linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/user.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sched/cputime.h>
  22#include <linux/fs.h>
  23#include <linux/tty.h>
  24#include <linux/binfmts.h>
  25#include <linux/coredump.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/ptrace.h>
  29#include <linux/signal.h>
  30#include <linux/signalfd.h>
  31#include <linux/ratelimit.h>
  32#include <linux/tracehook.h>
  33#include <linux/capability.h>
  34#include <linux/freezer.h>
  35#include <linux/pid_namespace.h>
  36#include <linux/nsproxy.h>
  37#include <linux/user_namespace.h>
  38#include <linux/uprobes.h>
  39#include <linux/compat.h>
  40#include <linux/cn_proc.h>
  41#include <linux/compiler.h>
  42#include <linux/posix-timers.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/signal.h>
  46
  47#include <asm/param.h>
  48#include <linux/uaccess.h>
  49#include <asm/unistd.h>
  50#include <asm/siginfo.h>
  51#include <asm/cacheflush.h>
  52#include "audit.h"      /* audit_signal_info() */
  53
  54/*
  55 * SLAB caches for signal bits.
  56 */
  57
  58static struct kmem_cache *sigqueue_cachep;
  59
  60int print_fatal_signals __read_mostly;
  61
  62static void __user *sig_handler(struct task_struct *t, int sig)
  63{
  64        return t->sighand->action[sig - 1].sa.sa_handler;
  65}
  66
  67static int sig_handler_ignored(void __user *handler, int sig)
  68{
  69        /* Is it explicitly or implicitly ignored? */
  70        return handler == SIG_IGN ||
  71                (handler == SIG_DFL && sig_kernel_ignore(sig));
  72}
  73
  74static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  75{
  76        void __user *handler;
  77
  78        handler = sig_handler(t, sig);
  79
  80        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  81            handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  82                return 1;
  83
  84        return sig_handler_ignored(handler, sig);
  85}
  86
  87static int sig_ignored(struct task_struct *t, int sig, bool force)
  88{
  89        /*
  90         * Blocked signals are never ignored, since the
  91         * signal handler may change by the time it is
  92         * unblocked.
  93         */
  94        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  95                return 0;
  96
  97        /*
  98         * Tracers may want to know about even ignored signal unless it
  99         * is SIGKILL which can't be reported anyway but can be ignored
 100         * by SIGNAL_UNKILLABLE task.
 101         */
 102        if (t->ptrace && sig != SIGKILL)
 103                return 0;
 104
 105        return sig_task_ignored(t, sig, force);
 106}
 107
 108/*
 109 * Re-calculate pending state from the set of locally pending
 110 * signals, globally pending signals, and blocked signals.
 111 */
 112static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 113{
 114        unsigned long ready;
 115        long i;
 116
 117        switch (_NSIG_WORDS) {
 118        default:
 119                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 120                        ready |= signal->sig[i] &~ blocked->sig[i];
 121                break;
 122
 123        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 124                ready |= signal->sig[2] &~ blocked->sig[2];
 125                ready |= signal->sig[1] &~ blocked->sig[1];
 126                ready |= signal->sig[0] &~ blocked->sig[0];
 127                break;
 128
 129        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 130                ready |= signal->sig[0] &~ blocked->sig[0];
 131                break;
 132
 133        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 134        }
 135        return ready != 0;
 136}
 137
 138#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 139
 140static int recalc_sigpending_tsk(struct task_struct *t)
 141{
 142        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 143            PENDING(&t->pending, &t->blocked) ||
 144            PENDING(&t->signal->shared_pending, &t->blocked)) {
 145                set_tsk_thread_flag(t, TIF_SIGPENDING);
 146                return 1;
 147        }
 148        /*
 149         * We must never clear the flag in another thread, or in current
 150         * when it's possible the current syscall is returning -ERESTART*.
 151         * So we don't clear it here, and only callers who know they should do.
 152         */
 153        return 0;
 154}
 155
 156/*
 157 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 158 * This is superfluous when called on current, the wakeup is a harmless no-op.
 159 */
 160void recalc_sigpending_and_wake(struct task_struct *t)
 161{
 162        if (recalc_sigpending_tsk(t))
 163                signal_wake_up(t, 0);
 164}
 165
 166void recalc_sigpending(void)
 167{
 168        if (!recalc_sigpending_tsk(current) && !freezing(current))
 169                clear_thread_flag(TIF_SIGPENDING);
 170
 171}
 172
 173/* Given the mask, find the first available signal that should be serviced. */
 174
 175#define SYNCHRONOUS_MASK \
 176        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 177         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 178
 179int next_signal(struct sigpending *pending, sigset_t *mask)
 180{
 181        unsigned long i, *s, *m, x;
 182        int sig = 0;
 183
 184        s = pending->signal.sig;
 185        m = mask->sig;
 186
 187        /*
 188         * Handle the first word specially: it contains the
 189         * synchronous signals that need to be dequeued first.
 190         */
 191        x = *s &~ *m;
 192        if (x) {
 193                if (x & SYNCHRONOUS_MASK)
 194                        x &= SYNCHRONOUS_MASK;
 195                sig = ffz(~x) + 1;
 196                return sig;
 197        }
 198
 199        switch (_NSIG_WORDS) {
 200        default:
 201                for (i = 1; i < _NSIG_WORDS; ++i) {
 202                        x = *++s &~ *++m;
 203                        if (!x)
 204                                continue;
 205                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 206                        break;
 207                }
 208                break;
 209
 210        case 2:
 211                x = s[1] &~ m[1];
 212                if (!x)
 213                        break;
 214                sig = ffz(~x) + _NSIG_BPW + 1;
 215                break;
 216
 217        case 1:
 218                /* Nothing to do */
 219                break;
 220        }
 221
 222        return sig;
 223}
 224
 225static inline void print_dropped_signal(int sig)
 226{
 227        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 228
 229        if (!print_fatal_signals)
 230                return;
 231
 232        if (!__ratelimit(&ratelimit_state))
 233                return;
 234
 235        pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 236                                current->comm, current->pid, sig);
 237}
 238
 239/**
 240 * task_set_jobctl_pending - set jobctl pending bits
 241 * @task: target task
 242 * @mask: pending bits to set
 243 *
 244 * Clear @mask from @task->jobctl.  @mask must be subset of
 245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 246 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 247 * cleared.  If @task is already being killed or exiting, this function
 248 * becomes noop.
 249 *
 250 * CONTEXT:
 251 * Must be called with @task->sighand->siglock held.
 252 *
 253 * RETURNS:
 254 * %true if @mask is set, %false if made noop because @task was dying.
 255 */
 256bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 257{
 258        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 259                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 260        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 261
 262        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 263                return false;
 264
 265        if (mask & JOBCTL_STOP_SIGMASK)
 266                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 267
 268        task->jobctl |= mask;
 269        return true;
 270}
 271
 272/**
 273 * task_clear_jobctl_trapping - clear jobctl trapping bit
 274 * @task: target task
 275 *
 276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 277 * Clear it and wake up the ptracer.  Note that we don't need any further
 278 * locking.  @task->siglock guarantees that @task->parent points to the
 279 * ptracer.
 280 *
 281 * CONTEXT:
 282 * Must be called with @task->sighand->siglock held.
 283 */
 284void task_clear_jobctl_trapping(struct task_struct *task)
 285{
 286        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 287                task->jobctl &= ~JOBCTL_TRAPPING;
 288                smp_mb();       /* advised by wake_up_bit() */
 289                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 290        }
 291}
 292
 293/**
 294 * task_clear_jobctl_pending - clear jobctl pending bits
 295 * @task: target task
 296 * @mask: pending bits to clear
 297 *
 298 * Clear @mask from @task->jobctl.  @mask must be subset of
 299 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 300 * STOP bits are cleared together.
 301 *
 302 * If clearing of @mask leaves no stop or trap pending, this function calls
 303 * task_clear_jobctl_trapping().
 304 *
 305 * CONTEXT:
 306 * Must be called with @task->sighand->siglock held.
 307 */
 308void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 309{
 310        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 311
 312        if (mask & JOBCTL_STOP_PENDING)
 313                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 314
 315        task->jobctl &= ~mask;
 316
 317        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 318                task_clear_jobctl_trapping(task);
 319}
 320
 321/**
 322 * task_participate_group_stop - participate in a group stop
 323 * @task: task participating in a group stop
 324 *
 325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 326 * Group stop states are cleared and the group stop count is consumed if
 327 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 328 * stop, the appropriate %SIGNAL_* flags are set.
 329 *
 330 * CONTEXT:
 331 * Must be called with @task->sighand->siglock held.
 332 *
 333 * RETURNS:
 334 * %true if group stop completion should be notified to the parent, %false
 335 * otherwise.
 336 */
 337static bool task_participate_group_stop(struct task_struct *task)
 338{
 339        struct signal_struct *sig = task->signal;
 340        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 341
 342        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 343
 344        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 345
 346        if (!consume)
 347                return false;
 348
 349        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 350                sig->group_stop_count--;
 351
 352        /*
 353         * Tell the caller to notify completion iff we are entering into a
 354         * fresh group stop.  Read comment in do_signal_stop() for details.
 355         */
 356        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 357                signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 358                return true;
 359        }
 360        return false;
 361}
 362
 363/*
 364 * allocate a new signal queue record
 365 * - this may be called without locks if and only if t == current, otherwise an
 366 *   appropriate lock must be held to stop the target task from exiting
 367 */
 368static struct sigqueue *
 369__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 370{
 371        struct sigqueue *q = NULL;
 372        struct user_struct *user;
 373
 374        /*
 375         * Protect access to @t credentials. This can go away when all
 376         * callers hold rcu read lock.
 377         */
 378        rcu_read_lock();
 379        user = get_uid(__task_cred(t)->user);
 380        atomic_inc(&user->sigpending);
 381        rcu_read_unlock();
 382
 383        if (override_rlimit ||
 384            atomic_read(&user->sigpending) <=
 385                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 386                q = kmem_cache_alloc(sigqueue_cachep, flags);
 387        } else {
 388                print_dropped_signal(sig);
 389        }
 390
 391        if (unlikely(q == NULL)) {
 392                atomic_dec(&user->sigpending);
 393                free_uid(user);
 394        } else {
 395                INIT_LIST_HEAD(&q->list);
 396                q->flags = 0;
 397                q->user = user;
 398        }
 399
 400        return q;
 401}
 402
 403static void __sigqueue_free(struct sigqueue *q)
 404{
 405        if (q->flags & SIGQUEUE_PREALLOC)
 406                return;
 407        atomic_dec(&q->user->sigpending);
 408        free_uid(q->user);
 409        kmem_cache_free(sigqueue_cachep, q);
 410}
 411
 412void flush_sigqueue(struct sigpending *queue)
 413{
 414        struct sigqueue *q;
 415
 416        sigemptyset(&queue->signal);
 417        while (!list_empty(&queue->list)) {
 418                q = list_entry(queue->list.next, struct sigqueue , list);
 419                list_del_init(&q->list);
 420                __sigqueue_free(q);
 421        }
 422}
 423
 424/*
 425 * Flush all pending signals for this kthread.
 426 */
 427void flush_signals(struct task_struct *t)
 428{
 429        unsigned long flags;
 430
 431        spin_lock_irqsave(&t->sighand->siglock, flags);
 432        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 433        flush_sigqueue(&t->pending);
 434        flush_sigqueue(&t->signal->shared_pending);
 435        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 436}
 437
 438#ifdef CONFIG_POSIX_TIMERS
 439static void __flush_itimer_signals(struct sigpending *pending)
 440{
 441        sigset_t signal, retain;
 442        struct sigqueue *q, *n;
 443
 444        signal = pending->signal;
 445        sigemptyset(&retain);
 446
 447        list_for_each_entry_safe(q, n, &pending->list, list) {
 448                int sig = q->info.si_signo;
 449
 450                if (likely(q->info.si_code != SI_TIMER)) {
 451                        sigaddset(&retain, sig);
 452                } else {
 453                        sigdelset(&signal, sig);
 454                        list_del_init(&q->list);
 455                        __sigqueue_free(q);
 456                }
 457        }
 458
 459        sigorsets(&pending->signal, &signal, &retain);
 460}
 461
 462void flush_itimer_signals(void)
 463{
 464        struct task_struct *tsk = current;
 465        unsigned long flags;
 466
 467        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 468        __flush_itimer_signals(&tsk->pending);
 469        __flush_itimer_signals(&tsk->signal->shared_pending);
 470        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 471}
 472#endif
 473
 474void ignore_signals(struct task_struct *t)
 475{
 476        int i;
 477
 478        for (i = 0; i < _NSIG; ++i)
 479                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 480
 481        flush_signals(t);
 482}
 483
 484/*
 485 * Flush all handlers for a task.
 486 */
 487
 488void
 489flush_signal_handlers(struct task_struct *t, int force_default)
 490{
 491        int i;
 492        struct k_sigaction *ka = &t->sighand->action[0];
 493        for (i = _NSIG ; i != 0 ; i--) {
 494                if (force_default || ka->sa.sa_handler != SIG_IGN)
 495                        ka->sa.sa_handler = SIG_DFL;
 496                ka->sa.sa_flags = 0;
 497#ifdef __ARCH_HAS_SA_RESTORER
 498                ka->sa.sa_restorer = NULL;
 499#endif
 500                sigemptyset(&ka->sa.sa_mask);
 501                ka++;
 502        }
 503}
 504
 505int unhandled_signal(struct task_struct *tsk, int sig)
 506{
 507        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 508        if (is_global_init(tsk))
 509                return 1;
 510        if (handler != SIG_IGN && handler != SIG_DFL)
 511                return 0;
 512        /* if ptraced, let the tracer determine */
 513        return !tsk->ptrace;
 514}
 515
 516static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
 517                           bool *resched_timer)
 518{
 519        struct sigqueue *q, *first = NULL;
 520
 521        /*
 522         * Collect the siginfo appropriate to this signal.  Check if
 523         * there is another siginfo for the same signal.
