linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1/*
   2 * Generic ring buffer
   3 *
   4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   5 */
   6#include <linux/trace_events.h>
   7#include <linux/ring_buffer.h>
   8#include <linux/trace_clock.h>
   9#include <linux/sched/clock.h>
  10#include <linux/trace_seq.h>
  11#include <linux/spinlock.h>
  12#include <linux/irq_work.h>
  13#include <linux/uaccess.h>
  14#include <linux/hardirq.h>
  15#include <linux/kthread.h>      /* for self test */
  16#include <linux/module.h>
  17#include <linux/percpu.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/hash.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25
  26#include <asm/local.h>
  27
  28static void update_pages_handler(struct work_struct *work);
  29
  30/*
  31 * The ring buffer header is special. We must manually up keep it.
  32 */
  33int ring_buffer_print_entry_header(struct trace_seq *s)
  34{
  35        trace_seq_puts(s, "# compressed entry header\n");
  36        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  37        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  38        trace_seq_puts(s, "\tarray       :   32 bits\n");
  39        trace_seq_putc(s, '\n');
  40        trace_seq_printf(s, "\tpadding     : type == %d\n",
  41                         RINGBUF_TYPE_PADDING);
  42        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  43                         RINGBUF_TYPE_TIME_EXTEND);
  44        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  45                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  46
  47        return !trace_seq_has_overflowed(s);
  48}
  49
  50/*
  51 * The ring buffer is made up of a list of pages. A separate list of pages is
  52 * allocated for each CPU. A writer may only write to a buffer that is
  53 * associated with the CPU it is currently executing on.  A reader may read
  54 * from any per cpu buffer.
  55 *
  56 * The reader is special. For each per cpu buffer, the reader has its own
  57 * reader page. When a reader has read the entire reader page, this reader
  58 * page is swapped with another page in the ring buffer.
  59 *
  60 * Now, as long as the writer is off the reader page, the reader can do what
  61 * ever it wants with that page. The writer will never write to that page
  62 * again (as long as it is out of the ring buffer).
  63 *
  64 * Here's some silly ASCII art.
  65 *
  66 *   +------+
  67 *   |reader|          RING BUFFER
  68 *   |page  |
  69 *   +------+        +---+   +---+   +---+
  70 *                   |   |-->|   |-->|   |
  71 *                   +---+   +---+   +---+
  72 *                     ^               |
  73 *                     |               |
  74 *                     +---------------+
  75 *
  76 *
  77 *   +------+
  78 *   |reader|          RING BUFFER
  79 *   |page  |------------------v
  80 *   +------+        +---+   +---+   +---+
  81 *                   |   |-->|   |-->|   |
  82 *                   +---+   +---+   +---+
  83 *                     ^               |
  84 *                     |               |
  85 *                     +---------------+
  86 *
  87 *
  88 *   +------+
  89 *   |reader|          RING BUFFER
  90 *   |page  |------------------v
  91 *   +------+        +---+   +---+   +---+
  92 *      ^            |   |-->|   |-->|   |
  93 *      |            +---+   +---+   +---+
  94 *      |                              |
  95 *      |                              |
  96 *      +------------------------------+
  97 *
  98 *
  99 *   +------+
 100 *   |buffer|          RING BUFFER
 101 *   |page  |------------------v
 102 *   +------+        +---+   +---+   +---+
 103 *      ^            |   |   |   |-->|   |
 104 *      |   New      +---+   +---+   +---+
 105 *      |  Reader------^               |
 106 *      |   page                       |
 107 *      +------------------------------+
 108 *
 109 *
 110 * After we make this swap, the reader can hand this page off to the splice
 111 * code and be done with it. It can even allocate a new page if it needs to
 112 * and swap that into the ring buffer.
 113 *
 114 * We will be using cmpxchg soon to make all this lockless.
 115 *
 116 */
 117
 118/* Used for individual buffers (after the counter) */
 119#define RB_BUFFER_OFF           (1 << 20)
 120
 121#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 122
 123#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 124#define RB_ALIGNMENT            4U
 125#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 126#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 127
 128#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 129# define RB_FORCE_8BYTE_ALIGNMENT       0
 130# define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
 131#else
 132# define RB_FORCE_8BYTE_ALIGNMENT       1
 133# define RB_ARCH_ALIGNMENT              8U
 134#endif
 135
 136#define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
 137
 138/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 139#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 140
 141enum {
 142        RB_LEN_TIME_EXTEND = 8,
 143        RB_LEN_TIME_STAMP = 16,
 144};
 145
 146#define skip_time_extend(event) \
 147        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 148
 149static inline int rb_null_event(struct ring_buffer_event *event)
 150{
 151        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 152}
 153
 154static void rb_event_set_padding(struct ring_buffer_event *event)
 155{
 156        /* padding has a NULL time_delta */
 157        event->type_len = RINGBUF_TYPE_PADDING;
 158        event->time_delta = 0;
 159}
 160
 161static unsigned
 162rb_event_data_length(struct ring_buffer_event *event)
 163{
 164        unsigned length;
 165
 166        if (event->type_len)
 167                length = event->type_len * RB_ALIGNMENT;
 168        else
 169                length = event->array[0];
 170        return length + RB_EVNT_HDR_SIZE;
 171}
 172
 173/*
 174 * Return the length of the given event. Will return
 175 * the length of the time extend if the event is a
 176 * time extend.
 177 */
 178static inline unsigned
 179rb_event_length(struct ring_buffer_event *event)
 180{
 181        switch (event->type_len) {
 182        case RINGBUF_TYPE_PADDING:
 183                if (rb_null_event(event))
 184                        /* undefined */
 185                        return -1;
 186                return  event->array[0] + RB_EVNT_HDR_SIZE;
 187
 188        case RINGBUF_TYPE_TIME_EXTEND:
 189                return RB_LEN_TIME_EXTEND;
 190
 191        case RINGBUF_TYPE_TIME_STAMP:
 192                return RB_LEN_TIME_STAMP;
 193
 194        case RINGBUF_TYPE_DATA:
 195                return rb_event_data_length(event);
 196        default:
 197                BUG();
 198        }
 199        /* not hit */
 200        return 0;
 201}
 202
 203/*
 204 * Return total length of time extend and data,
 205 *   or just the event length for all other events.
 206 */
 207static inline unsigned
 208rb_event_ts_length(struct ring_buffer_event *event)
 209{
 210        unsigned len = 0;
 211
 212        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
 213                /* time extends include the data event after it */
 214                len = RB_LEN_TIME_EXTEND;
 215                event = skip_time_extend(event);
 216        }
 217        return len + rb_event_length(event);
 218}
 219
 220/**
 221 * ring_buffer_event_length - return the length of the event
 222 * @event: the event to get the length of
 223 *
 224 * Returns the size of the data load of a data event.
 225 * If the event is something other than a data event, it
 226 * returns the size of the event itself. With the exception
 227 * of a TIME EXTEND, where it still returns the size of the
 228 * data load of the data event after it.
 229 */
 230unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 231{
 232        unsigned length;
 233
 234        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 235                event = skip_time_extend(event);
 236
 237        length = rb_event_length(event);
 238        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 239                return length;
 240        length -= RB_EVNT_HDR_SIZE;
 241        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 242                length -= sizeof(event->array[0]);
 243        return length;
 244}
 245EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 246
 247/* inline for ring buffer fast paths */
 248static __always_inline void *
 249rb_event_data(struct ring_buffer_event *event)
 250{
 251        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
 252                event = skip_time_extend(event);
 253        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 254        /* If length is in len field, then array[0] has the data */
 255        if (event->type_len)
 256                return (void *)&event->array[0];
 257        /* Otherwise length is in array[0] and array[1] has the data */
 258        return (void *)&event->array[1];
 259}
 260
 261/**
 262 * ring_buffer_event_data - return the data of the event
 263 * @event: the event to get the data from
 264 */
 265void *ring_buffer_event_data(struct ring_buffer_event *event)
 266{
 267        return rb_event_data(event);
 268}
 269EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 270
 271#define for_each_buffer_cpu(buffer, cpu)                \
 272        for_each_cpu(cpu, buffer->cpumask)
 273
 274#define TS_SHIFT        27
 275#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 276#define TS_DELTA_TEST   (~TS_MASK)
 277
 278/* Flag when events were overwritten */
 279#define RB_MISSED_EVENTS        (1 << 31)
 280/* Missed count stored at end */
 281#define RB_MISSED_STORED        (1 << 30)
 282
 283#define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
 284
 285struct buffer_data_page {
 286        u64              time_stamp;    /* page time stamp */
 287        local_t          commit;        /* write committed index */
 288        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 289};
 290
 291/*
 292 * Note, the buffer_page list must be first. The buffer pages
 293 * are allocated in cache lines, which means that each buffer
 294 * page will be at the beginning of a cache line, and thus
 295 * the least significant bits will be zero. We use this to
 296 * add flags in the list struct pointers, to make the ring buffer
 297 * lockless.
 298 */
 299struct buffer_page {
 300        struct list_head list;          /* list of buffer pages */
 301        local_t          write;         /* index for next write */
 302        unsigned         read;          /* index for next read */
 303        local_t          entries;       /* entries on this page */
 304        unsigned long    real_end;      /* real end of data */
 305        struct buffer_data_page *page;  /* Actual data page */
 306};
 307
 308/*
 309 * The buffer page counters, write and entries, must be reset
 310 * atomically when crossing page boundaries. To synchronize this
 311 * update, two counters are inserted into the number. One is
 312 * the actual counter for the write position or count on the page.
 313 *
 314 * The other is a counter of updaters. Before an update happens
 315 * the update partition of the counter is incremented. This will
 316 * allow the updater to update the counter atomically.
 317 *
 318 * The counter is 20 bits, and the state data is 12.
 319 */
 320#define RB_WRITE_MASK           0xfffff
 321#define RB_WRITE_INTCNT         (1 << 20)
 322
 323static void rb_init_page(struct buffer_data_page *bpage)
 324{
 325        local_set(&bpage->commit, 0);
 326}
 327
 328/**
 329 * ring_buffer_page_len - the size of data on the page.
 330 * @page: The page to read
 331 *
 332 * Returns the amount of data on the page, including buffer page header.
 333 */
 334size_t ring_buffer_page_len(void *page)
 335{
 336        struct buffer_data_page *bpage = page;
 337
 338        return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
 339                + BUF_PAGE_HDR_SIZE;
 340}
 341
 342/*
 343 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 344 * this issue out.
 345 */
 346static void free_buffer_page(struct buffer_page *bpage)
 347{
 348        free_page((unsigned long)bpage->page);
 349        kfree(bpage);
 350}
 351
 352/*
 353 * We need to fit the time_stamp delta into 27 bits.
 354 */
 355static inline int test_time_stamp(u64 delta)
 356{
 357        if (delta & TS_DELTA_TEST)
 358                return 1;
 359        return 0;
 360}
 361
 362#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 363
 364/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 365#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 366
 367int ring_buffer_print_page_header(struct trace_seq *s)
 368{
 369        struct buffer_data_page field;
 370
 371        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 372                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 373                         (unsigned int)sizeof(field.time_stamp),
 374                         (unsigned int)is_signed_type(u64));
 375
 376        trace_seq_printf(s, "\tfield: local_t commit;\t"
 377                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 378                         (unsigned int)offsetof(typeof(field), commit),
 379                         (unsigned int)sizeof(field.commit),
 380                         (unsigned int)is_signed_type(long));
 381
 382        trace_seq_printf(s, "\tfield: int overwrite;\t"
 383                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 384                         (unsigned int)offsetof(typeof(field), commit),
 385                         1,
 386                         (unsigned int)is_signed_type(long));
 387
 388        trace_seq_printf(s, "\tfield: char data;\t"
 389                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 390                         (unsigned int)offsetof(typeof(field), data),
 391                         (unsigned int)BUF_PAGE_SIZE,
 392                         (unsigned int)is_signed_type(char));
 393
 394        return !trace_seq_has_overflowed(s);
 395}
 396
 397struct rb_irq_work {
 398        struct irq_work                 work;
 399        wait_queue_head_t               waiters;
 400        wait_queue_head_t               full_waiters;
 401        bool                            waiters_pending;
 402        bool                            full_waiters_pending;
 403        bool                            wakeup_full;
 404};
 405
 406/*
 407 * Structure to hold event state and handle nested events.
 408 */
 409struct rb_event_info {
 410        u64                     ts;
 411        u64                     delta;
 412        unsigned long           length;
 413        struct buffer_page      *tail_page;
 414        int                     add_timestamp;
 415};
 416
 417/*
 418 * Used for which event context the event is in.
 419 *  NMI     = 0
 420 *  IRQ     = 1
 421 *  SOFTIRQ = 2
 422 *  NORMAL  = 3
 423 *
 424 * See trace_recursive_lock() comment below for more details.
 425 */
 426enum {
 427        RB_CTX_NMI,
 428        RB_CTX_IRQ,
 429        RB_CTX_SOFTIRQ,
 430        RB_CTX_NORMAL,
 431        RB_CTX_MAX
 432};
 433
 434/*
 435 * head_page == tail_page && head == tail then buffer is empty.
 436 */
 437struct ring_buffer_per_cpu {
 438        int                             cpu;
 439        atomic_t                        record_disabled;
 440        struct ring_buffer              *buffer;
 441        raw_spinlock_t                  reader_lock;    /* serialize readers */
 442        arch_spinlock_t                 lock;
 443        struct lock_class_key           lock_key;
 444        struct buffer_data_page         *free_page;
 445        unsigned long                   nr_pages;
 446        unsigned int                    current_context;
 447        struct list_head                *pages;
 448        struct buffer_page              *head_page;     /* read from head */
 449        struct buffer_page              *tail_page;     /* write to tail */
 450        struct buffer_page              *commit_page;   /* committed pages */
 451        struct buffer_page              *reader_page;
 452        unsigned long                   lost_events;
 453        unsigned long                   last_overrun;
 454        local_t                         entries_bytes;
 455        local_t                         entries;
 456        local_t                         overrun;
 457        local_t                         commit_overrun;
 458        local_t                         dropped_events;
 459        local_t                         committing;
 460        local_t                         commits;
 461        unsigned long                   read;
 462        unsigned long                   read_bytes;
 463        u64                             write_stamp;
 464        u64                             read_stamp;
 465        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 466        long                            nr_pages_to_update;
 467        struct list_head                new_pages; /* new pages to add */
 468        struct work_struct              update_pages_work;
 469        struct completion               update_done;
 470
 471        struct rb_irq_work              irq_work;
 472};
 473
 474struct ring_buffer {
 475        unsigned                        flags;
 476        int                             cpus;
 477        atomic_t                        record_disabled;
 478        atomic_t                        resize_disabled;
 479        cpumask_var_t                   cpumask;
 480
 481        struct lock_class_key           *reader_lock_key;
 482
 483        struct mutex                    mutex;
 484
 485        struct ring_buffer_per_cpu      **buffers;
 486
 487        struct hlist_node               node;
 488        u64                             (*clock)(void);
 489
 490        struct rb_irq_work              irq_work;
 491};
 492
 493struct ring_buffer_iter {
 494        struct ring_buffer_per_cpu      *cpu_buffer;
 495        unsigned long                   head;
 496        struct buffer_page              *head_page;
 497        struct buffer_page              *cache_reader_page;
 498        unsigned long                   cache_read;
 499        u64                             read_stamp;
 500};
 501
 502/*
 503 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 504 *
 505 * Schedules a delayed work to wake up any task that is blocked on the
 506 * ring buffer waiters queue.
 507 */
 508static void rb_wake_up_waiters(struct irq_work *work)
 509{
 510        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 511
 512        wake_up_all(&rbwork->waiters);
 513        if (rbwork->wakeup_full) {
 514                rbwork->wakeup_full = false;
 515                wake_up_all(&rbwork->full_waiters);
 516        }
 517}
 518
 519/**
 520 * ring_buffer_wait - wait for input to the ring buffer
 521 * @buffer: buffer to wait on
 522 * @cpu: the cpu buffer to wait on
 523 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 524 *
 525 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 526 * as data is added to any of the @buffer's cpu buffers. Otherwise
 527 * it will wait for data to be added to a specific cpu buffer.
 528 */
 529int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
 530{
 531        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 532        DEFINE_WAIT(wait);
 533        struct rb_irq_work *work;
 534        int ret = 0;
 535
 536        /*
 537         * Depending on what the caller is waiting for, either any
 538         * data in any cpu buffer, or a specific buffer, put the
 539         * caller on the appropriate wait queue.
 540         */
 541        if (cpu == RING_BUFFER_ALL_CPUS) {
 542                work = &buffer->irq_work;
 543                /* Full only makes sense on per cpu reads */
 544                full = false;
 545        } else {
 546                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 547                        return -ENODEV;
 548                cpu_buffer = buffer->buffers[cpu];
 549                work = &cpu_buffer->irq_work;
 550        }
 551
 552
 553        while (true) {
 554                if (full)
 555                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 556                else
 557                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 558
 559                /*
 560                 * The events can happen in critical sections where
 561                 * checking a work queue can cause deadlocks.
 562                 * After adding a task to the queue, this flag is set
 563                 * only to notify events to try to wake up the queue
 564                 * using irq_work.
 565                 *
 566                 * We don't clear it even if the buffer is no longer
 567                 * empty. The flag only causes the next event to run
 568                 * irq_work to do the work queue wake up. The worse
 569                 * that can happen if we race with !trace_empty() is that
 570                 * an event will cause an irq_work to try to wake up
 571                 * an empty queue.
 572                 *
 573                 * There's no reason to protect this flag either, as
 574                 * the work queue and irq_work logic will do the necessary
 575                 * synchronization for the wake ups. The only thing
 576                 * that is necessary is that the wake up happens after
 577                 * a task has been queued. It's OK for spurious wake ups.
 578                 */
 579                if (full)
 580                        work->full_waiters_pending = true;
 581                else
 582                        work->waiters_pending = true;
 583
 584                if (signal_pending(current)) {
 585                        ret = -EINTR;
 586                        break;
 587                }
 588
 589                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 590                        break;
 591
 592                if (cpu != RING_BUFFER_ALL_CPUS &&
 593                    !ring_buffer_empty_cpu(buffer, cpu)) {
 594                        unsigned long flags;
 595                        bool pagebusy;
 596
 597                        if (!full)
 598                                break;
 599
 600                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 601                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 602                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 603
 604                        if (!pagebusy)
 605                                break;
 606                }
 607
 608                schedule();
 609        }
 610
 611        if (full)
 612                finish_wait(&work->full_waiters, &wait);
 613        else
 614                finish_wait(&work->waiters, &wait);
 615
 616        return ret;
 617}
 618
 619/**
 620 * ring_buffer_poll_wait - poll on buffer input
 621 * @buffer: buffer to wait on
 622 * @cpu: the cpu buffer to wait on
 623 * @filp: the file descriptor
 624 * @poll_table: The poll descriptor
 625 *
 626 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 627 * as data is added to any of the @buffer's cpu buffers. Otherwise
 628 * it will wait for data to be added to a specific cpu buffer.
