linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched/signal.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/sched/nohz.h>
  51#include <linux/sched/debug.h>
  52#include <linux/timer.h>
  53#include <linux/freezer.h>
  54#include <linux/compat.h>
  55
  56#include <linux/uaccess.h>
  57
  58#include <trace/events/timer.h>
  59
  60#include "tick-internal.h"
  61
  62/*
  63 * The timer bases:
  64 *
  65 * There are more clockids than hrtimer bases. Thus, we index
  66 * into the timer bases by the hrtimer_base_type enum. When trying
  67 * to reach a base using a clockid, hrtimer_clockid_to_base()
  68 * is used to convert from clockid to the proper hrtimer_base_type.
  69 */
  70DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  71{
  72        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  73        .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  74        .clock_base =
  75        {
  76                {
  77                        .index = HRTIMER_BASE_MONOTONIC,
  78                        .clockid = CLOCK_MONOTONIC,
  79                        .get_time = &ktime_get,
  80                },
  81                {
  82                        .index = HRTIMER_BASE_REALTIME,
  83                        .clockid = CLOCK_REALTIME,
  84                        .get_time = &ktime_get_real,
  85                },
  86                {
  87                        .index = HRTIMER_BASE_BOOTTIME,
  88                        .clockid = CLOCK_BOOTTIME,
  89                        .get_time = &ktime_get_boottime,
  90                },
  91                {
  92                        .index = HRTIMER_BASE_TAI,
  93                        .clockid = CLOCK_TAI,
  94                        .get_time = &ktime_get_clocktai,
  95                },
  96        }
  97};
  98
  99static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 100        /* Make sure we catch unsupported clockids */
 101        [0 ... MAX_CLOCKS - 1]  = HRTIMER_MAX_CLOCK_BASES,
 102
 103        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
 104        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
 105        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 106        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 107};
 108
 109/*
 110 * Functions and macros which are different for UP/SMP systems are kept in a
 111 * single place
 112 */
 113#ifdef CONFIG_SMP
 114
 115/*
 116 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 117 * such that hrtimer_callback_running() can unconditionally dereference
 118 * timer->base->cpu_base
 119 */
 120static struct hrtimer_cpu_base migration_cpu_base = {
 121        .seq = SEQCNT_ZERO(migration_cpu_base),
 122        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 123};
 124
 125#define migration_base  migration_cpu_base.clock_base[0]
 126
 127/*
 128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 129 * means that all timers which are tied to this base via timer->base are
 130 * locked, and the base itself is locked too.
 131 *
 132 * So __run_timers/migrate_timers can safely modify all timers which could
 133 * be found on the lists/queues.
 134 *
 135 * When the timer's base is locked, and the timer removed from list, it is
 136 * possible to set timer->base = &migration_base and drop the lock: the timer
 137 * remains locked.
 138 */
 139static
 140struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 141                                             unsigned long *flags)
 142{
 143        struct hrtimer_clock_base *base;
 144
 145        for (;;) {
 146                base = timer->base;
 147                if (likely(base != &migration_base)) {
 148                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 149                        if (likely(base == timer->base))
 150                                return base;
 151                        /* The timer has migrated to another CPU: */
 152                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 153                }
 154                cpu_relax();
 155        }
 156}
 157
 158/*
 159 * With HIGHRES=y we do not migrate the timer when it is expiring
 160 * before the next event on the target cpu because we cannot reprogram
 161 * the target cpu hardware and we would cause it to fire late.
 162 *
 163 * Called with cpu_base->lock of target cpu held.
 164 */
 165static int
 166hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 167{
 168#ifdef CONFIG_HIGH_RES_TIMERS
 169        ktime_t expires;
 170
 171        if (!new_base->cpu_base->hres_active)
 172                return 0;
 173
 174        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 175        return expires <= new_base->cpu_base->expires_next;
 176#else
 177        return 0;
 178#endif
 179}
 180
 181#ifdef CONFIG_NO_HZ_COMMON
 182static inline
 183struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 184                                         int pinned)
 185{
 186        if (pinned || !base->migration_enabled)
 187                return base;
 188        return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 189}
 190#else
 191static inline
 192struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 193                                         int pinned)
 194{
 195        return base;
 196}
 197#endif
 198
 199/*
 200 * We switch the timer base to a power-optimized selected CPU target,
 201 * if:
 202 *      - NO_HZ_COMMON is enabled
 203 *      - timer migration is enabled
 204 *      - the timer callback is not running
 205 *      - the timer is not the first expiring timer on the new target
 206 *
 207 * If one of the above requirements is not fulfilled we move the timer
 208 * to the current CPU or leave it on the previously assigned CPU if
 209 * the timer callback is currently running.
 210 */
 211static inline struct hrtimer_clock_base *
 212switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 213                    int pinned)
 214{
 215        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 216        struct hrtimer_clock_base *new_base;
 217        int basenum = base->index;
 218
 219        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 220        new_cpu_base = get_target_base(this_cpu_base, pinned);
 221again:
 222        new_base = &new_cpu_base->clock_base[basenum];
 223
 224        if (base != new_base) {
 225                /*
 226                 * We are trying to move timer to new_base.
 227                 * However we can't change timer's base while it is running,
 228                 * so we keep it on the same CPU. No hassle vs. reprogramming
 229                 * the event source in the high resolution case. The softirq
 230                 * code will take care of this when the timer function has
 231                 * completed. There is no conflict as we hold the lock until
 232                 * the timer is enqueued.
