linux/kernel/sched/topology.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Scheduler topology setup/handling methods
   4 */
   5#include <linux/sched.h>
   6#include <linux/mutex.h>
   7#include <linux/sched/isolation.h>
   8
   9#include "sched.h"
  10
  11DEFINE_MUTEX(sched_domains_mutex);
  12
  13/* Protected by sched_domains_mutex: */
  14cpumask_var_t sched_domains_tmpmask;
  15cpumask_var_t sched_domains_tmpmask2;
  16
  17#ifdef CONFIG_SCHED_DEBUG
  18
  19static int __init sched_debug_setup(char *str)
  20{
  21        sched_debug_enabled = true;
  22
  23        return 0;
  24}
  25early_param("sched_debug", sched_debug_setup);
  26
  27static inline bool sched_debug(void)
  28{
  29        return sched_debug_enabled;
  30}
  31
  32static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  33                                  struct cpumask *groupmask)
  34{
  35        struct sched_group *group = sd->groups;
  36
  37        cpumask_clear(groupmask);
  38
  39        printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
  40
  41        if (!(sd->flags & SD_LOAD_BALANCE)) {
  42                printk("does not load-balance\n");
  43                if (sd->parent)
  44                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  45                                        " has parent");
  46                return -1;
  47        }
  48
  49        printk(KERN_CONT "span=%*pbl level=%s\n",
  50               cpumask_pr_args(sched_domain_span(sd)), sd->name);
  51
  52        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  53                printk(KERN_ERR "ERROR: domain->span does not contain "
  54                                "CPU%d\n", cpu);
  55        }
  56        if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
  57                printk(KERN_ERR "ERROR: domain->groups does not contain"
  58                                " CPU%d\n", cpu);
  59        }
  60
  61        printk(KERN_DEBUG "%*s groups:", level + 1, "");
  62        do {
  63                if (!group) {
  64                        printk("\n");
  65                        printk(KERN_ERR "ERROR: group is NULL\n");
  66                        break;
  67                }
  68
  69                if (!cpumask_weight(sched_group_span(group))) {
  70                        printk(KERN_CONT "\n");
  71                        printk(KERN_ERR "ERROR: empty group\n");
  72                        break;
  73                }
  74
  75                if (!(sd->flags & SD_OVERLAP) &&
  76                    cpumask_intersects(groupmask, sched_group_span(group))) {
  77                        printk(KERN_CONT "\n");
  78                        printk(KERN_ERR "ERROR: repeated CPUs\n");
  79                        break;
  80                }
  81
  82                cpumask_or(groupmask, groupmask, sched_group_span(group));
  83
  84                printk(KERN_CONT " %d:{ span=%*pbl",
  85                                group->sgc->id,
  86                                cpumask_pr_args(sched_group_span(group)));
  87
  88                if ((sd->flags & SD_OVERLAP) &&
  89                    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
  90                        printk(KERN_CONT " mask=%*pbl",
  91                                cpumask_pr_args(group_balance_mask(group)));
  92                }
  93
  94                if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
  95                        printk(KERN_CONT " cap=%lu", group->sgc->capacity);
  96
  97                if (group == sd->groups && sd->child &&
  98                    !cpumask_equal(sched_domain_span(sd->child),
  99                                   sched_group_span(group))) {
 100                        printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 101                }
 102
 103                printk(KERN_CONT " }");
 104
 105                group = group->next;
 106
 107                if (group != sd->groups)
 108                        printk(KERN_CONT ",");
 109
 110        } while (group != sd->groups);
 111        printk(KERN_CONT "\n");
 112
 113        if (!cpumask_equal(sched_domain_span(sd), groupmask))
 114                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 115
 116        if (sd->parent &&
 117            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 118                printk(KERN_ERR "ERROR: parent span is not a superset "
 119                        "of domain->span\n");
 120        return 0;
 121}
 122
 123static void sched_domain_debug(struct sched_domain *sd, int cpu)
 124{
 125        int level = 0;
 126
 127        if (!sched_debug_enabled)
 128                return;
 129
 130        if (!sd) {
 131                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 132                return;
 133        }
 134
 135        printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 136
 137        for (;;) {
 138                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 139                        break;
 140                level++;
 141                sd = sd->parent;
 142                if (!sd)
 143                        break;
 144        }
 145}
 146#else /* !CONFIG_SCHED_DEBUG */
 147
 148# define sched_debug_enabled 0
 149# define sched_domain_debug(sd, cpu) do { } while (0)
 150static inline bool sched_debug(void)
 151{
 152        return false;
 153}
 154#endif /* CONFIG_SCHED_DEBUG */
 155
 156static int sd_degenerate(struct sched_domain *sd)
 157{
 158        if (cpumask_weight(sched_domain_span(sd)) == 1)
 159                return 1;
 160
 161        /* Following flags need at least 2 groups */
 162        if (sd->flags & (SD_LOAD_BALANCE |
 163                         SD_BALANCE_NEWIDLE |
 164                         SD_BALANCE_FORK |
 165                         SD_BALANCE_EXEC |
 166                         SD_SHARE_CPUCAPACITY |
 167                         SD_ASYM_CPUCAPACITY |
 168                         SD_SHARE_PKG_RESOURCES |
 169                         SD_SHARE_POWERDOMAIN)) {
 170                if (sd->groups != sd->groups->next)
 171                        return 0;
 172        }
 173
 174        /* Following flags don't use groups */
 175        if (sd->flags & (SD_WAKE_AFFINE))
 176                return 0;
 177
 178        return 1;
 179}
 180
 181static int
 182sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 183{
 184        unsigned long cflags = sd->flags, pflags = parent->flags;
 185
 186        if (sd_degenerate(parent))
 187                return 1;
 188
 189        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 190                return 0;
 191
 192        /* Flags needing groups don't count if only 1 group in parent */
 193        if (parent->groups == parent->groups->next) {
 194                pflags &= ~(SD_LOAD_BALANCE |
 195                                SD_BALANCE_NEWIDLE |
 196                                SD_BALANCE_FORK |
 197                                SD_BALANCE_EXEC |
 198                                SD_ASYM_CPUCAPACITY |
 199                                SD_SHARE_CPUCAPACITY |
 200                                SD_SHARE_PKG_RESOURCES |
 201                                SD_PREFER_SIBLING |
 202                                SD_SHARE_POWERDOMAIN);
 203                if (nr_node_ids == 1)
 204                        pflags &= ~SD_SERIALIZE;
 205        }
 206        if (~cflags & pflags)
 207                return 0;
 208
 209        return 1;
 210}
 211
 212static void free_rootdomain(struct rcu_head *rcu)
 213{
 214        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 215
 216        cpupri_cleanup(&rd->cpupri);
 217        cpudl_cleanup(&rd->cpudl);
 218        free_cpumask_var(rd->dlo_mask);
 219        free_cpumask_var(rd->rto_mask);
 220        free_cpumask_var(rd->online);
 221        free_cpumask_var(rd->span);
 222        kfree(rd);
 223}
 224
 225void rq_attach_root(struct rq *rq, struct root_domain *rd)
 226{
 227        struct root_domain *old_rd = NULL;
 228        unsigned long flags;
 229
 230        raw_spin_lock_irqsave(&rq->lock, flags);
 231
 232        if (rq->rd) {
 233                old_rd = rq->rd;
 234
 235                if (cpumask_test_cpu(rq->cpu, old_rd->online))
 236                        set_rq_offline(rq);
 237
 238                cpumask_clear_cpu(rq->cpu, old_rd->span);
 239
 240                /*
 241                 * If we dont want to free the old_rd yet then
 242                 * set old_rd to NULL to skip the freeing later
 243                 * in this function:
 244                 */
 245                if (!atomic_dec_and_test(&old_rd->refcount))
 246                        old_rd = NULL;
 247        }
 248
 249        atomic_inc(&rd->refcount);
 250        rq->rd = rd;
 251
 252        cpumask_set_cpu(rq->cpu, rd->span);
 253        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 254                set_rq_online(rq);
 255
 256        raw_spin_unlock_irqrestore(&rq->lock, flags);
 257
 258        if (old_rd)
 259                call_rcu_sched(&old_rd->rcu, free_rootdomain);
 260}
 261
 262static int init_rootdomain(struct root_domain *rd)
 263{
 264        if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 265                goto out;
 266        if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 267                goto free_span;
 268        if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 269                goto free_online;
 270        if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 271                goto free_dlo_mask;
 272
 273#ifdef HAVE_RT_PUSH_IPI
 274        rd->rto_cpu = -1;
 275        raw_spin_lock_init(&rd->rto_lock);
 276        init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 277#endif
 278
 279        init_dl_bw(&rd->dl_bw);
 280        if (cpudl_init(&rd->cpudl) != 0)
 281                goto free_rto_mask;
 282
 283        if (cpupri_init(&rd->cpupri) != 0)
 284                goto free_cpudl;
 285        return 0;
 286
 287free_cpudl:
 288        cpudl_cleanup(&rd->cpudl);
 289free_rto_mask:
 290        free_cpumask_var(rd->rto_mask);
 291free_dlo_mask:
 292        free_cpumask_var(rd->dlo_mask);
 293free_online:
 294        free_cpumask_var(rd->online);
 295free_span:
 296        free_cpumask_var(rd->span);
 297out:
 298        return -ENOMEM;
 299}
 300
 301/*
 302 * By default the system creates a single root-domain with all CPUs as
 303 * members (mimicking the global state we have today).