 629 *
 630 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
 631 * zero otherwise.
 632 */
 633int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 634                          struct file *filp, poll_table *poll_table)
 635{
 636        struct ring_buffer_per_cpu *cpu_buffer;
 637        struct rb_irq_work *work;
 638
 639        if (cpu == RING_BUFFER_ALL_CPUS)
 640                work = &buffer->irq_work;
 641        else {
 642                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 643                        return -EINVAL;
 644
 645                cpu_buffer = buffer->buffers[cpu];
 646                work = &cpu_buffer->irq_work;
 647        }
 648
 649        poll_wait(filp, &work->waiters, poll_table);
 650        work->waiters_pending = true;
 651        /*
 652         * There's a tight race between setting the waiters_pending and
 653         * checking if the ring buffer is empty.  Once the waiters_pending bit
 654         * is set, the next event will wake the task up, but we can get stuck
 655         * if there's only a single event in.
 656         *
 657         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 658         * but adding a memory barrier to all events will cause too much of a
 659         * performance hit in the fast path.  We only need a memory barrier when
 660         * the buffer goes from empty to having content.  But as this race is
 661         * extremely small, and it's not a problem if another event comes in, we
 662         * will fix it later.
 663         */
 664        smp_mb();
 665
 666        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 667            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 668                return POLLIN | POLLRDNORM;
 669        return 0;
 670}
 671
 672/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 673#define RB_WARN_ON(b, cond)                                             \
 674        ({                                                              \
 675                int _____ret = unlikely(cond);                          \
 676                if (_____ret) {                                         \
 677                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 678                                struct ring_buffer_per_cpu *__b =       \
 679                                        (void *)b;                      \
 680                                atomic_inc(&__b->buffer->record_disabled); \
 681                        } else                                          \
 682                                atomic_inc(&b->record_disabled);        \
 683                        WARN_ON(1);                                     \
 684                }                                                       \
 685                _____ret;                                               \
 686        })
 687
 688/* Up this if you want to test the TIME_EXTENTS and normalization */
 689#define DEBUG_SHIFT 0
 690
 691static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 692{
 693        /* shift to debug/test normalization and TIME_EXTENTS */
 694        return buffer->clock() << DEBUG_SHIFT;
 695}
 696
 697u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 698{
 699        u64 time;
 700
 701        preempt_disable_notrace();
 702        time = rb_time_stamp(buffer);
 703        preempt_enable_no_resched_notrace();
 704
 705        return time;
 706}
 707EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 708
 709void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 710                                      int cpu, u64 *ts)
 711{
 712        /* Just stupid testing the normalize function and deltas */
 713        *ts >>= DEBUG_SHIFT;
 714}
 715EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 716
 717/*
 718 * Making the ring buffer lockless makes things tricky.
 719 * Although writes only happen on the CPU that they are on,
 720 * and they only need to worry about interrupts. Reads can
 721 * happen on any CPU.
 722 *
 723 * The reader page is always off the ring buffer, but when the
 724 * reader finishes with a page, it needs to swap its page with
 725 * a new one from the buffer. The reader needs to take from
 726 * the head (writes go to the tail). But if a writer is in overwrite
 727 * mode and wraps, it must push the head page forward.
 728 *
 729 * Here lies the problem.
 730 *
 731 * The reader must be careful to replace only the head page, and
 732 * not another one. As described at the top of the file in the
 733 * ASCII art, the reader sets its old page to point to the next
 734 * page after head. It then sets the page after head to point to
 735 * the old reader page. But if the writer moves the head page
 736 * during this operation, the reader could end up with the tail.
 737 *
 738 * We use cmpxchg to help prevent this race. We also do something
 739 * special with the page before head. We set the LSB to 1.
 740 *
 741 * When the writer must push the page forward, it will clear the
 742 * bit that points to the head page, move the head, and then set
 743 * the bit that points to the new head page.
 744 *
 745 * We also don't want an interrupt coming in and moving the head
 746 * page on another writer. Thus we use the second LSB to catch
 747 * that too. Thus:
 748 *
 749 * head->list->prev->next        bit 1          bit 0
 750 *                              -------        -------
 751 * Normal page                     0              0
 752 * Points to head page             0              1
 753 * New head page                   1              0
 754 *
 755 * Note we can not trust the prev pointer of the head page, because:
 756 *
 757 * +----+       +-----+        +-----+
 758 * |    |------>|  T  |---X--->|  N  |
 759 * |    |<------|     |        |     |
 760 * +----+       +-----+        +-----+
 761 *   ^                           ^ |
 762 *   |          +-----+          | |
 763 *   +----------|  R  |----------+ |
 764 *              |     |<-----------+
 765 *              +-----+
 766 *
 767 * Key:  ---X-->  HEAD flag set in pointer
 768 *         T      Tail page
 769 *         R      Reader page
 770 *         N      Next page
 771 *
 772 * (see __rb_reserve_next() to see where this happens)
 773 *
 774 *  What the above shows is that the reader just swapped out
 775 *  the reader page with a page in the buffer, but before it
 776 *  could make the new header point back to the new page added
 777 *  it was preempted by a writer. The writer moved forward onto
 778 *  the new page added by the reader and is about to move forward
 779 *  again.
 780 *
 781 *  You can see, it is legitimate for the previous pointer of
 782 *  the head (or any page) not to point back to itself. But only
 783 *  temporarially.
 784 */
 785
 786#define RB_PAGE_NORMAL          0UL
 787#define RB_PAGE_HEAD            1UL
 788#define RB_PAGE_UPDATE          2UL
 789
 790
 791#define RB_FLAG_MASK            3UL
 792
 793/* PAGE_MOVED is not part of the mask */
 794#define RB_PAGE_MOVED           4UL
 795
 796/*
 797 * rb_list_head - remove any bit
 798 */
 799static struct list_head *rb_list_head(struct list_head *list)
 800{
 801        unsigned long val = (unsigned long)list;
 802
 803        return (struct list_head *)(val & ~RB_FLAG_MASK);
 804}
 805
 806/*
 807 * rb_is_head_page - test if the given page is the head page
 808 *
 809 * Because the reader may move the head_page pointer, we can
 810 * not trust what the head page is (it may be pointing to
 811 * the reader page). But if the next page is a header page,
 812 * its flags will be non zero.
 813 */
 814static inline int
 815rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 816                struct buffer_page *page, struct list_head *list)
 817{
 818        unsigned long val;
 819
 820        val = (unsigned long)list->next;
 821
 822        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 823                return RB_PAGE_MOVED;
 824
 825        return val & RB_FLAG_MASK;
 826}
 827
 828/*
 829 * rb_is_reader_page
 830 *
 831 * The unique thing about the reader page, is that, if the
 832 * writer is ever on it, the previous pointer never points
 833 * back to the reader page.
 834 */
 835static bool rb_is_reader_page(struct buffer_page *page)
 836{
 837        struct list_head *list = page->list.prev;
 838
 839        return rb_list_head(list->next) != &page->list;
 840}
 841
 842/*
 843 * rb_set_list_to_head - set a list_head to be pointing to head.
 844 */
 845static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 846                                struct list_head *list)
 847{
 848        unsigned long *ptr;
 849
 850        ptr = (unsigned long *)&list->next;
 851        *ptr |= RB_PAGE_HEAD;
 852        *ptr &= ~RB_PAGE_UPDATE;
 853}
 854
 855/*
 856 * rb_head_page_activate - sets up head page
 857 */
 858static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 859{
 860        struct buffer_page *head;
 861
 862        head = cpu_buffer->head_page;
 863        if (!head)
 864                return;
 865
 866        /*
 867         * Set the previous list pointer to have the HEAD flag.
 868         */
 869        rb_set_list_to_head(cpu_buffer, head->list.prev);
 870}
 871
 872static void rb_list_head_clear(struct list_head *list)
 873{
 874        unsigned long *ptr = (unsigned long *)&list->next;
 875
 876        *ptr &= ~RB_FLAG_MASK;
 877}
 878
 879/*
 880 * rb_head_page_dactivate - clears head page ptr (for free list)
 881 */
 882static void
 883rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 884{
 885        struct list_head *hd;
 886
 887        /* Go through the whole list and clear any pointers found. */
 888        rb_list_head_clear(cpu_buffer->pages);
 889
 890        list_for_each(hd, cpu_buffer->pages)
 891                rb_list_head_clear(hd);
 892}
 893
 894static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 895                            struct buffer_page *head,
 896                            struct buffer_page *prev,
 897                            int old_flag, int new_flag)
 898{
 899        struct list_head *list;
 900        unsigned long val = (unsigned long)&head->list;
 901        unsigned long ret;
 902
 903        list = &prev->list;
 904
 905        val &= ~RB_FLAG_MASK;
 906
 907        ret = cmpxchg((unsigned long *)&list->next,
 908                      val | old_flag, val | new_flag);
 909
 910        /* check if the reader took the page */
 911        if ((ret & ~RB_FLAG_MASK) != val)
 912                return RB_PAGE_MOVED;
 913
 914        return ret & RB_FLAG_MASK;
 915}
 916
 917static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 918                                   struct buffer_page *head,
 919                                   struct buffer_page *prev,
 920                                   int old_flag)
 921{
 922        return rb_head_page_set(cpu_buffer, head, prev,
 923                                old_flag, RB_PAGE_UPDATE);
 924}
 925
 926static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 927                                 struct buffer_page *head,
 928                                 struct buffer_page *prev,
 929                                 int old_flag)
 930{
 931        return rb_head_page_set(cpu_buffer, head, prev,
 932                                old_flag, RB_PAGE_HEAD);
 933}
 934
 935static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 936                                   struct buffer_page *head,
 937                                   struct buffer_page *prev,
 938                                   int old_flag)
 939{
 940        return rb_head_page_set(cpu_buffer, head, prev,
 941                                old_flag, RB_PAGE_NORMAL);
 942}
 943
 944static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 945                               struct buffer_page **bpage)
 946{
 947        struct list_head *p = rb_list_head((*bpage)->list.next);
 948
 949        *bpage = list_entry(p, struct buffer_page, list);
 950}
 951
 952static struct buffer_page *
 953rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
 954{
 955        struct buffer_page *head;
 956        struct buffer_page *page;
 957        struct list_head *list;
 958        int i;
 959
 960        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
 961                return NULL;
 962
 963        /* sanity check */
 964        list = cpu_buffer->pages;
 965        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
 966                return NULL;
 967
 968        page = head = cpu_buffer->head_page;
 969        /*
 970         * It is possible that the writer moves the header behind
 971         * where we started, and we miss in one loop.
 972         * A second loop should grab the header, but we'll do
 973         * three loops just because I'm paranoid.
 974         */
 975        for (i = 0; i < 3; i++) {
 976                do {
 977                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
 978                                cpu_buffer->head_page = page;
 979                                return page;
 980                        }
 981                        rb_inc_page(cpu_buffer, &page);
 982                } while (page != head);
 983        }
 984
 985        RB_WARN_ON(cpu_buffer, 1);
 986
 987        return NULL;
 988}
 989
 990static int rb_head_page_replace(struct buffer_page *old,
 991                                struct buffer_page *new)
 992{
 993        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
 994        unsigned long val;
 995        unsigned long ret;
 996
 997        val = *ptr & ~RB_FLAG_MASK;
 998        val |= RB_PAGE_HEAD;
 999
1000        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002        return ret == val;
1003}
1004
1005/*
1006 * rb_tail_page_update - move the tail page forward
1007 */
1008static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009                               struct buffer_page *tail_page,
1010                               struct buffer_page *next_page)
1011{
1012        unsigned long old_entries;
1013        unsigned long old_write;
1014
1015        /*
1016         * The tail page now needs to be moved forward.
1017         *
1018         * We need to reset the tail page, but without messing
1019         * with possible erasing of data brought in by interrupts
1020         * that have moved the tail page and are currently on it.
1021         *
1022         * We add a counter to the write field to denote this.
1023         */
1024        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027        /*
1028         * Just make sure we have seen our old_write and synchronize
1029         * with any interrupts that come in.
1030         */
1031        barrier();
1032
1033        /*
1034         * If the tail page is still the same as what we think
1035         * it is, then it is up to us to update the tail
1036         * pointer.
1037         */
1038        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039                /* Zero the write counter */
1040                unsigned long val = old_write & ~RB_WRITE_MASK;
1041                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043                /*
1044                 * This will only succeed if an interrupt did
1045                 * not come in and change it. In which case, we
1046                 * do not want to modify it.
1047                 *
1048                 * We add (void) to let the compiler know that we do not care
1049                 * about the return value of these functions. We use the
1050                 * cmpxchg to only update if an interrupt did not already
1051                 * do it for us. If the cmpxchg fails, we don't care.
1052                 */
1053                (void)local_cmpxchg(&next_page->write, old_write, val);
1054                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056                /*
1057                 * No need to worry about races with clearing out the commit.
1058                 * it only can increment when a commit takes place. But that
1059                 * only happens in the outer most nested commit.
1060                 */
1061                local_set(&next_page->page->commit, 0);
1062
1063                /* Again, either we update tail_page or an interrupt does */
1064                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065        }
1066}
1067
1068static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069                          struct buffer_page *bpage)
1070{
1071        unsigned long val = (unsigned long)bpage;
1072
1073        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074                return 1;
1075
1076        return 0;
1077}
1078
1079/**
1080 * rb_check_list - make sure a pointer to a list has the last bits zero
1081 */
1082static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083                         struct list_head *list)
1084{
1085        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086                return 1;
1087        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088                return 1;
1089        return 0;
1090}
1091
1092/**
1093 * rb_check_pages - integrity check of buffer pages
1094 * @cpu_buffer: CPU buffer with pages to test
1095 *
1096 * As a safety measure we check to make sure the data pages have not
1097 * been corrupted.
1098 */
1099static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100{
1101        struct list_head *head = cpu_buffer->pages;
1102        struct buffer_page *bpage, *tmp;
1103
1104        /* Reset the head page if it exists */
1105        if (cpu_buffer->head_page)
1106                rb_set_head_page(cpu_buffer);
1107
1108        rb_head_page_deactivate(cpu_buffer);
1109
1110        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111                return -1;
1112        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113                return -1;
1114
1115        if (rb_check_list(cpu_buffer, head))
1116                return -1;
1117
1118        list_for_each_entry_safe(bpage, tmp, head, list) {
1119                if (RB_WARN_ON(cpu_buffer,
1120                               bpage->list.next->prev != &bpage->list))
1121                        return -1;
1122                if (RB_WARN_ON(cpu_buffer,
1123                               bpage->list.prev->next != &bpage->list))
1124                        return -1;
1125                if (rb_check_list(cpu_buffer, &bpage->list))
1126                        return -1;
1127        }
1128
1129        rb_head_page_activate(cpu_buffer);
1130
1131        return 0;
1132}
1133
1134static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135{
1136        struct buffer_page *bpage, *tmp;
1137        long i;
1138
1139        for (i = 0; i < nr_pages; i++) {
1140                struct page *page;
1141                /*
1142                 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1143                 * gracefully without invoking oom-killer and the system is not
1144                 * destabilized.
1145                 */
1146                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147                                    GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1148                                    cpu_to_node(cpu));
1149                if (!bpage)
1150                        goto free_pages;
1151
1152                list_add(&bpage->list, pages);
1153
1154                page = alloc_pages_node(cpu_to_node(cpu),
1155                                        GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1156                if (!page)
1157                        goto free_pages;
1158                bpage->page = page_address(page);
1159                rb_init_page(bpage->page);
1160        }
1161
1162        return 0;
1163
1164free_pages:
1165        list_for_each_entry_safe(bpage, tmp, pages, list) {
1166                list_del_init(&bpage->list);
1167                free_buffer_page(bpage);
1168        }
1169
1170        return -ENOMEM;
1171}
1172
1173static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1174                             unsigned long nr_pages)
1175{
1176        LIST_HEAD(pages);
1177
1178        WARN_ON(!nr_pages);
1179
1180        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1181                return -ENOMEM;
1182
1183        /*
1184         * The ring buffer page list is a circular list that does not
1185         * start and end with a list head. All page list items point to
1186         * other pages.
1187         */
1188        cpu_buffer->pages = pages.next;
1189        list_del(&pages);
1190
1191        cpu_buffer->nr_pages = nr_pages;
1192
1193        rb_check_pages(cpu_buffer);
1194
1195        return 0;
1196}
1197
1198static struct ring_buffer_per_cpu *
1199rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1200{
1201        struct ring_buffer_per_cpu *cpu_buffer;
1202        struct buffer_page *bpage;
1203        struct page *page;
1204        int ret;
1205
1206        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1207                                  GFP_KERNEL, cpu_to_node(cpu));
1208        if (!cpu_buffer)
1209                return NULL;
1210
1211        cpu_buffer->cpu = cpu;
1212        cpu_buffer->buffer = buffer;
1213        raw_spin_lock_init(&cpu_buffer->reader_lock);
1214        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1215        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1216        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1217        init_completion(&cpu_buffer->update_done);
1218        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1219        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1220        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1221
1222        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1223                            GFP_KERNEL, cpu_to_node(cpu));
1224        if (!bpage)
1225                goto fail_free_buffer;
1226
1227        rb_check_bpage(cpu_buffer, bpage);
1228
1229        cpu_buffer->reader_page = bpage;
1230        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1231        if (!page)
1232                goto fail_free_reader;
1233        bpage->page = page_address(page);
1234        rb_init_page(bpage->page);
1235
1236        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1237        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1238
1239        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1240        if (ret < 0)
1241                goto fail_free_reader;
1242
1243        cpu_buffer->head_page
1244                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1245        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1246
1247        rb_head_page_activate(cpu_buffer);
1248
1249        return cpu_buffer;
1250
1251 fail_free_reader:
1252        free_buffer_page(cpu_buffer->reader_page);
1253
1254 fail_free_buffer:
1255        kfree(cpu_buffer);
1256        return NULL;
1257}
1258
1259static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1260{
1261        struct list_head *head = cpu_buffer->pages;
1262        struct buffer_page *bpage, *tmp;
1263
1264        free_buffer_page(cpu_buffer->reader_page);
1265
1266        rb_head_page_deactivate(cpu_buffer);
1267
1268        if (head) {
1269                list_for_each_entry_safe(bpage, tmp, head, list) {
1270                        list_del_init(&bpage->list);
1271                        free_buffer_page(bpage);
1272                }
1273                bpage = list_entry(head, struct buffer_page, list);
1274                free_buffer_page(bpage);
1275        }
1276
1277        kfree(cpu_buffer);
1278}
1279
1280/**
1281 * __ring_buffer_alloc - allocate a new ring_buffer
1282 * @size: the size in bytes per cpu that is needed.