 233                 */
 234                if (unlikely(hrtimer_callback_running(timer)))
 235                        return base;
 236
 237                /* See the comment in lock_hrtimer_base() */
 238                timer->base = &migration_base;
 239                raw_spin_unlock(&base->cpu_base->lock);
 240                raw_spin_lock(&new_base->cpu_base->lock);
 241
 242                if (new_cpu_base != this_cpu_base &&
 243                    hrtimer_check_target(timer, new_base)) {
 244                        raw_spin_unlock(&new_base->cpu_base->lock);
 245                        raw_spin_lock(&base->cpu_base->lock);
 246                        new_cpu_base = this_cpu_base;
 247                        timer->base = base;
 248                        goto again;
 249                }
 250                timer->base = new_base;
 251        } else {
 252                if (new_cpu_base != this_cpu_base &&
 253                    hrtimer_check_target(timer, new_base)) {
 254                        new_cpu_base = this_cpu_base;
 255                        goto again;
 256                }
 257        }
 258        return new_base;
 259}
 260
 261#else /* CONFIG_SMP */
 262
 263static inline struct hrtimer_clock_base *
 264lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 265{
 266        struct hrtimer_clock_base *base = timer->base;
 267
 268        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 269
 270        return base;
 271}
 272
 273# define switch_hrtimer_base(t, b, p)   (b)
 274
 275#endif  /* !CONFIG_SMP */
 276
 277/*
 278 * Functions for the union type storage format of ktime_t which are
 279 * too large for inlining:
 280 */
 281#if BITS_PER_LONG < 64
 282/*
 283 * Divide a ktime value by a nanosecond value
 284 */
 285s64 __ktime_divns(const ktime_t kt, s64 div)
 286{
 287        int sft = 0;
 288        s64 dclc;
 289        u64 tmp;
 290
 291        dclc = ktime_to_ns(kt);
 292        tmp = dclc < 0 ? -dclc : dclc;
 293
 294        /* Make sure the divisor is less than 2^32: */
 295        while (div >> 32) {
 296                sft++;
 297                div >>= 1;
 298        }
 299        tmp >>= sft;
 300        do_div(tmp, (unsigned long) div);
 301        return dclc < 0 ? -tmp : tmp;
 302}
 303EXPORT_SYMBOL_GPL(__ktime_divns);
 304#endif /* BITS_PER_LONG >= 64 */
 305
 306/*
 307 * Add two ktime values and do a safety check for overflow:
 308 */
 309ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 310{
 311        ktime_t res = ktime_add_unsafe(lhs, rhs);
 312
 313        /*
 314         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 315         * return to user space in a timespec:
 316         */
 317        if (res < 0 || res < lhs || res < rhs)
 318                res = ktime_set(KTIME_SEC_MAX, 0);
 319
 320        return res;
 321}
 322
 323EXPORT_SYMBOL_GPL(ktime_add_safe);
 324
 325#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 326
 327static struct debug_obj_descr hrtimer_debug_descr;
 328
 329static void *hrtimer_debug_hint(void *addr)
 330{
 331        return ((struct hrtimer *) addr)->function;
 332}
 333
 334/*
 335 * fixup_init is called when:
 336 * - an active object is initialized
 337 */
 338static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 339{
 340        struct hrtimer *timer = addr;
 341
 342        switch (state) {
 343        case ODEBUG_STATE_ACTIVE:
 344                hrtimer_cancel(timer);
 345                debug_object_init(timer, &hrtimer_debug_descr);
 346                return true;
 347        default:
 348                return false;
 349        }
 350}
 351
 352/*
 353 * fixup_activate is called when:
 354 * - an active object is activated
 355 * - an unknown non-static object is activated
 356 */
 357static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 358{
 359        switch (state) {
 360        case ODEBUG_STATE_ACTIVE:
 361                WARN_ON(1);
 362
 363        default:
 364                return false;
 365        }
 366}
 367
 368/*
 369 * fixup_free is called when:
 370 * - an active object is freed
 371 */
 372static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 373{
 374        struct hrtimer *timer = addr;
 375
 376        switch (state) {
 377        case ODEBUG_STATE_ACTIVE:
 378                hrtimer_cancel(timer);
 379                debug_object_free(timer, &hrtimer_debug_descr);
 380                return true;
 381        default:
 382                return false;
 383        }
 384}
 385
 386static struct debug_obj_descr hrtimer_debug_descr = {
 387        .name           = "hrtimer",
 388        .debug_hint     = hrtimer_debug_hint,
 389        .fixup_init     = hrtimer_fixup_init,
 390        .fixup_activate = hrtimer_fixup_activate,
 391        .fixup_free     = hrtimer_fixup_free,
 392};
 393
 394static inline void debug_hrtimer_init(struct hrtimer *timer)
 395{
 396        debug_object_init(timer, &hrtimer_debug_descr);
 397}
 398
 399static inline void debug_hrtimer_activate(struct hrtimer *timer)
 400{
 401        debug_object_activate(timer, &hrtimer_debug_descr);
 402}
 403
 404static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 405{
 406        debug_object_deactivate(timer, &hrtimer_debug_descr);
 407}
 408
 409static inline void debug_hrtimer_free(struct hrtimer *timer)
 410{
 411        debug_object_free(timer, &hrtimer_debug_descr);
 412}
 413
 414static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 415                           enum hrtimer_mode mode);
 416
 417void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 418                           enum hrtimer_mode mode)
 419{
 420        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 421        __hrtimer_init(timer, clock_id, mode);
 422}
 423EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 424
 425void destroy_hrtimer_on_stack(struct hrtimer *timer)
 426{
 427        debug_object_free(timer, &hrtimer_debug_descr);
 428}
 429EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 430
 431#else
 432static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 433static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 434static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 435#endif
 436
 437static inline void
 438debug_init(struct hrtimer *timer, clockid_t clockid,
 439           enum hrtimer_mode mode)
 440{
 441        debug_hrtimer_init(timer);
 442        trace_hrtimer_init(timer, clockid, mode);
 443}
 444
 445static inline void debug_activate(struct hrtimer *timer)
 446{
 447        debug_hrtimer_activate(timer);
 448        trace_hrtimer_start(timer);
 449}
 450
 451static inline void debug_deactivate(struct hrtimer *timer)
 452{
 453        debug_hrtimer_deactivate(timer);
 454        trace_hrtimer_cancel(timer);
 455}
 456
 457#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 458static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
 459                                             struct hrtimer *timer)
 460{
 461#ifdef CONFIG_HIGH_RES_TIMERS
 462        cpu_base->next_timer = timer;
 463#endif
 464}
 465
 466static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
 467{
 468        struct hrtimer_clock_base *base = cpu_base->clock_base;
 469        unsigned int active = cpu_base->active_bases;
 470        ktime_t expires, expires_next = KTIME_MAX;
 471
 472        hrtimer_update_next_timer(cpu_base, NULL);
 473        for (; active; base++, active >>= 1) {
 474                struct timerqueue_node *next;
 475                struct hrtimer *timer;
 476
 477                if (!(active & 0x01))
 478                        continue;
 479
 480                next = timerqueue_getnext(&base->active);
 481                timer = container_of(next, struct hrtimer, node);
 482                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 483                if (expires < expires_next) {
 484                        expires_next = expires;
 485                        hrtimer_update_next_timer(cpu_base, timer);
 486                }
 487        }
 488        /*
 489         * clock_was_set() might have changed base->offset of any of
 490         * the clock bases so the result might be negative. Fix it up
 491         * to prevent a false positive in clockevents_program_event().
 492         */
 493        if (expires_next < 0)
 494                expires_next = 0;
 495        return expires_next;
 496}
 497#endif
 498
 499static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 500{
 501        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 502        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 503        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 504
 505        return ktime_get_update_offsets_now(&base->clock_was_set_seq,
 506                                            offs_real, offs_boot, offs_tai);
 507}
 508
 509/* High resolution timer related functions */
 510#ifdef CONFIG_HIGH_RES_TIMERS
 511
 512/*
 513 * High resolution timer enabled ?