 524        */
 525        list_for_each_entry(q, &list->list, list) {
 526                if (q->info.si_signo == sig) {
 527                        if (first)
 528                                goto still_pending;
 529                        first = q;
 530                }
 531        }
 532
 533        sigdelset(&list->signal, sig);
 534
 535        if (first) {
 536still_pending:
 537                list_del_init(&first->list);
 538                copy_siginfo(info, &first->info);
 539
 540                *resched_timer =
 541                        (first->flags & SIGQUEUE_PREALLOC) &&
 542                        (info->si_code == SI_TIMER) &&
 543                        (info->si_sys_private);
 544
 545                __sigqueue_free(first);
 546        } else {
 547                /*
 548                 * Ok, it wasn't in the queue.  This must be
 549                 * a fast-pathed signal or we must have been
 550                 * out of queue space.  So zero out the info.
 551                 */
 552                info->si_signo = sig;
 553                info->si_errno = 0;
 554                info->si_code = SI_USER;
 555                info->si_pid = 0;
 556                info->si_uid = 0;
 557        }
 558}
 559
 560static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 561                        siginfo_t *info, bool *resched_timer)
 562{
 563        int sig = next_signal(pending, mask);
 564
 565        if (sig)
 566                collect_signal(sig, pending, info, resched_timer);
 567        return sig;
 568}
 569
 570/*
 571 * Dequeue a signal and return the element to the caller, which is
 572 * expected to free it.
 573 *
 574 * All callers have to hold the siglock.
 575 */
 576int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 577{
 578        bool resched_timer = false;
 579        int signr;
 580
 581        /* We only dequeue private signals from ourselves, we don't let
 582         * signalfd steal them
 583         */
 584        signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 585        if (!signr) {
 586                signr = __dequeue_signal(&tsk->signal->shared_pending,
 587                                         mask, info, &resched_timer);
 588#ifdef CONFIG_POSIX_TIMERS
 589                /*
 590                 * itimer signal ?
 591                 *
 592                 * itimers are process shared and we restart periodic
 593                 * itimers in the signal delivery path to prevent DoS
 594                 * attacks in the high resolution timer case. This is
 595                 * compliant with the old way of self-restarting
 596                 * itimers, as the SIGALRM is a legacy signal and only
 597                 * queued once. Changing the restart behaviour to
 598                 * restart the timer in the signal dequeue path is
 599                 * reducing the timer noise on heavy loaded !highres
 600                 * systems too.
 601                 */
 602                if (unlikely(signr == SIGALRM)) {
 603                        struct hrtimer *tmr = &tsk->signal->real_timer;
 604
 605                        if (!hrtimer_is_queued(tmr) &&
 606                            tsk->signal->it_real_incr != 0) {
 607                                hrtimer_forward(tmr, tmr->base->get_time(),
 608                                                tsk->signal->it_real_incr);
 609                                hrtimer_restart(tmr);
 610                        }
 611                }
 612#endif
 613        }
 614
 615        recalc_sigpending();
 616        if (!signr)
 617                return 0;
 618
 619        if (unlikely(sig_kernel_stop(signr))) {
 620                /*
 621                 * Set a marker that we have dequeued a stop signal.  Our
 622                 * caller might release the siglock and then the pending
 623                 * stop signal it is about to process is no longer in the
 624                 * pending bitmasks, but must still be cleared by a SIGCONT
 625                 * (and overruled by a SIGKILL).  So those cases clear this
 626                 * shared flag after we've set it.  Note that this flag may
 627                 * remain set after the signal we return is ignored or
 628                 * handled.  That doesn't matter because its only purpose
 629                 * is to alert stop-signal processing code when another
 630                 * processor has come along and cleared the flag.
 631                 */
 632                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 633        }
 634#ifdef CONFIG_POSIX_TIMERS
 635        if (resched_timer) {
 636                /*
 637                 * Release the siglock to ensure proper locking order
 638                 * of timer locks outside of siglocks.  Note, we leave
 639                 * irqs disabled here, since the posix-timers code is
 640                 * about to disable them again anyway.
 641                 */
 642                spin_unlock(&tsk->sighand->siglock);
 643                posixtimer_rearm(info);
 644                spin_lock(&tsk->sighand->siglock);
 645        }
 646#endif
 647        return signr;
 648}
 649
 650/*
 651 * Tell a process that it has a new active signal..
 652 *
 653 * NOTE! we rely on the previous spin_lock to
 654 * lock interrupts for us! We can only be called with
 655 * "siglock" held, and the local interrupt must
 656 * have been disabled when that got acquired!
 657 *
 658 * No need to set need_resched since signal event passing
 659 * goes through ->blocked
 660 */
 661void signal_wake_up_state(struct task_struct *t, unsigned int state)
 662{
 663        set_tsk_thread_flag(t, TIF_SIGPENDING);
 664        /*
 665         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 666         * case. We don't check t->state here because there is a race with it
 667         * executing another processor and just now entering stopped state.
 668         * By using wake_up_state, we ensure the process will wake up and
 669         * handle its death signal.
 670         */
 671        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 672                kick_process(t);
 673}
 674
 675/*
 676 * Remove signals in mask from the pending set and queue.
 677 * Returns 1 if any signals were found.
 678 *
 679 * All callers must be holding the siglock.
 680 */
 681static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 682{
 683        struct sigqueue *q, *n;
 684        sigset_t m;
 685
 686        sigandsets(&m, mask, &s->signal);
 687        if (sigisemptyset(&m))
 688                return 0;
 689
 690        sigandnsets(&s->signal, &s->signal, mask);
 691        list_for_each_entry_safe(q, n, &s->list, list) {
 692                if (sigismember(mask, q->info.si_signo)) {
 693                        list_del_init(&q->list);
 694                        __sigqueue_free(q);
 695                }
 696        }
 697        return 1;
 698}
 699
 700static inline int is_si_special(const struct siginfo *info)
 701{
 702        return info <= SEND_SIG_FORCED;
 703}
 704
 705static inline bool si_fromuser(const struct siginfo *info)
 706{
 707        return info == SEND_SIG_NOINFO ||
 708                (!is_si_special(info) && SI_FROMUSER(info));
 709}
 710
 711/*
 712 * called with RCU read lock from check_kill_permission()
 713 */
 714static int kill_ok_by_cred(struct task_struct *t)
 715{
 716        const struct cred *cred = current_cred();
 717        const struct cred *tcred = __task_cred(t);
 718
 719        if (uid_eq(cred->euid, tcred->suid) ||
 720            uid_eq(cred->euid, tcred->uid)  ||
 721            uid_eq(cred->uid,  tcred->suid) ||
 722            uid_eq(cred->uid,  tcred->uid))
 723                return 1;
 724
 725        if (ns_capable(tcred->user_ns, CAP_KILL))
 726                return 1;
 727
 728        return 0;
 729}
 730
 731/*
 732 * Bad permissions for sending the signal
 733 * - the caller must hold the RCU read lock
 734 */
 735static int check_kill_permission(int sig, struct siginfo *info,
 736                                 struct task_struct *t)
 737{
 738        struct pid *sid;
 739        int error;
 740
 741        if (!valid_signal(sig))
 742                return -EINVAL;
 743
 744        if (!si_fromuser(info))
 745                return 0;
 746
 747        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 748        if (error)
 749                return error;
 750
 751        if (!same_thread_group(current, t) &&
 752            !kill_ok_by_cred(t)) {
 753                switch (sig) {
 754                case SIGCONT:
 755                        sid = task_session(t);
 756                        /*
 757                         * We don't return the error if sid == NULL. The
 758                         * task was unhashed, the caller must notice this.
 759                         */
 760                        if (!sid || sid == task_session(current))
 761                                break;
 762                default:
 763                        return -EPERM;
 764                }
 765        }
 766
 767        return security_task_kill(t, info, sig, 0);
 768}
 769
 770/**
 771 * ptrace_trap_notify - schedule trap to notify ptracer
 772 * @t: tracee wanting to notify tracer
 773 *
 774 * This function schedules sticky ptrace trap which is cleared on the next
 775 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 776 * ptracer.
 777 *
 778 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 779 * ptracer is listening for events, tracee is woken up so that it can
 780 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 781 * eventually taken without returning to userland after the existing traps
 782 * are finished by PTRACE_CONT.
 783 *
 784 * CONTEXT:
 785 * Must be called with @task->sighand->siglock held.
 786 */
 787static void ptrace_trap_notify(struct task_struct *t)
 788{
 789        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 790        assert_spin_locked(&t->sighand->siglock);
 791
 792        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 793        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 794}
 795
 796/*
 797 * Handle magic process-wide effects of stop/continue signals. Unlike
 798 * the signal actions, these happen immediately at signal-generation
 799 * time regardless of blocking, ignoring, or handling.  This does the
 800 * actual continuing for SIGCONT, but not the actual stopping for stop
 801 * signals. The process stop is done as a signal action for SIG_DFL.
 802 *
 803 * Returns true if the signal should be actually delivered, otherwise
 804 * it should be dropped.
 805 */
 806static bool prepare_signal(int sig, struct task_struct *p, bool force)
 807{
 808        struct signal_struct *signal = p->signal;
 809        struct task_struct *t;
 810        sigset_t flush;
 811
 812        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 813                if (!(signal->flags & SIGNAL_GROUP_EXIT))
 814                        return sig == SIGKILL;
 815                /*
 816                 * The process is in the middle of dying, nothing to do.
 817                 */
 818        } else if (sig_kernel_stop(sig)) {
 819                /*
 820                 * This is a stop signal.  Remove SIGCONT from all queues.
 821                 */
 822                siginitset(&flush, sigmask(SIGCONT));
 823                flush_sigqueue_mask(&flush, &signal->shared_pending);
 824                for_each_thread(p, t)
 825                        flush_sigqueue_mask(&flush, &t->pending);
 826        } else if (sig == SIGCONT) {
 827                unsigned int why;
 828                /*
 829                 * Remove all stop signals from all queues, wake all threads.
 830                 */
 831                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 832                flush_sigqueue_mask(&flush, &signal->shared_pending);
 833                for_each_thread(p, t) {
 834                        flush_sigqueue_mask(&flush, &t->pending);
 835                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 836                        if (likely(!(t->ptrace & PT_SEIZED)))
 837                                wake_up_state(t, __TASK_STOPPED);
 838                        else
 839                                ptrace_trap_notify(t);
 840                }
 841
 842                /*
 843                 * Notify the parent with CLD_CONTINUED if we were stopped.
 844                 *
 845                 * If we were in the middle of a group stop, we pretend it
 846                 * was already finished, and then continued. Since SIGCHLD
 847                 * doesn't queue we report only CLD_STOPPED, as if the next
 848                 * CLD_CONTINUED was dropped.
 849                 */
 850                why = 0;
 851                if (signal->flags & SIGNAL_STOP_STOPPED)
 852                        why |= SIGNAL_CLD_CONTINUED;
 853                else if (signal->group_stop_count)
 854                        why |= SIGNAL_CLD_STOPPED;
 855
 856                if (why) {
 857                        /*
 858                         * The first thread which returns from do_signal_stop()
 859                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 860                         * notify its parent. See get_signal_to_deliver().
 861                         */
 862                        signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 863                        signal->group_stop_count = 0;
 864                        signal->group_exit_code = 0;
 865                }
 866        }
 867
 868        return !sig_ignored(p, sig, force);
 869}
 870
 871/*
 872 * Test if P wants to take SIG.  After we've checked all threads with this,
 873 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 874 * blocking SIG were ruled out because they are not running and already
 875 * have pending signals.  Such threads will dequeue from the shared queue
 876 * as soon as they're available, so putting the signal on the shared queue
 877 * will be equivalent to sending it to one such thread.
 878 */
 879static inline int wants_signal(int sig, struct task_struct *p)
 880{
 881        if (sigismember(&p->blocked, sig))
 882                return 0;
 883        if (p->flags & PF_EXITING)
 884                return 0;
 885        if (sig == SIGKILL)
 886                return 1;
 887        if (task_is_stopped_or_traced(p))
 888                return 0;
 889        return task_curr(p) || !signal_pending(p);
 890}
 891
 892static void complete_signal(int sig, struct task_struct *p, int group)
 893{
 894        struct signal_struct *signal = p->signal;
 895        struct task_struct *t;
 896
 897        /*
 898         * Now find a thread we can wake up to take the signal off the queue.
 899         *
 900         * If the main thread wants the signal, it gets first crack.
 901         * Probably the least surprising to the average bear.
 902         */
 903        if (wants_signal(sig, p))
 904                t = p;
 905        else if (!group || thread_group_empty(p))
 906                /*
 907                 * There is just one thread and it does not need to be woken.
 908                 * It will dequeue unblocked signals before it runs again.
 909                 */
 910                return;
 911        else {
 912                /*
 913                 * Otherwise try to find a suitable thread.
 914                 */
 915                t = signal->curr_target;
 916                while (!wants_signal(sig, t)) {
 917                        t = next_thread(t);
 918                        if (t == signal->curr_target)
 919                                /*
 920                                 * No thread needs to be woken.
 921                                 * Any eligible threads will see
 922                                 * the signal in the queue soon.
 923                                 */
 924                                return;
 925                }
 926                signal->curr_target = t;
 927        }
 928
 929        /*
 930         * Found a killable thread.  If the signal will be fatal,
 931         * then start taking the whole group down immediately.
 932         */
 933        if (sig_fatal(p, sig) &&
 934            !(signal->flags & SIGNAL_GROUP_EXIT) &&
 935            !sigismember(&t->real_blocked, sig) &&
 936            (sig == SIGKILL || !p->ptrace)) {
 937                /*
 938                 * This signal will be fatal to the whole group.
 939                 */
 940                if (!sig_kernel_coredump(sig)) {
 941                        /*
 942                         * Start a group exit and wake everybody up.
 943                         * This way we don't have other threads
 944                         * running and doing things after a slower
 945                         * thread has the fatal signal pending.