1283 * @flags: attributes to set for the ring buffer.
1284 *
1285 * Currently the only flag that is available is the RB_FL_OVERWRITE
1286 * flag. This flag means that the buffer will overwrite old data
1287 * when the buffer wraps. If this flag is not set, the buffer will
1288 * drop data when the tail hits the head.
1289 */
1290struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291                                        struct lock_class_key *key)
1292{
1293        struct ring_buffer *buffer;
1294        long nr_pages;
1295        int bsize;
1296        int cpu;
1297        int ret;
1298
1299        /* keep it in its own cache line */
1300        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301                         GFP_KERNEL);
1302        if (!buffer)
1303                return NULL;
1304
1305        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306                goto fail_free_buffer;
1307
1308        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309        buffer->flags = flags;
1310        buffer->clock = trace_clock_local;
1311        buffer->reader_lock_key = key;
1312
1313        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314        init_waitqueue_head(&buffer->irq_work.waiters);
1315
1316        /* need at least two pages */
1317        if (nr_pages < 2)
1318                nr_pages = 2;
1319
1320        buffer->cpus = nr_cpu_ids;
1321
1322        bsize = sizeof(void *) * nr_cpu_ids;
1323        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1324                                  GFP_KERNEL);
1325        if (!buffer->buffers)
1326                goto fail_free_cpumask;
1327
1328        cpu = raw_smp_processor_id();
1329        cpumask_set_cpu(cpu, buffer->cpumask);
1330        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1331        if (!buffer->buffers[cpu])
1332                goto fail_free_buffers;
1333
1334        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1335        if (ret < 0)
1336                goto fail_free_buffers;
1337
1338        mutex_init(&buffer->mutex);
1339
1340        return buffer;
1341
1342 fail_free_buffers:
1343        for_each_buffer_cpu(buffer, cpu) {
1344                if (buffer->buffers[cpu])
1345                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1346        }
1347        kfree(buffer->buffers);
1348
1349 fail_free_cpumask:
1350        free_cpumask_var(buffer->cpumask);
1351
1352 fail_free_buffer:
1353        kfree(buffer);
1354        return NULL;
1355}
1356EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1357
1358/**
1359 * ring_buffer_free - free a ring buffer.
1360 * @buffer: the buffer to free.
1361 */
1362void
1363ring_buffer_free(struct ring_buffer *buffer)
1364{
1365        int cpu;
1366
1367        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1368
1369        for_each_buffer_cpu(buffer, cpu)
1370                rb_free_cpu_buffer(buffer->buffers[cpu]);
1371
1372        kfree(buffer->buffers);
1373        free_cpumask_var(buffer->cpumask);
1374
1375        kfree(buffer);
1376}
1377EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379void ring_buffer_set_clock(struct ring_buffer *buffer,
1380                           u64 (*clock)(void))
1381{
1382        buffer->clock = clock;
1383}
1384
1385static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388{
1389        return local_read(&bpage->entries) & RB_WRITE_MASK;
1390}
1391
1392static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393{
1394        return local_read(&bpage->write) & RB_WRITE_MASK;
1395}
1396
1397static int
1398rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1399{
1400        struct list_head *tail_page, *to_remove, *next_page;
1401        struct buffer_page *to_remove_page, *tmp_iter_page;
1402        struct buffer_page *last_page, *first_page;
1403        unsigned long nr_removed;
1404        unsigned long head_bit;
1405        int page_entries;
1406
1407        head_bit = 0;
1408
1409        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410        atomic_inc(&cpu_buffer->record_disabled);
1411        /*
1412         * We don't race with the readers since we have acquired the reader
1413         * lock. We also don't race with writers after disabling recording.
1414         * This makes it easy to figure out the first and the last page to be
1415         * removed from the list. We unlink all the pages in between including
1416         * the first and last pages. This is done in a busy loop so that we
1417         * lose the least number of traces.
1418         * The pages are freed after we restart recording and unlock readers.
1419         */
1420        tail_page = &cpu_buffer->tail_page->list;
1421
1422        /*
1423         * tail page might be on reader page, we remove the next page
1424         * from the ring buffer
1425         */
1426        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427                tail_page = rb_list_head(tail_page->next);
1428        to_remove = tail_page;
1429
1430        /* start of pages to remove */
1431        first_page = list_entry(rb_list_head(to_remove->next),
1432                                struct buffer_page, list);
1433
1434        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435                to_remove = rb_list_head(to_remove)->next;
1436                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437        }
1438
1439        next_page = rb_list_head(to_remove)->next;
1440
1441        /*
1442         * Now we remove all pages between tail_page and next_page.
1443         * Make sure that we have head_bit value preserved for the
1444         * next page
1445         */
1446        tail_page->next = (struct list_head *)((unsigned long)next_page |
1447                                                head_bit);
1448        next_page = rb_list_head(next_page);
1449        next_page->prev = tail_page;
1450
1451        /* make sure pages points to a valid page in the ring buffer */
1452        cpu_buffer->pages = next_page;
1453
1454        /* update head page */
1455        if (head_bit)
1456                cpu_buffer->head_page = list_entry(next_page,
1457                                                struct buffer_page, list);
1458
1459        /*
1460         * change read pointer to make sure any read iterators reset
1461         * themselves
1462         */
1463        cpu_buffer->read = 0;
1464
1465        /* pages are removed, resume tracing and then free the pages */
1466        atomic_dec(&cpu_buffer->record_disabled);
1467        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471        /* last buffer page to remove */
1472        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473                                list);
1474        tmp_iter_page = first_page;
1475
1476        do {
1477                to_remove_page = tmp_iter_page;
1478                rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480                /* update the counters */
1481                page_entries = rb_page_entries(to_remove_page);
1482                if (page_entries) {
1483                        /*
1484                         * If something was added to this page, it was full
1485                         * since it is not the tail page. So we deduct the
1486                         * bytes consumed in ring buffer from here.
1487                         * Increment overrun to account for the lost events.
1488                         */
1489                        local_add(page_entries, &cpu_buffer->overrun);
1490                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491                }
1492
1493                /*
1494                 * We have already removed references to this list item, just
1495                 * free up the buffer_page and its page
1496                 */
1497                free_buffer_page(to_remove_page);
1498                nr_removed--;
1499
1500        } while (to_remove_page != last_page);
1501
1502        RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504        return nr_removed == 0;
1505}
1506
1507static int
1508rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509{
1510        struct list_head *pages = &cpu_buffer->new_pages;
1511        int retries, success;
1512
1513        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514        /*
1515         * We are holding the reader lock, so the reader page won't be swapped
1516         * in the ring buffer. Now we are racing with the writer trying to
1517         * move head page and the tail page.
1518         * We are going to adapt the reader page update process where:
1519         * 1. We first splice the start and end of list of new pages between
1520         *    the head page and its previous page.
1521         * 2. We cmpxchg the prev_page->next to point from head page to the
1522         *    start of new pages list.
1523         * 3. Finally, we update the head->prev to the end of new list.
1524         *
1525         * We will try this process 10 times, to make sure that we don't keep
1526         * spinning.
1527         */
1528        retries = 10;
1529        success = 0;
1530        while (retries--) {
1531                struct list_head *head_page, *prev_page, *r;
1532                struct list_head *last_page, *first_page;
1533                struct list_head *head_page_with_bit;
1534
1535                head_page = &rb_set_head_page(cpu_buffer)->list;
1536                if (!head_page)
1537                        break;
1538                prev_page = head_page->prev;
1539
1540                first_page = pages->next;
1541                last_page  = pages->prev;
1542
1543                head_page_with_bit = (struct list_head *)
1544                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546                last_page->next = head_page_with_bit;
1547                first_page->prev = prev_page;
1548
1549                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551                if (r == head_page_with_bit) {
1552                        /*
1553                         * yay, we replaced the page pointer to our new list,
1554                         * now, we just have to update to head page's prev
1555                         * pointer to point to end of list
1556                         */
1557                        head_page->prev = last_page;
1558                        success = 1;
1559                        break;
1560                }
1561        }
1562
1563        if (success)
1564                INIT_LIST_HEAD(pages);
1565        /*
1566         * If we weren't successful in adding in new pages, warn and stop
1567         * tracing
1568         */
1569        RB_WARN_ON(cpu_buffer, !success);
1570        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572        /* free pages if they weren't inserted */
1573        if (!success) {
1574                struct buffer_page *bpage, *tmp;
1575                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576                                         list) {
1577                        list_del_init(&bpage->list);
1578                        free_buffer_page(bpage);
1579                }
1580        }
1581        return success;
1582}
1583
1584static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585{
1586        int success;
1587
1588        if (cpu_buffer->nr_pages_to_update > 0)
1589                success = rb_insert_pages(cpu_buffer);
1590        else
1591                success = rb_remove_pages(cpu_buffer,
1592                                        -cpu_buffer->nr_pages_to_update);
1593
1594        if (success)
1595                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596}
1597
1598static void update_pages_handler(struct work_struct *work)
1599{
1600        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601                        struct ring_buffer_per_cpu, update_pages_work);
1602        rb_update_pages(cpu_buffer);
1603        complete(&cpu_buffer->update_done);
1604}
1605
1606/**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 * @cpu_id: the cpu buffer to resize
1611 *
1612 * Minimum size is 2 * BUF_PAGE_SIZE.
1613 *
1614 * Returns 0 on success and < 0 on failure.
1615 */
1616int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617                        int cpu_id)
1618{
1619        struct ring_buffer_per_cpu *cpu_buffer;
1620        unsigned long nr_pages;
1621        int cpu, err = 0;
1622
1623        /*
1624         * Always succeed at resizing a non-existent buffer:
1625         */
1626        if (!buffer)
1627                return size;
1628
1629        /* Make sure the requested buffer exists */
1630        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632                return size;
1633
1634        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635
1636        /* we need a minimum of two pages */
1637        if (nr_pages < 2)
1638                nr_pages = 2;
1639
1640        size = nr_pages * BUF_PAGE_SIZE;
1641
1642        /*
1643         * Don't succeed if resizing is disabled, as a reader might be
1644         * manipulating the ring buffer and is expecting a sane state while
1645         * this is true.
1646         */
1647        if (atomic_read(&buffer->resize_disabled))
1648                return -EBUSY;
1649
1650        /* prevent another thread from changing buffer sizes */
1651        mutex_lock(&buffer->mutex);
1652
1653        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654                /* calculate the pages to update */
1655                for_each_buffer_cpu(buffer, cpu) {
1656                        cpu_buffer = buffer->buffers[cpu];
1657
1658                        cpu_buffer->nr_pages_to_update = nr_pages -
1659                                                        cpu_buffer->nr_pages;
1660                        /*
1661                         * nothing more to do for removing pages or no update
1662                         */
1663                        if (cpu_buffer->nr_pages_to_update <= 0)
1664                                continue;
1665                        /*
1666                         * to add pages, make sure all new pages can be
1667                         * allocated without receiving ENOMEM
1668                         */
1669                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671                                                &cpu_buffer->new_pages, cpu)) {
1672                                /* not enough memory for new pages */
1673                                err = -ENOMEM;
1674                                goto out_err;
1675                        }
1676                }
1677
1678                get_online_cpus();
1679                /*
1680                 * Fire off all the required work handlers
1681                 * We can't schedule on offline CPUs, but it's not necessary
1682                 * since we can change their buffer sizes without any race.
1683                 */
1684                for_each_buffer_cpu(buffer, cpu) {
1685                        cpu_buffer = buffer->buffers[cpu];
1686                        if (!cpu_buffer->nr_pages_to_update)
1687                                continue;
1688
1689                        /* Can't run something on an offline CPU. */
1690                        if (!cpu_online(cpu)) {
1691                                rb_update_pages(cpu_buffer);
1692                                cpu_buffer->nr_pages_to_update = 0;
1693                        } else {
1694                                schedule_work_on(cpu,
1695                                                &cpu_buffer->update_pages_work);
1696                        }
1697                }
1698
1699                /* wait for all the updates to complete */
1700                for_each_buffer_cpu(buffer, cpu) {
1701                        cpu_buffer = buffer->buffers[cpu];
1702                        if (!cpu_buffer->nr_pages_to_update)
1703                                continue;
1704
1705                        if (cpu_online(cpu))
1706                                wait_for_completion(&cpu_buffer->update_done);
1707                        cpu_buffer->nr_pages_to_update = 0;
1708                }
1709
1710                put_online_cpus();
1711        } else {
1712                /* Make sure this CPU has been intitialized */
1713                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1714                        goto out;
1715
1716                cpu_buffer = buffer->buffers[cpu_id];
1717
1718                if (nr_pages == cpu_buffer->nr_pages)
1719                        goto out;
1720
1721                cpu_buffer->nr_pages_to_update = nr_pages -
1722                                                cpu_buffer->nr_pages;
1723
1724                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1725                if (cpu_buffer->nr_pages_to_update > 0 &&
1726                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1727                                            &cpu_buffer->new_pages, cpu_id)) {
1728                        err = -ENOMEM;
1729                        goto out_err;
1730                }
1731
1732                get_online_cpus();
1733
1734                /* Can't run something on an offline CPU. */
1735                if (!cpu_online(cpu_id))
1736                        rb_update_pages(cpu_buffer);
1737                else {
1738                        schedule_work_on(cpu_id,
1739                                         &cpu_buffer->update_pages_work);
1740                        wait_for_completion(&cpu_buffer->update_done);
1741                }
1742
1743                cpu_buffer->nr_pages_to_update = 0;
1744                put_online_cpus();
1745        }
1746
1747 out:
1748        /*
1749         * The ring buffer resize can happen with the ring buffer
1750         * enabled, so that the update disturbs the tracing as little
1751         * as possible. But if the buffer is disabled, we do not need
1752         * to worry about that, and we can take the time to verify
1753         * that the buffer is not corrupt.
1754         */
1755        if (atomic_read(&buffer->record_disabled)) {
1756                atomic_inc(&buffer->record_disabled);
1757                /*
1758                 * Even though the buffer was disabled, we must make sure
1759                 * that it is truly disabled before calling rb_check_pages.
1760                 * There could have been a race between checking
1761                 * record_disable and incrementing it.
1762                 */
1763                synchronize_sched();
1764                for_each_buffer_cpu(buffer, cpu) {
1765                        cpu_buffer = buffer->buffers[cpu];
1766                        rb_check_pages(cpu_buffer);
1767                }
1768                atomic_dec(&buffer->record_disabled);
1769        }
1770
1771        mutex_unlock(&buffer->mutex);
1772        return size;
1773
1774 out_err:
1775        for_each_buffer_cpu(buffer, cpu) {
1776                struct buffer_page *bpage, *tmp;
1777
1778                cpu_buffer = buffer->buffers[cpu];
1779                cpu_buffer->nr_pages_to_update = 0;
1780
1781                if (list_empty(&cpu_buffer->new_pages))
1782                        continue;
1783
1784                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1785                                        list) {
1786                        list_del_init(&bpage->list);
1787                        free_buffer_page(bpage);
1788                }
1789        }
1790        mutex_unlock(&buffer->mutex);
1791        return err;
1792}
1793EXPORT_SYMBOL_GPL(ring_buffer_resize);
1794
1795void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1796{
1797        mutex_lock(&buffer->mutex);
1798        if (val)
1799                buffer->flags |= RB_FL_OVERWRITE;
1800        else
1801                buffer->flags &= ~RB_FL_OVERWRITE;
1802        mutex_unlock(&buffer->mutex);
1803}
1804EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1805
1806static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1807{
1808        return bpage->page->data + index;
1809}
1810
1811static __always_inline struct ring_buffer_event *
1812rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1813{
1814        return __rb_page_index(cpu_buffer->reader_page,
1815                               cpu_buffer->reader_page->read);
1816}
1817
1818static __always_inline struct ring_buffer_event *
1819rb_iter_head_event(struct ring_buffer_iter *iter)
1820{
1821        return __rb_page_index(iter->head_page, iter->head);
1822}
1823
1824static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1825{
1826        return local_read(&bpage->page->commit);
1827}
1828
1829/* Size is determined by what has been committed */
1830static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1831{
1832        return rb_page_commit(bpage);
1833}
1834
1835static __always_inline unsigned
1836rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1837{
1838        return rb_page_commit(cpu_buffer->commit_page);
1839}
1840
1841static __always_inline unsigned
1842rb_event_index(struct ring_buffer_event *event)
1843{
1844        unsigned long addr = (unsigned long)event;
1845
1846        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1847}
1848
1849static void rb_inc_iter(struct ring_buffer_iter *iter)
1850{
1851        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1852
1853        /*
1854         * The iterator could be on the reader page (it starts there).
1855         * But the head could have moved, since the reader was
1856         * found. Check for this case and assign the iterator
1857         * to the head page instead of next.
1858         */
1859        if (iter->head_page == cpu_buffer->reader_page)
1860                iter->head_page = rb_set_head_page(cpu_buffer);
1861        else
1862                rb_inc_page(cpu_buffer, &iter->head_page);
1863
1864        iter->read_stamp = iter->head_page->page->time_stamp;
1865        iter->head = 0;
1866}
1867
1868/*
1869 * rb_handle_head_page - writer hit the head page
1870 *
1871 * Returns: +1 to retry page
1872 *           0 to continue
1873 *          -1 on error
1874 */
1875static int
1876rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1877                    struct buffer_page *tail_page,
1878                    struct buffer_page *next_page)
1879{
1880        struct buffer_page *new_head;
1881        int entries;
1882        int type;
1883        int ret;
1884
1885        entries = rb_page_entries(next_page);
1886
1887        /*
1888         * The hard part is here. We need to move the head
1889         * forward, and protect against both readers on
1890         * other CPUs and writers coming in via interrupts.