 514 */
 515static bool hrtimer_hres_enabled __read_mostly  = true;
 516unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 517EXPORT_SYMBOL_GPL(hrtimer_resolution);
 518
 519/*
 520 * Enable / Disable high resolution mode
 521 */
 522static int __init setup_hrtimer_hres(char *str)
 523{
 524        return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 525}
 526
 527__setup("highres=", setup_hrtimer_hres);
 528
 529/*
 530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 531 */
 532static inline int hrtimer_is_hres_enabled(void)
 533{
 534        return hrtimer_hres_enabled;
 535}
 536
 537/*
 538 * Is the high resolution mode active ?
 539 */
 540static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 541{
 542        return cpu_base->hres_active;
 543}
 544
 545static inline int hrtimer_hres_active(void)
 546{
 547        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 548}
 549
 550/*
 551 * Reprogram the event source with checking both queues for the
 552 * next event
 553 * Called with interrupts disabled and base->lock held
 554 */
 555static void
 556hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 557{
 558        ktime_t expires_next;
 559
 560        if (!cpu_base->hres_active)
 561                return;
 562
 563        expires_next = __hrtimer_get_next_event(cpu_base);
 564
 565        if (skip_equal && expires_next == cpu_base->expires_next)
 566                return;
 567
 568        cpu_base->expires_next = expires_next;
 569
 570        /*
 571         * If a hang was detected in the last timer interrupt then we
 572         * leave the hang delay active in the hardware. We want the
 573         * system to make progress. That also prevents the following
 574         * scenario:
 575         * T1 expires 50ms from now
 576         * T2 expires 5s from now
 577         *
 578         * T1 is removed, so this code is called and would reprogram
 579         * the hardware to 5s from now. Any hrtimer_start after that
 580         * will not reprogram the hardware due to hang_detected being
 581         * set. So we'd effectivly block all timers until the T2 event
 582         * fires.
 583         */
 584        if (cpu_base->hang_detected)
 585                return;
 586
 587        tick_program_event(cpu_base->expires_next, 1);
 588}
 589
 590/*
 591 * When a timer is enqueued and expires earlier than the already enqueued
 592 * timers, we have to check, whether it expires earlier than the timer for
 593 * which the clock event device was armed.
 594 *
 595 * Called with interrupts disabled and base->cpu_base.lock held
 596 */
 597static void hrtimer_reprogram(struct hrtimer *timer,
 598                              struct hrtimer_clock_base *base)
 599{
 600        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 601        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 602
 603        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 604
 605        /*
 606         * If the timer is not on the current cpu, we cannot reprogram
 607         * the other cpus clock event device.
 608         */
 609        if (base->cpu_base != cpu_base)
 610                return;
 611
 612        /*
 613         * If the hrtimer interrupt is running, then it will
 614         * reevaluate the clock bases and reprogram the clock event
 615         * device. The callbacks are always executed in hard interrupt
 616         * context so we don't need an extra check for a running
 617         * callback.
 618         */
 619        if (cpu_base->in_hrtirq)
 620                return;
 621
 622        /*
 623         * CLOCK_REALTIME timer might be requested with an absolute
 624         * expiry time which is less than base->offset. Set it to 0.
 625         */
 626        if (expires < 0)
 627                expires = 0;
 628
 629        if (expires >= cpu_base->expires_next)
 630                return;
 631
 632        /* Update the pointer to the next expiring timer */
 633        cpu_base->next_timer = timer;
 634
 635        /*
 636         * If a hang was detected in the last timer interrupt then we
 637         * do not schedule a timer which is earlier than the expiry
 638         * which we enforced in the hang detection. We want the system
 639         * to make progress.
 640         */
 641        if (cpu_base->hang_detected)
 642                return;
 643
 644        /*
 645         * Program the timer hardware. We enforce the expiry for
 646         * events which are already in the past.
 647         */
 648        cpu_base->expires_next = expires;
 649        tick_program_event(expires, 1);
 650}
 651
 652/*
 653 * Initialize the high resolution related parts of cpu_base
 654 */
 655static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 656{
 657        base->expires_next = KTIME_MAX;
 658        base->hang_detected = 0;
 659        base->hres_active = 0;
 660        base->next_timer = NULL;
 661}
 662
 663/*
 664 * Retrigger next event is called after clock was set
 665 *
 666 * Called with interrupts disabled via on_each_cpu()
 667 */
 668static void retrigger_next_event(void *arg)
 669{
 670        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 671
 672        if (!base->hres_active)
 673                return;
 674
 675        raw_spin_lock(&base->lock);
 676        hrtimer_update_base(base);
 677        hrtimer_force_reprogram(base, 0);
 678        raw_spin_unlock(&base->lock);
 679}
 680
 681/*
 682 * Switch to high resolution mode
 683 */
 684static void hrtimer_switch_to_hres(void)
 685{
 686        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 687
 688        if (tick_init_highres()) {
 689                printk(KERN_WARNING "Could not switch to high resolution "
 690                                    "mode on CPU %d\n", base->cpu);
 691                return;
 692        }
 693        base->hres_active = 1;
 694        hrtimer_resolution = HIGH_RES_NSEC;
 695
 696        tick_setup_sched_timer();
 697        /* "Retrigger" the interrupt to get things going */
 698        retrigger_next_event(NULL);
 699}
 700
 701static void clock_was_set_work(struct work_struct *work)
 702{
 703        clock_was_set();
 704}
 705
 706static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 707
 708/*
 709 * Called from timekeeping and resume code to reprogram the hrtimer
 710 * interrupt device on all cpus.
 711 */
 712void clock_was_set_delayed(void)
 713{
 714        schedule_work(&hrtimer_work);
 715}
 716
 717#else
 718
 719static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
 720static inline int hrtimer_hres_active(void) { return 0; }
 721static inline int hrtimer_is_hres_enabled(void) { return 0; }
 722static inline void hrtimer_switch_to_hres(void) { }
 723static inline void
 724hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 725static inline int hrtimer_reprogram(struct hrtimer *timer,
 726                                    struct hrtimer_clock_base *base)
 727{
 728        return 0;
 729}
 730static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 731static inline void retrigger_next_event(void *arg) { }
 732
 733#endif /* CONFIG_HIGH_RES_TIMERS */
 734
 735/*
 736 * Clock realtime was set
 737 *
 738 * Change the offset of the realtime clock vs. the monotonic
 739 * clock.
