2791
2792        /*
2793         * Only actually queue now that the atomic ops are done:
2794         */
2795        __queue_me(&q, hb);
2796
2797        if (trylock) {
2798                ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2799                /* Fixup the trylock return value: */
2800                ret = ret ? 0 : -EWOULDBLOCK;
2801                goto no_block;
2802        }
2803
2804        rt_mutex_init_waiter(&rt_waiter);
2805
2806        /*
2807         * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2808         * hold it while doing rt_mutex_start_proxy(), because then it will
2809         * include hb->lock in the blocking chain, even through we'll not in
2810         * fact hold it while blocking. This will lead it to report -EDEADLK
2811         * and BUG when futex_unlock_pi() interleaves with this.
2812         *
2813         * Therefore acquire wait_lock while holding hb->lock, but drop the
2814         * latter before calling rt_mutex_start_proxy_lock(). This still fully
2815         * serializes against futex_unlock_pi() as that does the exact same
2816         * lock handoff sequence.
2817         */
2818        raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2819        spin_unlock(q.lock_ptr);
2820        ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2821        raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2822
2823        if (ret) {
2824                if (ret == 1)
2825                        ret = 0;
2826
2827                spin_lock(q.lock_ptr);
2828                goto no_block;
2829        }
2830
2831
2832        if (unlikely(to))
2833                hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2834
2835        ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2836
2837        spin_lock(q.lock_ptr);
2838        /*
2839         * If we failed to acquire the lock (signal/timeout), we must
2840         * first acquire the hb->lock before removing the lock from the
2841         * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2842         * wait lists consistent.
2843         *
2844         * In particular; it is important that futex_unlock_pi() can not
2845         * observe this inconsistency.
2846         */
2847        if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2848                ret = 0;
2849
2850no_block:
2851        /*
2852         * Fixup the pi_state owner and possibly acquire the lock if we
2853         * haven't already.
2854         */
2855        res = fixup_owner(uaddr, &q, !ret);
2856        /*
2857         * If fixup_owner() returned an error, proprogate that.  If it acquired
2858         * the lock, clear our -ETIMEDOUT or -EINTR.
2859         */
2860        if (res)
2861                ret = (res < 0) ? res : 0;
2862
2863        /*
2864         * If fixup_owner() faulted and was unable to handle the fault, unlock
2865         * it and return the fault to userspace.
2866         */
2867        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2868                pi_state = q.pi_state;
2869                get_pi_state(pi_state);
2870        }
2871
2872        /* Unqueue and drop the lock */
2873        unqueue_me_pi(&q);
2874
2875        if (pi_state) {
2876                rt_mutex_futex_unlock(&pi_state->pi_mutex);
2877                put_pi_state(pi_state);
2878        }
2879
2880        goto out_put_key;
2881
2882out_unlock_put_key:
2883        queue_unlock(hb);
2884
2885out_put_key:
2886        put_futex_key(&q.key);
2887out:
2888        if (to) {
2889                hrtimer_cancel(&to->timer);
2890                destroy_hrtimer_on_stack(&to->timer);
2891        }
2892        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2893
2894uaddr_faulted:
2895        queue_unlock(hb);
2896
2897        ret = fault_in_user_writeable(uaddr);
2898        if (ret)
2899                goto out_put_key;
2900
2901        if (!(flags & FLAGS_SHARED))
2902                goto retry_private;
2903
2904        put_futex_key(&q.key);
2905        goto retry;
2906}
2907
2908/*
2909 * Userspace attempted a TID -> 0 atomic transition, and failed.
2910 * This is the in-kernel slowpath: we look up the PI state (if any),
2911 * and do the rt-mutex unlock.