1891         */
1892        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1893                                       RB_PAGE_HEAD);
1894
1895        /*
1896         * type can be one of four:
1897         *  NORMAL - an interrupt already moved it for us
1898         *  HEAD   - we are the first to get here.
1899         *  UPDATE - we are the interrupt interrupting
1900         *           a current move.
1901         *  MOVED  - a reader on another CPU moved the next
1902         *           pointer to its reader page. Give up
1903         *           and try again.
1904         */
1905
1906        switch (type) {
1907        case RB_PAGE_HEAD:
1908                /*
1909                 * We changed the head to UPDATE, thus
1910                 * it is our responsibility to update
1911                 * the counters.
1912                 */
1913                local_add(entries, &cpu_buffer->overrun);
1914                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1915
1916                /*
1917                 * The entries will be zeroed out when we move the
1918                 * tail page.
1919                 */
1920
1921                /* still more to do */
1922                break;
1923
1924        case RB_PAGE_UPDATE:
1925                /*
1926                 * This is an interrupt that interrupt the
1927                 * previous update. Still more to do.
1928                 */
1929                break;
1930        case RB_PAGE_NORMAL:
1931                /*
1932                 * An interrupt came in before the update
1933                 * and processed this for us.
1934                 * Nothing left to do.
1935                 */
1936                return 1;
1937        case RB_PAGE_MOVED:
1938                /*
1939                 * The reader is on another CPU and just did
1940                 * a swap with our next_page.
1941                 * Try again.
1942                 */
1943                return 1;
1944        default:
1945                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1946                return -1;
1947        }
1948
1949        /*
1950         * Now that we are here, the old head pointer is
1951         * set to UPDATE. This will keep the reader from
1952         * swapping the head page with the reader page.
1953         * The reader (on another CPU) will spin till
1954         * we are finished.
1955         *
1956         * We just need to protect against interrupts
1957         * doing the job. We will set the next pointer
1958         * to HEAD. After that, we set the old pointer
1959         * to NORMAL, but only if it was HEAD before.
1960         * otherwise we are an interrupt, and only
1961         * want the outer most commit to reset it.
1962         */
1963        new_head = next_page;
1964        rb_inc_page(cpu_buffer, &new_head);
1965
1966        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1967                                    RB_PAGE_NORMAL);
1968
1969        /*
1970         * Valid returns are:
1971         *  HEAD   - an interrupt came in and already set it.
1972         *  NORMAL - One of two things:
1973         *            1) We really set it.
1974         *            2) A bunch of interrupts came in and moved
1975         *               the page forward again.
1976         */
1977        switch (ret) {
1978        case RB_PAGE_HEAD:
1979        case RB_PAGE_NORMAL:
1980                /* OK */
1981                break;
1982        default:
1983                RB_WARN_ON(cpu_buffer, 1);
1984                return -1;
1985        }
1986
1987        /*
1988         * It is possible that an interrupt came in,
1989         * set the head up, then more interrupts came in
1990         * and moved it again. When we get back here,
1991         * the page would have been set to NORMAL but we
1992         * just set it back to HEAD.
1993         *
1994         * How do you detect this? Well, if that happened
1995         * the tail page would have moved.
1996         */
1997        if (ret == RB_PAGE_NORMAL) {
1998                struct buffer_page *buffer_tail_page;
1999
2000                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2001                /*
2002                 * If the tail had moved passed next, then we need
2003                 * to reset the pointer.
2004                 */
2005                if (buffer_tail_page != tail_page &&
2006                    buffer_tail_page != next_page)
2007                        rb_head_page_set_normal(cpu_buffer, new_head,
2008                                                next_page,
2009                                                RB_PAGE_HEAD);
2010        }
2011
2012        /*
2013         * If this was the outer most commit (the one that
2014         * changed the original pointer from HEAD to UPDATE),
2015         * then it is up to us to reset it to NORMAL.
2016         */
2017        if (type == RB_PAGE_HEAD) {
2018                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2019                                              tail_page,
2020                                              RB_PAGE_UPDATE);
2021                if (RB_WARN_ON(cpu_buffer,
2022                               ret != RB_PAGE_UPDATE))
2023                        return -1;
2024        }
2025
2026        return 0;
2027}
2028
2029static inline void
2030rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2031              unsigned long tail, struct rb_event_info *info)
2032{
2033        struct buffer_page *tail_page = info->tail_page;
2034        struct ring_buffer_event *event;
2035        unsigned long length = info->length;
2036
2037        /*
2038         * Only the event that crossed the page boundary
2039         * must fill the old tail_page with padding.
2040         */
2041        if (tail >= BUF_PAGE_SIZE) {
2042                /*
2043                 * If the page was filled, then we still need
2044                 * to update the real_end. Reset it to zero
2045                 * and the reader will ignore it.
2046                 */
2047                if (tail == BUF_PAGE_SIZE)
2048                        tail_page->real_end = 0;
2049
2050                local_sub(length, &tail_page->write);
2051                return;
2052        }
2053
2054        event = __rb_page_index(tail_page, tail);
2055
2056        /* account for padding bytes */
2057        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2058
2059        /*
2060         * Save the original length to the meta data.
2061         * This will be used by the reader to add lost event
2062         * counter.
2063         */
2064        tail_page->real_end = tail;
2065
2066        /*
2067         * If this event is bigger than the minimum size, then
2068         * we need to be careful that we don't subtract the
2069         * write counter enough to allow another writer to slip
2070         * in on this page.
2071         * We put in a discarded commit instead, to make sure
2072         * that this space is not used again.
2073         *
2074         * If we are less than the minimum size, we don't need to
2075         * worry about it.
2076         */
2077        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2078                /* No room for any events */
2079
2080                /* Mark the rest of the page with padding */
2081                rb_event_set_padding(event);
2082
2083                /* Set the write back to the previous setting */
2084                local_sub(length, &tail_page->write);
2085                return;
2086        }
2087
2088        /* Put in a discarded event */
2089        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2090        event->type_len = RINGBUF_TYPE_PADDING;
2091        /* time delta must be non zero */
2092        event->time_delta = 1;
2093
2094        /* Set write to end of buffer */
2095        length = (tail + length) - BUF_PAGE_SIZE;
2096        local_sub(length, &tail_page->write);
2097}
2098
2099static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2100
2101/*
2102 * This is the slow path, force gcc not to inline it.
2103 */
2104static noinline struct ring_buffer_event *
2105rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2106             unsigned long tail, struct rb_event_info *info)
2107{
2108        struct buffer_page *tail_page = info->tail_page;
2109        struct buffer_page *commit_page = cpu_buffer->commit_page;
2110        struct ring_buffer *buffer = cpu_buffer->buffer;
2111        struct buffer_page *next_page;
2112        int ret;
2113
2114        next_page = tail_page;
2115
2116        rb_inc_page(cpu_buffer, &next_page);
2117
2118        /*
2119         * If for some reason, we had an interrupt storm that made
2120         * it all the way around the buffer, bail, and warn
2121         * about it.
2122         */
2123        if (unlikely(next_page == commit_page)) {
2124                local_inc(&cpu_buffer->commit_overrun);
2125                goto out_reset;
2126        }
2127
2128        /*
2129         * This is where the fun begins!
2130         *
2131         * We are fighting against races between a reader that
2132         * could be on another CPU trying to swap its reader
2133         * page with the buffer head.
2134         *
2135         * We are also fighting against interrupts coming in and
2136         * moving the head or tail on us as well.
2137         *
2138         * If the next page is the head page then we have filled
2139         * the buffer, unless the commit page is still on the
2140         * reader page.
2141         */
2142        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2143
2144                /*
2145                 * If the commit is not on the reader page, then
2146                 * move the header page.
2147                 */
2148                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2149                        /*
2150                         * If we are not in overwrite mode,
2151                         * this is easy, just stop here.
2152                         */
2153                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2154                                local_inc(&cpu_buffer->dropped_events);
2155                                goto out_reset;
2156                        }
2157
2158                        ret = rb_handle_head_page(cpu_buffer,
2159                                                  tail_page,
2160                                                  next_page);
2161                        if (ret < 0)
2162                                goto out_reset;
2163                        if (ret)
2164                                goto out_again;
2165                } else {
2166                        /*
2167                         * We need to be careful here too. The
2168                         * commit page could still be on the reader
2169                         * page. We could have a small buffer, and
2170                         * have filled up the buffer with events
2171                         * from interrupts and such, and wrapped.
2172                         *
2173                         * Note, if the tail page is also the on the
2174                         * reader_page, we let it move out.
2175                         */
2176                        if (unlikely((cpu_buffer->commit_page !=
2177                                      cpu_buffer->tail_page) &&
2178                                     (cpu_buffer->commit_page ==
2179                                      cpu_buffer->reader_page))) {
2180                                local_inc(&cpu_buffer->commit_overrun);
2181                                goto out_reset;
2182                        }
2183                }
2184        }
2185
2186        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2187
2188 out_again:
2189
2190        rb_reset_tail(cpu_buffer, tail, info);
2191
2192        /* Commit what we have for now. */
2193        rb_end_commit(cpu_buffer);
2194        /* rb_end_commit() decs committing */
2195        local_inc(&cpu_buffer->committing);
2196
2197        /* fail and let the caller try again */
2198        return ERR_PTR(-EAGAIN);
2199
2200 out_reset:
2201        /* reset write */
2202        rb_reset_tail(cpu_buffer, tail, info);
2203
2204        return NULL;
2205}
2206
2207/* Slow path, do not inline */
2208static noinline struct ring_buffer_event *
2209rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2210{
2211        event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2212
2213        /* Not the first event on the page? */
2214        if (rb_event_index(event)) {
2215                event->time_delta = delta & TS_MASK;
2216                event->array[0] = delta >> TS_SHIFT;
2217        } else {
2218                /* nope, just zero it */
2219                event->time_delta = 0;
2220                event->array[0] = 0;
2221        }
2222
2223        return skip_time_extend(event);
2224}
2225
2226static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2227                                     struct ring_buffer_event *event);
2228
2229/**
2230 * rb_update_event - update event type and data
2231 * @event: the event to update
2232 * @type: the type of event
2233 * @length: the size of the event field in the ring buffer
2234 *
2235 * Update the type and data fields of the event. The length
2236 * is the actual size that is written to the ring buffer,
2237 * and with this, we can determine what to place into the
2238 * data field.
2239 */
2240static void
2241rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2242                struct ring_buffer_event *event,
2243                struct rb_event_info *info)
2244{
2245        unsigned length = info->length;
2246        u64 delta = info->delta;
2247
2248        /* Only a commit updates the timestamp */
2249        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2250                delta = 0;
2251
2252        /*
2253         * If we need to add a timestamp, then we
2254         * add it to the start of the resevered space.
2255         */
2256        if (unlikely(info->add_timestamp)) {
2257                event = rb_add_time_stamp(event, delta);
2258                length -= RB_LEN_TIME_EXTEND;
2259                delta = 0;
2260        }
2261
2262        event->time_delta = delta;
2263        length -= RB_EVNT_HDR_SIZE;
2264        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2265                event->type_len = 0;
2266                event->array[0] = length;
2267        } else
2268                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2269}
2270
2271static unsigned rb_calculate_event_length(unsigned length)
2272{
2273        struct ring_buffer_event event; /* Used only for sizeof array */
2274
2275        /* zero length can cause confusions */
2276        if (!length)
2277                length++;
2278
2279        if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2280                length += sizeof(event.array[0]);
2281
2282        length += RB_EVNT_HDR_SIZE;
2283        length = ALIGN(length, RB_ARCH_ALIGNMENT);
2284
2285        /*
2286         * In case the time delta is larger than the 27 bits for it
2287         * in the header, we need to add a timestamp. If another
2288         * event comes in when trying to discard this one to increase
2289         * the length, then the timestamp will be added in the allocated
2290         * space of this event. If length is bigger than the size needed
2291         * for the TIME_EXTEND, then padding has to be used. The events
2292         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2293         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2294         * As length is a multiple of 4, we only need to worry if it
2295         * is 12 (RB_LEN_TIME_EXTEND + 4).
2296         */
2297        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2298                length += RB_ALIGNMENT;
2299
2300        return length;
2301}
2302
2303#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2304static inline bool sched_clock_stable(void)
2305{
2306        return true;
2307}
2308#endif
2309
2310static inline int
2311rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2312                  struct ring_buffer_event *event)
2313{
2314        unsigned long new_index, old_index;
2315        struct buffer_page *bpage;
2316        unsigned long index;
2317        unsigned long addr;
2318
2319        new_index = rb_event_index(event);
2320        old_index = new_index + rb_event_ts_length(event);
2321        addr = (unsigned long)event;
2322        addr &= PAGE_MASK;
2323
2324        bpage = READ_ONCE(cpu_buffer->tail_page);
2325
2326        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2327                unsigned long write_mask =
2328                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2329                unsigned long event_length = rb_event_length(event);
2330                /*
2331                 * This is on the tail page. It is possible that
2332                 * a write could come in and move the tail page
2333                 * and write to the next page. That is fine
2334                 * because we just shorten what is on this page.
2335                 */
2336                old_index += write_mask;
2337                new_index += write_mask;
2338                index = local_cmpxchg(&bpage->write, old_index, new_index);
2339                if (index == old_index) {
2340                        /* update counters */
2341                        local_sub(event_length, &cpu_buffer->entries_bytes);
2342                        return 1;
2343                }
2344        }
2345
2346        /* could not discard */
2347        return 0;
2348}
2349
2350static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2351{
2352        local_inc(&cpu_buffer->committing);
2353        local_inc(&cpu_buffer->commits);
2354}
2355
2356static __always_inline void
2357rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2358{
2359        unsigned long max_count;
2360
2361        /*
2362         * We only race with interrupts and NMIs on this CPU.
2363         * If we own the commit event, then we can commit
2364         * all others that interrupted us, since the interruptions
2365         * are in stack format (they finish before they come
2366         * back to us). This allows us to do a simple loop to
2367         * assign the commit to the tail.
2368         */
2369 again:
2370        max_count = cpu_buffer->nr_pages * 100;
2371
2372        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2373                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2374                        return;
2375                if (RB_WARN_ON(cpu_buffer,
2376                               rb_is_reader_page(cpu_buffer->tail_page)))
2377                        return;
2378                local_set(&cpu_buffer->commit_page->page->commit,
2379                          rb_page_write(cpu_buffer->commit_page));
2380                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2381                /* Only update the write stamp if the page has an event */
2382                if (rb_page_write(cpu_buffer->commit_page))
2383                        cpu_buffer->write_stamp =
2384                                cpu_buffer->commit_page->page->time_stamp;
2385                /* add barrier to keep gcc from optimizing too much */
2386                barrier();
2387        }
2388        while (rb_commit_index(cpu_buffer) !=
2389               rb_page_write(cpu_buffer->commit_page)) {
2390
2391                local_set(&cpu_buffer->commit_page->page->commit,
2392                          rb_page_write(cpu_buffer->commit_page));
2393                RB_WARN_ON(cpu_buffer,
2394                           local_read(&cpu_buffer->commit_page->page->commit) &
2395                           ~RB_WRITE_MASK);
2396                barrier();
2397        }
2398
2399        /* again, keep gcc from optimizing */
2400        barrier();
2401
2402        /*
2403         * If an interrupt came in just after the first while loop
2404         * and pushed the tail page forward, we will be left with
2405         * a dangling commit that will never go forward.
2406         */
2407        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2408                goto again;
2409}
2410
2411static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2412{
2413        unsigned long commits;
2414
2415        if (RB_WARN_ON(cpu_buffer,
2416                       !local_read(&cpu_buffer->committing)))
2417                return;
2418
2419 again:
2420        commits = local_read(&cpu_buffer->commits);
2421        /* synchronize with interrupts */
2422        barrier();
2423        if (local_read(&cpu_buffer->committing) == 1)
2424                rb_set_commit_to_write(cpu_buffer);
2425
2426        local_dec(&cpu_buffer->committing);
2427
2428        /* synchronize with interrupts */
2429        barrier();
2430
2431        /*
2432         * Need to account for interrupts coming in between the
2433         * updating of the commit page and the clearing of the
2434         * committing counter.
2435         */
2436        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2437            !local_read(&cpu_buffer->committing)) {
2438                local_inc(&cpu_buffer->committing);
2439                goto again;
2440        }
2441}
2442
2443static inline void rb_event_discard(struct ring_buffer_event *event)
2444{
2445        if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2446                event = skip_time_extend(event);
2447
2448        /* array[0] holds the actual length for the discarded event */
2449        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2450        event->type_len = RINGBUF_TYPE_PADDING;
2451        /* time delta must be non zero */
2452        if (!event->time_delta)
2453                event->time_delta = 1;
2454}
2455
2456static __always_inline bool
2457rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2458                   struct ring_buffer_event *event)
2459{
2460        unsigned long addr = (unsigned long)event;
2461        unsigned long index;
2462
2463        index = rb_event_index(event);
2464        addr &= PAGE_MASK;
2465
2466        return cpu_buffer->commit_page->page == (void *)addr &&
2467                rb_commit_index(cpu_buffer) == index;
2468}
2469
2470static __always_inline void
2471rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2472                      struct ring_buffer_event *event)
2473{
2474        u64 delta;
2475
2476        /*
2477         * The event first in the commit queue updates the
2478         * time stamp.
2479         */
2480        if (rb_event_is_commit(cpu_buffer, event)) {
2481                /*
2482                 * A commit event that is first on a page
2483                 * updates the write timestamp with the page stamp
2484                 */
2485                if (!rb_event_index(event))
2486                        cpu_buffer->write_stamp =
2487                                cpu_buffer->commit_page->page->time_stamp;
2488                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2489                        delta = event->array[0];
2490                        delta <<= TS_SHIFT;
2491                        delta += event->time_delta;
2492                        cpu_buffer->write_stamp += delta;
2493                } else
2494                        cpu_buffer->write_stamp += event->time_delta;
2495        }
2496}
2497
2498static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499                      struct ring_buffer_event *event)
2500{
2501        local_inc(&cpu_buffer->entries);
2502        rb_update_write_stamp(cpu_buffer, event);
2503        rb_end_commit(cpu_buffer);
2504}
2505
2506static __always_inline void
2507rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2508{
2509        bool pagebusy;
2510
2511        if (buffer->irq_work.waiters_pending) {
2512                buffer->irq_work.waiters_pending = false;
2513                /* irq_work_queue() supplies it's own memory barriers */
2514                irq_work_queue(&buffer->irq_work.work);
2515        }
2516
2517        if (cpu_buffer->irq_work.waiters_pending) {
2518                cpu_buffer->irq_work.waiters_pending = false;
2519                /* irq_work_queue() supplies it's own memory barriers */
2520                irq_work_queue(&cpu_buffer->irq_work.work);
2521        }
2522
2523        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2524
2525        if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2526                cpu_buffer->irq_work.wakeup_full = true;
2527                cpu_buffer->irq_work.full_waiters_pending = false;
2528                /* irq_work_queue() supplies it's own memory barriers */
2529                irq_work_queue(&cpu_buffer->irq_work.work);
2530        }
2531}
2532
2533/*
2534 * The lock and unlock are done within a preempt disable section.