 304 */
 305struct root_domain def_root_domain;
 306
 307void init_defrootdomain(void)
 308{
 309        init_rootdomain(&def_root_domain);
 310
 311        atomic_set(&def_root_domain.refcount, 1);
 312}
 313
 314static struct root_domain *alloc_rootdomain(void)
 315{
 316        struct root_domain *rd;
 317
 318        rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 319        if (!rd)
 320                return NULL;
 321
 322        if (init_rootdomain(rd) != 0) {
 323                kfree(rd);
 324                return NULL;
 325        }
 326
 327        return rd;
 328}
 329
 330static void free_sched_groups(struct sched_group *sg, int free_sgc)
 331{
 332        struct sched_group *tmp, *first;
 333
 334        if (!sg)
 335                return;
 336
 337        first = sg;
 338        do {
 339                tmp = sg->next;
 340
 341                if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 342                        kfree(sg->sgc);
 343
 344                if (atomic_dec_and_test(&sg->ref))
 345                        kfree(sg);
 346                sg = tmp;
 347        } while (sg != first);
 348}
 349
 350static void destroy_sched_domain(struct sched_domain *sd)
 351{
 352        /*
 353         * A normal sched domain may have multiple group references, an
 354         * overlapping domain, having private groups, only one.  Iterate,
 355         * dropping group/capacity references, freeing where none remain.
 356         */
 357        free_sched_groups(sd->groups, 1);
 358
 359        if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 360                kfree(sd->shared);
 361        kfree(sd);
 362}
 363
 364static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 365{
 366        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 367
 368        while (sd) {
 369                struct sched_domain *parent = sd->parent;
 370                destroy_sched_domain(sd);
 371                sd = parent;
 372        }
 373}
 374
 375static void destroy_sched_domains(struct sched_domain *sd)
 376{
 377        if (sd)
 378                call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 379}
 380
 381/*
 382 * Keep a special pointer to the highest sched_domain that has
 383 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 384 * allows us to avoid some pointer chasing select_idle_sibling().
 385 *
 386 * Also keep a unique ID per domain (we use the first CPU number in
 387 * the cpumask of the domain), this allows us to quickly tell if
 388 * two CPUs are in the same cache domain, see cpus_share_cache().
 389 */
 390DEFINE_PER_CPU(struct sched_domain *, sd_llc);
 391DEFINE_PER_CPU(int, sd_llc_size);
 392DEFINE_PER_CPU(int, sd_llc_id);
 393DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 394DEFINE_PER_CPU(struct sched_domain *, sd_numa);
 395DEFINE_PER_CPU(struct sched_domain *, sd_asym);
 396
 397static void update_top_cache_domain(int cpu)
 398{
 399        struct sched_domain_shared *sds = NULL;
 400        struct sched_domain *sd;
 401        int id = cpu;
 402        int size = 1;
 403
 404        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 405        if (sd) {
 406                id = cpumask_first(sched_domain_span(sd));
 407                size = cpumask_weight(sched_domain_span(sd));
 408                sds = sd->shared;
 409        }
 410
 411        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 412        per_cpu(sd_llc_size, cpu) = size;
 413        per_cpu(sd_llc_id, cpu) = id;
 414        rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 415
 416        sd = lowest_flag_domain(cpu, SD_NUMA);
 417        rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 418
 419        sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 420        rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
 421}
 422
 423/*
 424 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 425 * hold the hotplug lock.
 426 */
 427static void
 428cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 429{
 430        struct rq *rq = cpu_rq(cpu);
 431        struct sched_domain *tmp;
 432
 433        /* Remove the sched domains which do not contribute to scheduling. */
 434        for (tmp = sd; tmp; ) {
 435                struct sched_domain *parent = tmp->parent;
 436                if (!parent)
 437                        break;
 438
 439                if (sd_parent_degenerate(tmp, parent)) {
 440                        tmp->parent = parent->parent;
 441                        if (parent->parent)
 442                                parent->parent->child = tmp;
 443                        /*
 444                         * Transfer SD_PREFER_SIBLING down in case of a
 445                         * degenerate parent; the spans match for this
 446                         * so the property transfers.
 447                         */
 448                        if (parent->flags & SD_PREFER_SIBLING)
 449                                tmp->flags |= SD_PREFER_SIBLING;
 450                        destroy_sched_domain(parent);
 451                } else
 452                        tmp = tmp->parent;
 453        }
 454
 455        if (sd && sd_degenerate(sd)) {
 456                tmp = sd;
 457                sd = sd->parent;
 458                destroy_sched_domain(tmp);
 459                if (sd)
 460                        sd->child = NULL;
 461        }
 462
 463        sched_domain_debug(sd, cpu);
 464
 465        rq_attach_root(rq, rd);
 466        tmp = rq->sd;
 467        rcu_assign_pointer(rq->sd, sd);
 468        dirty_sched_domain_sysctl(cpu);
 469        destroy_sched_domains(tmp);
 470
 471        update_top_cache_domain(cpu);
 472}
 473
 474struct s_data {
 475        struct sched_domain ** __percpu sd;
 476        struct root_domain      *rd;
 477};
 478
 479enum s_alloc {
 480        sa_rootdomain,
 481        sa_sd,
 482        sa_sd_storage,
 483        sa_none,
 484};
 485
 486/*
 487 * Return the canonical balance CPU for this group, this is the first CPU
 488 * of this group that's also in the balance mask.
 489 *
 490 * The balance mask are all those CPUs that could actually end up at this
 491 * group. See build_balance_mask().
 492 *
 493 * Also see should_we_balance().