2912 */
2913static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2914{
2915        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2916        union futex_key key = FUTEX_KEY_INIT;
2917        struct futex_hash_bucket *hb;
2918        struct futex_q *top_waiter;
2919        int ret;
2920
2921        if (!IS_ENABLED(CONFIG_FUTEX_PI))
2922                return -ENOSYS;
2923
2924retry:
2925        if (get_user(uval, uaddr))
2926                return -EFAULT;
2927        /*
2928         * We release only a lock we actually own:
2929         */
2930        if ((uval & FUTEX_TID_MASK) != vpid)
2931                return -EPERM;
2932
2933        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2934        if (ret)
2935                return ret;
2936
2937        hb = hash_futex(&key);
2938        spin_lock(&hb->lock);
2939
2940        /*
2941         * Check waiters first. We do not trust user space values at
2942         * all and we at least want to know if user space fiddled
2943         * with the futex value instead of blindly unlocking.
2944         */
2945        top_waiter = futex_top_waiter(hb, &key);
2946        if (top_waiter) {
2947                struct futex_pi_state *pi_state = top_waiter->pi_state;
2948
2949                ret = -EINVAL;
2950                if (!pi_state)
2951                        goto out_unlock;
2952
2953                /*
2954                 * If current does not own the pi_state then the futex is
2955                 * inconsistent and user space fiddled with the futex value.
2956                 */
2957                if (pi_state->owner != current)
2958                        goto out_unlock;
2959
2960                get_pi_state(pi_state);
2961                /*
2962                 * By taking wait_lock while still holding hb->lock, we ensure
2963                 * there is no point where we hold neither; and therefore
2964                 * wake_futex_pi() must observe a state consistent with what we
2965                 * observed.
2966                 */
2967                raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2968                spin_unlock(&hb->lock);
2969
2970                /* drops pi_state->pi_mutex.wait_lock */
2971                ret = wake_futex_pi(uaddr, uval, pi_state);
2972
2973                put_pi_state(pi_state);
2974
2975                /*
2976                 * Success, we're done! No tricky corner cases.
2977                 */
2978                if (!ret)
2979                        goto out_putkey;
2980                /*
2981                 * The atomic access to the futex value generated a
2982                 * pagefault, so retry the user-access and the wakeup:
2983                 */
2984                if (ret == -EFAULT)
2985                        goto pi_faulted;
2986                /*
2987                 * A unconditional UNLOCK_PI op raced against a waiter
2988                 * setting the FUTEX_WAITERS bit. Try again.
2989                 */
2990                if (ret == -EAGAIN) {
2991                        put_futex_key(&key);
2992                        goto retry;
2993                }
2994                /*
2995                 * wake_futex_pi has detected invalid state. Tell user
2996                 * space.
2997                 */
2998                goto out_putkey;
2999        }
3000
3001        /*
3002         * We have no kernel internal state, i.e. no waiters in the
3003         * kernel. Waiters which are about to queue themselves are stuck
3004         * on hb->lock. So we can safely ignore them. We do neither
3005         * preserve the WAITERS bit not the OWNER_DIED one. We are the
3006         * owner.
3007         */
3008        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3009                spin_unlock(&hb->lock);
3010                goto pi_faulted;
3011        }
3012
3013        /*
3014         * If uval has changed, let user space handle it.
3015         */
3016        ret = (curval == uval) ? 0 : -EAGAIN;
3017
3018out_unlock:
3019        spin_unlock(&hb->lock);
3020out_putkey:
3021        put_futex_key(&key);
3022        return ret;
3023
3024pi_faulted:
3025        put_futex_key(&key);
3026
3027        ret = fault_in_user_writeable(uaddr);
3028        if (!ret)
3029                goto retry;
3030
3031        return ret;
3032}
3033
3034/**
3035 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3036 * @hb:         the hash_bucket futex_q was original enqueued on
3037 * @q:          the futex_q woken while waiting to be requeued
3038 * @key2:       the futex_key of the requeue target futex
3039 * @timeout:    the timeout associated with the wait (NULL if none)
3040 *
3041 * Detect if the task was woken on the initial futex as opposed to the requeue
3042 * target futex.  If so, determine if it was a timeout or a signal that caused
3043 * the wakeup and return the appropriate error code to the caller.  Must be
3044 * called with the hb lock held.