 740 *
 741 * We might have to reprogram the high resolution timer interrupt. On
 742 * SMP we call the architecture specific code to retrigger _all_ high
 743 * resolution timer interrupts. On UP we just disable interrupts and
 744 * call the high resolution interrupt code.
 745 */
 746void clock_was_set(void)
 747{
 748#ifdef CONFIG_HIGH_RES_TIMERS
 749        /* Retrigger the CPU local events everywhere */
 750        on_each_cpu(retrigger_next_event, NULL, 1);
 751#endif
 752        timerfd_clock_was_set();
 753}
 754
 755/*
 756 * During resume we might have to reprogram the high resolution timer
 757 * interrupt on all online CPUs.  However, all other CPUs will be
 758 * stopped with IRQs interrupts disabled so the clock_was_set() call
 759 * must be deferred.
 760 */
 761void hrtimers_resume(void)
 762{
 763        lockdep_assert_irqs_disabled();
 764        /* Retrigger on the local CPU */
 765        retrigger_next_event(NULL);
 766        /* And schedule a retrigger for all others */
 767        clock_was_set_delayed();
 768}
 769
 770/*
 771 * Counterpart to lock_hrtimer_base above:
 772 */
 773static inline
 774void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 775{
 776        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 777}
 778
 779/**
 780 * hrtimer_forward - forward the timer expiry
 781 * @timer:      hrtimer to forward
 782 * @now:        forward past this time
 783 * @interval:   the interval to forward
 784 *
 785 * Forward the timer expiry so it will expire in the future.
 786 * Returns the number of overruns.
 787 *
 788 * Can be safely called from the callback function of @timer. If
 789 * called from other contexts @timer must neither be enqueued nor
 790 * running the callback and the caller needs to take care of
 791 * serialization.
 792 *
 793 * Note: This only updates the timer expiry value and does not requeue
 794 * the timer.
 795 */
 796u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 797{
 798        u64 orun = 1;
 799        ktime_t delta;
 800
 801        delta = ktime_sub(now, hrtimer_get_expires(timer));
 802
 803        if (delta < 0)
 804                return 0;
 805
 806        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 807                return 0;
 808
 809        if (interval < hrtimer_resolution)
 810                interval = hrtimer_resolution;
 811
 812        if (unlikely(delta >= interval)) {
 813                s64 incr = ktime_to_ns(interval);
 814
 815                orun = ktime_divns(delta, incr);
 816                hrtimer_add_expires_ns(timer, incr * orun);
 817                if (hrtimer_get_expires_tv64(timer) > now)
 818                        return orun;
 819                /*
 820                 * This (and the ktime_add() below) is the
 821                 * correction for exact:
 822                 */
 823                orun++;
 824        }
 825        hrtimer_add_expires(timer, interval);
 826
 827        return orun;
 828}
 829EXPORT_SYMBOL_GPL(hrtimer_forward);
 830
 831/*
 832 * enqueue_hrtimer - internal function to (re)start a timer
 833 *
 834 * The timer is inserted in expiry order. Insertion into the
 835 * red black tree is O(log(n)). Must hold the base lock.
 836 *
 837 * Returns 1 when the new timer is the leftmost timer in the tree.
 838 */
 839static int enqueue_hrtimer(struct hrtimer *timer,
 840                           struct hrtimer_clock_base *base)
 841{
 842        debug_activate(timer);
 843
 844        base->cpu_base->active_bases |= 1 << base->index;
 845
 846        timer->state = HRTIMER_STATE_ENQUEUED;
 847
 848        return timerqueue_add(&base->active, &timer->node);
 849}
 850
 851/*
 852 * __remove_hrtimer - internal function to remove a timer
 853 *
 854 * Caller must hold the base lock.
 855 *
 856 * High resolution timer mode reprograms the clock event device when the
 857 * timer is the one which expires next. The caller can disable this by setting
 858 * reprogram to zero. This is useful, when the context does a reprogramming
 859 * anyway (e.g. timer interrupt)
 860 */
 861static void __remove_hrtimer(struct hrtimer *timer,
 862                             struct hrtimer_clock_base *base,
 863                             u8 newstate, int reprogram)
 864{
 865        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 866        u8 state = timer->state;
 867
 868        timer->state = newstate;
 869        if (!(state & HRTIMER_STATE_ENQUEUED))
 870                return;
 871
 872        if (!timerqueue_del(&base->active, &timer->node))
 873                cpu_base->active_bases &= ~(1 << base->index);
 874
 875#ifdef CONFIG_HIGH_RES_TIMERS
 876        /*
 877         * Note: If reprogram is false we do not update
 878         * cpu_base->next_timer. This happens when we remove the first
 879         * timer on a remote cpu. No harm as we never dereference
 880         * cpu_base->next_timer. So the worst thing what can happen is
 881         * an superflous call to hrtimer_force_reprogram() on the
 882         * remote cpu later on if the same timer gets enqueued again.
 883         */
 884        if (reprogram && timer == cpu_base->next_timer)
 885                hrtimer_force_reprogram(cpu_base, 1);
 886#endif
 887}
 888
 889/*
 890 * remove hrtimer, called with base lock held
 891 */
 892static inline int
 893remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
 894{
 895        if (hrtimer_is_queued(timer)) {
 896                u8 state = timer->state;
 897                int reprogram;
 898
 899                /*
 900                 * Remove the timer and force reprogramming when high
 901                 * resolution mode is active and the timer is on the current
 902                 * CPU. If we remove a timer on another CPU, reprogramming is
 903                 * skipped. The interrupt event on this CPU is fired and
 904                 * reprogramming happens in the interrupt handler. This is a
 905                 * rare case and less expensive than a smp call.
 906                 */
 907                debug_deactivate(timer);
 908                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
 909
 910                if (!restart)
 911                        state = HRTIMER_STATE_INACTIVE;
 912
 913                __remove_hrtimer(timer, base, state, reprogram);
 914                return 1;
 915        }
 916        return 0;
 917}
 918
 919static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
 920                                            const enum hrtimer_mode mode)
 921{
 922#ifdef CONFIG_TIME_LOW_RES
 923        /*
 924         * CONFIG_TIME_LOW_RES indicates that the system has no way to return
 925         * granular time values. For relative timers we add hrtimer_resolution
 926         * (i.e. one jiffie) to prevent short timeouts.