 946                         */
 947                        signal->flags = SIGNAL_GROUP_EXIT;
 948                        signal->group_exit_code = sig;
 949                        signal->group_stop_count = 0;
 950                        t = p;
 951                        do {
 952                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 953                                sigaddset(&t->pending.signal, SIGKILL);
 954                                signal_wake_up(t, 1);
 955                        } while_each_thread(p, t);
 956                        return;
 957                }
 958        }
 959
 960        /*
 961         * The signal is already in the shared-pending queue.
 962         * Tell the chosen thread to wake up and dequeue it.
 963         */
 964        signal_wake_up(t, sig == SIGKILL);
 965        return;
 966}
 967
 968static inline int legacy_queue(struct sigpending *signals, int sig)
 969{
 970        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 971}
 972
 973#ifdef CONFIG_USER_NS
 974static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 975{
 976        if (current_user_ns() == task_cred_xxx(t, user_ns))
 977                return;
 978
 979        if (SI_FROMKERNEL(info))
 980                return;
 981
 982        rcu_read_lock();
 983        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 984                                        make_kuid(current_user_ns(), info->si_uid));
 985        rcu_read_unlock();
 986}
 987#else
 988static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 989{
 990        return;
 991}
 992#endif
 993
 994static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 995                        int group, int from_ancestor_ns)
 996{
 997        struct sigpending *pending;
 998        struct sigqueue *q;
 999        int override_rlimit;
1000        int ret = 0, result;
1001
1002        assert_spin_locked(&t->sighand->siglock);
1003
1004        result = TRACE_SIGNAL_IGNORED;
1005        if (!prepare_signal(sig, t,
1006                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
1007                goto ret;
1008
1009        pending = group ? &t->signal->shared_pending : &t->pending;
1010        /*
1011         * Short-circuit ignored signals and support queuing
1012         * exactly one non-rt signal, so that we can get more
1013         * detailed information about the cause of the signal.
1014         */
1015        result = TRACE_SIGNAL_ALREADY_PENDING;
1016        if (legacy_queue(pending, sig))
1017                goto ret;
1018
1019        result = TRACE_SIGNAL_DELIVERED;
1020        /*
1021         * fast-pathed signals for kernel-internal things like SIGSTOP
1022         * or SIGKILL.
1023         */
1024        if (info == SEND_SIG_FORCED)
1025                goto out_set;
1026
1027        /*
1028         * Real-time signals must be queued if sent by sigqueue, or
1029         * some other real-time mechanism.  It is implementation
1030         * defined whether kill() does so.  We attempt to do so, on
1031         * the principle of least surprise, but since kill is not
1032         * allowed to fail with EAGAIN when low on memory we just
1033         * make sure at least one signal gets delivered and don't
1034         * pass on the info struct.
1035         */
1036        if (sig < SIGRTMIN)
1037                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1038        else
1039                override_rlimit = 0;
1040
1041        q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1042        if (q) {
1043                list_add_tail(&q->list, &pending->list);
1044                switch ((unsigned long) info) {
1045                case (unsigned long) SEND_SIG_NOINFO:
1046                        q->info.si_signo = sig;
1047                        q->info.si_errno = 0;
1048                        q->info.si_code = SI_USER;
1049                        q->info.si_pid = task_tgid_nr_ns(current,
1050                                                        task_active_pid_ns(t));
1051                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1052                        break;
1053                case (unsigned long) SEND_SIG_PRIV:
1054                        q->info.si_signo = sig;
1055                        q->info.si_errno = 0;
1056                        q->info.si_code = SI_KERNEL;
1057                        q->info.si_pid = 0;
1058                        q->info.si_uid = 0;
1059                        break;
1060                default:
1061                        copy_siginfo(&q->info, info);
1062                        if (from_ancestor_ns)
1063                                q->info.si_pid = 0;
1064                        break;
1065                }
1066
1067                userns_fixup_signal_uid(&q->info, t);
1068
1069        } else if (!is_si_special(info)) {
1070                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1071                        /*
1072                         * Queue overflow, abort.  We may abort if the
1073                         * signal was rt and sent by user using something
1074                         * other than kill().
1075                         */
1076                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1077                        ret = -EAGAIN;
1078                        goto ret;
1079                } else {
1080                        /*
1081                         * This is a silent loss of information.  We still
1082                         * send the signal, but the *info bits are lost.
1083                         */
1084                        result = TRACE_SIGNAL_LOSE_INFO;
1085                }
1086        }
1087
1088out_set:
1089        signalfd_notify(t, sig);
1090        sigaddset(&pending->signal, sig);
1091        complete_signal(sig, t, group);
1092ret:
1093        trace_signal_generate(sig, info, t, group, result);
1094        return ret;
1095}
1096
1097static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1098                        int group)
1099{
1100        int from_ancestor_ns = 0;
1101
1102#ifdef CONFIG_PID_NS
1103        from_ancestor_ns = si_fromuser(info) &&
1104                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1105#endif
1106
1107        return __send_signal(sig, info, t, group, from_ancestor_ns);
1108}
1109
1110static void print_fatal_signal(int signr)
1111{
1112        struct pt_regs *regs = signal_pt_regs();
1113        pr_info("potentially unexpected fatal signal %d.\n", signr);
1114
1115#if defined(__i386__) && !defined(__arch_um__)
1116        pr_info("code at %08lx: ", regs->ip);
1117        {
1118                int i;
1119                for (i = 0; i < 16; i++) {
1120                        unsigned char insn;
1121
1122                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1123                                break;
1124                        pr_cont("%02x ", insn);
1125                }
1126        }
1127        pr_cont("\n");
1128#endif
1129        preempt_disable();
1130        show_regs(regs);
1131        preempt_enable();
1132}
1133
1134static int __init setup_print_fatal_signals(char *str)
1135{
1136        get_option (&str, &print_fatal_signals);
1137
1138        return 1;
1139}
1140
1141__setup("print-fatal-signals=", setup_print_fatal_signals);
1142
1143int
1144__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1145{
1146        return send_signal(sig, info, p, 1);
1147}
1148
1149static int
1150specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1151{
1152        return send_signal(sig, info, t, 0);
1153}
1154
1155int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1156                        bool group)
1157{
1158        unsigned long flags;
1159        int ret = -ESRCH;
1160
1161        if (lock_task_sighand(p, &flags)) {
1162                ret = send_signal(sig, info, p, group);
1163                unlock_task_sighand(p, &flags);
1164        }
1165
1166        return ret;
1167}
1168
1169/*
1170 * Force a signal that the process can't ignore: if necessary
1171 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1172 *
1173 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1174 * since we do not want to have a signal handler that was blocked
1175 * be invoked when user space had explicitly blocked it.
1176 *
1177 * We don't want to have recursive SIGSEGV's etc, for example,
1178 * that is why we also clear SIGNAL_UNKILLABLE.
1179 */
1180int
1181force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1182{
1183        unsigned long int flags;
1184        int ret, blocked, ignored;
1185        struct k_sigaction *action;
1186
1187        spin_lock_irqsave(&t->sighand->siglock, flags);
1188        action = &t->sighand->action[sig-1];
1189        ignored = action->sa.sa_handler == SIG_IGN;
1190        blocked = sigismember(&t->blocked, sig);
1191        if (blocked || ignored) {
1192                action->sa.sa_handler = SIG_DFL;
1193                if (blocked) {
1194                        sigdelset(&t->blocked, sig);
1195                        recalc_sigpending_and_wake(t);
1196                }
1197        }
1198        /*
1199         * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1200         * debugging to leave init killable.
1201         */
1202        if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1203                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1204        ret = specific_send_sig_info(sig, info, t);
1205        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1206
1207        return ret;
1208}
1209
1210/*
1211 * Nuke all other threads in the group.
1212 */
1213int zap_other_threads(struct task_struct *p)
1214{
1215        struct task_struct *t = p;
1216        int count = 0;
1217
1218        p->signal->group_stop_count = 0;
1219
1220        while_each_thread(p, t) {
1221                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1222                count++;
1223
1224                /* Don't bother with already dead threads */
1225                if (t->exit_state)
1226                        continue;
1227                sigaddset(&t->pending.signal, SIGKILL);
1228                signal_wake_up(t, 1);
1229        }
1230
1231        return count;
1232}
1233
1234struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1235                                           unsigned long *flags)
1236{
1237        struct sighand_struct *sighand;
1238
1239        for (;;) {
1240                /*
1241                 * Disable interrupts early to avoid deadlocks.
1242                 * See rcu_read_unlock() comment header for details.
1243                 */
1244                local_irq_save(*flags);
1245                rcu_read_lock();
1246                sighand = rcu_dereference(tsk->sighand);
1247                if (unlikely(sighand == NULL)) {
1248                        rcu_read_unlock();
1249                        local_irq_restore(*flags);
1250                        break;
1251                }
1252                /*
1253                 * This sighand can be already freed and even reused, but
1254                 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1255                 * initializes ->siglock: this slab can't go away, it has
1256                 * the same object type, ->siglock can't be reinitialized.
1257                 *
1258                 * We need to ensure that tsk->sighand is still the same
1259                 * after we take the lock, we can race with de_thread() or
1260                 * __exit_signal(). In the latter case the next iteration
1261                 * must see ->sighand == NULL.
1262                 */
1263                spin_lock(&sighand->siglock);
1264                if (likely(sighand == tsk->sighand)) {
1265                        rcu_read_unlock();
1266                        break;
1267                }
1268                spin_unlock(&sighand->siglock);
1269                rcu_read_unlock();
1270                local_irq_restore(*flags);
1271        }
1272
1273        return sighand;
1274}
1275
1276/*
1277 * send signal info to all the members of a group
1278 */
1279int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1280{
1281        int ret;
1282
1283        rcu_read_lock();
1284        ret = check_kill_permission(sig, info, p);
1285        rcu_read_unlock();
1286
1287        if (!ret && sig)
1288                ret = do_send_sig_info(sig, info, p, true);
1289
1290        return ret;
1291}
1292
1293/*
1294 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1295 * control characters do (^C, ^Z etc)
1296 * - the caller must hold at least a readlock on tasklist_lock
1297 */
1298int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1299{
1300        struct task_struct *p = NULL;
1301        int retval, success;
1302
1303        success = 0;
1304        retval = -ESRCH;
1305        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1306                int err = group_send_sig_info(sig, info, p);
1307                success |= !err;
1308                retval = err;
1309        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1310        return success ? 0 : retval;
1311}
1312
1313int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1314{
1315        int error = -ESRCH;
1316        struct task_struct *p;
1317
1318        for (;;) {
1319                rcu_read_lock();
1320                p = pid_task(pid, PIDTYPE_PID);
1321                if (p)
1322                        error = group_send_sig_info(sig, info, p);
1323                rcu_read_unlock();
1324                if (likely(!p || error != -ESRCH))
1325                        return error;
1326
1327                /*
1328                 * The task was unhashed in between, try again.  If it
1329                 * is dead, pid_task() will return NULL, if we race with
1330                 * de_thread() it will find the new leader.
1331                 */
1332        }
1333}
1334
1335static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1336{
1337        int error;
1338        rcu_read_lock();
1339        error = kill_pid_info(sig, info, find_vpid(pid));
1340        rcu_read_unlock();
1341        return error;
1342}
1343
1344static int kill_as_cred_perm(const struct cred *cred,
1345                             struct task_struct *target)
1346{
1347        const struct cred *pcred = __task_cred(target);
1348        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1349            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1350                return 0;
1351        return 1;
1352}
1353
1354/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1355int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1356                         const struct cred *cred, u32 secid)
1357{
1358        int ret = -EINVAL;
1359        struct task_struct *p;
1360        unsigned long flags;
1361
1362        if (!valid_signal(sig))
1363                return ret;
1364
1365        rcu_read_lock();
1366        p = pid_task(pid, PIDTYPE_PID);
1367        if (!p) {
1368                ret = -ESRCH;
1369                goto out_unlock;
1370        }
1371        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1372                ret = -EPERM;
1373                goto out_unlock;
1374        }
1375        ret = security_task_kill(p, info, sig, secid);
1376        if (ret)
1377                goto out_unlock;
1378
1379        if (sig) {
1380                if (lock_task_sighand(p, &flags)) {
1381                        ret = __send_signal(sig, info, p, 1, 0);
1382                        unlock_task_sighand(p, &flags);
1383                } else
1384                        ret = -ESRCH;
1385        }
1386out_unlock:
1387        rcu_read_unlock();
1388        return ret;
1389}
1390EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1391
1392/*
1393 * kill_something_info() interprets pid in interesting ways just like kill(2).
1394 *
1395 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1396 * is probably wrong.  Should make it like BSD or SYSV.
1397 */
1398
1399static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1400{
1401        int ret;
1402
1403        if (pid > 0) {
1404                rcu_read_lock();
1405                ret = kill_pid_info(sig, info, find_vpid(pid));
1406                rcu_read_unlock();
1407                return ret;
1408        }
1409
1410        /* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1411        if (pid == INT_MIN)
1412                return -ESRCH;
1413
1414        read_lock(&tasklist_lock);
1415        if (pid != -1) {
1416                ret = __kill_pgrp_info(sig, info,
1417                                pid ? find_vpid(-pid) : task_pgrp(current));
1418        } else {
1419                int retval = 0, count = 0;
1420                struct task_struct * p;
1421
1422                for_each_process(p) {
1423                        if (task_pid_vnr(p) > 1 &&
1424                                        !same_thread_group(p, current)) {
1425                                int err = group_send_sig_info(sig, info, p);
1426                                ++count;
1427                                if (err != -EPERM)
1428                                        retval = err;
1429                        }
1430                }
1431                ret = count ? retval : -ESRCH;
1432        }
1433        read_unlock(&tasklist_lock);
1434
1435        return ret;
1436}
1437
1438/*
1439 * These are for backward compatibility with the rest of the kernel source.
1440 */
1441
1442int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1443{
1444        /*
1445         * Make sure legacy kernel users don't send in bad values
1446         * (normal paths check this in check_kill_permission).