3045 *
3046 * Return:
3047 *  -  0 = no early wakeup detected;
3048 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3049 */
3050static inline
3051int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3052                                   struct futex_q *q, union futex_key *key2,
3053                                   struct hrtimer_sleeper *timeout)
3054{
3055        int ret = 0;
3056
3057        /*
3058         * With the hb lock held, we avoid races while we process the wakeup.
3059         * We only need to hold hb (and not hb2) to ensure atomicity as the
3060         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3061         * It can't be requeued from uaddr2 to something else since we don't
3062         * support a PI aware source futex for requeue.
3063         */
3064        if (!match_futex(&q->key, key2)) {
3065                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3066                /*
3067                 * We were woken prior to requeue by a timeout or a signal.
3068                 * Unqueue the futex_q and determine which it was.
3069                 */
3070                plist_del(&q->list, &hb->chain);
3071                hb_waiters_dec(hb);
3072
3073                /* Handle spurious wakeups gracefully */
3074                ret = -EWOULDBLOCK;
3075                if (timeout && !timeout->task)
3076                        ret = -ETIMEDOUT;
3077                else if (signal_pending(current))
3078                        ret = -ERESTARTNOINTR;
3079        }
3080        return ret;
3081}
3082
3083/**
3084 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3085 * @uaddr:      the futex we initially wait on (non-pi)
3086 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3087 *              the same type, no requeueing from private to shared, etc.
3088 * @val:        the expected value of uaddr
3089 * @abs_time:   absolute timeout
3090 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3091 * @uaddr2:     the pi futex we will take prior to returning to user-space
3092 *
3093 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3094 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3095 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3096 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3097 * without one, the pi logic would not know which task to boost/deboost, if
3098 * there was a need to.
3099 *
3100 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3101 * via the following--
3102 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3103 * 2) wakeup on uaddr2 after a requeue
3104 * 3) signal
3105 * 4) timeout
3106 *
3107 * If 3, cleanup and return -ERESTARTNOINTR.
3108 *
3109 * If 2, we may then block on trying to take the rt_mutex and return via:
3110 * 5) successful lock
3111 * 6) signal
3112 * 7) timeout
3113 * 8) other lock acquisition failure
3114 *
3115 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3116 *
3117 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3118 *
3119 * Return:
3120 *  -  0 - On success;
3121 *  - <0 - On error
3122 */
3123static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3124                                 u32 val, ktime_t *abs_time, u32 bitset,
3125                                 u32 __user *uaddr2)
3126{
3127        struct hrtimer_sleeper timeout, *to = NULL;
3128        struct futex_pi_state *pi_state = NULL;
3129        struct rt_mutex_waiter rt_waiter;
3130        struct futex_hash_bucket *hb;
3131        union futex_key key2 = FUTEX_KEY_INIT;
3132        struct futex_q q = futex_q_init;
3133        int res, ret;
3134
3135        if (!IS_ENABLED(CONFIG_FUTEX_PI))
3136                return -ENOSYS;
3137
3138        if (uaddr == uaddr2)
3139                return -EINVAL;
3140
3141        if (!bitset)
3142                return -EINVAL;
3143
3144        if (abs_time) {
3145                to = &timeout;
3146                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3147                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
3148                                      HRTIMER_MODE_ABS);
3149                hrtimer_init_sleeper(to, current);
3150                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3151                                             current->timer_slack_ns);
3152        }
3153
3154        /*
3155         * The waiter is allocated on our stack, manipulated by the requeue
3156         * code while we sleep on uaddr.
3157         */
3158        rt_mutex_init_waiter(&rt_waiter);
3159
3160        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3161        if (unlikely(ret != 0))
3162                goto out;
3163
3164        q.bitset = bitset;
3165        q.rt_waiter = &rt_waiter;
3166        q.requeue_pi_key = &key2;
3167
3168        /*
3169         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3170         * count.