 927         */
 928        timer->is_rel = mode & HRTIMER_MODE_REL;
 929        if (timer->is_rel)
 930                tim = ktime_add_safe(tim, hrtimer_resolution);
 931#endif
 932        return tim;
 933}
 934
 935/**
 936 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 937 * @timer:      the timer to be added
 938 * @tim:        expiry time
 939 * @delta_ns:   "slack" range for the timer
 940 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
 941 *              relative (HRTIMER_MODE_REL)
 942 */
 943void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 944                            u64 delta_ns, const enum hrtimer_mode mode)
 945{
 946        struct hrtimer_clock_base *base, *new_base;
 947        unsigned long flags;
 948        int leftmost;
 949
 950        base = lock_hrtimer_base(timer, &flags);
 951
 952        /* Remove an active timer from the queue: */
 953        remove_hrtimer(timer, base, true);
 954
 955        if (mode & HRTIMER_MODE_REL)
 956                tim = ktime_add_safe(tim, base->get_time());
 957
 958        tim = hrtimer_update_lowres(timer, tim, mode);
 959
 960        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 961
 962        /* Switch the timer base, if necessary: */
 963        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 964
 965        leftmost = enqueue_hrtimer(timer, new_base);
 966        if (!leftmost)
 967                goto unlock;
 968
 969        if (!hrtimer_is_hres_active(timer)) {
 970                /*
 971                 * Kick to reschedule the next tick to handle the new timer
 972                 * on dynticks target.
 973                 */
 974                if (new_base->cpu_base->nohz_active)
 975                        wake_up_nohz_cpu(new_base->cpu_base->cpu);
 976        } else {
 977                hrtimer_reprogram(timer, new_base);
 978        }
 979unlock:
 980        unlock_hrtimer_base(timer, &flags);
 981}
 982EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
 983
 984/**
 985 * hrtimer_try_to_cancel - try to deactivate a timer
 986 * @timer:      hrtimer to stop
 987 *
 988 * Returns:
 989 *  0 when the timer was not active
 990 *  1 when the timer was active
 991 * -1 when the timer is currently executing the callback function and
 992 *    cannot be stopped
 993 */
 994int hrtimer_try_to_cancel(struct hrtimer *timer)
 995{
 996        struct hrtimer_clock_base *base;
 997        unsigned long flags;
 998        int ret = -1;
 999
1000        /*
1001         * Check lockless first. If the timer is not active (neither
1002         * enqueued nor running the callback, nothing to do here.  The
1003         * base lock does not serialize against a concurrent enqueue,
1004         * so we can avoid taking it.
1005         */
1006        if (!hrtimer_active(timer))
1007                return 0;
1008
1009        base = lock_hrtimer_base(timer, &flags);
1010
1011        if (!hrtimer_callback_running(timer))
1012                ret = remove_hrtimer(timer, base, false);
1013
1014        unlock_hrtimer_base(timer, &flags);
1015
1016        return ret;
1017
1018}
1019EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1020
1021/**
1022 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1023 * @timer:      the timer to be cancelled
1024 *
1025 * Returns:
1026 *  0 when the timer was not active
1027 *  1 when the timer was active
1028 */
1029int hrtimer_cancel(struct hrtimer *timer)
1030{
1031        for (;;) {
1032                int ret = hrtimer_try_to_cancel(timer);
1033
1034                if (ret >= 0)
1035                        return ret;
1036                cpu_relax();
1037        }
1038}
1039EXPORT_SYMBOL_GPL(hrtimer_cancel);
1040
1041/**
1042 * hrtimer_get_remaining - get remaining time for the timer
1043 * @timer:      the timer to read
1044 * @adjust:     adjust relative timers when CONFIG_TIME_LOW_RES=y
1045 */
1046ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1047{
1048        unsigned long flags;
1049        ktime_t rem;
1050
1051        lock_hrtimer_base(timer, &flags);
1052        if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1053                rem = hrtimer_expires_remaining_adjusted(timer);
1054        else
1055                rem = hrtimer_expires_remaining(timer);
1056        unlock_hrtimer_base(timer, &flags);
1057
1058        return rem;
1059}
1060EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1061
1062#ifdef CONFIG_NO_HZ_COMMON
1063/**
1064 * hrtimer_get_next_event - get the time until next expiry event
1065 *
1066 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1067 */
1068u64 hrtimer_get_next_event(void)
1069{
1070        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1071        u64 expires = KTIME_MAX;
1072        unsigned long flags;
1073
1074        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1075
1076        if (!__hrtimer_hres_active(cpu_base))
1077                expires = __hrtimer_get_next_event(cpu_base);
1078
1079        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1080
1081        return expires;
1082}
1083#endif
1084
1085static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1086{
1087        if (likely(clock_id < MAX_CLOCKS)) {
1088                int base = hrtimer_clock_to_base_table[clock_id];
1089
1090                if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1091                        return base;
1092        }
1093        WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1094        return HRTIMER_BASE_MONOTONIC;
1095}
1096
1097static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1098                           enum hrtimer_mode mode)
1099{
1100        struct hrtimer_cpu_base *cpu_base;
1101        int base;
1102
1103        memset(timer, 0, sizeof(struct hrtimer));
1104
1105        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1106
1107        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1108                clock_id = CLOCK_MONOTONIC;
1109
1110        base = hrtimer_clockid_to_base(clock_id);
1111        timer->base = &cpu_base->clock_base[base];
1112        timerqueue_init(&timer->node);
1113}
1114
1115/**
1116 * hrtimer_init - initialize a timer to the given clock
1117 * @timer:      the timer to be initialized
1118 * @clock_id:   the clock to be used
1119 * @mode:       timer mode abs/rel
1120 */
1121void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1122                  enum hrtimer_mode mode)
1123{
1124        debug_init(timer, clock_id, mode);
1125        __hrtimer_init(timer, clock_id, mode);
1126}
1127EXPORT_SYMBOL_GPL(hrtimer_init);
1128
1129/*
1130 * A timer is active, when it is enqueued into the rbtree or the
1131 * callback function is running or it's in the state of being migrated
1132 * to another cpu.
1133 *
1134 * It is important for this function to not return a false negative.
1135 */
1136bool hrtimer_active(const struct hrtimer *timer)
1137{
1138        struct hrtimer_cpu_base *cpu_base;
1139        unsigned int seq;
1140
1141        do {
1142                cpu_base = READ_ONCE(timer->base->cpu_base);
1143                seq = raw_read_seqcount_begin(&cpu_base->seq);
1144
1145                if (timer->state != HRTIMER_STATE_INACTIVE ||
1146                    cpu_base->running == timer)
1147                        return true;
1148
1149        } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1150                 cpu_base != READ_ONCE(timer->base->cpu_base));
1151
1152        return false;
1153}
1154EXPORT_SYMBOL_GPL(hrtimer_active);
1155
1156/*
1157 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1158 * distinct sections:
1159 *
1160 *  - queued:   the timer is queued
1161 *  - callback: the timer is being ran
1162 *  - post:     the timer is inactive or (re)queued
1163 *
1164 * On the read side we ensure we observe timer->state and cpu_base->running
1165 * from the same section, if anything changed while we looked at it, we retry.