 494 */
 495int group_balance_cpu(struct sched_group *sg)
 496{
 497        return cpumask_first(group_balance_mask(sg));
 498}
 499
 500
 501/*
 502 * NUMA topology (first read the regular topology blurb below)
 503 *
 504 * Given a node-distance table, for example:
 505 *
 506 *   node   0   1   2   3
 507 *     0:  10  20  30  20
 508 *     1:  20  10  20  30
 509 *     2:  30  20  10  20
 510 *     3:  20  30  20  10
 511 *
 512 * which represents a 4 node ring topology like:
 513 *
 514 *   0 ----- 1
 515 *   |       |
 516 *   |       |
 517 *   |       |
 518 *   3 ----- 2
 519 *
 520 * We want to construct domains and groups to represent this. The way we go
 521 * about doing this is to build the domains on 'hops'. For each NUMA level we
 522 * construct the mask of all nodes reachable in @level hops.
 523 *
 524 * For the above NUMA topology that gives 3 levels:
 525 *
 526 * NUMA-2       0-3             0-3             0-3             0-3
 527 *  groups:     {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
 528 *
 529 * NUMA-1       0-1,3           0-2             1-3             0,2-3
 530 *  groups:     {0},{1},{3}     {0},{1},{2}     {1},{2},{3}     {0},{2},{3}
 531 *
 532 * NUMA-0       0               1               2               3
 533 *
 534 *
 535 * As can be seen; things don't nicely line up as with the regular topology.
 536 * When we iterate a domain in child domain chunks some nodes can be
 537 * represented multiple times -- hence the "overlap" naming for this part of
 538 * the topology.
 539 *
 540 * In order to minimize this overlap, we only build enough groups to cover the
 541 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 542 *
 543 * Because:
 544 *
 545 *  - the first group of each domain is its child domain; this
 546 *    gets us the first 0-1,3
 547 *  - the only uncovered node is 2, who's child domain is 1-3.
 548 *
 549 * However, because of the overlap, computing a unique CPU for each group is
 550 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 551 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 552 * end up at those groups (they would end up in group: 0-1,3).
 553 *
 554 * To correct this we have to introduce the group balance mask. This mask
 555 * will contain those CPUs in the group that can reach this group given the
 556 * (child) domain tree.
 557 *
 558 * With this we can once again compute balance_cpu and sched_group_capacity
 559 * relations.
 560 *
 561 * XXX include words on how balance_cpu is unique and therefore can be
 562 * used for sched_group_capacity links.
 563 *
 564 *
 565 * Another 'interesting' topology is:
 566 *
 567 *   node   0   1   2   3
 568 *     0:  10  20  20  30
 569 *     1:  20  10  20  20
 570 *     2:  20  20  10  20
 571 *     3:  30  20  20  10
 572 *
 573 * Which looks a little like:
 574 *
 575 *   0 ----- 1
 576 *   |     / |
 577 *   |   /   |
 578 *   | /     |
 579 *   2 ----- 3
 580 *
 581 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 582 * are not.
 583 *
 584 * This leads to a few particularly weird cases where the sched_domain's are
 585 * not of the same number for each cpu. Consider:
 586 *
 587 * NUMA-2       0-3                                             0-3
 588 *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
 589 *
 590 * NUMA-1       0-2             0-3             0-3             1-3
 591 *
 592 * NUMA-0       0               1               2               3
 593 *
 594 */
 595
 596
 597/*
 598 * Build the balance mask; it contains only those CPUs that can arrive at this
 599 * group and should be considered to continue balancing.
 600 *
 601 * We do this during the group creation pass, therefore the group information
 602 * isn't complete yet, however since each group represents a (child) domain we
 603 * can fully construct this using the sched_domain bits (which are already
 604 * complete).
 605 */
 606static void
 607build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 608{
 609        const struct cpumask *sg_span = sched_group_span(sg);
 610        struct sd_data *sdd = sd->private;
 611        struct sched_domain *sibling;
 612        int i;
 613
 614        cpumask_clear(mask);
 615
 616        for_each_cpu(i, sg_span) {
 617                sibling = *per_cpu_ptr(sdd->sd, i);
 618
 619                /*
 620                 * Can happen in the asymmetric case, where these siblings are
 621                 * unused. The mask will not be empty because those CPUs that
 622                 * do have the top domain _should_ span the domain.
 623                 */
 624                if (!sibling->child)
 625                        continue;
 626
 627                /* If we would not end up here, we can't continue from here */
 628                if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 629                        continue;
 630
 631                cpumask_set_cpu(i, mask);
 632        }
 633
 634        /* We must not have empty masks here */
 635        WARN_ON_ONCE(cpumask_empty(mask));
 636}
 637
 638/*
 639 * XXX: This creates per-node group entries; since the load-balancer will
 640 * immediately access remote memory to construct this group's load-balance
 641 * statistics having the groups node local is of dubious benefit.
 642 */
 643static struct sched_group *
 644build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 645{
 646        struct sched_group *sg;
 647        struct cpumask *sg_span;
 648
 649        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 650                        GFP_KERNEL, cpu_to_node(cpu));
 651
 652        if (!sg)
 653                return NULL;
 654
 655        sg_span = sched_group_span(sg);
 656        if (sd->child)
 657                cpumask_copy(sg_span, sched_domain_span(sd->child));
 658        else
 659                cpumask_copy(sg_span, sched_domain_span(sd));
 660
 661        atomic_inc(&sg->ref);
 662        return sg;
 663}
 664
 665static void init_overlap_sched_group(struct sched_domain *sd,
 666                                     struct sched_group *sg)
 667{
 668        struct cpumask *mask = sched_domains_tmpmask2;
 669        struct sd_data *sdd = sd->private;
 670        struct cpumask *sg_span;
 671        int cpu;
 672
 673        build_balance_mask(sd, sg, mask);
 674        cpu = cpumask_first_and(sched_group_span(sg), mask);
 675
 676        sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 677        if (atomic_inc_return(&sg->sgc->ref) == 1)
 678                cpumask_copy(group_balance_mask(sg), mask);
 679        else
 680                WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 681
 682        /*
 683         * Initialize sgc->capacity such that even if we mess up the
 684         * domains and no possible iteration will get us here, we won't
 685         * die on a /0 trap.
 686         */
 687        sg_span = sched_group_span(sg);
 688        sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 689        sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 690}
 691
 692static int
 693build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 694{
 695        struct sched_group *first = NULL, *last = NULL, *sg;
 696        const struct cpumask *span = sched_domain_span(sd);
 697        struct cpumask *covered = sched_domains_tmpmask;
 698        struct sd_data *sdd = sd->private;
 699        struct sched_domain *sibling;
 700        int i;
 701
 702        cpumask_clear(covered);
 703
 704        for_each_cpu_wrap(i, span, cpu) {
 705                struct cpumask *sg_span;
 706
 707                if (cpumask_test_cpu(i, covered))
 708                        continue;
 709
 710                sibling = *per_cpu_ptr(sdd->sd, i);
 711
 712                /*
 713                 * Asymmetric node setups can result in situations where the
 714                 * domain tree is of unequal depth, make sure to skip domains
 715                 * that already cover the entire range.
 716                 *
 717                 * In that case build_sched_domains() will have terminated the
 718                 * iteration early and our sibling sd spans will be empty.
 719                 * Domains should always include the CPU they're built on, so
 720                 * check that.