1447         */
1448        if (!valid_signal(sig))
1449                return -EINVAL;
1450
1451        return do_send_sig_info(sig, info, p, false);
1452}
1453
1454#define __si_special(priv) \
1455        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1456
1457int
1458send_sig(int sig, struct task_struct *p, int priv)
1459{
1460        return send_sig_info(sig, __si_special(priv), p);
1461}
1462
1463void
1464force_sig(int sig, struct task_struct *p)
1465{
1466        force_sig_info(sig, SEND_SIG_PRIV, p);
1467}
1468
1469/*
1470 * When things go south during signal handling, we
1471 * will force a SIGSEGV. And if the signal that caused
1472 * the problem was already a SIGSEGV, we'll want to
1473 * make sure we don't even try to deliver the signal..
1474 */
1475int
1476force_sigsegv(int sig, struct task_struct *p)
1477{
1478        if (sig == SIGSEGV) {
1479                unsigned long flags;
1480                spin_lock_irqsave(&p->sighand->siglock, flags);
1481                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1482                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1483        }
1484        force_sig(SIGSEGV, p);
1485        return 0;
1486}
1487
1488int kill_pgrp(struct pid *pid, int sig, int priv)
1489{
1490        int ret;
1491
1492        read_lock(&tasklist_lock);
1493        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1494        read_unlock(&tasklist_lock);
1495
1496        return ret;
1497}
1498EXPORT_SYMBOL(kill_pgrp);
1499
1500int kill_pid(struct pid *pid, int sig, int priv)
1501{
1502        return kill_pid_info(sig, __si_special(priv), pid);
1503}
1504EXPORT_SYMBOL(kill_pid);
1505
1506/*
1507 * These functions support sending signals using preallocated sigqueue
1508 * structures.  This is needed "because realtime applications cannot
1509 * afford to lose notifications of asynchronous events, like timer
1510 * expirations or I/O completions".  In the case of POSIX Timers
1511 * we allocate the sigqueue structure from the timer_create.  If this
1512 * allocation fails we are able to report the failure to the application
1513 * with an EAGAIN error.
1514 */
1515struct sigqueue *sigqueue_alloc(void)
1516{
1517        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1518
1519        if (q)
1520                q->flags |= SIGQUEUE_PREALLOC;
1521
1522        return q;
1523}
1524
1525void sigqueue_free(struct sigqueue *q)
1526{
1527        unsigned long flags;
1528        spinlock_t *lock = &current->sighand->siglock;
1529
1530        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1531        /*
1532         * We must hold ->siglock while testing q->list
1533         * to serialize with collect_signal() or with
1534         * __exit_signal()->flush_sigqueue().
1535         */
1536        spin_lock_irqsave(lock, flags);
1537        q->flags &= ~SIGQUEUE_PREALLOC;
1538        /*
1539         * If it is queued it will be freed when dequeued,
1540         * like the "regular" sigqueue.
1541         */
1542        if (!list_empty(&q->list))
1543                q = NULL;
1544        spin_unlock_irqrestore(lock, flags);
1545
1546        if (q)
1547                __sigqueue_free(q);
1548}
1549
1550int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1551{
1552        int sig = q->info.si_signo;
1553        struct sigpending *pending;
1554        unsigned long flags;
1555        int ret, result;
1556
1557        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1558
1559        ret = -1;
1560        if (!likely(lock_task_sighand(t, &flags)))
1561                goto ret;
1562
1563        ret = 1; /* the signal is ignored */
1564        result = TRACE_SIGNAL_IGNORED;
1565        if (!prepare_signal(sig, t, false))
1566                goto out;
1567
1568        ret = 0;
1569        if (unlikely(!list_empty(&q->list))) {
1570                /*
1571                 * If an SI_TIMER entry is already queue just increment
1572                 * the overrun count.
1573                 */
1574                BUG_ON(q->info.si_code != SI_TIMER);
1575                q->info.si_overrun++;
1576                result = TRACE_SIGNAL_ALREADY_PENDING;
1577                goto out;
1578        }
1579        q->info.si_overrun = 0;
1580
1581        signalfd_notify(t, sig);
1582        pending = group ? &t->signal->shared_pending : &t->pending;
1583        list_add_tail(&q->list, &pending->list);
1584        sigaddset(&pending->signal, sig);
1585        complete_signal(sig, t, group);
1586        result = TRACE_SIGNAL_DELIVERED;
1587out:
1588        trace_signal_generate(sig, &q->info, t, group, result);
1589        unlock_task_sighand(t, &flags);
1590ret:
1591        return ret;
1592}
1593
1594/*
1595 * Let a parent know about the death of a child.
1596 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1597 *
1598 * Returns true if our parent ignored us and so we've switched to
1599 * self-reaping.
1600 */
1601bool do_notify_parent(struct task_struct *tsk, int sig)
1602{
1603        struct siginfo info;
1604        unsigned long flags;
1605        struct sighand_struct *psig;
1606        bool autoreap = false;
1607        u64 utime, stime;
1608
1609        BUG_ON(sig == -1);
1610
1611        /* do_notify_parent_cldstop should have been called instead.  */
1612        BUG_ON(task_is_stopped_or_traced(tsk));
1613
1614        BUG_ON(!tsk->ptrace &&
1615               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1616
1617        if (sig != SIGCHLD) {
1618                /*
1619                 * This is only possible if parent == real_parent.
1620                 * Check if it has changed security domain.
1621                 */
1622                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1623                        sig = SIGCHLD;
1624        }
1625
1626        info.si_signo = sig;
1627        info.si_errno = 0;
1628        /*
1629         * We are under tasklist_lock here so our parent is tied to
1630         * us and cannot change.
1631         *
1632         * task_active_pid_ns will always return the same pid namespace
1633         * until a task passes through release_task.
1634         *
1635         * write_lock() currently calls preempt_disable() which is the
1636         * same as rcu_read_lock(), but according to Oleg, this is not
1637         * correct to rely on this
1638         */
1639        rcu_read_lock();
1640        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1641        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1642                                       task_uid(tsk));
1643        rcu_read_unlock();
1644
1645        task_cputime(tsk, &utime, &stime);
1646        info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1647        info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1648
1649        info.si_status = tsk->exit_code & 0x7f;
1650        if (tsk->exit_code & 0x80)
1651                info.si_code = CLD_DUMPED;
1652        else if (tsk->exit_code & 0x7f)
1653                info.si_code = CLD_KILLED;
1654        else {
1655                info.si_code = CLD_EXITED;
1656                info.si_status = tsk->exit_code >> 8;
1657        }
1658
1659        psig = tsk->parent->sighand;
1660        spin_lock_irqsave(&psig->siglock, flags);
1661        if (!tsk->ptrace && sig == SIGCHLD &&
1662            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1663             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1664                /*
1665                 * We are exiting and our parent doesn't care.  POSIX.1
1666                 * defines special semantics for setting SIGCHLD to SIG_IGN
1667                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1668                 * automatically and not left for our parent's wait4 call.
1669                 * Rather than having the parent do it as a magic kind of
1670                 * signal handler, we just set this to tell do_exit that we
1671                 * can be cleaned up without becoming a zombie.  Note that
1672                 * we still call __wake_up_parent in this case, because a
1673                 * blocked sys_wait4 might now return -ECHILD.
1674                 *
1675                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1676                 * is implementation-defined: we do (if you don't want
1677                 * it, just use SIG_IGN instead).
1678                 */
1679                autoreap = true;
1680                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1681                        sig = 0;
1682        }
1683        if (valid_signal(sig) && sig)
1684                __group_send_sig_info(sig, &info, tsk->parent);
1685        __wake_up_parent(tsk, tsk->parent);
1686        spin_unlock_irqrestore(&psig->siglock, flags);
1687
1688        return autoreap;
1689}
1690
1691/**
1692 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1693 * @tsk: task reporting the state change
1694 * @for_ptracer: the notification is for ptracer
1695 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1696 *
1697 * Notify @tsk's parent that the stopped/continued state has changed.  If
1698 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1699 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1700 *
1701 * CONTEXT:
1702 * Must be called with tasklist_lock at least read locked.
1703 */
1704static void do_notify_parent_cldstop(struct task_struct *tsk,
1705                                     bool for_ptracer, int why)
1706{
1707        struct siginfo info;
1708        unsigned long flags;
1709        struct task_struct *parent;
1710        struct sighand_struct *sighand;
1711        u64 utime, stime;
1712
1713        if (for_ptracer) {
1714                parent = tsk->parent;
1715        } else {
1716                tsk = tsk->group_leader;
1717                parent = tsk->real_parent;
1718        }
1719
1720        info.si_signo = SIGCHLD;
1721        info.si_errno = 0;
1722        /*
1723         * see comment in do_notify_parent() about the following 4 lines
1724         */
1725        rcu_read_lock();
1726        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1727        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1728        rcu_read_unlock();
1729
1730        task_cputime(tsk, &utime, &stime);
1731        info.si_utime = nsec_to_clock_t(utime);
1732        info.si_stime = nsec_to_clock_t(stime);
1733
1734        info.si_code = why;
1735        switch (why) {
1736        case CLD_CONTINUED:
1737                info.si_status = SIGCONT;
1738                break;
1739        case CLD_STOPPED:
1740                info.si_status = tsk->signal->group_exit_code & 0x7f;
1741                break;
1742        case CLD_TRAPPED:
1743                info.si_status = tsk->exit_code & 0x7f;
1744                break;
1745        default:
1746                BUG();
1747        }
1748
1749        sighand = parent->sighand;
1750        spin_lock_irqsave(&sighand->siglock, flags);
1751        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1752            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1753                __group_send_sig_info(SIGCHLD, &info, parent);
1754        /*
1755         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1756         */
1757        __wake_up_parent(tsk, parent);
1758        spin_unlock_irqrestore(&sighand->siglock, flags);
1759}
1760
1761static inline int may_ptrace_stop(void)
1762{
1763        if (!likely(current->ptrace))
1764                return 0;
1765        /*
1766         * Are we in the middle of do_coredump?
1767         * If so and our tracer is also part of the coredump stopping
1768         * is a deadlock situation, and pointless because our tracer
1769         * is dead so don't allow us to stop.
1770         * If SIGKILL was already sent before the caller unlocked
1771         * ->siglock we must see ->core_state != NULL. Otherwise it
1772         * is safe to enter schedule().
1773         *
1774         * This is almost outdated, a task with the pending SIGKILL can't
1775         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1776         * after SIGKILL was already dequeued.
1777         */
1778        if (unlikely(current->mm->core_state) &&
1779            unlikely(current->mm == current->parent->mm))
1780                return 0;
1781
1782        return 1;
1783}
1784
1785/*
1786 * Return non-zero if there is a SIGKILL that should be waking us up.
1787 * Called with the siglock held.
1788 */
1789static int sigkill_pending(struct task_struct *tsk)
1790{
1791        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1792                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1793}
1794
1795/*
1796 * This must be called with current->sighand->siglock held.
1797 *
1798 * This should be the path for all ptrace stops.
1799 * We always set current->last_siginfo while stopped here.
1800 * That makes it a way to test a stopped process for
1801 * being ptrace-stopped vs being job-control-stopped.
1802 *
1803 * If we actually decide not to stop at all because the tracer
1804 * is gone, we keep current->exit_code unless clear_code.
1805 */
1806static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1807        __releases(&current->sighand->siglock)
1808        __acquires(&current->sighand->siglock)
1809{
1810        bool gstop_done = false;
1811
1812        if (arch_ptrace_stop_needed(exit_code, info)) {
1813                /*
1814                 * The arch code has something special to do before a
1815                 * ptrace stop.  This is allowed to block, e.g. for faults
1816                 * on user stack pages.  We can't keep the siglock while
1817                 * calling arch_ptrace_stop, so we must release it now.
1818                 * To preserve proper semantics, we must do this before
1819                 * any signal bookkeeping like checking group_stop_count.
1820                 * Meanwhile, a SIGKILL could come in before we retake the
1821                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1822                 * So after regaining the lock, we must check for SIGKILL.
1823                 */
1824                spin_unlock_irq(&current->sighand->siglock);
1825                arch_ptrace_stop(exit_code, info);
1826                spin_lock_irq(&current->sighand->siglock);
1827                if (sigkill_pending(current))
1828                        return;
1829        }
1830
1831        /*
1832         * We're committing to trapping.  TRACED should be visible before
1833         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1834         * Also, transition to TRACED and updates to ->jobctl should be
1835         * atomic with respect to siglock and should be done after the arch
1836         * hook as siglock is released and regrabbed across it.
1837         */
1838        set_current_state(TASK_TRACED);
1839
1840        current->last_siginfo = info;
1841        current->exit_code = exit_code;
1842
1843        /*
1844         * If @why is CLD_STOPPED, we're trapping to participate in a group
1845         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1846         * across siglock relocks since INTERRUPT was scheduled, PENDING
1847         * could be clear now.  We act as if SIGCONT is received after
1848         * TASK_TRACED is entered - ignore it.
1849         */
1850        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1851                gstop_done = task_participate_group_stop(current);
1852
1853        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1854        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1855        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1856                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1857
1858        /* entering a trap, clear TRAPPING */
1859        task_clear_jobctl_trapping(current);
1860
1861        spin_unlock_irq(&current->sighand->siglock);
1862        read_lock(&tasklist_lock);
1863        if (may_ptrace_stop()) {
1864                /*
1865                 * Notify parents of the stop.
1866                 *
1867                 * While ptraced, there are two parents - the ptracer and
1868                 * the real_parent of the group_leader.  The ptracer should
1869                 * know about every stop while the real parent is only
1870                 * interested in the completion of group stop.  The states
1871                 * for the two don't interact with each other.  Notify
1872                 * separately unless they're gonna be duplicates.
1873                 */
1874                do_notify_parent_cldstop(current, true, why);
1875                if (gstop_done && ptrace_reparented(current))
1876                        do_notify_parent_cldstop(current, false, why);
1877
1878                /*
1879                 * Don't want to allow preemption here, because
1880                 * sys_ptrace() needs this task to be inactive.