1166 * This includes timer->base changing because sequence numbers alone are
1167 * insufficient for that.
1168 *
1169 * The sequence numbers are required because otherwise we could still observe
1170 * a false negative if the read side got smeared over multiple consequtive
1171 * __run_hrtimer() invocations.
1172 */
1173
1174static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1175                          struct hrtimer_clock_base *base,
1176                          struct hrtimer *timer, ktime_t *now)
1177{
1178        enum hrtimer_restart (*fn)(struct hrtimer *);
1179        int restart;
1180
1181        lockdep_assert_held(&cpu_base->lock);
1182
1183        debug_deactivate(timer);
1184        cpu_base->running = timer;
1185
1186        /*
1187         * Separate the ->running assignment from the ->state assignment.
1188         *
1189         * As with a regular write barrier, this ensures the read side in
1190         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1191         * timer->state == INACTIVE.
1192         */
1193        raw_write_seqcount_barrier(&cpu_base->seq);
1194
1195        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1196        fn = timer->function;
1197
1198        /*
1199         * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1200         * timer is restarted with a period then it becomes an absolute
1201         * timer. If its not restarted it does not matter.
1202         */
1203        if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1204                timer->is_rel = false;
1205
1206        /*
1207         * Because we run timers from hardirq context, there is no chance
1208         * they get migrated to another cpu, therefore its safe to unlock
1209         * the timer base.
1210         */
1211        raw_spin_unlock(&cpu_base->lock);
1212        trace_hrtimer_expire_entry(timer, now);
1213        restart = fn(timer);
1214        trace_hrtimer_expire_exit(timer);
1215        raw_spin_lock(&cpu_base->lock);
1216
1217        /*
1218         * Note: We clear the running state after enqueue_hrtimer and
1219         * we do not reprogram the event hardware. Happens either in
1220         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1221         *
1222         * Note: Because we dropped the cpu_base->lock above,
1223         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1224         * for us already.
1225         */
1226        if (restart != HRTIMER_NORESTART &&
1227            !(timer->state & HRTIMER_STATE_ENQUEUED))
1228                enqueue_hrtimer(timer, base);
1229
1230        /*
1231         * Separate the ->running assignment from the ->state assignment.
1232         *
1233         * As with a regular write barrier, this ensures the read side in
1234         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1235         * timer->state == INACTIVE.
1236         */
1237        raw_write_seqcount_barrier(&cpu_base->seq);
1238
1239        WARN_ON_ONCE(cpu_base->running != timer);
1240        cpu_base->running = NULL;
1241}
1242
1243static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1244{
1245        struct hrtimer_clock_base *base = cpu_base->clock_base;
1246        unsigned int active = cpu_base->active_bases;
1247
1248        for (; active; base++, active >>= 1) {
1249                struct timerqueue_node *node;
1250                ktime_t basenow;
1251
1252                if (!(active & 0x01))
1253                        continue;
1254
1255                basenow = ktime_add(now, base->offset);
1256
1257                while ((node = timerqueue_getnext(&base->active))) {
1258                        struct hrtimer *timer;
1259
1260                        timer = container_of(node, struct hrtimer, node);
1261
1262                        /*
1263                         * The immediate goal for using the softexpires is
1264                         * minimizing wakeups, not running timers at the
1265                         * earliest interrupt after their soft expiration.
1266                         * This allows us to avoid using a Priority Search
1267                         * Tree, which can answer a stabbing querry for
1268                         * overlapping intervals and instead use the simple
1269                         * BST we already have.
1270                         * We don't add extra wakeups by delaying timers that
1271                         * are right-of a not yet expired timer, because that
1272                         * timer will have to trigger a wakeup anyway.
1273                         */
1274                        if (basenow < hrtimer_get_softexpires_tv64(timer))
1275                                break;
1276
1277                        __run_hrtimer(cpu_base, base, timer, &basenow);
1278                }
1279        }
1280}
1281
1282#ifdef CONFIG_HIGH_RES_TIMERS
1283
1284/*
1285 * High resolution timer interrupt
1286 * Called with interrupts disabled
1287 */
1288void hrtimer_interrupt(struct clock_event_device *dev)
1289{
1290        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1291        ktime_t expires_next, now, entry_time, delta;
1292        int retries = 0;
1293
1294        BUG_ON(!cpu_base->hres_active);
1295        cpu_base->nr_events++;
1296        dev->next_event = KTIME_MAX;
1297
1298        raw_spin_lock(&cpu_base->lock);
1299        entry_time = now = hrtimer_update_base(cpu_base);
1300retry:
1301        cpu_base->in_hrtirq = 1;
1302        /*
1303         * We set expires_next to KTIME_MAX here with cpu_base->lock
1304         * held to prevent that a timer is enqueued in our queue via
1305         * the migration code. This does not affect enqueueing of
1306         * timers which run their callback and need to be requeued on
1307         * this CPU.
1308         */
1309        cpu_base->expires_next = KTIME_MAX;
1310
1311        __hrtimer_run_queues(cpu_base, now);
1312
1313        /* Reevaluate the clock bases for the next expiry */
1314        expires_next = __hrtimer_get_next_event(cpu_base);
1315        /*
1316         * Store the new expiry value so the migration code can verify
1317         * against it.
1318         */
1319        cpu_base->expires_next = expires_next;
1320        cpu_base->in_hrtirq = 0;
1321        raw_spin_unlock(&cpu_base->lock);
1322
1323        /* Reprogramming necessary ? */
1324        if (!tick_program_event(expires_next, 0)) {
1325                cpu_base->hang_detected = 0;
1326                return;
1327        }
1328
1329        /*
1330         * The next timer was already expired due to:
1331         * - tracing
1332         * - long lasting callbacks
1333         * - being scheduled away when running in a VM
1334         *
1335         * We need to prevent that we loop forever in the hrtimer
1336         * interrupt routine. We give it 3 attempts to avoid
1337         * overreacting on some spurious event.
1338         *
1339         * Acquire base lock for updating the offsets and retrieving
1340         * the current time.
1341         */
1342        raw_spin_lock(&cpu_base->lock);
1343        now = hrtimer_update_base(cpu_base);
1344        cpu_base->nr_retries++;
1345        if (++retries < 3)
1346                goto retry;
1347        /*
1348         * Give the system a chance to do something else than looping
1349         * here. We stored the entry time, so we know exactly how long
1350         * we spent here. We schedule the next event this amount of
1351         * time away.