3171         */
3172        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3173        if (ret)
3174                goto out_key2;
3175
3176        /*
3177         * The check above which compares uaddrs is not sufficient for
3178         * shared futexes. We need to compare the keys:
3179         */
3180        if (match_futex(&q.key, &key2)) {
3181                queue_unlock(hb);
3182                ret = -EINVAL;
3183                goto out_put_keys;
3184        }
3185
3186        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3187        futex_wait_queue_me(hb, &q, to);
3188
3189        spin_lock(&hb->lock);
3190        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3191        spin_unlock(&hb->lock);
3192        if (ret)
3193                goto out_put_keys;
3194
3195        /*
3196         * In order for us to be here, we know our q.key == key2, and since
3197         * we took the hb->lock above, we also know that futex_requeue() has
3198         * completed and we no longer have to concern ourselves with a wakeup
3199         * race with the atomic proxy lock acquisition by the requeue code. The
3200         * futex_requeue dropped our key1 reference and incremented our key2
3201         * reference count.
3202         */
3203
3204        /* Check if the requeue code acquired the second futex for us. */
3205        if (!q.rt_waiter) {
3206                /*
3207                 * Got the lock. We might not be the anticipated owner if we
3208                 * did a lock-steal - fix up the PI-state in that case.
3209                 */
3210                if (q.pi_state && (q.pi_state->owner != current)) {
3211                        spin_lock(q.lock_ptr);
3212                        ret = fixup_pi_state_owner(uaddr2, &q, current);
3213                        if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3214                                pi_state = q.pi_state;
3215                                get_pi_state(pi_state);
3216                        }
3217                        /*
3218                         * Drop the reference to the pi state which
3219                         * the requeue_pi() code acquired for us.
3220                         */
3221                        put_pi_state(q.pi_state);
3222                        spin_unlock(q.lock_ptr);
3223                }
3224        } else {
3225                struct rt_mutex *pi_mutex;
3226
3227                /*
3228                 * We have been woken up by futex_unlock_pi(), a timeout, or a
3229                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3230                 * the pi_state.
3231                 */
3232                WARN_ON(!q.pi_state);
3233                pi_mutex = &q.pi_state->pi_mutex;
3234                ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3235
3236                spin_lock(q.lock_ptr);
3237                if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3238                        ret = 0;
3239
3240                debug_rt_mutex_free_waiter(&rt_waiter);
3241                /*
3242                 * Fixup the pi_state owner and possibly acquire the lock if we
3243                 * haven't already.
3244                 */
3245                res = fixup_owner(uaddr2, &q, !ret);
3246                /*
3247                 * If fixup_owner() returned an error, proprogate that.  If it
3248                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3249                 */
3250                if (res)
3251                        ret = (res < 0) ? res : 0;
3252
3253                /*
3254                 * If fixup_pi_state_owner() faulted and was unable to handle
3255                 * the fault, unlock the rt_mutex and return the fault to
3256                 * userspace.
3257                 */
3258                if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3259                        pi_state = q.pi_state;
3260                        get_pi_state(pi_state);
3261                }
3262
3263                /* Unqueue and drop the lock. */
3264                unqueue_me_pi(&q);
3265        }
3266
3267        if (pi_state) {
3268                rt_mutex_futex_unlock(&pi_state->pi_mutex);
3269                put_pi_state(pi_state);
3270        }
3271
3272        if (ret == -EINTR) {
3273                /*
3274                 * We've already been requeued, but cannot restart by calling
3275                 * futex_lock_pi() directly. We could restart this syscall, but
3276                 * it would detect that the user space "val" changed and return
3277                 * -EWOULDBLOCK.  Save the overhead of the restart and return
3278                 * -EWOULDBLOCK directly.