2535 * The current_context per_cpu variable can only be modified
2536 * by the current task between lock and unlock. But it can
2537 * be modified more than once via an interrupt. To pass this
2538 * information from the lock to the unlock without having to
2539 * access the 'in_interrupt()' functions again (which do show
2540 * a bit of overhead in something as critical as function tracing,
2541 * we use a bitmask trick.
2542 *
2543 *  bit 0 =  NMI context
2544 *  bit 1 =  IRQ context
2545 *  bit 2 =  SoftIRQ context
2546 *  bit 3 =  normal context.
2547 *
2548 * This works because this is the order of contexts that can
2549 * preempt other contexts. A SoftIRQ never preempts an IRQ
2550 * context.
2551 *
2552 * When the context is determined, the corresponding bit is
2553 * checked and set (if it was set, then a recursion of that context
2554 * happened).
2555 *
2556 * On unlock, we need to clear this bit. To do so, just subtract
2557 * 1 from the current_context and AND it to itself.
2558 *
2559 * (binary)
2560 *  101 - 1 = 100
2561 *  101 & 100 = 100 (clearing bit zero)
2562 *
2563 *  1010 - 1 = 1001
2564 *  1010 & 1001 = 1000 (clearing bit 1)
2565 *
2566 * The least significant bit can be cleared this way, and it
2567 * just so happens that it is the same bit corresponding to
2568 * the current context.
2569 */
2570
2571static __always_inline int
2572trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2573{
2574        unsigned int val = cpu_buffer->current_context;
2575        unsigned long pc = preempt_count();
2576        int bit;
2577
2578        if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2579                bit = RB_CTX_NORMAL;
2580        else
2581                bit = pc & NMI_MASK ? RB_CTX_NMI :
2582                        pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2583
2584        if (unlikely(val & (1 << bit)))
2585                return 1;
2586
2587        val |= (1 << bit);
2588        cpu_buffer->current_context = val;
2589
2590        return 0;
2591}
2592
2593static __always_inline void
2594trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2595{
2596        cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2597}
2598
2599/**
2600 * ring_buffer_unlock_commit - commit a reserved
2601 * @buffer: The buffer to commit to
2602 * @event: The event pointer to commit.
2603 *
2604 * This commits the data to the ring buffer, and releases any locks held.
2605 *
2606 * Must be paired with ring_buffer_lock_reserve.
2607 */
2608int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2609                              struct ring_buffer_event *event)
2610{
2611        struct ring_buffer_per_cpu *cpu_buffer;
2612        int cpu = raw_smp_processor_id();
2613
2614        cpu_buffer = buffer->buffers[cpu];
2615
2616        rb_commit(cpu_buffer, event);
2617
2618        rb_wakeups(buffer, cpu_buffer);
2619
2620        trace_recursive_unlock(cpu_buffer);
2621
2622        preempt_enable_notrace();
2623
2624        return 0;
2625}
2626EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2627
2628static noinline void
2629rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2630                    struct rb_event_info *info)
2631{
2632        WARN_ONCE(info->delta > (1ULL << 59),
2633                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2634                  (unsigned long long)info->delta,
2635                  (unsigned long long)info->ts,
2636                  (unsigned long long)cpu_buffer->write_stamp,
2637                  sched_clock_stable() ? "" :
2638                  "If you just came from a suspend/resume,\n"
2639                  "please switch to the trace global clock:\n"
2640                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2641        info->add_timestamp = 1;
2642}
2643
2644static struct ring_buffer_event *
2645__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2646                  struct rb_event_info *info)
2647{
2648        struct ring_buffer_event *event;
2649        struct buffer_page *tail_page;
2650        unsigned long tail, write;
2651
2652        /*
2653         * If the time delta since the last event is too big to
2654         * hold in the time field of the event, then we append a
2655         * TIME EXTEND event ahead of the data event.
2656         */
2657        if (unlikely(info->add_timestamp))
2658                info->length += RB_LEN_TIME_EXTEND;
2659
2660        /* Don't let the compiler play games with cpu_buffer->tail_page */
2661        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2662        write = local_add_return(info->length, &tail_page->write);
2663
2664        /* set write to only the index of the write */
2665        write &= RB_WRITE_MASK;
2666        tail = write - info->length;
2667
2668        /*
2669         * If this is the first commit on the page, then it has the same
2670         * timestamp as the page itself.
2671         */
2672        if (!tail)
2673                info->delta = 0;
2674
2675        /* See if we shot pass the end of this buffer page */
2676        if (unlikely(write > BUF_PAGE_SIZE))
2677                return rb_move_tail(cpu_buffer, tail, info);
2678
2679        /* We reserved something on the buffer */
2680
2681        event = __rb_page_index(tail_page, tail);
2682        rb_update_event(cpu_buffer, event, info);
2683
2684        local_inc(&tail_page->entries);
2685
2686        /*
2687         * If this is the first commit on the page, then update
2688         * its timestamp.
2689         */
2690        if (!tail)
2691                tail_page->page->time_stamp = info->ts;
2692
2693        /* account for these added bytes */
2694        local_add(info->length, &cpu_buffer->entries_bytes);
2695
2696        return event;
2697}
2698
2699static __always_inline struct ring_buffer_event *
2700rb_reserve_next_event(struct ring_buffer *buffer,
2701                      struct ring_buffer_per_cpu *cpu_buffer,
2702                      unsigned long length)
2703{
2704        struct ring_buffer_event *event;
2705        struct rb_event_info info;
2706        int nr_loops = 0;
2707        u64 diff;
2708
2709        rb_start_commit(cpu_buffer);
2710
2711#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2712        /*
2713         * Due to the ability to swap a cpu buffer from a buffer
2714         * it is possible it was swapped before we committed.
2715         * (committing stops a swap). We check for it here and
2716         * if it happened, we have to fail the write.
2717         */
2718        barrier();
2719        if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2720                local_dec(&cpu_buffer->committing);
2721                local_dec(&cpu_buffer->commits);
2722                return NULL;
2723        }
2724#endif
2725
2726        info.length = rb_calculate_event_length(length);
2727 again:
2728        info.add_timestamp = 0;
2729        info.delta = 0;
2730
2731        /*
2732         * We allow for interrupts to reenter here and do a trace.
2733         * If one does, it will cause this original code to loop
2734         * back here. Even with heavy interrupts happening, this
2735         * should only happen a few times in a row. If this happens
2736         * 1000 times in a row, there must be either an interrupt
2737         * storm or we have something buggy.
2738         * Bail!
2739         */
2740        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2741                goto out_fail;
2742
2743        info.ts = rb_time_stamp(cpu_buffer->buffer);
2744        diff = info.ts - cpu_buffer->write_stamp;
2745
2746        /* make sure this diff is calculated here */
2747        barrier();
2748
2749        /* Did the write stamp get updated already? */
2750        if (likely(info.ts >= cpu_buffer->write_stamp)) {
2751                info.delta = diff;
2752                if (unlikely(test_time_stamp(info.delta)))
2753                        rb_handle_timestamp(cpu_buffer, &info);
2754        }
2755
2756        event = __rb_reserve_next(cpu_buffer, &info);
2757
2758        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2759                if (info.add_timestamp)
2760                        info.length -= RB_LEN_TIME_EXTEND;
2761                goto again;
2762        }
2763
2764        if (!event)
2765                goto out_fail;
2766
2767        return event;
2768
2769 out_fail:
2770        rb_end_commit(cpu_buffer);
2771        return NULL;
2772}
2773
2774/**
2775 * ring_buffer_lock_reserve - reserve a part of the buffer
2776 * @buffer: the ring buffer to reserve from
2777 * @length: the length of the data to reserve (excluding event header)
2778 *
2779 * Returns a reseverd event on the ring buffer to copy directly to.
2780 * The user of this interface will need to get the body to write into
2781 * and can use the ring_buffer_event_data() interface.
2782 *
2783 * The length is the length of the data needed, not the event length
2784 * which also includes the event header.
2785 *
2786 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2787 * If NULL is returned, then nothing has been allocated or locked.
2788 */
2789struct ring_buffer_event *
2790ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2791{
2792        struct ring_buffer_per_cpu *cpu_buffer;
2793        struct ring_buffer_event *event;
2794        int cpu;
2795
2796        /* If we are tracing schedule, we don't want to recurse */
2797        preempt_disable_notrace();
2798
2799        if (unlikely(atomic_read(&buffer->record_disabled)))
2800                goto out;
2801
2802        cpu = raw_smp_processor_id();
2803
2804        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2805                goto out;
2806
2807        cpu_buffer = buffer->buffers[cpu];
2808
2809        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2810                goto out;
2811
2812        if (unlikely(length > BUF_MAX_DATA_SIZE))
2813                goto out;
2814
2815        if (unlikely(trace_recursive_lock(cpu_buffer)))
2816                goto out;
2817
2818        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2819        if (!event)
2820                goto out_unlock;
2821
2822        return event;
2823
2824 out_unlock:
2825        trace_recursive_unlock(cpu_buffer);
2826 out:
2827        preempt_enable_notrace();
2828        return NULL;
2829}
2830EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2831
2832/*
2833 * Decrement the entries to the page that an event is on.
2834 * The event does not even need to exist, only the pointer
2835 * to the page it is on. This may only be called before the commit
2836 * takes place.
2837 */
2838static inline void
2839rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2840                   struct ring_buffer_event *event)
2841{
2842        unsigned long addr = (unsigned long)event;
2843        struct buffer_page *bpage = cpu_buffer->commit_page;
2844        struct buffer_page *start;
2845
2846        addr &= PAGE_MASK;
2847
2848        /* Do the likely case first */
2849        if (likely(bpage->page == (void *)addr)) {
2850                local_dec(&bpage->entries);
2851                return;
2852        }
2853
2854        /*
2855         * Because the commit page may be on the reader page we
2856         * start with the next page and check the end loop there.
2857         */
2858        rb_inc_page(cpu_buffer, &bpage);
2859        start = bpage;
2860        do {
2861                if (bpage->page == (void *)addr) {
2862                        local_dec(&bpage->entries);
2863                        return;
2864                }
2865                rb_inc_page(cpu_buffer, &bpage);
2866        } while (bpage != start);
2867
2868        /* commit not part of this buffer?? */
2869        RB_WARN_ON(cpu_buffer, 1);
2870}
2871
2872/**
2873 * ring_buffer_commit_discard - discard an event that has not been committed
2874 * @buffer: the ring buffer
2875 * @event: non committed event to discard
2876 *
2877 * Sometimes an event that is in the ring buffer needs to be ignored.
2878 * This function lets the user discard an event in the ring buffer
2879 * and then that event will not be read later.
2880 *
2881 * This function only works if it is called before the the item has been
2882 * committed. It will try to free the event from the ring buffer
2883 * if another event has not been added behind it.
2884 *
2885 * If another event has been added behind it, it will set the event
2886 * up as discarded, and perform the commit.
2887 *
2888 * If this function is called, do not call ring_buffer_unlock_commit on
2889 * the event.
2890 */
2891void ring_buffer_discard_commit(struct ring_buffer *buffer,
2892                                struct ring_buffer_event *event)
2893{
2894        struct ring_buffer_per_cpu *cpu_buffer;
2895        int cpu;
2896
2897        /* The event is discarded regardless */
2898        rb_event_discard(event);
2899
2900        cpu = smp_processor_id();
2901        cpu_buffer = buffer->buffers[cpu];
2902
2903        /*
2904         * This must only be called if the event has not been
2905         * committed yet. Thus we can assume that preemption
2906         * is still disabled.
2907         */
2908        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2909
2910        rb_decrement_entry(cpu_buffer, event);
2911        if (rb_try_to_discard(cpu_buffer, event))
2912                goto out;
2913
2914        /*
2915         * The commit is still visible by the reader, so we
2916         * must still update the timestamp.
2917         */
2918        rb_update_write_stamp(cpu_buffer, event);
2919 out:
2920        rb_end_commit(cpu_buffer);
2921
2922        trace_recursive_unlock(cpu_buffer);
2923
2924        preempt_enable_notrace();
2925
2926}
2927EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2928
2929/**
2930 * ring_buffer_write - write data to the buffer without reserving
2931 * @buffer: The ring buffer to write to.
2932 * @length: The length of the data being written (excluding the event header)
2933 * @data: The data to write to the buffer.
2934 *
2935 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2936 * one function. If you already have the data to write to the buffer, it
2937 * may be easier to simply call this function.
2938 *
2939 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2940 * and not the length of the event which would hold the header.
2941 */
2942int ring_buffer_write(struct ring_buffer *buffer,
2943                      unsigned long length,
2944                      void *data)
2945{
2946        struct ring_buffer_per_cpu *cpu_buffer;
2947        struct ring_buffer_event *event;
2948        void *body;
2949        int ret = -EBUSY;
2950        int cpu;
2951
2952        preempt_disable_notrace();
2953
2954        if (atomic_read(&buffer->record_disabled))
2955                goto out;
2956
2957        cpu = raw_smp_processor_id();
2958
2959        if (!cpumask_test_cpu(cpu, buffer->cpumask))
2960                goto out;
2961
2962        cpu_buffer = buffer->buffers[cpu];
2963
2964        if (atomic_read(&cpu_buffer->record_disabled))
2965                goto out;
2966
2967        if (length > BUF_MAX_DATA_SIZE)
2968                goto out;
2969
2970        if (unlikely(trace_recursive_lock(cpu_buffer)))
2971                goto out;
2972
2973        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2974        if (!event)
2975                goto out_unlock;
2976
2977        body = rb_event_data(event);
2978
2979        memcpy(body, data, length);
2980
2981        rb_commit(cpu_buffer, event);
2982
2983        rb_wakeups(buffer, cpu_buffer);
2984
2985        ret = 0;
2986
2987 out_unlock:
2988        trace_recursive_unlock(cpu_buffer);
2989
2990 out:
2991        preempt_enable_notrace();
2992
2993        return ret;
2994}
2995EXPORT_SYMBOL_GPL(ring_buffer_write);
2996
2997static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2998{
2999        struct buffer_page *reader = cpu_buffer->reader_page;
3000        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3001        struct buffer_page *commit = cpu_buffer->commit_page;
3002
3003        /* In case of error, head will be NULL */
3004        if (unlikely(!head))
3005                return true;
3006
3007        return reader->read == rb_page_commit(reader) &&
3008                (commit == reader ||
3009                 (commit == head &&
3010                  head->read == rb_page_commit(commit)));
3011}
3012
3013/**
3014 * ring_buffer_record_disable - stop all writes into the buffer
3015 * @buffer: The ring buffer to stop writes to.
3016 *
3017 * This prevents all writes to the buffer. Any attempt to write
3018 * to the buffer after this will fail and return NULL.
3019 *
3020 * The caller should call synchronize_sched() after this.
3021 */
3022void ring_buffer_record_disable(struct ring_buffer *buffer)
3023{
3024        atomic_inc(&buffer->record_disabled);
3025}
3026EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3027
3028/**
3029 * ring_buffer_record_enable - enable writes to the buffer
3030 * @buffer: The ring buffer to enable writes
3031 *
3032 * Note, multiple disables will need the same number of enables
3033 * to truly enable the writing (much like preempt_disable).
3034 */
3035void ring_buffer_record_enable(struct ring_buffer *buffer)
3036{
3037        atomic_dec(&buffer->record_disabled);
3038}
3039EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3040
3041/**
3042 * ring_buffer_record_off - stop all writes into the buffer
3043 * @buffer: The ring buffer to stop writes to.
3044 *
3045 * This prevents all writes to the buffer. Any attempt to write
3046 * to the buffer after this will fail and return NULL.
3047 *
3048 * This is different than ring_buffer_record_disable() as
3049 * it works like an on/off switch, where as the disable() version
3050 * must be paired with a enable().
3051 */
3052void ring_buffer_record_off(struct ring_buffer *buffer)
3053{
3054        unsigned int rd;
3055        unsigned int new_rd;
3056
3057        do {
3058                rd = atomic_read(&buffer->record_disabled);
3059                new_rd = rd | RB_BUFFER_OFF;
3060        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3061}
3062EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3063
3064/**
3065 * ring_buffer_record_on - restart writes into the buffer
3066 * @buffer: The ring buffer to start writes to.
3067 *
3068 * This enables all writes to the buffer that was disabled by
3069 * ring_buffer_record_off().
3070 *
3071 * This is different than ring_buffer_record_enable() as
3072 * it works like an on/off switch, where as the enable() version
3073 * must be paired with a disable().
3074 */
3075void ring_buffer_record_on(struct ring_buffer *buffer)
3076{
3077        unsigned int rd;
3078        unsigned int new_rd;
3079
3080        do {
3081                rd = atomic_read(&buffer->record_disabled);
3082                new_rd = rd & ~RB_BUFFER_OFF;
3083        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3084}
3085EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3086
3087/**
3088 * ring_buffer_record_is_on - return true if the ring buffer can write
3089 * @buffer: The ring buffer to see if write is enabled
3090 *
3091 * Returns true if the ring buffer is in a state that it accepts writes.
3092 */
3093int ring_buffer_record_is_on(struct ring_buffer *buffer)
3094{
3095        return !atomic_read(&buffer->record_disabled);
3096}
3097
3098/**
3099 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3100 * @buffer: The ring buffer to stop writes to.
3101 * @cpu: The CPU buffer to stop
3102 *
3103 * This prevents all writes to the buffer. Any attempt to write
3104 * to the buffer after this will fail and return NULL.
3105 *
3106 * The caller should call synchronize_sched() after this.