1352         */
1353        cpu_base->nr_hangs++;
1354        cpu_base->hang_detected = 1;
1355        raw_spin_unlock(&cpu_base->lock);
1356        delta = ktime_sub(now, entry_time);
1357        if ((unsigned int)delta > cpu_base->max_hang_time)
1358                cpu_base->max_hang_time = (unsigned int) delta;
1359        /*
1360         * Limit it to a sensible value as we enforce a longer
1361         * delay. Give the CPU at least 100ms to catch up.
1362         */
1363        if (delta > 100 * NSEC_PER_MSEC)
1364                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1365        else
1366                expires_next = ktime_add(now, delta);
1367        tick_program_event(expires_next, 1);
1368        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1369                    ktime_to_ns(delta));
1370}
1371
1372/* called with interrupts disabled */
1373static inline void __hrtimer_peek_ahead_timers(void)
1374{
1375        struct tick_device *td;
1376
1377        if (!hrtimer_hres_active())
1378                return;
1379
1380        td = this_cpu_ptr(&tick_cpu_device);
1381        if (td && td->evtdev)
1382                hrtimer_interrupt(td->evtdev);
1383}
1384
1385#else /* CONFIG_HIGH_RES_TIMERS */
1386
1387static inline void __hrtimer_peek_ahead_timers(void) { }
1388
1389#endif  /* !CONFIG_HIGH_RES_TIMERS */
1390
1391/*
1392 * Called from run_local_timers in hardirq context every jiffy
1393 */
1394void hrtimer_run_queues(void)
1395{
1396        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1397        ktime_t now;
1398
1399        if (__hrtimer_hres_active(cpu_base))
1400                return;
1401
1402        /*
1403         * This _is_ ugly: We have to check periodically, whether we
1404         * can switch to highres and / or nohz mode. The clocksource
1405         * switch happens with xtime_lock held. Notification from
1406         * there only sets the check bit in the tick_oneshot code,
1407         * otherwise we might deadlock vs. xtime_lock.
1408         */
1409        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1410                hrtimer_switch_to_hres();
1411                return;
1412        }
1413
1414        raw_spin_lock(&cpu_base->lock);
1415        now = hrtimer_update_base(cpu_base);
1416        __hrtimer_run_queues(cpu_base, now);
1417        raw_spin_unlock(&cpu_base->lock);
1418}
1419
1420/*
1421 * Sleep related functions:
1422 */
1423static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424{
1425        struct hrtimer_sleeper *t =
1426                container_of(timer, struct hrtimer_sleeper, timer);
1427        struct task_struct *task = t->task;
1428
1429        t->task = NULL;
1430        if (task)
1431                wake_up_process(task);
1432
1433        return HRTIMER_NORESTART;
1434}
1435
1436void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437{
1438        sl->timer.function = hrtimer_wakeup;
1439        sl->task = task;
1440}
1441EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1442
1443int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1444{
1445        switch(restart->nanosleep.type) {
1446#ifdef CONFIG_COMPAT
1447        case TT_COMPAT:
1448                if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1449                        return -EFAULT;
1450                break;
1451#endif
1452        case TT_NATIVE:
1453                if (put_timespec64(ts, restart->nanosleep.rmtp))
1454                        return -EFAULT;
1455                break;
1456        default:
1457                BUG();
1458        }
1459        return -ERESTART_RESTARTBLOCK;
1460}
1461
1462static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463{
1464        struct restart_block *restart;
1465
1466        hrtimer_init_sleeper(t, current);
1467
1468        do {
1469                set_current_state(TASK_INTERRUPTIBLE);
1470                hrtimer_start_expires(&t->timer, mode);
1471
1472                if (likely(t->task))
1473                        freezable_schedule();
1474
1475                hrtimer_cancel(&t->timer);
1476                mode = HRTIMER_MODE_ABS;
1477
1478        } while (t->task && !signal_pending(current));
1479
1480        __set_current_state(TASK_RUNNING);
1481
1482        if (!t->task)
1483                return 0;
1484
1485        restart = &current->restart_block;
1486        if (restart->nanosleep.type != TT_NONE) {
1487                ktime_t rem = hrtimer_expires_remaining(&t->timer);
1488                struct timespec64 rmt;
1489
1490                if (rem <= 0)
1491                        return 0;
1492                rmt = ktime_to_timespec64(rem);
1493
1494                return nanosleep_copyout(restart, &rmt);
1495        }
1496        return -ERESTART_RESTARTBLOCK;
1497}
1498
1499static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1500{
1501        struct hrtimer_sleeper t;
1502        int ret;
1503
1504        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1505                                HRTIMER_MODE_ABS);
1506        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1507
1508        ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1509        destroy_hrtimer_on_stack(&t.timer);
1510        return ret;
1511}
1512
1513long hrtimer_nanosleep(const struct timespec64 *rqtp,
1514                       const enum hrtimer_mode mode, const clockid_t clockid)
1515{
1516        struct restart_block *restart;
1517        struct hrtimer_sleeper t;
1518        int ret = 0;
1519        u64 slack;
1520
1521        slack = current->timer_slack_ns;
1522        if (dl_task(current) || rt_task(current))
1523                slack = 0;
1524
1525        hrtimer_init_on_stack(&t.timer, clockid, mode);
1526        hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1527        ret = do_nanosleep(&t, mode);
1528        if (ret != -ERESTART_RESTARTBLOCK)
1529                goto out;
1530
1531        /* Absolute timers do not update the rmtp value and restart: */
1532        if (mode == HRTIMER_MODE_ABS) {
1533                ret = -ERESTARTNOHAND;
1534                goto out;
1535        }
1536
1537        restart = &current->restart_block;
1538        restart->fn = hrtimer_nanosleep_restart;
1539        restart->nanosleep.clockid = t.timer.base->clockid;
1540        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1541out:
1542        destroy_hrtimer_on_stack(&t.timer);
1543        return ret;
1544}
1545
1546SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1547                struct timespec __user *, rmtp)
1548{
1549        struct timespec64 tu;
1550
1551        if (get_timespec64(&tu, rqtp))
1552                return -EFAULT;
1553
1554        if (!timespec64_valid(&tu))
1555                return -EINVAL;
1556
1557        current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1558        current->restart_block.nanosleep.rmtp = rmtp;
1559        return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1560}
1561
1562#ifdef CONFIG_COMPAT
1563
1564COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1565                       struct compat_timespec __user *, rmtp)
1566{
1567        struct timespec64 tu;
1568
1569        if (compat_get_timespec64(&tu, rqtp))
1570                return -EFAULT;
1571
1572        if (!timespec64_valid(&tu))
1573                return -EINVAL;
1574
1575        current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1576        current->restart_block.nanosleep.compat_rmtp = rmtp;
1577        return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1578}
1579#endif
1580
1581/*
1582 * Functions related to boot-time initialization:
1583 */
1584int hrtimers_prepare_cpu(unsigned int cpu)
1585{
1586        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1587        int i;
1588
1589        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1590                cpu_base->clock_base[i].cpu_base = cpu_base;
1591                timerqueue_init_head(&cpu_base->clock_base[i].active);
1592        }
1593
1594        cpu_base->active_bases = 0;
1595        cpu_base->cpu = cpu;
1596        hrtimer_init_hres(cpu_base);
1597        return 0;
1598}
1599
1600#ifdef CONFIG_HOTPLUG_CPU
1601
1602static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1603                                struct hrtimer_clock_base *new_base)
1604{
1605        struct hrtimer *timer;
1606        struct timerqueue_node *node;
1607
1608        while ((node = timerqueue_getnext(&old_base->active))) {
1609                timer = container_of(node, struct hrtimer, node);
1610                BUG_ON(hrtimer_callback_running(timer));
1611                debug_deactivate(timer);
1612
1613                /*
1614                 * Mark it as ENQUEUED not INACTIVE otherwise the
1615                 * timer could be seen as !active and just vanish away
1616                 * under us on another CPU
1617                 */
1618                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1619                timer->base = new_base;
1620                /*
1621                 * Enqueue the timers on the new cpu. This does not
1622                 * reprogram the event device in case the timer
1623                 * expires before the earliest on this CPU, but we run
1624                 * hrtimer_interrupt after we migrated everything to
1625                 * sort out already expired timers and reprogram the
1626                 * event device.