 721                 */
 722                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
 723                        continue;
 724
 725                sg = build_group_from_child_sched_domain(sibling, cpu);
 726                if (!sg)
 727                        goto fail;
 728
 729                sg_span = sched_group_span(sg);
 730                cpumask_or(covered, covered, sg_span);
 731
 732                init_overlap_sched_group(sd, sg);
 733
 734                if (!first)
 735                        first = sg;
 736                if (last)
 737                        last->next = sg;
 738                last = sg;
 739                last->next = first;
 740        }
 741        sd->groups = first;
 742
 743        return 0;
 744
 745fail:
 746        free_sched_groups(first, 0);
 747
 748        return -ENOMEM;
 749}
 750
 751
 752/*
 753 * Package topology (also see the load-balance blurb in fair.c)
 754 *
 755 * The scheduler builds a tree structure to represent a number of important
 756 * topology features. By default (default_topology[]) these include:
 757 *
 758 *  - Simultaneous multithreading (SMT)
 759 *  - Multi-Core Cache (MC)
 760 *  - Package (DIE)
 761 *
 762 * Where the last one more or less denotes everything up to a NUMA node.
 763 *
 764 * The tree consists of 3 primary data structures:
 765 *
 766 *      sched_domain -> sched_group -> sched_group_capacity
 767 *          ^ ^             ^ ^
 768 *          `-'             `-'
 769 *
 770 * The sched_domains are per-cpu and have a two way link (parent & child) and
 771 * denote the ever growing mask of CPUs belonging to that level of topology.
 772 *
 773 * Each sched_domain has a circular (double) linked list of sched_group's, each
 774 * denoting the domains of the level below (or individual CPUs in case of the
 775 * first domain level). The sched_group linked by a sched_domain includes the
 776 * CPU of that sched_domain [*].
 777 *
 778 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
 779 *
 780 * CPU   0   1   2   3   4   5   6   7
 781 *
 782 * DIE  [                             ]
 783 * MC   [             ] [             ]
 784 * SMT  [     ] [     ] [     ] [     ]
 785 *
 786 *  - or -
 787 *
 788 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
 789 * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
 790 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
 791 *
 792 * CPU   0   1   2   3   4   5   6   7
 793 *
 794 * One way to think about it is: sched_domain moves you up and down among these
 795 * topology levels, while sched_group moves you sideways through it, at child
 796 * domain granularity.
 797 *
 798 * sched_group_capacity ensures each unique sched_group has shared storage.
 799 *
 800 * There are two related construction problems, both require a CPU that
 801 * uniquely identify each group (for a given domain):
 802 *
 803 *  - The first is the balance_cpu (see should_we_balance() and the
 804 *    load-balance blub in fair.c); for each group we only want 1 CPU to
 805 *    continue balancing at a higher domain.
 806 *
 807 *  - The second is the sched_group_capacity; we want all identical groups
 808 *    to share a single sched_group_capacity.
 809 *
 810 * Since these topologies are exclusive by construction. That is, its
 811 * impossible for an SMT thread to belong to multiple cores, and cores to
 812 * be part of multiple caches. There is a very clear and unique location
 813 * for each CPU in the hierarchy.
 814 *
 815 * Therefore computing a unique CPU for each group is trivial (the iteration
 816 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
 817 * group), we can simply pick the first CPU in each group.
 818 *
 819 *
 820 * [*] in other words, the first group of each domain is its child domain.
 821 */
 822
 823static struct sched_group *get_group(int cpu, struct sd_data *sdd)
 824{
 825        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 826        struct sched_domain *child = sd->child;
 827        struct sched_group *sg;
 828
 829        if (child)
 830                cpu = cpumask_first(sched_domain_span(child));
 831
 832        sg = *per_cpu_ptr(sdd->sg, cpu);
 833        sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 834
 835        /* For claim_allocations: */
 836        atomic_inc(&sg->ref);
 837        atomic_inc(&sg->sgc->ref);
 838
 839        if (child) {
 840                cpumask_copy(sched_group_span(sg), sched_domain_span(child));
 841                cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
 842        } else {
 843                cpumask_set_cpu(cpu, sched_group_span(sg));
 844                cpumask_set_cpu(cpu, group_balance_mask(sg));
 845        }
 846
 847        sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
 848        sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 849
 850        return sg;
 851}
 852
 853/*
 854 * build_sched_groups will build a circular linked list of the groups
 855 * covered by the given span, and will set each group's ->cpumask correctly,
 856 * and ->cpu_capacity to 0.
 857 *
 858 * Assumes the sched_domain tree is fully constructed
 859 */
 860static int
 861build_sched_groups(struct sched_domain *sd, int cpu)
 862{
 863        struct sched_group *first = NULL, *last = NULL;
 864        struct sd_data *sdd = sd->private;
 865        const struct cpumask *span = sched_domain_span(sd);
 866        struct cpumask *covered;
 867        int i;
 868
 869        lockdep_assert_held(&sched_domains_mutex);
 870        covered = sched_domains_tmpmask;
 871
 872        cpumask_clear(covered);
 873
 874        for_each_cpu_wrap(i, span, cpu) {
 875                struct sched_group *sg;
 876
 877                if (cpumask_test_cpu(i, covered))
 878                        continue;
 879
 880                sg = get_group(i, sdd);
 881
 882                cpumask_or(covered, covered, sched_group_span(sg));
 883
 884                if (!first)
 885                        first = sg;
 886                if (last)
 887                        last->next = sg;
 888                last = sg;
 889        }
 890        last->next = first;
 891        sd->groups = first;
 892
 893        return 0;
 894}
 895
 896/*
 897 * Initialize sched groups cpu_capacity.
 898 *
 899 * cpu_capacity indicates the capacity of sched group, which is used while
 900 * distributing the load between different sched groups in a sched domain.
 901 * Typically cpu_capacity for all the groups in a sched domain will be same
 902 * unless there are asymmetries in the topology. If there are asymmetries,
 903 * group having more cpu_capacity will pickup more load compared to the
 904 * group having less cpu_capacity.
 905 */
 906static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
 907{
 908        struct sched_group *sg = sd->groups;
 909
 910        WARN_ON(!sg);
 911
 912        do {
 913                int cpu, max_cpu = -1;
 914
 915                sg->group_weight = cpumask_weight(sched_group_span(sg));
 916
 917                if (!(sd->flags & SD_ASYM_PACKING))
 918                        goto next;
 919
 920                for_each_cpu(cpu, sched_group_span(sg)) {
 921                        if (max_cpu < 0)
 922                                max_cpu = cpu;
 923                        else if (sched_asym_prefer(cpu, max_cpu))
 924                                max_cpu = cpu;
 925                }
 926                sg->asym_prefer_cpu = max_cpu;
 927
 928next:
 929                sg = sg->next;
 930        } while (sg != sd->groups);
 931
 932        if (cpu != group_balance_cpu(sg))
 933                return;
 934
 935        update_group_capacity(sd, cpu);
 936}
 937
 938/*
 939 * Initializers for schedule domains
 940 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 941 */
 942
 943static int default_relax_domain_level = -1;
 944int sched_domain_level_max;
 945
 946static int __init setup_relax_domain_level(char *str)
 947{
 948        if (kstrtoint(str, 0, &default_relax_domain_level))
 949                pr_warn("Unable to set relax_domain_level\n");
 950
 951        return 1;
 952}
 953__setup("relax_domain_level=", setup_relax_domain_level);
 954
 955static void set_domain_attribute(struct sched_domain *sd,
 956                                 struct sched_domain_attr *attr)
 957{
 958        int request;
 959
 960        if (!attr || attr->relax_domain_level < 0) {
 961                if (default_relax_domain_level < 0)
 962                        return;
 963                else
 964                        request = default_relax_domain_level;
 965        } else
 966                request = attr->relax_domain_level;
 967        if (request < sd->level) {
 968                /* Turn off idle balance on this domain: */
 969                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 970        } else {
 971                /* Turn on idle balance on this domain: */
 972                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 973        }
 974}
 975
 976static void __sdt_free(const struct cpumask *cpu_map);
 977static int __sdt_alloc(const struct cpumask *cpu_map);
 978
 979static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 980                                 const struct cpumask *cpu_map)
 981{
 982        switch (what) {
 983        case sa_rootdomain:
 984                if (!atomic_read(&d->rd->refcount))
 985                        free_rootdomain(&d->rd->rcu);
 986                /* Fall through */
 987        case sa_sd:
 988                free_percpu(d->sd);
 989                /* Fall through */
 990        case sa_sd_storage:
 991                __sdt_free(cpu_map);
 992                /* Fall through */
 993        case sa_none:
 994                break;
 995        }
 996}
 997
 998static enum s_alloc
 999__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1000{
1001        memset(d, 0, sizeof(*d));
1002
1003        if (__sdt_alloc(cpu_map))
1004                return sa_sd_storage;
1005        d->sd = alloc_percpu(struct sched_domain *);
1006        if (!d->sd)
1007                return sa_sd_storage;
1008        d->rd = alloc_rootdomain();
1009        if (!d->rd)
1010                return sa_sd;
1011        return sa_rootdomain;
1012}
1013
1014/*
1015 * NULL the sd_data elements we've used to build the sched_domain and
1016 * sched_group structure so that the subsequent __free_domain_allocs()
1017 * will not free the data we're using.