3107 */
3108void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3109{
3110        struct ring_buffer_per_cpu *cpu_buffer;
3111
3112        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3113                return;
3114
3115        cpu_buffer = buffer->buffers[cpu];
3116        atomic_inc(&cpu_buffer->record_disabled);
3117}
3118EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3119
3120/**
3121 * ring_buffer_record_enable_cpu - enable writes to the buffer
3122 * @buffer: The ring buffer to enable writes
3123 * @cpu: The CPU to enable.
3124 *
3125 * Note, multiple disables will need the same number of enables
3126 * to truly enable the writing (much like preempt_disable).
3127 */
3128void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3129{
3130        struct ring_buffer_per_cpu *cpu_buffer;
3131
3132        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133                return;
3134
3135        cpu_buffer = buffer->buffers[cpu];
3136        atomic_dec(&cpu_buffer->record_disabled);
3137}
3138EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3139
3140/*
3141 * The total entries in the ring buffer is the running counter
3142 * of entries entered into the ring buffer, minus the sum of
3143 * the entries read from the ring buffer and the number of
3144 * entries that were overwritten.
3145 */
3146static inline unsigned long
3147rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3148{
3149        return local_read(&cpu_buffer->entries) -
3150                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3151}
3152
3153/**
3154 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3155 * @buffer: The ring buffer
3156 * @cpu: The per CPU buffer to read from.
3157 */
3158u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3159{
3160        unsigned long flags;
3161        struct ring_buffer_per_cpu *cpu_buffer;
3162        struct buffer_page *bpage;
3163        u64 ret = 0;
3164
3165        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3166                return 0;
3167
3168        cpu_buffer = buffer->buffers[cpu];
3169        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3170        /*
3171         * if the tail is on reader_page, oldest time stamp is on the reader
3172         * page
3173         */
3174        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3175                bpage = cpu_buffer->reader_page;
3176        else
3177                bpage = rb_set_head_page(cpu_buffer);
3178        if (bpage)
3179                ret = bpage->page->time_stamp;
3180        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3181
3182        return ret;
3183}
3184EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3185
3186/**
3187 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3188 * @buffer: The ring buffer
3189 * @cpu: The per CPU buffer to read from.
3190 */
3191unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3192{
3193        struct ring_buffer_per_cpu *cpu_buffer;
3194        unsigned long ret;
3195
3196        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3197                return 0;
3198
3199        cpu_buffer = buffer->buffers[cpu];
3200        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3201
3202        return ret;
3203}
3204EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3205
3206/**
3207 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3208 * @buffer: The ring buffer
3209 * @cpu: The per CPU buffer to get the entries from.
3210 */
3211unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3212{
3213        struct ring_buffer_per_cpu *cpu_buffer;
3214
3215        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3216                return 0;
3217
3218        cpu_buffer = buffer->buffers[cpu];
3219
3220        return rb_num_of_entries(cpu_buffer);
3221}
3222EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3223
3224/**
3225 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3226 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3227 * @buffer: The ring buffer
3228 * @cpu: The per CPU buffer to get the number of overruns from
3229 */
3230unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3231{
3232        struct ring_buffer_per_cpu *cpu_buffer;
3233        unsigned long ret;
3234
3235        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3236                return 0;
3237
3238        cpu_buffer = buffer->buffers[cpu];
3239        ret = local_read(&cpu_buffer->overrun);
3240
3241        return ret;
3242}
3243EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3244
3245/**
3246 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3247 * commits failing due to the buffer wrapping around while there are uncommitted
3248 * events, such as during an interrupt storm.
3249 * @buffer: The ring buffer
3250 * @cpu: The per CPU buffer to get the number of overruns from
3251 */
3252unsigned long
3253ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254{
3255        struct ring_buffer_per_cpu *cpu_buffer;
3256        unsigned long ret;
3257
3258        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259                return 0;
3260
3261        cpu_buffer = buffer->buffers[cpu];
3262        ret = local_read(&cpu_buffer->commit_overrun);
3263
3264        return ret;
3265}
3266EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3267
3268/**
3269 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3270 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3271 * @buffer: The ring buffer
3272 * @cpu: The per CPU buffer to get the number of overruns from
3273 */
3274unsigned long
3275ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3276{
3277        struct ring_buffer_per_cpu *cpu_buffer;
3278        unsigned long ret;
3279
3280        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281                return 0;
3282
3283        cpu_buffer = buffer->buffers[cpu];
3284        ret = local_read(&cpu_buffer->dropped_events);
3285
3286        return ret;
3287}
3288EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3289
3290/**
3291 * ring_buffer_read_events_cpu - get the number of events successfully read
3292 * @buffer: The ring buffer
3293 * @cpu: The per CPU buffer to get the number of events read
3294 */
3295unsigned long
3296ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3297{
3298        struct ring_buffer_per_cpu *cpu_buffer;
3299
3300        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301                return 0;
3302
3303        cpu_buffer = buffer->buffers[cpu];
3304        return cpu_buffer->read;
3305}
3306EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3307
3308/**
3309 * ring_buffer_entries - get the number of entries in a buffer
3310 * @buffer: The ring buffer
3311 *
3312 * Returns the total number of entries in the ring buffer
3313 * (all CPU entries)
3314 */
3315unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3316{
3317        struct ring_buffer_per_cpu *cpu_buffer;
3318        unsigned long entries = 0;
3319        int cpu;
3320
3321        /* if you care about this being correct, lock the buffer */
3322        for_each_buffer_cpu(buffer, cpu) {
3323                cpu_buffer = buffer->buffers[cpu];
3324                entries += rb_num_of_entries(cpu_buffer);
3325        }
3326
3327        return entries;
3328}
3329EXPORT_SYMBOL_GPL(ring_buffer_entries);
3330
3331/**
3332 * ring_buffer_overruns - get the number of overruns in buffer
3333 * @buffer: The ring buffer
3334 *
3335 * Returns the total number of overruns in the ring buffer
3336 * (all CPU entries)
3337 */
3338unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3339{
3340        struct ring_buffer_per_cpu *cpu_buffer;
3341        unsigned long overruns = 0;
3342        int cpu;
3343
3344        /* if you care about this being correct, lock the buffer */
3345        for_each_buffer_cpu(buffer, cpu) {
3346                cpu_buffer = buffer->buffers[cpu];
3347                overruns += local_read(&cpu_buffer->overrun);
3348        }
3349
3350        return overruns;
3351}
3352EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3353
3354static void rb_iter_reset(struct ring_buffer_iter *iter)
3355{
3356        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3357
3358        /* Iterator usage is expected to have record disabled */
3359        iter->head_page = cpu_buffer->reader_page;
3360        iter->head = cpu_buffer->reader_page->read;
3361
3362        iter->cache_reader_page = iter->head_page;
3363        iter->cache_read = cpu_buffer->read;
3364
3365        if (iter->head)
3366                iter->read_stamp = cpu_buffer->read_stamp;
3367        else
3368                iter->read_stamp = iter->head_page->page->time_stamp;
3369}
3370
3371/**
3372 * ring_buffer_iter_reset - reset an iterator
3373 * @iter: The iterator to reset
3374 *
3375 * Resets the iterator, so that it will start from the beginning
3376 * again.
3377 */
3378void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3379{
3380        struct ring_buffer_per_cpu *cpu_buffer;
3381        unsigned long flags;
3382
3383        if (!iter)
3384                return;
3385
3386        cpu_buffer = iter->cpu_buffer;
3387
3388        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3389        rb_iter_reset(iter);
3390        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3391}
3392EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3393
3394/**
3395 * ring_buffer_iter_empty - check if an iterator has no more to read
3396 * @iter: The iterator to check
3397 */
3398int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3399{
3400        struct ring_buffer_per_cpu *cpu_buffer;
3401        struct buffer_page *reader;
3402        struct buffer_page *head_page;
3403        struct buffer_page *commit_page;
3404        unsigned commit;
3405
3406        cpu_buffer = iter->cpu_buffer;
3407
3408        /* Remember, trace recording is off when iterator is in use */
3409        reader = cpu_buffer->reader_page;
3410        head_page = cpu_buffer->head_page;
3411        commit_page = cpu_buffer->commit_page;
3412        commit = rb_page_commit(commit_page);
3413
3414        return ((iter->head_page == commit_page && iter->head == commit) ||
3415                (iter->head_page == reader && commit_page == head_page &&
3416                 head_page->read == commit &&
3417                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3418}
3419EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3420
3421static void
3422rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3423                     struct ring_buffer_event *event)
3424{
3425        u64 delta;
3426
3427        switch (event->type_len) {
3428        case RINGBUF_TYPE_PADDING:
3429                return;
3430
3431        case RINGBUF_TYPE_TIME_EXTEND:
3432                delta = event->array[0];
3433                delta <<= TS_SHIFT;
3434                delta += event->time_delta;
3435                cpu_buffer->read_stamp += delta;
3436                return;
3437
3438        case RINGBUF_TYPE_TIME_STAMP:
3439                /* FIXME: not implemented */
3440                return;
3441
3442        case RINGBUF_TYPE_DATA:
3443                cpu_buffer->read_stamp += event->time_delta;
3444                return;
3445
3446        default:
3447                BUG();
3448        }
3449        return;
3450}
3451
3452static void
3453rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3454                          struct ring_buffer_event *event)
3455{
3456        u64 delta;
3457
3458        switch (event->type_len) {
3459        case RINGBUF_TYPE_PADDING:
3460                return;
3461
3462        case RINGBUF_TYPE_TIME_EXTEND:
3463                delta = event->array[0];
3464                delta <<= TS_SHIFT;
3465                delta += event->time_delta;
3466                iter->read_stamp += delta;
3467                return;
3468
3469        case RINGBUF_TYPE_TIME_STAMP:
3470                /* FIXME: not implemented */
3471                return;
3472
3473        case RINGBUF_TYPE_DATA:
3474                iter->read_stamp += event->time_delta;
3475                return;
3476
3477        default:
3478                BUG();
3479        }
3480        return;
3481}
3482
3483static struct buffer_page *
3484rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3485{
3486        struct buffer_page *reader = NULL;
3487        unsigned long overwrite;
3488        unsigned long flags;
3489        int nr_loops = 0;
3490        int ret;
3491
3492        local_irq_save(flags);
3493        arch_spin_lock(&cpu_buffer->lock);
3494
3495 again:
3496        /*
3497         * This should normally only loop twice. But because the
3498         * start of the reader inserts an empty page, it causes
3499         * a case where we will loop three times. There should be no
3500         * reason to loop four times (that I know of).
3501         */
3502        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3503                reader = NULL;
3504                goto out;
3505        }
3506
3507        reader = cpu_buffer->reader_page;
3508
3509        /* If there's more to read, return this page */
3510        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3511                goto out;
3512
3513        /* Never should we have an index greater than the size */
3514        if (RB_WARN_ON(cpu_buffer,
3515                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3516                goto out;
3517
3518        /* check if we caught up to the tail */
3519        reader = NULL;
3520        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3521                goto out;
3522
3523        /* Don't bother swapping if the ring buffer is empty */
3524        if (rb_num_of_entries(cpu_buffer) == 0)
3525                goto out;
3526
3527        /*
3528         * Reset the reader page to size zero.
3529         */
3530        local_set(&cpu_buffer->reader_page->write, 0);
3531        local_set(&cpu_buffer->reader_page->entries, 0);
3532        local_set(&cpu_buffer->reader_page->page->commit, 0);
3533        cpu_buffer->reader_page->real_end = 0;
3534
3535 spin:
3536        /*
3537         * Splice the empty reader page into the list around the head.
3538         */
3539        reader = rb_set_head_page(cpu_buffer);
3540        if (!reader)
3541                goto out;
3542        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3543        cpu_buffer->reader_page->list.prev = reader->list.prev;
3544
3545        /*
3546         * cpu_buffer->pages just needs to point to the buffer, it
3547         *  has no specific buffer page to point to. Lets move it out
3548         *  of our way so we don't accidentally swap it.
3549         */
3550        cpu_buffer->pages = reader->list.prev;
3551
3552        /* The reader page will be pointing to the new head */
3553        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3554
3555        /*
3556         * We want to make sure we read the overruns after we set up our
3557         * pointers to the next object. The writer side does a
3558         * cmpxchg to cross pages which acts as the mb on the writer
3559         * side. Note, the reader will constantly fail the swap
3560         * while the writer is updating the pointers, so this
3561         * guarantees that the overwrite recorded here is the one we
3562         * want to compare with the last_overrun.
3563         */
3564        smp_mb();
3565        overwrite = local_read(&(cpu_buffer->overrun));
3566
3567        /*
3568         * Here's the tricky part.
3569         *
3570         * We need to move the pointer past the header page.
3571         * But we can only do that if a writer is not currently
3572         * moving it. The page before the header page has the
3573         * flag bit '1' set if it is pointing to the page we want.
3574         * but if the writer is in the process of moving it
3575         * than it will be '2' or already moved '0'.
3576         */
3577
3578        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3579
3580        /*
3581         * If we did not convert it, then we must try again.
3582         */
3583        if (!ret)
3584                goto spin;
3585
3586        /*
3587         * Yeah! We succeeded in replacing the page.
3588         *
3589         * Now make the new head point back to the reader page.
3590         */
3591        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3592        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3593
3594        /* Finally update the reader page to the new head */
3595        cpu_buffer->reader_page = reader;
3596        cpu_buffer->reader_page->read = 0;
3597
3598        if (overwrite != cpu_buffer->last_overrun) {
3599                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3600                cpu_buffer->last_overrun = overwrite;
3601        }
3602
3603        goto again;
3604
3605 out:
3606        /* Update the read_stamp on the first event */
3607        if (reader && reader->read == 0)
3608                cpu_buffer->read_stamp = reader->page->time_stamp;
3609
3610        arch_spin_unlock(&cpu_buffer->lock);
3611        local_irq_restore(flags);
3612
3613        return reader;
3614}
3615
3616static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3617{
3618        struct ring_buffer_event *event;
3619        struct buffer_page *reader;
3620        unsigned length;
3621
3622        reader = rb_get_reader_page(cpu_buffer);
3623
3624        /* This function should not be called when buffer is empty */
3625        if (RB_WARN_ON(cpu_buffer, !reader))
3626                return;
3627
3628        event = rb_reader_event(cpu_buffer);
3629
3630        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3631                cpu_buffer->read++;
3632
3633        rb_update_read_stamp(cpu_buffer, event);
3634
3635        length = rb_event_length(event);
3636        cpu_buffer->reader_page->read += length;
3637}
3638
3639static void rb_advance_iter(struct ring_buffer_iter *iter)
3640{
3641        struct ring_buffer_per_cpu *cpu_buffer;
3642        struct ring_buffer_event *event;
3643        unsigned length;
3644
3645        cpu_buffer = iter->cpu_buffer;
3646
3647        /*
3648         * Check if we are at the end of the buffer.
3649         */
3650        if (iter->head >= rb_page_size(iter->head_page)) {
3651                /* discarded commits can make the page empty */
3652                if (iter->head_page == cpu_buffer->commit_page)
3653                        return;
3654                rb_inc_iter(iter);
3655                return;
3656        }
3657
3658        event = rb_iter_head_event(iter);
3659
3660        length = rb_event_length(event);
3661
3662        /*
3663         * This should not be called to advance the header if we are
3664         * at the tail of the buffer.
3665         */
3666        if (RB_WARN_ON(cpu_buffer,
3667                       (iter->head_page == cpu_buffer->commit_page) &&
3668                       (iter->head + length > rb_commit_index(cpu_buffer))))
3669                return;
3670
3671        rb_update_iter_read_stamp(iter, event);
3672
3673        iter->head += length;
3674
3675        /* check for end of page padding */
3676        if ((iter->head >= rb_page_size(iter->head_page)) &&
3677            (iter->head_page != cpu_buffer->commit_page))
3678                rb_inc_iter(iter);
3679}
3680
3681static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3682{
3683        return cpu_buffer->lost_events;
3684}
3685
3686static struct ring_buffer_event *
3687rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3688               unsigned long *lost_events)
3689{
3690        struct ring_buffer_event *event;
3691        struct buffer_page *reader;
3692        int nr_loops = 0;
3693
3694 again:
3695        /*
3696         * We repeat when a time extend is encountered.
3697         * Since the time extend is always attached to a data event,
3698         * we should never loop more than once.
3699         * (We never hit the following condition more than twice).
3700         */
3701        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3702                return NULL;
3703
3704        reader = rb_get_reader_page(cpu_buffer);
3705        if (!reader)
3706                return NULL;
3707
3708        event = rb_reader_event(cpu_buffer);
3709
3710        switch (event->type_len) {
3711        case RINGBUF_TYPE_PADDING:
3712                if (rb_null_event(event))
3713                        RB_WARN_ON(cpu_buffer, 1);
3714                /*
3715                 * Because the writer could be discarding every
3716                 * event it creates (which would probably be bad)
3717                 * if we were to go back to "again" then we may never
3718                 * catch up, and will trigger the warn on, or lock
3719                 * the box. Return the padding, and we will release
3720                 * the current locks, and try again.
3721                 */
3722                return event;
3723
3724        case RINGBUF_TYPE_TIME_EXTEND:
3725                /* Internal data, OK to advance */
3726                rb_advance_reader(cpu_buffer);
3727                goto again;
3728
3729        case RINGBUF_TYPE_TIME_STAMP:
3730                /* FIXME: not implemented */
3731                rb_advance_reader(cpu_buffer);
3732                goto again;
3733
3734        case RINGBUF_TYPE_DATA:
3735                if (ts) {
3736                        *ts = cpu_buffer->read_stamp + event->time_delta;
3737                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3738                                                         cpu_buffer->cpu, ts);
3739                }
3740                if (lost_events)
3741                        *lost_events = rb_lost_events(cpu_buffer);
3742                return event;
3743
3744        default:
3745                BUG();
3746        }
3747
3748        return NULL;
3749}
3750EXPORT_SYMBOL_GPL(ring_buffer_peek);
3751
3752static struct ring_buffer_event *
3753rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3754{
3755        struct ring_buffer *buffer;
3756        struct ring_buffer_per_cpu *cpu_buffer;
3757        struct ring_buffer_event *event;
3758        int nr_loops = 0;
3759
3760        cpu_buffer = iter->cpu_buffer;
3761        buffer = cpu_buffer->buffer;
3762
3763        /*
3764         * Check if someone performed a consuming read to
3765         * the buffer. A consuming read invalidates the iterator
3766         * and we need to reset the iterator in this case.