1627                 */
1628                enqueue_hrtimer(timer, new_base);
1629        }
1630}
1631
1632int hrtimers_dead_cpu(unsigned int scpu)
1633{
1634        struct hrtimer_cpu_base *old_base, *new_base;
1635        int i;
1636
1637        BUG_ON(cpu_online(scpu));
1638        tick_cancel_sched_timer(scpu);
1639
1640        local_irq_disable();
1641        old_base = &per_cpu(hrtimer_bases, scpu);
1642        new_base = this_cpu_ptr(&hrtimer_bases);
1643        /*
1644         * The caller is globally serialized and nobody else
1645         * takes two locks at once, deadlock is not possible.
1646         */
1647        raw_spin_lock(&new_base->lock);
1648        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1649
1650        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1651                migrate_hrtimer_list(&old_base->clock_base[i],
1652                                     &new_base->clock_base[i]);
1653        }
1654
1655        raw_spin_unlock(&old_base->lock);
1656        raw_spin_unlock(&new_base->lock);
1657
1658        /* Check, if we got expired work to do */
1659        __hrtimer_peek_ahead_timers();
1660        local_irq_enable();
1661        return 0;
1662}
1663
1664#endif /* CONFIG_HOTPLUG_CPU */
1665
1666void __init hrtimers_init(void)
1667{
1668        hrtimers_prepare_cpu(smp_processor_id());
1669}
1670
1671/**
1672 * schedule_hrtimeout_range_clock - sleep until timeout
1673 * @expires:    timeout value (ktime_t)
1674 * @delta:      slack in expires timeout (ktime_t)
1675 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1676 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1677 */
1678int __sched
1679schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1680                               const enum hrtimer_mode mode, int clock)
1681{
1682        struct hrtimer_sleeper t;
1683
1684        /*
1685         * Optimize when a zero timeout value is given. It does not
1686         * matter whether this is an absolute or a relative time.
1687         */
1688        if (expires && *expires == 0) {
1689                __set_current_state(TASK_RUNNING);
1690                return 0;
1691        }
1692
1693        /*
1694         * A NULL parameter means "infinite"
1695         */
1696        if (!expires) {
1697                schedule();
1698                return -EINTR;
1699        }
1700
1701        hrtimer_init_on_stack(&t.timer, clock, mode);
1702        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1703
1704        hrtimer_init_sleeper(&t, current);
1705
1706        hrtimer_start_expires(&t.timer, mode);
1707
1708        if (likely(t.task))
1709                schedule();
1710
1711        hrtimer_cancel(&t.timer);
1712        destroy_hrtimer_on_stack(&t.timer);
1713
1714        __set_current_state(TASK_RUNNING);
1715
1716        return !t.task ? 0 : -EINTR;
1717}
1718
1719/**
1720 * schedule_hrtimeout_range - sleep until timeout
1721 * @expires:    timeout value (ktime_t)
1722 * @delta:      slack in expires timeout (ktime_t)
1723 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1724 *
1725 * Make the current task sleep until the given expiry time has
1726 * elapsed. The routine will return immediately unless
1727 * the current task state has been set (see set_current_state()).
1728 *
1729 * The @delta argument gives the kernel the freedom to schedule the
1730 * actual wakeup to a time that is both power and performance friendly.
1731 * The kernel give the normal best effort behavior for "@expires+@delta",
1732 * but may decide to fire the timer earlier, but no earlier than @expires.
1733 *
1734 * You can set the task state as follows -
1735 *
1736 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1737 * pass before the routine returns unless the current task is explicitly
1738 * woken up, (e.g. by wake_up_process()).
1739 *
1740 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1741 * delivered to the current task or the current task is explicitly woken
1742 * up.
1743 *
1744 * The current task state is guaranteed to be TASK_RUNNING when this
1745 * routine returns.
1746 *
1747 * Returns 0 when the timer has expired. If the task was woken before the
1748 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1749 * by an explicit wakeup, it returns -EINTR.
1750 */
1751int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1752                                     const enum hrtimer_mode mode)
1753{
1754        return schedule_hrtimeout_range_clock(expires, delta, mode,
1755                                              CLOCK_MONOTONIC);
1756}
1757EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1758
1759/**
1760 * schedule_hrtimeout - sleep until timeout
1761 * @expires:    timeout value (ktime_t)
1762 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1763 *
1764 * Make the current task sleep until the given expiry time has
1765 * elapsed. The routine will return immediately unless
1766 * the current task state has been set (see set_current_state()).
1767 *
1768 * You can set the task state as follows -
1769 *
1770 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1771 * pass before the routine returns unless the current task is explicitly
1772 * woken up, (e.g. by wake_up_process()).
1773 *
1774 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1775 * delivered to the current task or the current task is explicitly woken
1776 * up.
1777 *
1778 * The current task state is guaranteed to be TASK_RUNNING when this
1779 * routine returns.
1780 *
1781 * Returns 0 when the timer has expired. If the task was woken before the
1782 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1783 * by an explicit wakeup, it returns -EINTR.
1784 */
1785int __sched schedule_hrtimeout(ktime_t *expires,
1786                               const enum hrtimer_mode mode)
1787{
1788        return schedule_hrtimeout_range(expires, 0, mode);
1789}
1790EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1791