3279                 */
3280                ret = -EWOULDBLOCK;
3281        }
3282
3283out_put_keys:
3284        put_futex_key(&q.key);
3285out_key2:
3286        put_futex_key(&key2);
3287
3288out:
3289        if (to) {
3290                hrtimer_cancel(&to->timer);
3291                destroy_hrtimer_on_stack(&to->timer);
3292        }
3293        return ret;
3294}
3295
3296/*
3297 * Support for robust futexes: the kernel cleans up held futexes at
3298 * thread exit time.
3299 *
3300 * Implementation: user-space maintains a per-thread list of locks it
3301 * is holding. Upon do_exit(), the kernel carefully walks this list,
3302 * and marks all locks that are owned by this thread with the
3303 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3304 * always manipulated with the lock held, so the list is private and
3305 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3306 * field, to allow the kernel to clean up if the thread dies after
3307 * acquiring the lock, but just before it could have added itself to
3308 * the list. There can only be one such pending lock.
3309 */
3310
3311/**
3312 * sys_set_robust_list() - Set the robust-futex list head of a task
3313 * @head:       pointer to the list-head
3314 * @len:        length of the list-head, as userspace expects
3315 */
3316SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3317                size_t, len)
3318{
3319        if (!futex_cmpxchg_enabled)
3320                return -ENOSYS;
3321        /*
3322         * The kernel knows only one size for now:
3323         */
3324        if (unlikely(len != sizeof(*head)))
3325                return -EINVAL;
3326
3327        current->robust_list = head;
3328
3329        return 0;
3330}
3331
3332/**
3333 * sys_get_robust_list() - Get the robust-futex list head of a task
3334 * @pid:        pid of the process [zero for current task]
3335 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3336 * @len_ptr:    pointer to a length field, the kernel fills in the header size
3337 */
3338SYSCALL_DEFINE3(get_robust_list, int, pid,
3339                struct robust_list_head __user * __user *, head_ptr,
3340                size_t __user *, len_ptr)
3341{
3342        struct robust_list_head __user *head;
3343        unsigned long ret;
3344        struct task_struct *p;
3345
3346        if (!futex_cmpxchg_enabled)
3347                return -ENOSYS;
3348
3349        rcu_read_lock();
3350
3351        ret = -ESRCH;
3352        if (!pid)
3353                p = current;
3354        else {
3355                p = find_task_by_vpid(pid);
3356                if (!p)
3357                        goto err_unlock;
3358        }
3359
3360        ret = -EPERM;
3361        if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3362                goto err_unlock;
3363
3364        head = p->robust_list;
3365        rcu_read_unlock();
3366
3367        if (put_user(sizeof(*head), len_ptr))
3368                return -EFAULT;
3369        return put_user(head, head_ptr);
3370
3371err_unlock:
3372        rcu_read_unlock();
3373
3374        return ret;
3375}
3376
3377/*
3378 * Process a futex-list entry, check whether it's owned by the
3379 * dying task, and do notification if so:
3380 */
3381int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3382{
3383        u32 uval, uninitialized_var(nval), mval;
3384
3385retry:
3386        if (get_user(uval, uaddr))
3387                return -1;
3388
3389        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3390                /*
3391                 * Ok, this dying thread is truly holding a futex
3392                 * of interest. Set the OWNER_DIED bit atomically
3393                 * via cmpxchg, and if the value had FUTEX_WAITERS
3394                 * set, wake up a waiter (if any). (We have to do a
3395                 * futex_wake() even if OWNER_DIED is already set -
3396                 * to handle the rare but possible case of recursive
3397                 * thread-death.) The rest of the cleanup is done in
3398                 * userspace.
3399                 */
3400                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3401                /*
3402                 * We are not holding a lock here, but we want to have
3403                 * the pagefault_disable/enable() protection because
3404                 * we want to handle the fault gracefully. If the
3405                 * access fails we try to fault in the futex with R/W
3406                 * verification via get_user_pages. get_user() above
3407                 * does not guarantee R/W access. If that fails we
3408                 * give up and leave the futex locked.