1018 */
1019static void claim_allocations(int cpu, struct sched_domain *sd)
1020{
1021        struct sd_data *sdd = sd->private;
1022
1023        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1024        *per_cpu_ptr(sdd->sd, cpu) = NULL;
1025
1026        if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1027                *per_cpu_ptr(sdd->sds, cpu) = NULL;
1028
1029        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1030                *per_cpu_ptr(sdd->sg, cpu) = NULL;
1031
1032        if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1033                *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1034}
1035
1036#ifdef CONFIG_NUMA
1037static int sched_domains_numa_levels;
1038enum numa_topology_type sched_numa_topology_type;
1039static int *sched_domains_numa_distance;
1040int sched_max_numa_distance;
1041static struct cpumask ***sched_domains_numa_masks;
1042static int sched_domains_curr_level;
1043#endif
1044
1045/*
1046 * SD_flags allowed in topology descriptions.
1047 *
1048 * These flags are purely descriptive of the topology and do not prescribe
1049 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1050 * function:
1051 *
1052 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1053 *   SD_SHARE_PKG_RESOURCES - describes shared caches
1054 *   SD_NUMA                - describes NUMA topologies
1055 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1056 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
1057 *
1058 * Odd one out, which beside describing the topology has a quirk also
1059 * prescribes the desired behaviour that goes along with it:
1060 *
1061 *   SD_ASYM_PACKING        - describes SMT quirks
1062 */
1063#define TOPOLOGY_SD_FLAGS               \
1064        (SD_SHARE_CPUCAPACITY |         \
1065         SD_SHARE_PKG_RESOURCES |       \
1066         SD_NUMA |                      \
1067         SD_ASYM_PACKING |              \
1068         SD_ASYM_CPUCAPACITY |          \
1069         SD_SHARE_POWERDOMAIN)
1070
1071static struct sched_domain *
1072sd_init(struct sched_domain_topology_level *tl,
1073        const struct cpumask *cpu_map,
1074        struct sched_domain *child, int cpu)
1075{
1076        struct sd_data *sdd = &tl->data;
1077        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1078        int sd_id, sd_weight, sd_flags = 0;
1079
1080#ifdef CONFIG_NUMA
1081        /*
1082         * Ugly hack to pass state to sd_numa_mask()...
1083         */
1084        sched_domains_curr_level = tl->numa_level;
1085#endif
1086
1087        sd_weight = cpumask_weight(tl->mask(cpu));
1088
1089        if (tl->sd_flags)
1090                sd_flags = (*tl->sd_flags)();
1091        if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1092                        "wrong sd_flags in topology description\n"))
1093                sd_flags &= ~TOPOLOGY_SD_FLAGS;
1094
1095        *sd = (struct sched_domain){
1096                .min_interval           = sd_weight,
1097                .max_interval           = 2*sd_weight,
1098                .busy_factor            = 32,
1099                .imbalance_pct          = 125,
1100
1101                .cache_nice_tries       = 0,
1102                .busy_idx               = 0,
1103                .idle_idx               = 0,
1104                .newidle_idx            = 0,
1105                .wake_idx               = 0,
1106                .forkexec_idx           = 0,
1107
1108                .flags                  = 1*SD_LOAD_BALANCE
1109                                        | 1*SD_BALANCE_NEWIDLE
1110                                        | 1*SD_BALANCE_EXEC
1111                                        | 1*SD_BALANCE_FORK
1112                                        | 0*SD_BALANCE_WAKE
1113                                        | 1*SD_WAKE_AFFINE
1114                                        | 0*SD_SHARE_CPUCAPACITY
1115                                        | 0*SD_SHARE_PKG_RESOURCES
1116                                        | 0*SD_SERIALIZE
1117                                        | 0*SD_PREFER_SIBLING
1118                                        | 0*SD_NUMA
1119                                        | sd_flags
1120                                        ,
1121
1122                .last_balance           = jiffies,
1123                .balance_interval       = sd_weight,
1124                .smt_gain               = 0,
1125                .max_newidle_lb_cost    = 0,
1126                .next_decay_max_lb_cost = jiffies,
1127                .child                  = child,
1128#ifdef CONFIG_SCHED_DEBUG
1129                .name                   = tl->name,
1130#endif
1131        };
1132
1133        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1134        sd_id = cpumask_first(sched_domain_span(sd));
1135
1136        /*
1137         * Convert topological properties into behaviour.
1138         */
1139
1140        if (sd->flags & SD_ASYM_CPUCAPACITY) {
1141                struct sched_domain *t = sd;
1142
1143                for_each_lower_domain(t)
1144                        t->flags |= SD_BALANCE_WAKE;
1145        }
1146
1147        if (sd->flags & SD_SHARE_CPUCAPACITY) {
1148                sd->flags |= SD_PREFER_SIBLING;
1149                sd->imbalance_pct = 110;
1150                sd->smt_gain = 1178; /* ~15% */
1151
1152        } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1153                sd->flags |= SD_PREFER_SIBLING;
1154                sd->imbalance_pct = 117;
1155                sd->cache_nice_tries = 1;
1156                sd->busy_idx = 2;
1157
1158#ifdef CONFIG_NUMA
1159        } else if (sd->flags & SD_NUMA) {
1160                sd->cache_nice_tries = 2;
1161                sd->busy_idx = 3;
1162                sd->idle_idx = 2;
1163
1164                sd->flags |= SD_SERIALIZE;
1165                if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1166                        sd->flags &= ~(SD_BALANCE_EXEC |
1167                                       SD_BALANCE_FORK |
1168                                       SD_WAKE_AFFINE);
1169                }
1170
1171#endif
1172        } else {
1173                sd->flags |= SD_PREFER_SIBLING;
1174                sd->cache_nice_tries = 1;
1175                sd->busy_idx = 2;
1176                sd->idle_idx = 1;
1177        }
1178
1179        /*
1180         * For all levels sharing cache; connect a sched_domain_shared
1181         * instance.
1182         */
1183        if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1184                sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1185                atomic_inc(&sd->shared->ref);
1186                atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1187        }
1188
1189        sd->private = sdd;
1190
1191        return sd;
1192}
1193
1194/*
1195 * Topology list, bottom-up.