1881                 *
1882                 * XXX: implement read_unlock_no_resched().
1883                 */
1884                preempt_disable();
1885                read_unlock(&tasklist_lock);
1886                preempt_enable_no_resched();
1887                freezable_schedule();
1888        } else {
1889                /*
1890                 * By the time we got the lock, our tracer went away.
1891                 * Don't drop the lock yet, another tracer may come.
1892                 *
1893                 * If @gstop_done, the ptracer went away between group stop
1894                 * completion and here.  During detach, it would have set
1895                 * JOBCTL_STOP_PENDING on us and we'll re-enter
1896                 * TASK_STOPPED in do_signal_stop() on return, so notifying
1897                 * the real parent of the group stop completion is enough.
1898                 */
1899                if (gstop_done)
1900                        do_notify_parent_cldstop(current, false, why);
1901
1902                /* tasklist protects us from ptrace_freeze_traced() */
1903                __set_current_state(TASK_RUNNING);
1904                if (clear_code)
1905                        current->exit_code = 0;
1906                read_unlock(&tasklist_lock);
1907        }
1908
1909        /*
1910         * We are back.  Now reacquire the siglock before touching
1911         * last_siginfo, so that we are sure to have synchronized with
1912         * any signal-sending on another CPU that wants to examine it.
1913         */
1914        spin_lock_irq(&current->sighand->siglock);
1915        current->last_siginfo = NULL;
1916
1917        /* LISTENING can be set only during STOP traps, clear it */
1918        current->jobctl &= ~JOBCTL_LISTENING;
1919
1920        /*
1921         * Queued signals ignored us while we were stopped for tracing.
1922         * So check for any that we should take before resuming user mode.
1923         * This sets TIF_SIGPENDING, but never clears it.
1924         */
1925        recalc_sigpending_tsk(current);
1926}
1927
1928static void ptrace_do_notify(int signr, int exit_code, int why)
1929{
1930        siginfo_t info;
1931
1932        memset(&info, 0, sizeof info);
1933        info.si_signo = signr;
1934        info.si_code = exit_code;
1935        info.si_pid = task_pid_vnr(current);
1936        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1937
1938        /* Let the debugger run.  */
1939        ptrace_stop(exit_code, why, 1, &info);
1940}
1941
1942void ptrace_notify(int exit_code)
1943{
1944        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1945        if (unlikely(current->task_works))
1946                task_work_run();
1947
1948        spin_lock_irq(&current->sighand->siglock);
1949        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1950        spin_unlock_irq(&current->sighand->siglock);
1951}
1952
1953/**
1954 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1955 * @signr: signr causing group stop if initiating
1956 *
1957 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1958 * and participate in it.  If already set, participate in the existing
1959 * group stop.  If participated in a group stop (and thus slept), %true is
1960 * returned with siglock released.
1961 *
1962 * If ptraced, this function doesn't handle stop itself.  Instead,
1963 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1964 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1965 * places afterwards.
1966 *
1967 * CONTEXT:
1968 * Must be called with @current->sighand->siglock held, which is released
1969 * on %true return.
1970 *
1971 * RETURNS:
1972 * %false if group stop is already cancelled or ptrace trap is scheduled.
1973 * %true if participated in group stop.
1974 */
1975static bool do_signal_stop(int signr)
1976        __releases(&current->sighand->siglock)
1977{
1978        struct signal_struct *sig = current->signal;
1979
1980        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1981                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1982                struct task_struct *t;
1983
1984                /* signr will be recorded in task->jobctl for retries */
1985                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1986
1987                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1988                    unlikely(signal_group_exit(sig)))
1989                        return false;
1990                /*
1991                 * There is no group stop already in progress.  We must
1992                 * initiate one now.
1993                 *
1994                 * While ptraced, a task may be resumed while group stop is
1995                 * still in effect and then receive a stop signal and
1996                 * initiate another group stop.  This deviates from the
1997                 * usual behavior as two consecutive stop signals can't
1998                 * cause two group stops when !ptraced.  That is why we
1999                 * also check !task_is_stopped(t) below.
2000                 *
2001                 * The condition can be distinguished by testing whether
2002                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2003                 * group_exit_code in such case.
2004                 *
2005                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2006                 * an intervening stop signal is required to cause two
2007                 * continued events regardless of ptrace.
2008                 */
2009                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2010                        sig->group_exit_code = signr;
2011
2012                sig->group_stop_count = 0;
2013
2014                if (task_set_jobctl_pending(current, signr | gstop))
2015                        sig->group_stop_count++;
2016
2017                t = current;
2018                while_each_thread(current, t) {
2019                        /*
2020                         * Setting state to TASK_STOPPED for a group
2021                         * stop is always done with the siglock held,
2022                         * so this check has no races.
2023                         */
2024                        if (!task_is_stopped(t) &&
2025                            task_set_jobctl_pending(t, signr | gstop)) {
2026                                sig->group_stop_count++;
2027                                if (likely(!(t->ptrace & PT_SEIZED)))
2028                                        signal_wake_up(t, 0);
2029                                else
2030                                        ptrace_trap_notify(t);
2031                        }
2032                }
2033        }
2034
2035        if (likely(!current->ptrace)) {
2036                int notify = 0;
2037
2038                /*
2039                 * If there are no other threads in the group, or if there
2040                 * is a group stop in progress and we are the last to stop,
2041                 * report to the parent.
2042                 */
2043                if (task_participate_group_stop(current))
2044                        notify = CLD_STOPPED;
2045
2046                __set_current_state(TASK_STOPPED);
2047                spin_unlock_irq(&current->sighand->siglock);
2048
2049                /*
2050                 * Notify the parent of the group stop completion.  Because
2051                 * we're not holding either the siglock or tasklist_lock
2052                 * here, ptracer may attach inbetween; however, this is for
2053                 * group stop and should always be delivered to the real
2054                 * parent of the group leader.  The new ptracer will get
2055                 * its notification when this task transitions into
2056                 * TASK_TRACED.
2057                 */
2058                if (notify) {
2059                        read_lock(&tasklist_lock);
2060                        do_notify_parent_cldstop(current, false, notify);
2061                        read_unlock(&tasklist_lock);
2062                }
2063
2064                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2065                freezable_schedule();
2066                return true;
2067        } else {
2068                /*
2069                 * While ptraced, group stop is handled by STOP trap.
2070                 * Schedule it and let the caller deal with it.
2071                 */
2072                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2073                return false;
2074        }
2075}
2076
2077/**
2078 * do_jobctl_trap - take care of ptrace jobctl traps
2079 *
2080 * When PT_SEIZED, it's used for both group stop and explicit
2081 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2082 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2083 * the stop signal; otherwise, %SIGTRAP.
2084 *
2085 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2086 * number as exit_code and no siginfo.
2087 *
2088 * CONTEXT:
2089 * Must be called with @current->sighand->siglock held, which may be
2090 * released and re-acquired before returning with intervening sleep.
2091 */
2092static void do_jobctl_trap(void)
2093{
2094        struct signal_struct *signal = current->signal;
2095        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2096
2097        if (current->ptrace & PT_SEIZED) {
2098                if (!signal->group_stop_count &&
2099                    !(signal->flags & SIGNAL_STOP_STOPPED))
2100                        signr = SIGTRAP;
2101                WARN_ON_ONCE(!signr);
2102                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2103                                 CLD_STOPPED);
2104        } else {
2105                WARN_ON_ONCE(!signr);
2106                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2107                current->exit_code = 0;
2108        }
2109}
2110
2111static int ptrace_signal(int signr, siginfo_t *info)
2112{
2113        /*
2114         * We do not check sig_kernel_stop(signr) but set this marker
2115         * unconditionally because we do not know whether debugger will
2116         * change signr. This flag has no meaning unless we are going
2117         * to stop after return from ptrace_stop(). In this case it will
2118         * be checked in do_signal_stop(), we should only stop if it was
2119         * not cleared by SIGCONT while we were sleeping. See also the
2120         * comment in dequeue_signal().
2121         */
2122        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2123        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2124
2125        /* We're back.  Did the debugger cancel the sig?  */
2126        signr = current->exit_code;
2127        if (signr == 0)
2128                return signr;
2129
2130        current->exit_code = 0;
2131
2132        /*
2133         * Update the siginfo structure if the signal has
2134         * changed.  If the debugger wanted something
2135         * specific in the siginfo structure then it should
2136         * have updated *info via PTRACE_SETSIGINFO.
2137         */
2138        if (signr != info->si_signo) {
2139                info->si_signo = signr;
2140                info->si_errno = 0;
2141                info->si_code = SI_USER;
2142                rcu_read_lock();
2143                info->si_pid = task_pid_vnr(current->parent);
2144                info->si_uid = from_kuid_munged(current_user_ns(),
2145                                                task_uid(current->parent));
2146                rcu_read_unlock();
2147        }
2148
2149        /* If the (new) signal is now blocked, requeue it.  */
2150        if (sigismember(&current->blocked, signr)) {
2151                specific_send_sig_info(signr, info, current);
2152                signr = 0;
2153        }
2154
2155        return signr;
2156}
2157
2158int get_signal(struct ksignal *ksig)
2159{
2160        struct sighand_struct *sighand = current->sighand;
2161        struct signal_struct *signal = current->signal;
2162        int signr;
2163
2164        if (unlikely(current->task_works))
2165                task_work_run();
2166
2167        if (unlikely(uprobe_deny_signal()))
2168                return 0;
2169
2170        /*
2171         * Do this once, we can't return to user-mode if freezing() == T.
2172         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2173         * thus do not need another check after return.
2174         */
2175        try_to_freeze();
2176
2177relock:
2178        spin_lock_irq(&sighand->siglock);
2179        /*
2180         * Every stopped thread goes here after wakeup. Check to see if
2181         * we should notify the parent, prepare_signal(SIGCONT) encodes
2182         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2183         */
2184        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2185                int why;
2186
2187                if (signal->flags & SIGNAL_CLD_CONTINUED)
2188                        why = CLD_CONTINUED;
2189                else
2190                        why = CLD_STOPPED;
2191
2192                signal->flags &= ~SIGNAL_CLD_MASK;
2193
2194                spin_unlock_irq(&sighand->siglock);
2195
2196                /*
2197                 * Notify the parent that we're continuing.  This event is
2198                 * always per-process and doesn't make whole lot of sense
2199                 * for ptracers, who shouldn't consume the state via
2200                 * wait(2) either, but, for backward compatibility, notify
2201                 * the ptracer of the group leader too unless it's gonna be
2202                 * a duplicate.
2203                 */
2204                read_lock(&tasklist_lock);
2205                do_notify_parent_cldstop(current, false, why);
2206
2207                if (ptrace_reparented(current->group_leader))
2208                        do_notify_parent_cldstop(current->group_leader,
2209                                                true, why);
2210                read_unlock(&tasklist_lock);
2211
2212                goto relock;
2213        }
2214
2215        for (;;) {
2216                struct k_sigaction *ka;
2217
2218                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2219                    do_signal_stop(0))
2220                        goto relock;
2221
2222                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2223                        do_jobctl_trap();
2224                        spin_unlock_irq(&sighand->siglock);
2225                        goto relock;
2226                }
2227
2228                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2229
2230                if (!signr)
2231                        break; /* will return 0 */
2232
2233                if (unlikely(current->ptrace) && signr != SIGKILL) {
2234                        signr = ptrace_signal(signr, &ksig->info);
2235                        if (!signr)
2236                                continue;
2237                }
2238
2239                ka = &sighand->action[signr-1];
2240
2241                /* Trace actually delivered signals. */
2242                trace_signal_deliver(signr, &ksig->info, ka);
2243
2244                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2245                        continue;
2246                if (ka->sa.sa_handler != SIG_DFL) {
2247                        /* Run the handler.  */
2248                        ksig->ka = *ka;
2249
2250                        if (ka->sa.sa_flags & SA_ONESHOT)
2251                                ka->sa.sa_handler = SIG_DFL;
2252
2253                        break; /* will return non-zero "signr" value */
2254                }
2255
2256                /*
2257                 * Now we are doing the default action for this signal.
2258                 */
2259                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2260                        continue;
2261
2262                /*
2263                 * Global init gets no signals it doesn't want.
2264                 * Container-init gets no signals it doesn't want from same
2265                 * container.
2266                 *
2267                 * Note that if global/container-init sees a sig_kernel_only()
2268                 * signal here, the signal must have been generated internally
2269                 * or must have come from an ancestor namespace. In either
2270                 * case, the signal cannot be dropped.
2271                 */
2272                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2273                                !sig_kernel_only(signr))
2274                        continue;
2275
2276                if (sig_kernel_stop(signr)) {
2277                        /*
2278                         * The default action is to stop all threads in
2279                         * the thread group.  The job control signals
2280                         * do nothing in an orphaned pgrp, but SIGSTOP
2281                         * always works.  Note that siglock needs to be
2282                         * dropped during the call to is_orphaned_pgrp()
2283                         * because of lock ordering with tasklist_lock.
2284                         * This allows an intervening SIGCONT to be posted.
2285                         * We need to check for that and bail out if necessary.
2286                         */
2287                        if (signr != SIGSTOP) {
2288                                spin_unlock_irq(&sighand->siglock);
2289
2290                                /* signals can be posted during this window */
2291
2292                                if (is_current_pgrp_orphaned())
2293                                        goto relock;
2294
2295                                spin_lock_irq(&sighand->siglock);
2296                        }
2297
2298                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2299                                /* It released the siglock.  */
2300                                goto relock;
2301                        }
2302
2303                        /*
2304                         * We didn't actually stop, due to a race
2305                         * with SIGCONT or something like that.
2306                         */
2307                        continue;
2308                }
2309
2310                spin_unlock_irq(&sighand->siglock);
2311
2312                /*
2313                 * Anything else is fatal, maybe with a core dump.