3409                 */
3410                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3411                        if (fault_in_user_writeable(uaddr))
3412                                return -1;
3413                        goto retry;
3414                }
3415                if (nval != uval)
3416                        goto retry;
3417
3418                /*
3419                 * Wake robust non-PI futexes here. The wakeup of
3420                 * PI futexes happens in exit_pi_state():
3421                 */
3422                if (!pi && (uval & FUTEX_WAITERS))
3423                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3424        }
3425        return 0;
3426}
3427
3428/*
3429 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3430 */
3431static inline int fetch_robust_entry(struct robust_list __user **entry,
3432                                     struct robust_list __user * __user *head,
3433                                     unsigned int *pi)
3434{
3435        unsigned long uentry;
3436
3437        if (get_user(uentry, (unsigned long __user *)head))
3438                return -EFAULT;
3439
3440        *entry = (void __user *)(uentry & ~1UL);
3441        *pi = uentry & 1;
3442
3443        return 0;
3444}
3445
3446/*
3447 * Walk curr->robust_list (very carefully, it's a userspace list!)
3448 * and mark any locks found there dead, and notify any waiters.
3449 *
3450 * We silently return on any sign of list-walking problem.
3451 */
3452void exit_robust_list(struct task_struct *curr)
3453{
3454        struct robust_list_head __user *head = curr->robust_list;
3455        struct robust_list __user *entry, *next_entry, *pending;
3456        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3457        unsigned int uninitialized_var(next_pi);
3458        unsigned long futex_offset;
3459        int rc;
3460
3461        if (!futex_cmpxchg_enabled)
3462                return;
3463
3464        /*
3465         * Fetch the list head (which was registered earlier, via
3466         * sys_set_robust_list()):
3467         */
3468        if (fetch_robust_entry(&entry, &head->list.next, &pi))
3469                return;
3470        /*
3471         * Fetch the relative futex offset:
3472         */
3473        if (get_user(futex_offset, &head->futex_offset))
3474                return;
3475        /*
3476         * Fetch any possibly pending lock-add first, and handle it
3477         * if it exists:
3478         */
3479        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3480                return;
3481
3482        next_entry = NULL;      /* avoid warning with gcc */
3483        while (entry != &head->list) {
3484                /*
3485                 * Fetch the next entry in the list before calling
3486                 * handle_futex_death:
3487                 */
3488                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3489                /*
3490                 * A pending lock might already be on the list, so
3491                 * don't process it twice:
3492                 */
3493                if (entry != pending)
3494                        if (handle_futex_death((void __user *)entry + futex_offset,
3495                                                curr, pi))
3496                                return;
3497                if (rc)
3498                        return;
3499                entry = next_entry;
3500                pi = next_pi;
3501                /*
3502                 * Avoid excessively long or circular lists:
3503                 */
3504                if (!--limit)
3505                        break;
3506
3507                cond_resched();
3508        }
3509
3510        if (pending)
3511                handle_futex_death((void __user *)pending + futex_offset,
3512                                   curr, pip);
3513}
3514
3515long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3516                u32 __user *uaddr2, u32 val2, u32 val3)
3517{
3518        int cmd = op & FUTEX_CMD_MASK;
3519        unsigned int flags = 0;
3520
3521        if (!(op & FUTEX_PRIVATE_FLAG))
3522                flags |= FLAGS_SHARED;
3523
3524        if (op & FUTEX_CLOCK_REALTIME) {
3525                flags |= FLAGS_CLOCKRT;
3526                if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3527                    cmd != FUTEX_WAIT_REQUEUE_PI)
3528                        return -ENOSYS;
3529        }
3530
3531        switch (cmd) {
3532        case FUTEX_LOCK_PI:
3533        case FUTEX_UNLOCK_PI:
3534        case FUTEX_TRYLOCK_PI:
3535        case FUTEX_WAIT_REQUEUE_PI:
3536        case FUTEX_CMP_REQUEUE_PI:
3537                if (!futex_cmpxchg_enabled)
3538                        return -ENOSYS;