1196 */
1197static struct sched_domain_topology_level default_topology[] = {
1198#ifdef CONFIG_SCHED_SMT
1199        { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1200#endif
1201#ifdef CONFIG_SCHED_MC
1202        { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1203#endif
1204        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1205        { NULL, },
1206};
1207
1208static struct sched_domain_topology_level *sched_domain_topology =
1209        default_topology;
1210
1211#define for_each_sd_topology(tl)                        \
1212        for (tl = sched_domain_topology; tl->mask; tl++)
1213
1214void set_sched_topology(struct sched_domain_topology_level *tl)
1215{
1216        if (WARN_ON_ONCE(sched_smp_initialized))
1217                return;
1218
1219        sched_domain_topology = tl;
1220}
1221
1222#ifdef CONFIG_NUMA
1223
1224static const struct cpumask *sd_numa_mask(int cpu)
1225{
1226        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1227}
1228
1229static void sched_numa_warn(const char *str)
1230{
1231        static int done = false;
1232        int i,j;
1233
1234        if (done)
1235                return;
1236
1237        done = true;
1238
1239        printk(KERN_WARNING "ERROR: %s\n\n", str);
1240
1241        for (i = 0; i < nr_node_ids; i++) {
1242                printk(KERN_WARNING "  ");
1243                for (j = 0; j < nr_node_ids; j++)
1244                        printk(KERN_CONT "%02d ", node_distance(i,j));
1245                printk(KERN_CONT "\n");
1246        }
1247        printk(KERN_WARNING "\n");
1248}
1249
1250bool find_numa_distance(int distance)
1251{
1252        int i;
1253
1254        if (distance == node_distance(0, 0))
1255                return true;
1256
1257        for (i = 0; i < sched_domains_numa_levels; i++) {
1258                if (sched_domains_numa_distance[i] == distance)
1259                        return true;
1260        }
1261
1262        return false;
1263}
1264
1265/*
1266 * A system can have three types of NUMA topology:
1267 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1268 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1269 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1270 *
1271 * The difference between a glueless mesh topology and a backplane
1272 * topology lies in whether communication between not directly
1273 * connected nodes goes through intermediary nodes (where programs
1274 * could run), or through backplane controllers. This affects
1275 * placement of programs.
1276 *
1277 * The type of topology can be discerned with the following tests:
1278 * - If the maximum distance between any nodes is 1 hop, the system
1279 *   is directly connected.
1280 * - If for two nodes A and B, located N > 1 hops away from each other,
1281 *   there is an intermediary node C, which is < N hops away from both
1282 *   nodes A and B, the system is a glueless mesh.
1283 */
1284static void init_numa_topology_type(void)
1285{
1286        int a, b, c, n;
1287
1288        n = sched_max_numa_distance;
1289
1290        if (sched_domains_numa_levels <= 1) {
1291                sched_numa_topology_type = NUMA_DIRECT;
1292                return;
1293        }
1294
1295        for_each_online_node(a) {
1296                for_each_online_node(b) {
1297                        /* Find two nodes furthest removed from each other. */
1298                        if (node_distance(a, b) < n)
1299                                continue;
1300
1301                        /* Is there an intermediary node between a and b? */
1302                        for_each_online_node(c) {
1303                                if (node_distance(a, c) < n &&
1304                                    node_distance(b, c) < n) {
1305                                        sched_numa_topology_type =
1306                                                        NUMA_GLUELESS_MESH;
1307                                        return;
1308                                }
1309                        }
1310
1311                        sched_numa_topology_type = NUMA_BACKPLANE;
1312                        return;
1313                }
1314        }
1315}
1316
1317void sched_init_numa(void)
1318{
1319        int next_distance, curr_distance = node_distance(0, 0);
1320        struct sched_domain_topology_level *tl;
1321        int level = 0;
1322        int i, j, k;
1323
1324        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1325        if (!sched_domains_numa_distance)
1326                return;
1327
1328        /* Includes NUMA identity node at level 0. */
1329        sched_domains_numa_distance[level++] = curr_distance;
1330        sched_domains_numa_levels = level;
1331
1332        /*
1333         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1334         * unique distances in the node_distance() table.
1335         *
1336         * Assumes node_distance(0,j) includes all distances in
1337         * node_distance(i,j) in order to avoid cubic time.
1338         */
1339        next_distance = curr_distance;
1340        for (i = 0; i < nr_node_ids; i++) {
1341                for (j = 0; j < nr_node_ids; j++) {
1342                        for (k = 0; k < nr_node_ids; k++) {
1343                                int distance = node_distance(i, k);
1344
1345                                if (distance > curr_distance &&
1346                                    (distance < next_distance ||
1347                                     next_distance == curr_distance))
1348                                        next_distance = distance;
1349
1350                                /*
1351                                 * While not a strong assumption it would be nice to know
1352                                 * about cases where if node A is connected to B, B is not
1353                                 * equally connected to A.
1354                                 */
1355                                if (sched_debug() && node_distance(k, i) != distance)
1356                                        sched_numa_warn("Node-distance not symmetric");
1357
1358                                if (sched_debug() && i && !find_numa_distance(distance))
1359                                        sched_numa_warn("Node-0 not representative");
1360                        }
1361                        if (next_distance != curr_distance) {
1362                                sched_domains_numa_distance[level++] = next_distance;
1363                                sched_domains_numa_levels = level;
1364                                curr_distance = next_distance;
1365                        } else break;
1366                }
1367
1368                /*
1369                 * In case of sched_debug() we verify the above assumption.
1370                 */
1371                if (!sched_debug())
1372                        break;
1373        }
1374
1375        if (!level)
1376                return;
1377
1378        /*
1379         * 'level' contains the number of unique distances
1380         *
1381         * The sched_domains_numa_distance[] array includes the actual distance
1382         * numbers.
1383         */
1384
1385        /*
1386         * Here, we should temporarily reset sched_domains_numa_levels to 0.
1387         * If it fails to allocate memory for array sched_domains_numa_masks[][],
1388         * the array will contain less then 'level' members. This could be
1389         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1390         * in other functions.
1391         *
1392         * We reset it to 'level' at the end of this function.
1393         */
1394        sched_domains_numa_levels = 0;
1395
1396        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1397        if (!sched_domains_numa_masks)
1398                return;
1399
1400        /*
1401         * Now for each level, construct a mask per node which contains all
1402         * CPUs of nodes that are that many hops away from us.
1403         */
1404        for (i = 0; i < level; i++) {
1405                sched_domains_numa_masks[i] =
1406                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1407                if (!sched_domains_numa_masks[i])
1408                        return;
1409
1410                for (j = 0; j < nr_node_ids; j++) {
1411                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1412                        if (!mask)
1413                                return;
1414
1415                        sched_domains_numa_masks[i][j] = mask;
1416
1417                        for_each_node(k) {
1418                                if (node_distance(j, k) > sched_domains_numa_distance[i])
1419                                        continue;
1420
1421                                cpumask_or(mask, mask, cpumask_of_node(k));
1422                        }
1423                }
1424        }
1425
1426        /* Compute default topology size */
1427        for (i = 0; sched_domain_topology[i].mask; i++);
1428
1429        tl = kzalloc((i + level + 1) *
1430                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1431        if (!tl)
1432                return;
1433
1434        /*
1435         * Copy the default topology bits..
1436         */
1437        for (i = 0; sched_domain_topology[i].mask; i++)
1438                tl[i] = sched_domain_topology[i];
1439
1440        /*
1441         * Add the NUMA identity distance, aka single NODE.