2314                 */
2315                current->flags |= PF_SIGNALED;
2316
2317                if (sig_kernel_coredump(signr)) {
2318                        if (print_fatal_signals)
2319                                print_fatal_signal(ksig->info.si_signo);
2320                        proc_coredump_connector(current);
2321                        /*
2322                         * If it was able to dump core, this kills all
2323                         * other threads in the group and synchronizes with
2324                         * their demise.  If we lost the race with another
2325                         * thread getting here, it set group_exit_code
2326                         * first and our do_group_exit call below will use
2327                         * that value and ignore the one we pass it.
2328                         */
2329                        do_coredump(&ksig->info);
2330                }
2331
2332                /*
2333                 * Death signals, no core dump.
2334                 */
2335                do_group_exit(ksig->info.si_signo);
2336                /* NOTREACHED */
2337        }
2338        spin_unlock_irq(&sighand->siglock);
2339
2340        ksig->sig = signr;
2341        return ksig->sig > 0;
2342}
2343
2344/**
2345 * signal_delivered - 
2346 * @ksig:               kernel signal struct
2347 * @stepping:           nonzero if debugger single-step or block-step in use
2348 *
2349 * This function should be called when a signal has successfully been
2350 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2351 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2352 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2353 */
2354static void signal_delivered(struct ksignal *ksig, int stepping)
2355{
2356        sigset_t blocked;
2357
2358        /* A signal was successfully delivered, and the
2359           saved sigmask was stored on the signal frame,
2360           and will be restored by sigreturn.  So we can
2361           simply clear the restore sigmask flag.  */
2362        clear_restore_sigmask();
2363
2364        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2365        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2366                sigaddset(&blocked, ksig->sig);
2367        set_current_blocked(&blocked);
2368        tracehook_signal_handler(stepping);
2369}
2370
2371void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2372{
2373        if (failed)
2374                force_sigsegv(ksig->sig, current);
2375        else
2376                signal_delivered(ksig, stepping);
2377}
2378
2379/*
2380 * It could be that complete_signal() picked us to notify about the
2381 * group-wide signal. Other threads should be notified now to take
2382 * the shared signals in @which since we will not.
2383 */
2384static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2385{
2386        sigset_t retarget;
2387        struct task_struct *t;
2388
2389        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2390        if (sigisemptyset(&retarget))
2391                return;
2392
2393        t = tsk;
2394        while_each_thread(tsk, t) {
2395                if (t->flags & PF_EXITING)
2396                        continue;
2397
2398                if (!has_pending_signals(&retarget, &t->blocked))
2399                        continue;
2400                /* Remove the signals this thread can handle. */
2401                sigandsets(&retarget, &retarget, &t->blocked);
2402
2403                if (!signal_pending(t))
2404                        signal_wake_up(t, 0);
2405
2406                if (sigisemptyset(&retarget))
2407                        break;
2408        }
2409}
2410
2411void exit_signals(struct task_struct *tsk)
2412{
2413        int group_stop = 0;
2414        sigset_t unblocked;
2415
2416        /*
2417         * @tsk is about to have PF_EXITING set - lock out users which
2418         * expect stable threadgroup.
2419         */
2420        cgroup_threadgroup_change_begin(tsk);
2421
2422        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2423                tsk->flags |= PF_EXITING;
2424                cgroup_threadgroup_change_end(tsk);
2425                return;
2426        }
2427
2428        spin_lock_irq(&tsk->sighand->siglock);
2429        /*
2430         * From now this task is not visible for group-wide signals,
2431         * see wants_signal(), do_signal_stop().
2432         */
2433        tsk->flags |= PF_EXITING;
2434
2435        cgroup_threadgroup_change_end(tsk);
2436
2437        if (!signal_pending(tsk))
2438                goto out;
2439
2440        unblocked = tsk->blocked;
2441        signotset(&unblocked);
2442        retarget_shared_pending(tsk, &unblocked);
2443
2444        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2445            task_participate_group_stop(tsk))
2446                group_stop = CLD_STOPPED;
2447out:
2448        spin_unlock_irq(&tsk->sighand->siglock);
2449
2450        /*
2451         * If group stop has completed, deliver the notification.  This
2452         * should always go to the real parent of the group leader.
2453         */
2454        if (unlikely(group_stop)) {
2455                read_lock(&tasklist_lock);
2456                do_notify_parent_cldstop(tsk, false, group_stop);
2457                read_unlock(&tasklist_lock);
2458        }
2459}
2460
2461EXPORT_SYMBOL(recalc_sigpending);
2462EXPORT_SYMBOL_GPL(dequeue_signal);
2463EXPORT_SYMBOL(flush_signals);
2464EXPORT_SYMBOL(force_sig);
2465EXPORT_SYMBOL(send_sig);
2466EXPORT_SYMBOL(send_sig_info);
2467EXPORT_SYMBOL(sigprocmask);
2468
2469/*
2470 * System call entry points.
2471 */
2472
2473/**
2474 *  sys_restart_syscall - restart a system call
2475 */
2476SYSCALL_DEFINE0(restart_syscall)
2477{
2478        struct restart_block *restart = &current->restart_block;
2479        return restart->fn(restart);
2480}
2481
2482long do_no_restart_syscall(struct restart_block *param)
2483{
2484        return -EINTR;
2485}
2486
2487static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2488{
2489        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2490                sigset_t newblocked;
2491                /* A set of now blocked but previously unblocked signals. */
2492                sigandnsets(&newblocked, newset, &current->blocked);
2493                retarget_shared_pending(tsk, &newblocked);
2494        }
2495        tsk->blocked = *newset;
2496        recalc_sigpending();
2497}
2498
2499/**
2500 * set_current_blocked - change current->blocked mask
2501 * @newset: new mask
2502 *
2503 * It is wrong to change ->blocked directly, this helper should be used
2504 * to ensure the process can't miss a shared signal we are going to block.
2505 */
2506void set_current_blocked(sigset_t *newset)
2507{
2508        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2509        __set_current_blocked(newset);
2510}
2511
2512void __set_current_blocked(const sigset_t *newset)
2513{
2514        struct task_struct *tsk = current;
2515
2516        /*
2517         * In case the signal mask hasn't changed, there is nothing we need
2518         * to do. The current->blocked shouldn't be modified by other task.
2519         */
2520        if (sigequalsets(&tsk->blocked, newset))
2521                return;
2522
2523        spin_lock_irq(&tsk->sighand->siglock);
2524        __set_task_blocked(tsk, newset);
2525        spin_unlock_irq(&tsk->sighand->siglock);
2526}
2527
2528/*
2529 * This is also useful for kernel threads that want to temporarily
2530 * (or permanently) block certain signals.
2531 *
2532 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2533 * interface happily blocks "unblockable" signals like SIGKILL
2534 * and friends.
2535 */
2536int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2537{
2538        struct task_struct *tsk = current;
2539        sigset_t newset;
2540
2541        /* Lockless, only current can change ->blocked, never from irq */
2542        if (oldset)
2543                *oldset = tsk->blocked;
2544
2545        switch (how) {
2546        case SIG_BLOCK:
2547                sigorsets(&newset, &tsk->blocked, set);
2548                break;
2549        case SIG_UNBLOCK:
2550                sigandnsets(&newset, &tsk->blocked, set);
2551                break;
2552        case SIG_SETMASK:
2553                newset = *set;
2554                break;
2555        default:
2556                return -EINVAL;
2557        }
2558
2559        __set_current_blocked(&newset);
2560        return 0;
2561}
2562
2563/**
2564 *  sys_rt_sigprocmask - change the list of currently blocked signals
2565 *  @how: whether to add, remove, or set signals
2566 *  @nset: stores pending signals
2567 *  @oset: previous value of signal mask if non-null
2568 *  @sigsetsize: size of sigset_t type
2569 */
2570SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2571                sigset_t __user *, oset, size_t, sigsetsize)
2572{
2573        sigset_t old_set, new_set;
2574        int error;
2575
2576        /* XXX: Don't preclude handling different sized sigset_t's.  */
2577        if (sigsetsize != sizeof(sigset_t))
2578                return -EINVAL;
2579
2580        old_set = current->blocked;
2581
2582        if (nset) {
2583                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2584                        return -EFAULT;
2585                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2586
2587                error = sigprocmask(how, &new_set, NULL);
2588                if (error)
2589                        return error;
2590        }
2591
2592        if (oset) {
2593                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2594                        return -EFAULT;
2595        }
2596
2597        return 0;
2598}
2599
2600#ifdef CONFIG_COMPAT
2601COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2602                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2603{
2604        sigset_t old_set = current->blocked;
2605
2606        /* XXX: Don't preclude handling different sized sigset_t's.  */
2607        if (sigsetsize != sizeof(sigset_t))
2608                return -EINVAL;
2609
2610        if (nset) {
2611                sigset_t new_set;
2612                int error;
2613                if (get_compat_sigset(&new_set, nset))
2614                        return -EFAULT;
2615                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2616
2617                error = sigprocmask(how, &new_set, NULL);
2618                if (error)
2619                        return error;
2620        }
2621        return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2622}
2623#endif
2624
2625static int do_sigpending(sigset_t *set)
2626{
2627        spin_lock_irq(&current->sighand->siglock);
2628        sigorsets(set, &current->pending.signal,
2629                  &current->signal->shared_pending.signal);
2630        spin_unlock_irq(&current->sighand->siglock);
2631
2632        /* Outside the lock because only this thread touches it.  */
2633        sigandsets(set, &current->blocked, set);
2634        return 0;
2635}
2636
2637/**
2638 *  sys_rt_sigpending - examine a pending signal that has been raised
2639 *                      while blocked
2640 *  @uset: stores pending signals
2641 *  @sigsetsize: size of sigset_t type or larger
2642 */
2643SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2644{
2645        sigset_t set;
2646        int err;
2647
2648        if (sigsetsize > sizeof(*uset))
2649                return -EINVAL;
2650
2651        err = do_sigpending(&set);
2652        if (!err && copy_to_user(uset, &set, sigsetsize))
2653                err = -EFAULT;
2654        return err;
2655}
2656
2657#ifdef CONFIG_COMPAT
2658COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2659                compat_size_t, sigsetsize)
2660{
2661        sigset_t set;
2662        int err;
2663
2664        if (sigsetsize > sizeof(*uset))
2665                return -EINVAL;
2666
2667        err = do_sigpending(&set);
2668        if (!err)
2669                err = put_compat_sigset(uset, &set, sigsetsize);
2670        return err;
2671}
2672#endif
2673
2674enum siginfo_layout siginfo_layout(int sig, int si_code)
2675{
2676        enum siginfo_layout layout = SIL_KILL;
2677        if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2678                static const struct {
2679                        unsigned char limit, layout;
2680                } filter[] = {
2681                        [SIGILL]  = { NSIGILL,  SIL_FAULT },
2682                        [SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2683                        [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2684                        [SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2685                        [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2686#if defined(SIGEMT) && defined(NSIGEMT)
2687                        [SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2688#endif
2689                        [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2690                        [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2691#ifdef __ARCH_SIGSYS
2692                        [SIGSYS]  = { NSIGSYS,  SIL_SYS },
2693#endif
2694                };
2695                if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2696                        layout = filter[sig].layout;
2697                else if (si_code <= NSIGPOLL)
2698                        layout = SIL_POLL;
2699        } else {
2700                if (si_code == SI_TIMER)
2701                        layout = SIL_TIMER;
2702                else if (si_code == SI_SIGIO)
2703                        layout = SIL_POLL;
2704                else if (si_code < 0)
2705                        layout = SIL_RT;
2706                /* Tests to support buggy kernel ABIs */
2707#ifdef TRAP_FIXME
2708                if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2709                        layout = SIL_FAULT;
2710#endif
2711#ifdef FPE_FIXME
2712                if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2713                        layout = SIL_FAULT;
2714#endif
2715        }
2716        return layout;
2717}
2718
2719#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2720
2721int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2722{
2723        int err;
2724
2725        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2726                return -EFAULT;
2727        if (from->si_code < 0)
2728                return __copy_to_user(to, from, sizeof(siginfo_t))
2729                        ? -EFAULT : 0;
2730        /*
2731         * If you change siginfo_t structure, please be sure
2732         * this code is fixed accordingly.
2733         * Please remember to update the signalfd_copyinfo() function
2734         * inside fs/signalfd.c too, in case siginfo_t changes.
2735         * It should never copy any pad contained in the structure
2736         * to avoid security leaks, but must copy the generic
2737         * 3 ints plus the relevant union member.
2738         */
2739        err = __put_user(from->si_signo, &to->si_signo);
2740        err |= __put_user(from->si_errno, &to->si_errno);
2741        err |= __put_user(from->si_code, &to->si_code);
2742        switch (siginfo_layout(from->si_signo, from->si_code)) {
2743        case SIL_KILL:
2744                err |= __put_user(from->si_pid, &to->si_pid);
2745                err |= __put_user(from->si_uid, &to->si_uid);
2746                break;
2747        case SIL_TIMER:
2748                /* Unreached SI_TIMER is negative */
2749                break;
2750        case SIL_POLL:
2751                err |= __put_user(from->si_band, &to->si_band);
2752                err |= __put_user(from->si_fd, &to->si_fd);
2753                break;
2754        case SIL_FAULT:
2755                err |= __put_user(from->si_addr, &to->si_addr);
2756#ifdef __ARCH_SI_TRAPNO
2757                err |= __put_user(from->si_trapno, &to->si_trapno);
2758#endif
2759#ifdef BUS_MCEERR_AO
2760                /*
2761                 * Other callers might not initialize the si_lsb field,
2762                 * so check explicitly for the right codes here.