3539        }
3540
3541        switch (cmd) {
3542        case FUTEX_WAIT:
3543                val3 = FUTEX_BITSET_MATCH_ANY;
3544        case FUTEX_WAIT_BITSET:
3545                return futex_wait(uaddr, flags, val, timeout, val3);
3546        case FUTEX_WAKE:
3547                val3 = FUTEX_BITSET_MATCH_ANY;
3548        case FUTEX_WAKE_BITSET:
3549                return futex_wake(uaddr, flags, val, val3);
3550        case FUTEX_REQUEUE:
3551                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3552        case FUTEX_CMP_REQUEUE:
3553                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3554        case FUTEX_WAKE_OP:
3555                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3556        case FUTEX_LOCK_PI:
3557                return futex_lock_pi(uaddr, flags, timeout, 0);
3558        case FUTEX_UNLOCK_PI:
3559                return futex_unlock_pi(uaddr, flags);
3560        case FUTEX_TRYLOCK_PI:
3561                return futex_lock_pi(uaddr, flags, NULL, 1);
3562        case FUTEX_WAIT_REQUEUE_PI:
3563                val3 = FUTEX_BITSET_MATCH_ANY;
3564                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3565                                             uaddr2);
3566        case FUTEX_CMP_REQUEUE_PI:
3567                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3568        }
3569        return -ENOSYS;
3570}
3571
3572
3573SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3574                struct timespec __user *, utime, u32 __user *, uaddr2,
3575                u32, val3)
3576{
3577        struct timespec ts;
3578        ktime_t t, *tp = NULL;
3579        u32 val2 = 0;
3580        int cmd = op & FUTEX_CMD_MASK;
3581
3582        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3583                      cmd == FUTEX_WAIT_BITSET ||
3584                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3585                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3586                        return -EFAULT;
3587                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3588                        return -EFAULT;
3589                if (!timespec_valid(&ts))
3590                        return -EINVAL;
3591
3592                t = timespec_to_ktime(ts);
3593                if (cmd == FUTEX_WAIT)
3594                        t = ktime_add_safe(ktime_get(), t);
3595                tp = &t;
3596        }
3597        /*
3598         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3599         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3600         */
3601        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3602            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3603                val2 = (u32) (unsigned long) utime;
3604
3605        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3606}
3607
3608static void __init futex_detect_cmpxchg(void)
3609{
3610#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3611        u32 curval;
3612
3613        /*
3614         * This will fail and we want it. Some arch implementations do
3615         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3616         * functionality. We want to know that before we call in any
3617         * of the complex code paths. Also we want to prevent
3618         * registration of robust lists in that case. NULL is
3619         * guaranteed to fault and we get -EFAULT on functional
3620         * implementation, the non-functional ones will return
3621         * -ENOSYS.
3622         */
3623        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3624                futex_cmpxchg_enabled = 1;
3625#endif
3626}
3627
3628static int __init futex_init(void)
3629{
3630        unsigned int futex_shift;
3631        unsigned long i;
3632
3633#if CONFIG_BASE_SMALL
3634        futex_hashsize = 16;
3635#else
3636        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3637#endif
3638
3639        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3640                                               futex_hashsize, 0,
3641                                               futex_hashsize < 256 ? HASH_SMALL : 0,
3642                                               &futex_shift, NULL,
3643                                               futex_hashsize, futex_hashsize);
3644        futex_hashsize = 1UL << futex_shift;
3645
3646        futex_detect_cmpxchg();
3647
3648        for (i = 0; i < futex_hashsize; i++) {
3649                atomic_set(&futex_queues[i].waiters, 0);
3650                plist_head_init(&futex_queues[i].chain);
3651                spin_lock_init(&futex_queues[i].lock);
3652        }
3653
3654        return 0;
3655}
3656core_initcall(futex_init);
3657