1442         */
1443        tl[i++] = (struct sched_domain_topology_level){
1444                .mask = sd_numa_mask,
1445                .numa_level = 0,
1446                SD_INIT_NAME(NODE)
1447        };
1448
1449        /*
1450         * .. and append 'j' levels of NUMA goodness.
1451         */
1452        for (j = 1; j < level; i++, j++) {
1453                tl[i] = (struct sched_domain_topology_level){
1454                        .mask = sd_numa_mask,
1455                        .sd_flags = cpu_numa_flags,
1456                        .flags = SDTL_OVERLAP,
1457                        .numa_level = j,
1458                        SD_INIT_NAME(NUMA)
1459                };
1460        }
1461
1462        sched_domain_topology = tl;
1463
1464        sched_domains_numa_levels = level;
1465        sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1466
1467        init_numa_topology_type();
1468}
1469
1470void sched_domains_numa_masks_set(unsigned int cpu)
1471{
1472        int node = cpu_to_node(cpu);
1473        int i, j;
1474
1475        for (i = 0; i < sched_domains_numa_levels; i++) {
1476                for (j = 0; j < nr_node_ids; j++) {
1477                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
1478                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1479                }
1480        }
1481}
1482
1483void sched_domains_numa_masks_clear(unsigned int cpu)
1484{
1485        int i, j;
1486
1487        for (i = 0; i < sched_domains_numa_levels; i++) {
1488                for (j = 0; j < nr_node_ids; j++)
1489                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1490        }
1491}
1492
1493#endif /* CONFIG_NUMA */
1494
1495static int __sdt_alloc(const struct cpumask *cpu_map)
1496{
1497        struct sched_domain_topology_level *tl;
1498        int j;
1499
1500        for_each_sd_topology(tl) {
1501                struct sd_data *sdd = &tl->data;
1502
1503                sdd->sd = alloc_percpu(struct sched_domain *);
1504                if (!sdd->sd)
1505                        return -ENOMEM;
1506
1507                sdd->sds = alloc_percpu(struct sched_domain_shared *);
1508                if (!sdd->sds)
1509                        return -ENOMEM;
1510
1511                sdd->sg = alloc_percpu(struct sched_group *);
1512                if (!sdd->sg)
1513                        return -ENOMEM;
1514
1515                sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1516                if (!sdd->sgc)
1517                        return -ENOMEM;
1518
1519                for_each_cpu(j, cpu_map) {
1520                        struct sched_domain *sd;
1521                        struct sched_domain_shared *sds;
1522                        struct sched_group *sg;
1523                        struct sched_group_capacity *sgc;
1524
1525                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1526                                        GFP_KERNEL, cpu_to_node(j));
1527                        if (!sd)
1528                                return -ENOMEM;
1529
1530                        *per_cpu_ptr(sdd->sd, j) = sd;
1531
1532                        sds = kzalloc_node(sizeof(struct sched_domain_shared),
1533                                        GFP_KERNEL, cpu_to_node(j));
1534                        if (!sds)
1535                                return -ENOMEM;
1536
1537                        *per_cpu_ptr(sdd->sds, j) = sds;
1538
1539                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1540                                        GFP_KERNEL, cpu_to_node(j));
1541                        if (!sg)
1542                                return -ENOMEM;
1543
1544                        sg->next = sg;
1545
1546                        *per_cpu_ptr(sdd->sg, j) = sg;
1547
1548                        sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1549                                        GFP_KERNEL, cpu_to_node(j));
1550                        if (!sgc)
1551                                return -ENOMEM;
1552
1553#ifdef CONFIG_SCHED_DEBUG
1554                        sgc->id = j;
1555#endif
1556
1557                        *per_cpu_ptr(sdd->sgc, j) = sgc;
1558                }
1559        }
1560
1561        return 0;
1562}
1563
1564static void __sdt_free(const struct cpumask *cpu_map)
1565{
1566        struct sched_domain_topology_level *tl;
1567        int j;
1568
1569        for_each_sd_topology(tl) {
1570                struct sd_data *sdd = &tl->data;
1571
1572                for_each_cpu(j, cpu_map) {
1573                        struct sched_domain *sd;
1574
1575                        if (sdd->sd) {
1576                                sd = *per_cpu_ptr(sdd->sd, j);
1577                                if (sd && (sd->flags & SD_OVERLAP))
1578                                        free_sched_groups(sd->groups, 0);
1579                                kfree(*per_cpu_ptr(sdd->sd, j));
1580                        }
1581
1582                        if (sdd->sds)
1583                                kfree(*per_cpu_ptr(sdd->sds, j));
1584                        if (sdd->sg)
1585                                kfree(*per_cpu_ptr(sdd->sg, j));
1586                        if (sdd->sgc)
1587                                kfree(*per_cpu_ptr(sdd->sgc, j));
1588                }
1589                free_percpu(sdd->sd);
1590                sdd->sd = NULL;
1591                free_percpu(sdd->sds);
1592                sdd->sds = NULL;
1593                free_percpu(sdd->sg);
1594                sdd->sg = NULL;
1595                free_percpu(sdd->sgc);
1596                sdd->sgc = NULL;
1597        }
1598}
1599
1600static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1601                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1602                struct sched_domain *child, int cpu)
1603{
1604        struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1605
1606        if (child) {
1607                sd->level = child->level + 1;
1608                sched_domain_level_max = max(sched_domain_level_max, sd->level);
1609                child->parent = sd;
1610
1611                if (!cpumask_subset(sched_domain_span(child),
1612                                    sched_domain_span(sd))) {
1613                        pr_err("BUG: arch topology borken\n");
1614#ifdef CONFIG_SCHED_DEBUG
1615                        pr_err("     the %s domain not a subset of the %s domain\n",
1616                                        child->name, sd->name);
1617#endif
1618                        /* Fixup, ensure @sd has at least @child cpus. */
1619                        cpumask_or(sched_domain_span(sd),
1620                                   sched_domain_span(sd),
1621                                   sched_domain_span(child));
1622                }
1623
1624        }
1625        set_domain_attribute(sd, attr);
1626
1627        return sd;
1628}
1629
1630/*
1631 * Build sched domains for a given set of CPUs and attach the sched domains
1632 * to the individual CPUs
1633 */
1634static int
1635build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1636{
1637        enum s_alloc alloc_state;
1638        struct sched_domain *sd;
1639        struct s_data d;
1640        struct rq *rq = NULL;
1641        int i, ret = -ENOMEM;
1642
1643        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1644        if (alloc_state != sa_rootdomain)
1645                goto error;
1646
1647        /* Set up domains for CPUs specified by the cpu_map: */
1648        for_each_cpu(i, cpu_map) {
1649                struct sched_domain_topology_level *tl;
1650
1651                sd = NULL;
1652                for_each_sd_topology(tl) {
1653                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1654                        if (tl == sched_domain_topology)
1655                                *per_cpu_ptr(d.sd, i) = sd;
1656                        if (tl->flags & SDTL_OVERLAP)
1657                                sd->flags |= SD_OVERLAP;
1658                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1659                                break;
1660                }
1661        }
1662
1663        /* Build the groups for the domains */
1664        for_each_cpu(i, cpu_map) {
1665                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1666                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
1667                        if (sd->flags & SD_OVERLAP) {
1668                                if (build_overlap_sched_groups(sd, i))
1669                                        goto error;
1670                        } else {
1671                                if (build_sched_groups(sd, i))
1672                                        goto error;
1673                        }
1674                }
1675        }
1676
1677        /* Calculate CPU capacity for physical packages and nodes */
1678        for (i = nr_cpumask_bits-1; i >= 0; i--) {
1679                if (!cpumask_test_cpu(i, cpu_map))
1680                        continue;
1681
1682                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1683                        claim_allocations(i, sd);
1684                        init_sched_groups_capacity(i, sd);
1685                }
1686        }
1687
1688        /* Attach the domains */
1689        rcu_read_lock();
1690        for_each_cpu(i, cpu_map) {
1691                rq = cpu_rq(i);
1692                sd = *per_cpu_ptr(d.sd, i);
1693
1694                /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1695                if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1696                        WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1697
1698                cpu_attach_domain(sd, d.rd, i);
1699        }
1700        rcu_read_unlock();
1701
1702        if (rq && sched_debug_enabled) {
1703                pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1704                        cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1705        }
1706
1707        ret = 0;
1708error:
1709        __free_domain_allocs(&d, alloc_state, cpu_map);
1710        return ret;
1711}
1712
1713/* Current sched domains: */
1714static cpumask_var_t                    *doms_cur;
1715
1716/* Number of sched domains in 'doms_cur': */
1717static int                              ndoms_cur;
1718
1719/* Attribues of custom domains in 'doms_cur' */
1720static struct sched_domain_attr         *dattr_cur;
1721
1722/*
1723 * Special case: If a kmalloc() of a doms_cur partition (array of
1724 * cpumask) fails, then fallback to a single sched domain,
1725 * as determined by the single cpumask fallback_doms.