2763                 */
2764                if (from->si_signo == SIGBUS &&
2765                    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2766                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2767#endif
2768#ifdef SEGV_BNDERR
2769                if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2770                        err |= __put_user(from->si_lower, &to->si_lower);
2771                        err |= __put_user(from->si_upper, &to->si_upper);
2772                }
2773#endif
2774#ifdef SEGV_PKUERR
2775                if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2776                        err |= __put_user(from->si_pkey, &to->si_pkey);
2777#endif
2778                break;
2779        case SIL_CHLD:
2780                err |= __put_user(from->si_pid, &to->si_pid);
2781                err |= __put_user(from->si_uid, &to->si_uid);
2782                err |= __put_user(from->si_status, &to->si_status);
2783                err |= __put_user(from->si_utime, &to->si_utime);
2784                err |= __put_user(from->si_stime, &to->si_stime);
2785                break;
2786        case SIL_RT:
2787                err |= __put_user(from->si_pid, &to->si_pid);
2788                err |= __put_user(from->si_uid, &to->si_uid);
2789                err |= __put_user(from->si_ptr, &to->si_ptr);
2790                break;
2791#ifdef __ARCH_SIGSYS
2792        case SIL_SYS:
2793                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2794                err |= __put_user(from->si_syscall, &to->si_syscall);
2795                err |= __put_user(from->si_arch, &to->si_arch);
2796                break;
2797#endif
2798        }
2799        return err;
2800}
2801
2802#endif
2803
2804/**
2805 *  do_sigtimedwait - wait for queued signals specified in @which
2806 *  @which: queued signals to wait for
2807 *  @info: if non-null, the signal's siginfo is returned here
2808 *  @ts: upper bound on process time suspension
2809 */
2810static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2811                    const struct timespec *ts)
2812{
2813        ktime_t *to = NULL, timeout = KTIME_MAX;
2814        struct task_struct *tsk = current;
2815        sigset_t mask = *which;
2816        int sig, ret = 0;
2817
2818        if (ts) {
2819                if (!timespec_valid(ts))
2820                        return -EINVAL;
2821                timeout = timespec_to_ktime(*ts);
2822                to = &timeout;
2823        }
2824
2825        /*
2826         * Invert the set of allowed signals to get those we want to block.
2827         */
2828        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2829        signotset(&mask);
2830
2831        spin_lock_irq(&tsk->sighand->siglock);
2832        sig = dequeue_signal(tsk, &mask, info);
2833        if (!sig && timeout) {
2834                /*
2835                 * None ready, temporarily unblock those we're interested
2836                 * while we are sleeping in so that we'll be awakened when
2837                 * they arrive. Unblocking is always fine, we can avoid
2838                 * set_current_blocked().
2839                 */
2840                tsk->real_blocked = tsk->blocked;
2841                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2842                recalc_sigpending();
2843                spin_unlock_irq(&tsk->sighand->siglock);
2844
2845                __set_current_state(TASK_INTERRUPTIBLE);
2846                ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2847                                                         HRTIMER_MODE_REL);
2848                spin_lock_irq(&tsk->sighand->siglock);
2849                __set_task_blocked(tsk, &tsk->real_blocked);
2850                sigemptyset(&tsk->real_blocked);
2851                sig = dequeue_signal(tsk, &mask, info);
2852        }
2853        spin_unlock_irq(&tsk->sighand->siglock);
2854
2855        if (sig)
2856                return sig;
2857        return ret ? -EINTR : -EAGAIN;
2858}
2859
2860/**
2861 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2862 *                      in @uthese
2863 *  @uthese: queued signals to wait for
2864 *  @uinfo: if non-null, the signal's siginfo is returned here
2865 *  @uts: upper bound on process time suspension
2866 *  @sigsetsize: size of sigset_t type
2867 */
2868SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2869                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2870                size_t, sigsetsize)
2871{
2872        sigset_t these;
2873        struct timespec ts;
2874        siginfo_t info;
2875        int ret;
2876
2877        /* XXX: Don't preclude handling different sized sigset_t's.  */
2878        if (sigsetsize != sizeof(sigset_t))
2879                return -EINVAL;
2880
2881        if (copy_from_user(&these, uthese, sizeof(these)))
2882                return -EFAULT;
2883
2884        if (uts) {
2885                if (copy_from_user(&ts, uts, sizeof(ts)))
2886                        return -EFAULT;
2887        }
2888
2889        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2890
2891        if (ret > 0 && uinfo) {
2892                if (copy_siginfo_to_user(uinfo, &info))
2893                        ret = -EFAULT;
2894        }
2895
2896        return ret;
2897}
2898
2899#ifdef CONFIG_COMPAT
2900COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2901                struct compat_siginfo __user *, uinfo,
2902                struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2903{
2904        sigset_t s;
2905        struct timespec t;
2906        siginfo_t info;
2907        long ret;
2908
2909        if (sigsetsize != sizeof(sigset_t))
2910                return -EINVAL;
2911
2912        if (get_compat_sigset(&s, uthese))
2913                return -EFAULT;
2914
2915        if (uts) {
2916                if (compat_get_timespec(&t, uts))
2917                        return -EFAULT;
2918        }
2919
2920        ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2921
2922        if (ret > 0 && uinfo) {
2923                if (copy_siginfo_to_user32(uinfo, &info))
2924                        ret = -EFAULT;
2925        }
2926
2927        return ret;
2928}
2929#endif
2930
2931/**
2932 *  sys_kill - send a signal to a process
2933 *  @pid: the PID of the process
2934 *  @sig: signal to be sent
2935 */
2936SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2937{
2938        struct siginfo info;
2939
2940        info.si_signo = sig;
2941        info.si_errno = 0;
2942        info.si_code = SI_USER;
2943        info.si_pid = task_tgid_vnr(current);
2944        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2945
2946        return kill_something_info(sig, &info, pid);
2947}
2948
2949static int
2950do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2951{
2952        struct task_struct *p;
2953        int error = -ESRCH;
2954
2955        rcu_read_lock();
2956        p = find_task_by_vpid(pid);
2957        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2958                error = check_kill_permission(sig, info, p);
2959                /*
2960                 * The null signal is a permissions and process existence
2961                 * probe.  No signal is actually delivered.
2962                 */
2963                if (!error && sig) {
2964                        error = do_send_sig_info(sig, info, p, false);
2965                        /*
2966                         * If lock_task_sighand() failed we pretend the task
2967                         * dies after receiving the signal. The window is tiny,
2968                         * and the signal is private anyway.
2969                         */
2970                        if (unlikely(error == -ESRCH))
2971                                error = 0;
2972                }
2973        }
2974        rcu_read_unlock();
2975
2976        return error;
2977}
2978
2979static int do_tkill(pid_t tgid, pid_t pid, int sig)
2980{
2981        struct siginfo info = {};
2982
2983        info.si_signo = sig;
2984        info.si_errno = 0;
2985        info.si_code = SI_TKILL;
2986        info.si_pid = task_tgid_vnr(current);
2987        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2988
2989        return do_send_specific(tgid, pid, sig, &info);
2990}
2991
2992/**
2993 *  sys_tgkill - send signal to one specific thread
2994 *  @tgid: the thread group ID of the thread
2995 *  @pid: the PID of the thread
2996 *  @sig: signal to be sent
2997 *
2998 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2999 *  exists but it's not belonging to the target process anymore. This
3000 *  method solves the problem of threads exiting and PIDs getting reused.
3001 */
3002SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3003{
3004        /* This is only valid for single tasks */
3005        if (pid <= 0 || tgid <= 0)
3006                return -EINVAL;
3007
3008        return do_tkill(tgid, pid, sig);
3009}
3010
3011/**
3012 *  sys_tkill - send signal to one specific task
3013 *  @pid: the PID of the task
3014 *  @sig: signal to be sent
3015 *
3016 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3017 */
3018SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3019{
3020        /* This is only valid for single tasks */
3021        if (pid <= 0)
3022                return -EINVAL;
3023
3024        return do_tkill(0, pid, sig);
3025}
3026
3027static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3028{
3029        /* Not even root can pretend to send signals from the kernel.
3030         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3031         */
3032        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3033            (task_pid_vnr(current) != pid))
3034                return -EPERM;
3035
3036        info->si_signo = sig;
3037
3038        /* POSIX.1b doesn't mention process groups.  */
3039        return kill_proc_info(sig, info, pid);
3040}
3041
3042/**
3043 *  sys_rt_sigqueueinfo - send signal information to a signal
3044 *  @pid: the PID of the thread
3045 *  @sig: signal to be sent
3046 *  @uinfo: signal info to be sent
3047 */
3048SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3049                siginfo_t __user *, uinfo)
3050{
3051        siginfo_t info;
3052        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3053                return -EFAULT;
3054        return do_rt_sigqueueinfo(pid, sig, &info);
3055}
3056
3057#ifdef CONFIG_COMPAT
3058COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3059                        compat_pid_t, pid,
3060                        int, sig,
3061                        struct compat_siginfo __user *, uinfo)
3062{
3063        siginfo_t info = {};
3064        int ret = copy_siginfo_from_user32(&info, uinfo);
3065        if (unlikely(ret))
3066                return ret;
3067        return do_rt_sigqueueinfo(pid, sig, &info);
3068}
3069#endif
3070
3071static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3072{
3073        /* This is only valid for single tasks */
3074        if (pid <= 0 || tgid <= 0)
3075                return -EINVAL;
3076
3077        /* Not even root can pretend to send signals from the kernel.
3078         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3079         */
3080        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3081            (task_pid_vnr(current) != pid))
3082                return -EPERM;
3083
3084        info->si_signo = sig;
3085
3086        return do_send_specific(tgid, pid, sig, info);
3087}
3088
3089SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3090                siginfo_t __user *, uinfo)
3091{
3092        siginfo_t info;
3093
3094        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3095                return -EFAULT;
3096
3097        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3098}
3099
3100#ifdef CONFIG_COMPAT
3101COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3102                        compat_pid_t, tgid,
3103                        compat_pid_t, pid,
3104                        int, sig,
3105                        struct compat_siginfo __user *, uinfo)
3106{
3107        siginfo_t info = {};
3108
3109        if (copy_siginfo_from_user32(&info, uinfo))
3110                return -EFAULT;
3111        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3112}
3113#endif
3114
3115/*
3116 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3117 */
3118void kernel_sigaction(int sig, __sighandler_t action)
3119{
3120        spin_lock_irq(&current->sighand->siglock);
3121        current->sighand->action[sig - 1].sa.sa_handler = action;
3122        if (action == SIG_IGN) {
3123                sigset_t mask;
3124
3125                sigemptyset(&mask);
3126                sigaddset(&mask, sig);
3127
3128                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3129                flush_sigqueue_mask(&mask, &current->pending);
3130                recalc_sigpending();
3131        }
3132        spin_unlock_irq(&current->sighand->siglock);
3133}
3134EXPORT_SYMBOL(kernel_sigaction);
3135
3136void __weak sigaction_compat_abi(struct k_sigaction *act,
3137                struct k_sigaction *oact)
3138{
3139}
3140
3141int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3142{
3143        struct task_struct *p = current, *t;
3144        struct k_sigaction *k;
3145        sigset_t mask;
3146
3147        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3148                return -EINVAL;
3149
3150        k = &p->sighand->action[sig-1];
3151
3152        spin_lock_irq(&p->sighand->siglock);
3153        if (oact)
3154                *oact = *k;
3155
3156        sigaction_compat_abi(act, oact);
3157
3158        if (act) {
3159                sigdelsetmask(&act->sa.sa_mask,
3160                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3161                *k = *act;
3162                /*
3163                 * POSIX 3.3.1.3:
3164                 *  "Setting a signal action to SIG_IGN for a signal that is
3165                 *   pending shall cause the pending signal to be discarded,
3166                 *   whether or not it is blocked."