3767         */
3768        if (unlikely(iter->cache_read != cpu_buffer->read ||
3769                     iter->cache_reader_page != cpu_buffer->reader_page))
3770                rb_iter_reset(iter);
3771
3772 again:
3773        if (ring_buffer_iter_empty(iter))
3774                return NULL;
3775
3776        /*
3777         * We repeat when a time extend is encountered or we hit
3778         * the end of the page. Since the time extend is always attached
3779         * to a data event, we should never loop more than three times.
3780         * Once for going to next page, once on time extend, and
3781         * finally once to get the event.
3782         * (We never hit the following condition more than thrice).
3783         */
3784        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3785                return NULL;
3786
3787        if (rb_per_cpu_empty(cpu_buffer))
3788                return NULL;
3789
3790        if (iter->head >= rb_page_size(iter->head_page)) {
3791                rb_inc_iter(iter);
3792                goto again;
3793        }
3794
3795        event = rb_iter_head_event(iter);
3796
3797        switch (event->type_len) {
3798        case RINGBUF_TYPE_PADDING:
3799                if (rb_null_event(event)) {
3800                        rb_inc_iter(iter);
3801                        goto again;
3802                }
3803                rb_advance_iter(iter);
3804                return event;
3805
3806        case RINGBUF_TYPE_TIME_EXTEND:
3807                /* Internal data, OK to advance */
3808                rb_advance_iter(iter);
3809                goto again;
3810
3811        case RINGBUF_TYPE_TIME_STAMP:
3812                /* FIXME: not implemented */
3813                rb_advance_iter(iter);
3814                goto again;
3815
3816        case RINGBUF_TYPE_DATA:
3817                if (ts) {
3818                        *ts = iter->read_stamp + event->time_delta;
3819                        ring_buffer_normalize_time_stamp(buffer,
3820                                                         cpu_buffer->cpu, ts);
3821                }
3822                return event;
3823
3824        default:
3825                BUG();
3826        }
3827
3828        return NULL;
3829}
3830EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3831
3832static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3833{
3834        if (likely(!in_nmi())) {
3835                raw_spin_lock(&cpu_buffer->reader_lock);
3836                return true;
3837        }
3838
3839        /*
3840         * If an NMI die dumps out the content of the ring buffer
3841         * trylock must be used to prevent a deadlock if the NMI
3842         * preempted a task that holds the ring buffer locks. If
3843         * we get the lock then all is fine, if not, then continue
3844         * to do the read, but this can corrupt the ring buffer,
3845         * so it must be permanently disabled from future writes.
3846         * Reading from NMI is a oneshot deal.
3847         */
3848        if (raw_spin_trylock(&cpu_buffer->reader_lock))
3849                return true;
3850
3851        /* Continue without locking, but disable the ring buffer */
3852        atomic_inc(&cpu_buffer->record_disabled);
3853        return false;
3854}
3855
3856static inline void
3857rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3858{
3859        if (likely(locked))
3860                raw_spin_unlock(&cpu_buffer->reader_lock);
3861        return;
3862}
3863
3864/**
3865 * ring_buffer_peek - peek at the next event to be read
3866 * @buffer: The ring buffer to read
3867 * @cpu: The cpu to peak at
3868 * @ts: The timestamp counter of this event.
3869 * @lost_events: a variable to store if events were lost (may be NULL)
3870 *
3871 * This will return the event that will be read next, but does
3872 * not consume the data.
3873 */
3874struct ring_buffer_event *
3875ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3876                 unsigned long *lost_events)
3877{
3878        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3879        struct ring_buffer_event *event;
3880        unsigned long flags;
3881        bool dolock;
3882
3883        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3884                return NULL;
3885
3886 again:
3887        local_irq_save(flags);
3888        dolock = rb_reader_lock(cpu_buffer);
3889        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3890        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891                rb_advance_reader(cpu_buffer);
3892        rb_reader_unlock(cpu_buffer, dolock);
3893        local_irq_restore(flags);
3894
3895        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896                goto again;
3897
3898        return event;
3899}
3900
3901/**
3902 * ring_buffer_iter_peek - peek at the next event to be read
3903 * @iter: The ring buffer iterator
3904 * @ts: The timestamp counter of this event.
3905 *
3906 * This will return the event that will be read next, but does
3907 * not increment the iterator.
3908 */
3909struct ring_buffer_event *
3910ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3911{
3912        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3913        struct ring_buffer_event *event;
3914        unsigned long flags;
3915
3916 again:
3917        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3918        event = rb_iter_peek(iter, ts);
3919        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3920
3921        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3922                goto again;
3923
3924        return event;
3925}
3926
3927/**
3928 * ring_buffer_consume - return an event and consume it
3929 * @buffer: The ring buffer to get the next event from
3930 * @cpu: the cpu to read the buffer from
3931 * @ts: a variable to store the timestamp (may be NULL)
3932 * @lost_events: a variable to store if events were lost (may be NULL)
3933 *
3934 * Returns the next event in the ring buffer, and that event is consumed.
3935 * Meaning, that sequential reads will keep returning a different event,
3936 * and eventually empty the ring buffer if the producer is slower.
3937 */
3938struct ring_buffer_event *
3939ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3940                    unsigned long *lost_events)
3941{
3942        struct ring_buffer_per_cpu *cpu_buffer;
3943        struct ring_buffer_event *event = NULL;
3944        unsigned long flags;
3945        bool dolock;
3946
3947 again:
3948        /* might be called in atomic */
3949        preempt_disable();
3950
3951        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3952                goto out;
3953
3954        cpu_buffer = buffer->buffers[cpu];
3955        local_irq_save(flags);
3956        dolock = rb_reader_lock(cpu_buffer);
3957
3958        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3959        if (event) {
3960                cpu_buffer->lost_events = 0;
3961                rb_advance_reader(cpu_buffer);
3962        }
3963
3964        rb_reader_unlock(cpu_buffer, dolock);
3965        local_irq_restore(flags);
3966
3967 out:
3968        preempt_enable();
3969
3970        if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971                goto again;
3972
3973        return event;
3974}
3975EXPORT_SYMBOL_GPL(ring_buffer_consume);
3976
3977/**
3978 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979 * @buffer: The ring buffer to read from
3980 * @cpu: The cpu buffer to iterate over
3981 *
3982 * This performs the initial preparations necessary to iterate
3983 * through the buffer.  Memory is allocated, buffer recording
3984 * is disabled, and the iterator pointer is returned to the caller.
3985 *
3986 * Disabling buffer recordng prevents the reading from being
3987 * corrupted. This is not a consuming read, so a producer is not
3988 * expected.
3989 *
3990 * After a sequence of ring_buffer_read_prepare calls, the user is
3991 * expected to make at least one call to ring_buffer_read_prepare_sync.
3992 * Afterwards, ring_buffer_read_start is invoked to get things going
3993 * for real.
3994 *
3995 * This overall must be paired with ring_buffer_read_finish.
3996 */
3997struct ring_buffer_iter *
3998ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3999{
4000        struct ring_buffer_per_cpu *cpu_buffer;
4001        struct ring_buffer_iter *iter;
4002
4003        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004                return NULL;
4005
4006        iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007        if (!iter)
4008                return NULL;
4009
4010        cpu_buffer = buffer->buffers[cpu];
4011
4012        iter->cpu_buffer = cpu_buffer;
4013
4014        atomic_inc(&buffer->resize_disabled);
4015        atomic_inc(&cpu_buffer->record_disabled);
4016
4017        return iter;
4018}
4019EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4020
4021/**
4022 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4023 *
4024 * All previously invoked ring_buffer_read_prepare calls to prepare
4025 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4026 * calls on those iterators are allowed.
4027 */
4028void
4029ring_buffer_read_prepare_sync(void)
4030{
4031        synchronize_sched();
4032}
4033EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4034
4035/**
4036 * ring_buffer_read_start - start a non consuming read of the buffer
4037 * @iter: The iterator returned by ring_buffer_read_prepare
4038 *
4039 * This finalizes the startup of an iteration through the buffer.
4040 * The iterator comes from a call to ring_buffer_read_prepare and
4041 * an intervening ring_buffer_read_prepare_sync must have been
4042 * performed.
4043 *
4044 * Must be paired with ring_buffer_read_finish.
4045 */
4046void
4047ring_buffer_read_start(struct ring_buffer_iter *iter)
4048{
4049        struct ring_buffer_per_cpu *cpu_buffer;
4050        unsigned long flags;
4051
4052        if (!iter)
4053                return;
4054
4055        cpu_buffer = iter->cpu_buffer;
4056
4057        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058        arch_spin_lock(&cpu_buffer->lock);
4059        rb_iter_reset(iter);
4060        arch_spin_unlock(&cpu_buffer->lock);
4061        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062}
4063EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4064
4065/**
4066 * ring_buffer_read_finish - finish reading the iterator of the buffer
4067 * @iter: The iterator retrieved by ring_buffer_start
4068 *
4069 * This re-enables the recording to the buffer, and frees the
4070 * iterator.
4071 */
4072void
4073ring_buffer_read_finish(struct ring_buffer_iter *iter)
4074{
4075        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076        unsigned long flags;
4077
4078        /*
4079         * Ring buffer is disabled from recording, here's a good place
4080         * to check the integrity of the ring buffer.
4081         * Must prevent readers from trying to read, as the check
4082         * clears the HEAD page and readers require it.
4083         */
4084        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085        rb_check_pages(cpu_buffer);
4086        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087
4088        atomic_dec(&cpu_buffer->record_disabled);
4089        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090        kfree(iter);
4091}
4092EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4093
4094/**
4095 * ring_buffer_read - read the next item in the ring buffer by the iterator
4096 * @iter: The ring buffer iterator
4097 * @ts: The time stamp of the event read.
4098 *
4099 * This reads the next event in the ring buffer and increments the iterator.
4100 */
4101struct ring_buffer_event *
4102ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4103{
4104        struct ring_buffer_event *event;
4105        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106        unsigned long flags;
4107
4108        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109 again:
4110        event = rb_iter_peek(iter, ts);
4111        if (!event)
4112                goto out;
4113
4114        if (event->type_len == RINGBUF_TYPE_PADDING)
4115                goto again;
4116
4117        rb_advance_iter(iter);
4118 out:
4119        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120
4121        return event;
4122}
4123EXPORT_SYMBOL_GPL(ring_buffer_read);
4124
4125/**
4126 * ring_buffer_size - return the size of the ring buffer (in bytes)
4127 * @buffer: The ring buffer.
4128 */
4129unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4130{
4131        /*
4132         * Earlier, this method returned
4133         *      BUF_PAGE_SIZE * buffer->nr_pages
4134         * Since the nr_pages field is now removed, we have converted this to
4135         * return the per cpu buffer value.
4136         */
4137        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138                return 0;
4139
4140        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4141}
4142EXPORT_SYMBOL_GPL(ring_buffer_size);
4143
4144static void
4145rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4146{
4147        rb_head_page_deactivate(cpu_buffer);
4148
4149        cpu_buffer->head_page
4150                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4151        local_set(&cpu_buffer->head_page->write, 0);
4152        local_set(&cpu_buffer->head_page->entries, 0);
4153        local_set(&cpu_buffer->head_page->page->commit, 0);
4154
4155        cpu_buffer->head_page->read = 0;
4156
4157        cpu_buffer->tail_page = cpu_buffer->head_page;
4158        cpu_buffer->commit_page = cpu_buffer->head_page;
4159
4160        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162        local_set(&cpu_buffer->reader_page->write, 0);
4163        local_set(&cpu_buffer->reader_page->entries, 0);
4164        local_set(&cpu_buffer->reader_page->page->commit, 0);
4165        cpu_buffer->reader_page->read = 0;
4166
4167        local_set(&cpu_buffer->entries_bytes, 0);
4168        local_set(&cpu_buffer->overrun, 0);
4169        local_set(&cpu_buffer->commit_overrun, 0);
4170        local_set(&cpu_buffer->dropped_events, 0);
4171        local_set(&cpu_buffer->entries, 0);
4172        local_set(&cpu_buffer->committing, 0);
4173        local_set(&cpu_buffer->commits, 0);
4174        cpu_buffer->read = 0;
4175        cpu_buffer->read_bytes = 0;
4176
4177        cpu_buffer->write_stamp = 0;
4178        cpu_buffer->read_stamp = 0;
4179
4180        cpu_buffer->lost_events = 0;
4181        cpu_buffer->last_overrun = 0;
4182
4183        rb_head_page_activate(cpu_buffer);
4184}
4185
4186/**
4187 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188 * @buffer: The ring buffer to reset a per cpu buffer of
4189 * @cpu: The CPU buffer to be reset
4190 */
4191void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4192{
4193        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194        unsigned long flags;
4195
4196        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197                return;
4198
4199        atomic_inc(&buffer->resize_disabled);
4200        atomic_inc(&cpu_buffer->record_disabled);
4201
4202        /* Make sure all commits have finished */
4203        synchronize_sched();
4204
4205        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206
4207        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208                goto out;
4209
4210        arch_spin_lock(&cpu_buffer->lock);
4211
4212        rb_reset_cpu(cpu_buffer);
4213
4214        arch_spin_unlock(&cpu_buffer->lock);
4215
4216 out:
4217        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4218
4219        atomic_dec(&cpu_buffer->record_disabled);
4220        atomic_dec(&buffer->resize_disabled);
4221}
4222EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4223
4224/**
4225 * ring_buffer_reset - reset a ring buffer
4226 * @buffer: The ring buffer to reset all cpu buffers
4227 */
4228void ring_buffer_reset(struct ring_buffer *buffer)
4229{
4230        int cpu;
4231
4232        for_each_buffer_cpu(buffer, cpu)
4233                ring_buffer_reset_cpu(buffer, cpu);
4234}
4235EXPORT_SYMBOL_GPL(ring_buffer_reset);
4236
4237/**
4238 * rind_buffer_empty - is the ring buffer empty?
4239 * @buffer: The ring buffer to test
4240 */
4241bool ring_buffer_empty(struct ring_buffer *buffer)
4242{
4243        struct ring_buffer_per_cpu *cpu_buffer;
4244        unsigned long flags;
4245        bool dolock;
4246        int cpu;
4247        int ret;
4248
4249        /* yes this is racy, but if you don't like the race, lock the buffer */
4250        for_each_buffer_cpu(buffer, cpu) {
4251                cpu_buffer = buffer->buffers[cpu];
4252                local_irq_save(flags);
4253                dolock = rb_reader_lock(cpu_buffer);
4254                ret = rb_per_cpu_empty(cpu_buffer);
4255                rb_reader_unlock(cpu_buffer, dolock);
4256                local_irq_restore(flags);
4257
4258                if (!ret)
4259                        return false;
4260        }
4261
4262        return true;
4263}
4264EXPORT_SYMBOL_GPL(ring_buffer_empty);
4265
4266/**
4267 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4268 * @buffer: The ring buffer
4269 * @cpu: The CPU buffer to test
4270 */
4271bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4272{
4273        struct ring_buffer_per_cpu *cpu_buffer;
4274        unsigned long flags;
4275        bool dolock;
4276        int ret;
4277
4278        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4279                return true;
4280
4281        cpu_buffer = buffer->buffers[cpu];
4282        local_irq_save(flags);
4283        dolock = rb_reader_lock(cpu_buffer);
4284        ret = rb_per_cpu_empty(cpu_buffer);
4285        rb_reader_unlock(cpu_buffer, dolock);
4286        local_irq_restore(flags);
4287
4288        return ret;
4289}
4290EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4291
4292#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4293/**
4294 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4295 * @buffer_a: One buffer to swap with
4296 * @buffer_b: The other buffer to swap with
4297 *
4298 * This function is useful for tracers that want to take a "snapshot"
4299 * of a CPU buffer and has another back up buffer lying around.
4300 * it is expected that the tracer handles the cpu buffer not being
4301 * used at the moment.
4302 */
4303int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4304                         struct ring_buffer *buffer_b, int cpu)
4305{
4306        struct ring_buffer_per_cpu *cpu_buffer_a;
4307        struct ring_buffer_per_cpu *cpu_buffer_b;
4308        int ret = -EINVAL;
4309
4310        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4311            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4312                goto out;
4313
4314        cpu_buffer_a = buffer_a->buffers[cpu];
4315        cpu_buffer_b = buffer_b->buffers[cpu];
4316
4317        /* At least make sure the two buffers are somewhat the same */
4318        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4319                goto out;
4320
4321        ret = -EAGAIN;
4322
4323        if (atomic_read(&buffer_a->record_disabled))
4324                goto out;
4325
4326        if (atomic_read(&buffer_b->record_disabled))
4327                goto out;
4328
4329        if (atomic_read(&cpu_buffer_a->record_disabled))
4330                goto out;
4331
4332        if (atomic_read(&cpu_buffer_b->record_disabled))
4333                goto out;
4334
4335        /*
4336         * We can't do a synchronize_sched here because this
4337         * function can be called in atomic context.
4338         * Normally this will be called from the same CPU as cpu.
4339         * If not it's up to the caller to protect this.
4340         */
4341        atomic_inc(&cpu_buffer_a->record_disabled);
4342        atomic_inc(&cpu_buffer_b->record_disabled);
4343
4344        ret = -EBUSY;
4345        if (local_read(&cpu_buffer_a->committing))
4346                goto out_dec;
4347        if (local_read(&cpu_buffer_b->committing))
4348                goto out_dec;
4349
4350        buffer_a->buffers[cpu] = cpu_buffer_b;
4351        buffer_b->buffers[cpu] = cpu_buffer_a;
4352
4353        cpu_buffer_b->buffer = buffer_a;
4354        cpu_buffer_a->buffer = buffer_b;
4355
4356        ret = 0;
4357
4358out_dec:
4359        atomic_dec(&cpu_buffer_a->record_disabled);
4360        atomic_dec(&cpu_buffer_b->record_disabled);
4361out:
4362        return ret;
4363}
4364EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4365#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4366
4367/**
4368 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4369 * @buffer: the buffer to allocate for.
4370 * @cpu: the cpu buffer to allocate.
4371 *
4372 * This function is used in conjunction with ring_buffer_read_page.
4373 * When reading a full page from the ring buffer, these functions
4374 * can be used to speed up the process. The calling function should
4375 * allocate a few pages first with this function. Then when it
4376 * needs to get pages from the ring buffer, it passes the result
4377 * of this function into ring_buffer_read_page, which will swap
4378 * the page that was allocated, with the read page of the buffer.