1726 */
1727static cpumask_var_t                    fallback_doms;
1728
1729/*
1730 * arch_update_cpu_topology lets virtualized architectures update the
1731 * CPU core maps. It is supposed to return 1 if the topology changed
1732 * or 0 if it stayed the same.
1733 */
1734int __weak arch_update_cpu_topology(void)
1735{
1736        return 0;
1737}
1738
1739cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1740{
1741        int i;
1742        cpumask_var_t *doms;
1743
1744        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1745        if (!doms)
1746                return NULL;
1747        for (i = 0; i < ndoms; i++) {
1748                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1749                        free_sched_domains(doms, i);
1750                        return NULL;
1751                }
1752        }
1753        return doms;
1754}
1755
1756void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1757{
1758        unsigned int i;
1759        for (i = 0; i < ndoms; i++)
1760                free_cpumask_var(doms[i]);
1761        kfree(doms);
1762}
1763
1764/*
1765 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1766 * For now this just excludes isolated CPUs, but could be used to
1767 * exclude other special cases in the future.
1768 */
1769int sched_init_domains(const struct cpumask *cpu_map)
1770{
1771        int err;
1772
1773        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1774        zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
1775        zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1776
1777        arch_update_cpu_topology();
1778        ndoms_cur = 1;
1779        doms_cur = alloc_sched_domains(ndoms_cur);
1780        if (!doms_cur)
1781                doms_cur = &fallback_doms;
1782        cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
1783        err = build_sched_domains(doms_cur[0], NULL);
1784        register_sched_domain_sysctl();
1785
1786        return err;
1787}
1788
1789/*
1790 * Detach sched domains from a group of CPUs specified in cpu_map
1791 * These CPUs will now be attached to the NULL domain
1792 */
1793static void detach_destroy_domains(const struct cpumask *cpu_map)
1794{
1795        int i;
1796
1797        rcu_read_lock();
1798        for_each_cpu(i, cpu_map)
1799                cpu_attach_domain(NULL, &def_root_domain, i);
1800        rcu_read_unlock();
1801}
1802
1803/* handle null as "default" */
1804static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1805                        struct sched_domain_attr *new, int idx_new)
1806{
1807        struct sched_domain_attr tmp;
1808
1809        /* Fast path: */
1810        if (!new && !cur)
1811                return 1;
1812
1813        tmp = SD_ATTR_INIT;
1814        return !memcmp(cur ? (cur + idx_cur) : &tmp,
1815                        new ? (new + idx_new) : &tmp,
1816                        sizeof(struct sched_domain_attr));
1817}
1818
1819/*
1820 * Partition sched domains as specified by the 'ndoms_new'
1821 * cpumasks in the array doms_new[] of cpumasks. This compares
1822 * doms_new[] to the current sched domain partitioning, doms_cur[].
1823 * It destroys each deleted domain and builds each new domain.
1824 *
1825 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1826 * The masks don't intersect (don't overlap.) We should setup one
1827 * sched domain for each mask. CPUs not in any of the cpumasks will
1828 * not be load balanced. If the same cpumask appears both in the
1829 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1830 * it as it is.
1831 *
1832 * The passed in 'doms_new' should be allocated using
1833 * alloc_sched_domains.  This routine takes ownership of it and will
1834 * free_sched_domains it when done with it. If the caller failed the
1835 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1836 * and partition_sched_domains() will fallback to the single partition
1837 * 'fallback_doms', it also forces the domains to be rebuilt.
1838 *
1839 * If doms_new == NULL it will be replaced with cpu_online_mask.
1840 * ndoms_new == 0 is a special case for destroying existing domains,
1841 * and it will not create the default domain.
1842 *
1843 * Call with hotplug lock held
1844 */
1845void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1846                             struct sched_domain_attr *dattr_new)
1847{
1848        int i, j, n;
1849        int new_topology;
1850
1851        mutex_lock(&sched_domains_mutex);
1852
1853        /* Always unregister in case we don't destroy any domains: */
1854        unregister_sched_domain_sysctl();
1855
1856        /* Let the architecture update CPU core mappings: */
1857        new_topology = arch_update_cpu_topology();
1858
1859        if (!doms_new) {
1860                WARN_ON_ONCE(dattr_new);
1861                n = 0;
1862                doms_new = alloc_sched_domains(1);
1863                if (doms_new) {
1864                        n = 1;
1865                        cpumask_and(doms_new[0], cpu_active_mask,
1866                                    housekeeping_cpumask(HK_FLAG_DOMAIN));
1867                }
1868        } else {
1869                n = ndoms_new;
1870        }
1871
1872        /* Destroy deleted domains: */
1873        for (i = 0; i < ndoms_cur; i++) {
1874                for (j = 0; j < n && !new_topology; j++) {
1875                        if (cpumask_equal(doms_cur[i], doms_new[j])
1876                            && dattrs_equal(dattr_cur, i, dattr_new, j))
1877                                goto match1;
1878                }
1879                /* No match - a current sched domain not in new doms_new[] */
1880                detach_destroy_domains(doms_cur[i]);
1881match1:
1882                ;
1883        }
1884
1885        n = ndoms_cur;
1886        if (!doms_new) {
1887                n = 0;
1888                doms_new = &fallback_doms;
1889                cpumask_and(doms_new[0], cpu_active_mask,
1890                            housekeeping_cpumask(HK_FLAG_DOMAIN));
1891        }
1892
1893        /* Build new domains: */
1894        for (i = 0; i < ndoms_new; i++) {
1895                for (j = 0; j < n && !new_topology; j++) {
1896                        if (cpumask_equal(doms_new[i], doms_cur[j])
1897                            && dattrs_equal(dattr_new, i, dattr_cur, j))
1898                                goto match2;
1899                }
1900                /* No match - add a new doms_new */
1901                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1902match2:
1903                ;
1904        }
1905
1906        /* Remember the new sched domains: */
1907        if (doms_cur != &fallback_doms)
1908                free_sched_domains(doms_cur, ndoms_cur);
1909
1910        kfree(dattr_cur);
1911        doms_cur = doms_new;
1912        dattr_cur = dattr_new;
1913        ndoms_cur = ndoms_new;
1914
1915        register_sched_domain_sysctl();
1916
1917        mutex_unlock(&sched_domains_mutex);
1918}
1919
1920