3167                 *
3168                 *  "Setting a signal action to SIG_DFL for a signal that is
3169                 *   pending and whose default action is to ignore the signal
3170                 *   (for example, SIGCHLD), shall cause the pending signal to
3171                 *   be discarded, whether or not it is blocked"
3172                 */
3173                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3174                        sigemptyset(&mask);
3175                        sigaddset(&mask, sig);
3176                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3177                        for_each_thread(p, t)
3178                                flush_sigqueue_mask(&mask, &t->pending);
3179                }
3180        }
3181
3182        spin_unlock_irq(&p->sighand->siglock);
3183        return 0;
3184}
3185
3186static int
3187do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3188{
3189        struct task_struct *t = current;
3190
3191        if (oss) {
3192                memset(oss, 0, sizeof(stack_t));
3193                oss->ss_sp = (void __user *) t->sas_ss_sp;
3194                oss->ss_size = t->sas_ss_size;
3195                oss->ss_flags = sas_ss_flags(sp) |
3196                        (current->sas_ss_flags & SS_FLAG_BITS);
3197        }
3198
3199        if (ss) {
3200                void __user *ss_sp = ss->ss_sp;
3201                size_t ss_size = ss->ss_size;
3202                unsigned ss_flags = ss->ss_flags;
3203                int ss_mode;
3204
3205                if (unlikely(on_sig_stack(sp)))
3206                        return -EPERM;
3207
3208                ss_mode = ss_flags & ~SS_FLAG_BITS;
3209                if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3210                                ss_mode != 0))
3211                        return -EINVAL;
3212
3213                if (ss_mode == SS_DISABLE) {
3214                        ss_size = 0;
3215                        ss_sp = NULL;
3216                } else {
3217                        if (unlikely(ss_size < MINSIGSTKSZ))
3218                                return -ENOMEM;
3219                }
3220
3221                t->sas_ss_sp = (unsigned long) ss_sp;
3222                t->sas_ss_size = ss_size;
3223                t->sas_ss_flags = ss_flags;
3224        }
3225        return 0;
3226}
3227
3228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3229{
3230        stack_t new, old;
3231        int err;
3232        if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3233                return -EFAULT;
3234        err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3235                              current_user_stack_pointer());
3236        if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3237                err = -EFAULT;
3238        return err;
3239}
3240
3241int restore_altstack(const stack_t __user *uss)
3242{
3243        stack_t new;
3244        if (copy_from_user(&new, uss, sizeof(stack_t)))
3245                return -EFAULT;
3246        (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3247        /* squash all but EFAULT for now */
3248        return 0;
3249}
3250
3251int __save_altstack(stack_t __user *uss, unsigned long sp)
3252{
3253        struct task_struct *t = current;
3254        int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3255                __put_user(t->sas_ss_flags, &uss->ss_flags) |
3256                __put_user(t->sas_ss_size, &uss->ss_size);
3257        if (err)
3258                return err;
3259        if (t->sas_ss_flags & SS_AUTODISARM)
3260                sas_ss_reset(t);
3261        return 0;
3262}
3263
3264#ifdef CONFIG_COMPAT
3265COMPAT_SYSCALL_DEFINE2(sigaltstack,
3266                        const compat_stack_t __user *, uss_ptr,
3267                        compat_stack_t __user *, uoss_ptr)
3268{
3269        stack_t uss, uoss;
3270        int ret;
3271
3272        if (uss_ptr) {
3273                compat_stack_t uss32;
3274                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3275                        return -EFAULT;
3276                uss.ss_sp = compat_ptr(uss32.ss_sp);
3277                uss.ss_flags = uss32.ss_flags;
3278                uss.ss_size = uss32.ss_size;
3279        }
3280        ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3281                             compat_user_stack_pointer());
3282        if (ret >= 0 && uoss_ptr)  {
3283                compat_stack_t old;
3284                memset(&old, 0, sizeof(old));
3285                old.ss_sp = ptr_to_compat(uoss.ss_sp);
3286                old.ss_flags = uoss.ss_flags;
3287                old.ss_size = uoss.ss_size;
3288                if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3289                        ret = -EFAULT;
3290        }
3291        return ret;
3292}
3293
3294int compat_restore_altstack(const compat_stack_t __user *uss)
3295{
3296        int err = compat_sys_sigaltstack(uss, NULL);
3297        /* squash all but -EFAULT for now */
3298        return err == -EFAULT ? err : 0;
3299}
3300
3301int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3302{
3303        int err;
3304        struct task_struct *t = current;
3305        err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3306                         &uss->ss_sp) |
3307                __put_user(t->sas_ss_flags, &uss->ss_flags) |
3308                __put_user(t->sas_ss_size, &uss->ss_size);
3309        if (err)
3310                return err;
3311        if (t->sas_ss_flags & SS_AUTODISARM)
3312                sas_ss_reset(t);
3313        return 0;
3314}
3315#endif
3316
3317#ifdef __ARCH_WANT_SYS_SIGPENDING
3318
3319/**
3320 *  sys_sigpending - examine pending signals
3321 *  @set: where mask of pending signal is returned
3322 */
3323SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3324{
3325        return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3326}
3327
3328#ifdef CONFIG_COMPAT
3329COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3330{
3331        sigset_t set;
3332        int err = do_sigpending(&set);
3333        if (!err)
3334                err = put_user(set.sig[0], set32);
3335        return err;
3336}
3337#endif
3338
3339#endif
3340
3341#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3342/**
3343 *  sys_sigprocmask - examine and change blocked signals
3344 *  @how: whether to add, remove, or set signals
3345 *  @nset: signals to add or remove (if non-null)
3346 *  @oset: previous value of signal mask if non-null
3347 *
3348 * Some platforms have their own version with special arguments;
3349 * others support only sys_rt_sigprocmask.
3350 */
3351
3352SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3353                old_sigset_t __user *, oset)
3354{
3355        old_sigset_t old_set, new_set;
3356        sigset_t new_blocked;
3357
3358        old_set = current->blocked.sig[0];
3359
3360        if (nset) {
3361                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3362                        return -EFAULT;
3363
3364                new_blocked = current->blocked;
3365
3366                switch (how) {
3367                case SIG_BLOCK:
3368                        sigaddsetmask(&new_blocked, new_set);
3369                        break;
3370                case SIG_UNBLOCK:
3371                        sigdelsetmask(&new_blocked, new_set);
3372                        break;
3373                case SIG_SETMASK:
3374                        new_blocked.sig[0] = new_set;
3375                        break;
3376                default:
3377                        return -EINVAL;
3378                }
3379
3380                set_current_blocked(&new_blocked);
3381        }
3382
3383        if (oset) {
3384                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3385                        return -EFAULT;
3386        }
3387
3388        return 0;
3389}
3390#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3391
3392#ifndef CONFIG_ODD_RT_SIGACTION
3393/**
3394 *  sys_rt_sigaction - alter an action taken by a process
3395 *  @sig: signal to be sent
3396 *  @act: new sigaction
3397 *  @oact: used to save the previous sigaction
3398 *  @sigsetsize: size of sigset_t type
3399 */
3400SYSCALL_DEFINE4(rt_sigaction, int, sig,
3401                const struct sigaction __user *, act,
3402                struct sigaction __user *, oact,
3403                size_t, sigsetsize)
3404{
3405        struct k_sigaction new_sa, old_sa;
3406        int ret = -EINVAL;
3407
3408        /* XXX: Don't preclude handling different sized sigset_t's.  */
3409        if (sigsetsize != sizeof(sigset_t))
3410                goto out;
3411
3412        if (act) {
3413                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3414                        return -EFAULT;
3415        }
3416
3417        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3418
3419        if (!ret && oact) {
3420                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3421                        return -EFAULT;
3422        }
3423out:
3424        return ret;
3425}
3426#ifdef CONFIG_COMPAT
3427COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3428                const struct compat_sigaction __user *, act,
3429                struct compat_sigaction __user *, oact,
3430                compat_size_t, sigsetsize)
3431{
3432        struct k_sigaction new_ka, old_ka;
3433#ifdef __ARCH_HAS_SA_RESTORER
3434        compat_uptr_t restorer;
3435#endif
3436        int ret;
3437
3438        /* XXX: Don't preclude handling different sized sigset_t's.  */
3439        if (sigsetsize != sizeof(compat_sigset_t))
3440                return -EINVAL;
3441
3442        if (act) {
3443                compat_uptr_t handler;
3444                ret = get_user(handler, &act->sa_handler);
3445                new_ka.sa.sa_handler = compat_ptr(handler);
3446#ifdef __ARCH_HAS_SA_RESTORER
3447                ret |= get_user(restorer, &act->sa_restorer);
3448                new_ka.sa.sa_restorer = compat_ptr(restorer);
3449#endif
3450                ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3451                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3452                if (ret)
3453                        return -EFAULT;
3454        }
3455
3456        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3457        if (!ret && oact) {
3458                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3459                               &oact->sa_handler);
3460                ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3461                                         sizeof(oact->sa_mask));
3462                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3463#ifdef __ARCH_HAS_SA_RESTORER
3464                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3465                                &oact->sa_restorer);
3466#endif
3467        }
3468        return ret;
3469}
3470#endif
3471#endif /* !CONFIG_ODD_RT_SIGACTION */
3472
3473#ifdef CONFIG_OLD_SIGACTION
3474SYSCALL_DEFINE3(sigaction, int, sig,
3475                const struct old_sigaction __user *, act,
3476                struct old_sigaction __user *, oact)
3477{
3478        struct k_sigaction new_ka, old_ka;
3479        int ret;
3480
3481        if (act) {
3482                old_sigset_t mask;
3483                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3484                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3485                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3486                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3487                    __get_user(mask, &act->sa_mask))
3488                        return -EFAULT;
3489#ifdef __ARCH_HAS_KA_RESTORER
3490                new_ka.ka_restorer = NULL;
3491#endif
3492                siginitset(&new_ka.sa.sa_mask, mask);
3493        }
3494
3495        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3496
3497        if (!ret && oact) {
3498                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3499                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3500                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3501                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3502                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3503                        return -EFAULT;
3504        }
3505
3506        return ret;
3507}
3508#endif
3509#ifdef CONFIG_COMPAT_OLD_SIGACTION
3510COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3511                const struct compat_old_sigaction __user *, act,
3512                struct compat_old_sigaction __user *, oact)
3513{
3514        struct k_sigaction new_ka, old_ka;
3515        int ret;
3516        compat_old_sigset_t mask;
3517        compat_uptr_t handler, restorer;
3518
3519        if (act) {
3520                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3521                    __get_user(handler, &act->sa_handler) ||
3522                    __get_user(restorer, &act->sa_restorer) ||
3523                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3524                    __get_user(mask, &act->sa_mask))
3525                        return -EFAULT;
3526
3527#ifdef __ARCH_HAS_KA_RESTORER
3528                new_ka.ka_restorer = NULL;
3529#endif
3530                new_ka.sa.sa_handler = compat_ptr(handler);
3531                new_ka.sa.sa_restorer = compat_ptr(restorer);
3532                siginitset(&new_ka.sa.sa_mask, mask);
3533        }
3534
3535        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3536
3537        if (!ret && oact) {
3538                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3539                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3540                               &oact->sa_handler) ||
3541                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3542                               &oact->sa_restorer) ||
3543                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3544                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3545                        return -EFAULT;
3546        }
3547        return ret;
3548}
3549#endif
3550
3551#ifdef CONFIG_SGETMASK_SYSCALL
3552
3553/*
3554 * For backwards compatibility.  Functionality superseded by sigprocmask.
3555 */
3556SYSCALL_DEFINE0(sgetmask)
3557{
3558        /* SMP safe */
3559        return current->blocked.sig[0];
3560}
3561
3562SYSCALL_DEFINE1(ssetmask, int, newmask)
3563{
3564        int old = current->blocked.sig[0];
3565        sigset_t newset;
3566
3567        siginitset(&newset, newmask);
3568        set_current_blocked(&newset);
3569
3570        return old;
3571}
3572#endif /* CONFIG_SGETMASK_SYSCALL */
3573
3574#ifdef __ARCH_WANT_SYS_SIGNAL
3575/*
3576 * For backwards compatibility.  Functionality superseded by sigaction.
3577 */
3578SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3579{
3580        struct k_sigaction new_sa, old_sa;
3581        int ret;
3582
3583        new_sa.sa.sa_handler = handler;
3584        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3585        sigemptyset(&new_sa.sa.sa_mask);
3586
3587        ret = do_sigaction(sig, &new_sa, &old_sa);
3588
3589        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3590}
3591#endif /* __ARCH_WANT_SYS_SIGNAL */
3592
3593#ifdef __ARCH_WANT_SYS_PAUSE
3594
3595SYSCALL_DEFINE0(pause)
3596{
3597        while (!signal_pending(current)) {
3598                __set_current_state(TASK_INTERRUPTIBLE);
3599                schedule();
3600        }
3601        return -ERESTARTNOHAND;
3602}
3603
3604#endif
3605
3606static int sigsuspend(sigset_t *set)
3607{
3608        current->saved_sigmask = current->blocked;
3609        set_current_blocked(set);
3610
3611        while (!signal_pending(current)) {
3612                __set_current_state(TASK_INTERRUPTIBLE);
3613                schedule();
3614        }
3615        set_restore_sigmask();
3616        return -ERESTARTNOHAND;
3617}
3618
3619/**
3620 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3621 *      @unewset value until a signal is received
3622 *  @unewset: new signal mask value
3623 *  @sigsetsize: size of sigset_t type
3624 */
3625SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3626{
3627        sigset_t newset;
3628
3629        /* XXX: Don't preclude handling different sized sigset_t's.  */
3630        if (sigsetsize != sizeof(sigset_t))
3631                return -EINVAL;
3632
3633        if (copy_from_user(&newset, unewset, sizeof(newset)))
3634                return -EFAULT;
3635        return sigsuspend(&newset);
3636}
3637 
3638#ifdef CONFIG_COMPAT
3639COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3640{
3641        sigset_t newset;
3642
3643        /* XXX: Don't preclude handling different sized sigset_t's.  */
3644        if (sigsetsize != sizeof(sigset_t))
3645                return -EINVAL;
3646
3647        if (get_compat_sigset(&newset, unewset))
3648                return -EFAULT;
3649        return sigsuspend(&newset);
3650}
3651#endif
3652
3653#ifdef CONFIG_OLD_SIGSUSPEND
3654SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3655{
3656        sigset_t blocked;
3657        siginitset(&blocked, mask);
3658        return sigsuspend(&blocked);
3659}
3660#endif
3661#ifdef CONFIG_OLD_SIGSUSPEND3
3662SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3663{
3664        sigset_t blocked;
3665        siginitset(&blocked, mask);
3666        return sigsuspend(&blocked);
3667}
3668#endif
3669
3670__weak const char *arch_vma_name(struct vm_area_struct *vma)
3671{
3672        return NULL;
3673}
3674
3675void __init signals_init(void)
3676{
3677        /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3678        BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3679                != offsetof(struct siginfo, _sifields._pad));
3680
3681        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3682}
3683
3684#ifdef CONFIG_KGDB_KDB
3685#include <linux/kdb.h>
3686/*
3687 * kdb_send_sig_info - Allows kdb to send signals without exposing
3688 * signal internals.  This function checks if the required locks are
3689 * available before calling the main signal code, to avoid kdb
3690 * deadlocks.
3691 */
3692void
3693kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3694{
3695        static struct task_struct *kdb_prev_t;
3696        int sig, new_t;
3697        if (!spin_trylock(&t->sighand->siglock)) {
3698                kdb_printf("Can't do kill command now.\n"
3699                           "The sigmask lock is held somewhere else in "
3700                           "kernel, try again later\n");
3701                return;
3702        }
3703        spin_unlock(&t->sighand->siglock);
3704        new_t = kdb_prev_t != t;
3705        kdb_prev_t = t;
3706        if (t->state != TASK_RUNNING && new_t) {
3707                kdb_printf("Process is not RUNNING, sending a signal from "
3708                           "kdb risks deadlock\n"
3709                           "on the run queue locks. "
3710                           "The signal has _not_ been sent.\n"
3711                           "Reissue the kill command if you want to risk "
3712                           "the deadlock.\n");
3713                return;
3714        }
3715        sig = info->si_signo;
3716        if (send_sig_info(sig, info, t))
3717                kdb_printf("Fail to deliver Signal %d to process %d.\n",
3718                           sig, t->pid);
3719        else
3720                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3721}
3722#endif  /* CONFIG_KGDB_KDB */
3723