4379 *
4380 * Returns:
4381 *  The page allocated, or ERR_PTR
4382 */
4383void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4384{
4385        struct ring_buffer_per_cpu *cpu_buffer;
4386        struct buffer_data_page *bpage = NULL;
4387        unsigned long flags;
4388        struct page *page;
4389
4390        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4391                return ERR_PTR(-ENODEV);
4392
4393        cpu_buffer = buffer->buffers[cpu];
4394        local_irq_save(flags);
4395        arch_spin_lock(&cpu_buffer->lock);
4396
4397        if (cpu_buffer->free_page) {
4398                bpage = cpu_buffer->free_page;
4399                cpu_buffer->free_page = NULL;
4400        }
4401
4402        arch_spin_unlock(&cpu_buffer->lock);
4403        local_irq_restore(flags);
4404
4405        if (bpage)
4406                goto out;
4407
4408        page = alloc_pages_node(cpu_to_node(cpu),
4409                                GFP_KERNEL | __GFP_NORETRY, 0);
4410        if (!page)
4411                return ERR_PTR(-ENOMEM);
4412
4413        bpage = page_address(page);
4414
4415 out:
4416        rb_init_page(bpage);
4417
4418        return bpage;
4419}
4420EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4421
4422/**
4423 * ring_buffer_free_read_page - free an allocated read page
4424 * @buffer: the buffer the page was allocate for
4425 * @cpu: the cpu buffer the page came from
4426 * @data: the page to free
4427 *
4428 * Free a page allocated from ring_buffer_alloc_read_page.
4429 */
4430void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4431{
4432        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4433        struct buffer_data_page *bpage = data;
4434        struct page *page = virt_to_page(bpage);
4435        unsigned long flags;
4436
4437        /* If the page is still in use someplace else, we can't reuse it */
4438        if (page_ref_count(page) > 1)
4439                goto out;
4440
4441        local_irq_save(flags);
4442        arch_spin_lock(&cpu_buffer->lock);
4443
4444        if (!cpu_buffer->free_page) {
4445                cpu_buffer->free_page = bpage;
4446                bpage = NULL;
4447        }
4448
4449        arch_spin_unlock(&cpu_buffer->lock);
4450        local_irq_restore(flags);
4451
4452 out:
4453        free_page((unsigned long)bpage);
4454}
4455EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4456
4457/**
4458 * ring_buffer_read_page - extract a page from the ring buffer
4459 * @buffer: buffer to extract from
4460 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4461 * @len: amount to extract
4462 * @cpu: the cpu of the buffer to extract
4463 * @full: should the extraction only happen when the page is full.
4464 *
4465 * This function will pull out a page from the ring buffer and consume it.
4466 * @data_page must be the address of the variable that was returned
4467 * from ring_buffer_alloc_read_page. This is because the page might be used
4468 * to swap with a page in the ring buffer.
4469 *
4470 * for example:
4471 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4472 *      if (IS_ERR(rpage))
4473 *              return PTR_ERR(rpage);
4474 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4475 *      if (ret >= 0)
4476 *              process_page(rpage, ret);
4477 *
4478 * When @full is set, the function will not return true unless
4479 * the writer is off the reader page.
4480 *
4481 * Note: it is up to the calling functions to handle sleeps and wakeups.
4482 *  The ring buffer can be used anywhere in the kernel and can not
4483 *  blindly call wake_up. The layer that uses the ring buffer must be
4484 *  responsible for that.
4485 *
4486 * Returns:
4487 *  >=0 if data has been transferred, returns the offset of consumed data.
4488 *  <0 if no data has been transferred.
4489 */
4490int ring_buffer_read_page(struct ring_buffer *buffer,
4491                          void **data_page, size_t len, int cpu, int full)
4492{
4493        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4494        struct ring_buffer_event *event;
4495        struct buffer_data_page *bpage;
4496        struct buffer_page *reader;
4497        unsigned long missed_events;
4498        unsigned long flags;
4499        unsigned int commit;
4500        unsigned int read;
4501        u64 save_timestamp;
4502        int ret = -1;
4503
4504        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4505                goto out;
4506
4507        /*
4508         * If len is not big enough to hold the page header, then
4509         * we can not copy anything.
4510         */
4511        if (len <= BUF_PAGE_HDR_SIZE)
4512                goto out;
4513
4514        len -= BUF_PAGE_HDR_SIZE;
4515
4516        if (!data_page)
4517                goto out;
4518
4519        bpage = *data_page;
4520        if (!bpage)
4521                goto out;
4522
4523        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4524
4525        reader = rb_get_reader_page(cpu_buffer);
4526        if (!reader)
4527                goto out_unlock;
4528
4529        event = rb_reader_event(cpu_buffer);
4530
4531        read = reader->read;
4532        commit = rb_page_commit(reader);
4533
4534        /* Check if any events were dropped */
4535        missed_events = cpu_buffer->lost_events;
4536
4537        /*
4538         * If this page has been partially read or
4539         * if len is not big enough to read the rest of the page or
4540         * a writer is still on the page, then
4541         * we must copy the data from the page to the buffer.
4542         * Otherwise, we can simply swap the page with the one passed in.
4543         */
4544        if (read || (len < (commit - read)) ||
4545            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4546                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4547                unsigned int rpos = read;
4548                unsigned int pos = 0;
4549                unsigned int size;
4550
4551                if (full)
4552                        goto out_unlock;
4553
4554                if (len > (commit - read))
4555                        len = (commit - read);
4556
4557                /* Always keep the time extend and data together */
4558                size = rb_event_ts_length(event);
4559
4560                if (len < size)
4561                        goto out_unlock;
4562
4563                /* save the current timestamp, since the user will need it */
4564                save_timestamp = cpu_buffer->read_stamp;
4565
4566                /* Need to copy one event at a time */
4567                do {
4568                        /* We need the size of one event, because
4569                         * rb_advance_reader only advances by one event,
4570                         * whereas rb_event_ts_length may include the size of
4571                         * one or two events.
4572                         * We have already ensured there's enough space if this
4573                         * is a time extend. */
4574                        size = rb_event_length(event);
4575                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4576
4577                        len -= size;
4578
4579                        rb_advance_reader(cpu_buffer);
4580                        rpos = reader->read;
4581                        pos += size;
4582
4583                        if (rpos >= commit)
4584                                break;
4585
4586                        event = rb_reader_event(cpu_buffer);
4587                        /* Always keep the time extend and data together */
4588                        size = rb_event_ts_length(event);
4589                } while (len >= size);
4590
4591                /* update bpage */
4592                local_set(&bpage->commit, pos);
4593                bpage->time_stamp = save_timestamp;
4594
4595                /* we copied everything to the beginning */
4596                read = 0;
4597        } else {
4598                /* update the entry counter */
4599                cpu_buffer->read += rb_page_entries(reader);
4600                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4601
4602                /* swap the pages */
4603                rb_init_page(bpage);
4604                bpage = reader->page;
4605                reader->page = *data_page;
4606                local_set(&reader->write, 0);
4607                local_set(&reader->entries, 0);
4608                reader->read = 0;
4609                *data_page = bpage;
4610
4611                /*
4612                 * Use the real_end for the data size,
4613                 * This gives us a chance to store the lost events
4614                 * on the page.
4615                 */
4616                if (reader->real_end)
4617                        local_set(&bpage->commit, reader->real_end);
4618        }
4619        ret = read;
4620
4621        cpu_buffer->lost_events = 0;
4622
4623        commit = local_read(&bpage->commit);
4624        /*
4625         * Set a flag in the commit field if we lost events
4626         */
4627        if (missed_events) {
4628                /* If there is room at the end of the page to save the
4629                 * missed events, then record it there.
4630                 */
4631                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4632                        memcpy(&bpage->data[commit], &missed_events,
4633                               sizeof(missed_events));
4634                        local_add(RB_MISSED_STORED, &bpage->commit);
4635                        commit += sizeof(missed_events);
4636                }
4637                local_add(RB_MISSED_EVENTS, &bpage->commit);
4638        }
4639
4640        /*
4641         * This page may be off to user land. Zero it out here.
4642         */
4643        if (commit < BUF_PAGE_SIZE)
4644                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4645
4646 out_unlock:
4647        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4648
4649 out:
4650        return ret;
4651}
4652EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4653
4654/*
4655 * We only allocate new buffers, never free them if the CPU goes down.
4656 * If we were to free the buffer, then the user would lose any trace that was in
4657 * the buffer.
4658 */
4659int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4660{
4661        struct ring_buffer *buffer;
4662        long nr_pages_same;
4663        int cpu_i;
4664        unsigned long nr_pages;
4665
4666        buffer = container_of(node, struct ring_buffer, node);
4667        if (cpumask_test_cpu(cpu, buffer->cpumask))
4668                return 0;
4669
4670        nr_pages = 0;
4671        nr_pages_same = 1;
4672        /* check if all cpu sizes are same */
4673        for_each_buffer_cpu(buffer, cpu_i) {
4674                /* fill in the size from first enabled cpu */
4675                if (nr_pages == 0)
4676                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4677                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4678                        nr_pages_same = 0;
4679                        break;
4680                }
4681        }
4682        /* allocate minimum pages, user can later expand it */
4683        if (!nr_pages_same)
4684                nr_pages = 2;
4685        buffer->buffers[cpu] =
4686                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4687        if (!buffer->buffers[cpu]) {
4688                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4689                     cpu);
4690                return -ENOMEM;
4691        }
4692        smp_wmb();
4693        cpumask_set_cpu(cpu, buffer->cpumask);
4694        return 0;
4695}
4696
4697#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4698/*
4699 * This is a basic integrity check of the ring buffer.
4700 * Late in the boot cycle this test will run when configured in.
4701 * It will kick off a thread per CPU that will go into a loop
4702 * writing to the per cpu ring buffer various sizes of data.
4703 * Some of the data will be large items, some small.
4704 *
4705 * Another thread is created that goes into a spin, sending out
4706 * IPIs to the other CPUs to also write into the ring buffer.
4707 * this is to test the nesting ability of the buffer.
4708 *
4709 * Basic stats are recorded and reported. If something in the
4710 * ring buffer should happen that's not expected, a big warning
4711 * is displayed and all ring buffers are disabled.
4712 */
4713static struct task_struct *rb_threads[NR_CPUS] __initdata;
4714
4715struct rb_test_data {
4716        struct ring_buffer      *buffer;
4717        unsigned long           events;
4718        unsigned long           bytes_written;
4719        unsigned long           bytes_alloc;
4720        unsigned long           bytes_dropped;
4721        unsigned long           events_nested;
4722        unsigned long           bytes_written_nested;
4723        unsigned long           bytes_alloc_nested;
4724        unsigned long           bytes_dropped_nested;
4725        int                     min_size_nested;
4726        int                     max_size_nested;
4727        int                     max_size;
4728        int                     min_size;
4729        int                     cpu;
4730        int                     cnt;
4731};
4732
4733static struct rb_test_data rb_data[NR_CPUS] __initdata;
4734
4735/* 1 meg per cpu */
4736#define RB_TEST_BUFFER_SIZE     1048576
4737
4738static char rb_string[] __initdata =
4739        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4742
4743static bool rb_test_started __initdata;
4744
4745struct rb_item {
4746        int size;
4747        char str[];
4748};
4749
4750static __init int rb_write_something(struct rb_test_data *data, bool nested)
4751{
4752        struct ring_buffer_event *event;
4753        struct rb_item *item;
4754        bool started;
4755        int event_len;
4756        int size;
4757        int len;
4758        int cnt;
4759
4760        /* Have nested writes different that what is written */
4761        cnt = data->cnt + (nested ? 27 : 0);
4762
4763        /* Multiply cnt by ~e, to make some unique increment */
4764        size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4765
4766        len = size + sizeof(struct rb_item);
4767
4768        started = rb_test_started;
4769        /* read rb_test_started before checking buffer enabled */
4770        smp_rmb();
4771
4772        event = ring_buffer_lock_reserve(data->buffer, len);
4773        if (!event) {
4774                /* Ignore dropped events before test starts. */
4775                if (started) {
4776                        if (nested)
4777                                data->bytes_dropped += len;
4778                        else
4779                                data->bytes_dropped_nested += len;
4780                }
4781                return len;
4782        }
4783
4784        event_len = ring_buffer_event_length(event);
4785
4786        if (RB_WARN_ON(data->buffer, event_len < len))
4787                goto out;
4788
4789        item = ring_buffer_event_data(event);
4790        item->size = size;
4791        memcpy(item->str, rb_string, size);
4792
4793        if (nested) {
4794                data->bytes_alloc_nested += event_len;
4795                data->bytes_written_nested += len;
4796                data->events_nested++;
4797                if (!data->min_size_nested || len < data->min_size_nested)
4798                        data->min_size_nested = len;
4799                if (len > data->max_size_nested)
4800                        data->max_size_nested = len;
4801        } else {
4802                data->bytes_alloc += event_len;
4803                data->bytes_written += len;
4804                data->events++;
4805                if (!data->min_size || len < data->min_size)
4806                        data->max_size = len;
4807                if (len > data->max_size)
4808                        data->max_size = len;
4809        }
4810
4811 out:
4812        ring_buffer_unlock_commit(data->buffer, event);
4813
4814        return 0;
4815}
4816
4817static __init int rb_test(void *arg)
4818{
4819        struct rb_test_data *data = arg;
4820
4821        while (!kthread_should_stop()) {
4822                rb_write_something(data, false);
4823                data->cnt++;
4824
4825                set_current_state(TASK_INTERRUPTIBLE);
4826                /* Now sleep between a min of 100-300us and a max of 1ms */
4827                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4828        }
4829
4830        return 0;
4831}
4832
4833static __init void rb_ipi(void *ignore)
4834{
4835        struct rb_test_data *data;
4836        int cpu = smp_processor_id();
4837
4838        data = &rb_data[cpu];
4839        rb_write_something(data, true);
4840}
4841
4842static __init int rb_hammer_test(void *arg)
4843{
4844        while (!kthread_should_stop()) {
4845
4846                /* Send an IPI to all cpus to write data! */
4847                smp_call_function(rb_ipi, NULL, 1);
4848                /* No sleep, but for non preempt, let others run */
4849                schedule();
4850        }
4851
4852        return 0;
4853}
4854
4855static __init int test_ringbuffer(void)
4856{
4857        struct task_struct *rb_hammer;
4858        struct ring_buffer *buffer;
4859        int cpu;
4860        int ret = 0;
4861
4862        pr_info("Running ring buffer tests...\n");
4863
4864        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865        if (WARN_ON(!buffer))
4866                return 0;
4867
4868        /* Disable buffer so that threads can't write to it yet */
4869        ring_buffer_record_off(buffer);
4870
4871        for_each_online_cpu(cpu) {
4872                rb_data[cpu].buffer = buffer;
4873                rb_data[cpu].cpu = cpu;
4874                rb_data[cpu].cnt = cpu;
4875                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876                                                 "rbtester/%d", cpu);
4877                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4878                        pr_cont("FAILED\n");
4879                        ret = PTR_ERR(rb_threads[cpu]);
4880                        goto out_free;
4881                }
4882
4883                kthread_bind(rb_threads[cpu], cpu);
4884                wake_up_process(rb_threads[cpu]);
4885        }
4886
4887        /* Now create the rb hammer! */
4888        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889        if (WARN_ON(IS_ERR(rb_hammer))) {
4890                pr_cont("FAILED\n");
4891                ret = PTR_ERR(rb_hammer);
4892                goto out_free;
4893        }
4894
4895        ring_buffer_record_on(buffer);
4896        /*
4897         * Show buffer is enabled before setting rb_test_started.
4898         * Yes there's a small race window where events could be
4899         * dropped and the thread wont catch it. But when a ring
4900         * buffer gets enabled, there will always be some kind of
4901         * delay before other CPUs see it. Thus, we don't care about
4902         * those dropped events. We care about events dropped after
4903         * the threads see that the buffer is active.
4904         */
4905        smp_wmb();
4906        rb_test_started = true;
4907
4908        set_current_state(TASK_INTERRUPTIBLE);
4909        /* Just run for 10 seconds */;
4910        schedule_timeout(10 * HZ);
4911
4912        kthread_stop(rb_hammer);
4913
4914 out_free:
4915        for_each_online_cpu(cpu) {
4916                if (!rb_threads[cpu])
4917                        break;
4918                kthread_stop(rb_threads[cpu]);
4919        }
4920        if (ret) {
4921                ring_buffer_free(buffer);
4922                return ret;
4923        }
4924
4925        /* Report! */
4926        pr_info("finished\n");
4927        for_each_online_cpu(cpu) {
4928                struct ring_buffer_event *event;
4929                struct rb_test_data *data = &rb_data[cpu];
4930                struct rb_item *item;
4931                unsigned long total_events;
4932                unsigned long total_dropped;
4933                unsigned long total_written;
4934                unsigned long total_alloc;
4935                unsigned long total_read = 0;
4936                unsigned long total_size = 0;
4937                unsigned long total_len = 0;
4938                unsigned long total_lost = 0;
4939                unsigned long lost;
4940                int big_event_size;
4941                int small_event_size;
4942
4943                ret = -1;
4944
4945                total_events = data->events + data->events_nested;
4946                total_written = data->bytes_written + data->bytes_written_nested;
4947                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4949
4950                big_event_size = data->max_size + data->max_size_nested;
4951                small_event_size = data->min_size + data->min_size_nested;
4952
4953                pr_info("CPU %d:\n", cpu);
4954                pr_info("              events:    %ld\n", total_events);
4955                pr_info("       dropped bytes:    %ld\n", total_dropped);
4956                pr_info("       alloced bytes:    %ld\n", total_alloc);
4957                pr_info("       written bytes:    %ld\n", total_written);
4958                pr_info("       biggest event:    %d\n", big_event_size);
4959                pr_info("      smallest event:    %d\n", small_event_size);
4960
4961                if (RB_WARN_ON(buffer, total_dropped))
4962                        break;
4963
4964                ret = 0;
4965
4966                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967                        total_lost += lost;
4968                        item = ring_buffer_event_data(event);
4969                        total_len += ring_buffer_event_length(event);
4970                        total_size += item->size + sizeof(struct rb_item);
4971                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972                                pr_info("FAILED!\n");
4973                                pr_info("buffer had: %.*s\n", item->size, item->str);
4974                                pr_info("expected:   %.*s\n", item->size, rb_string);
4975                                RB_WARN_ON(buffer, 1);
4976                                ret = -1;
4977                                break;
4978                        }
4979                        total_read++;
4980                }
4981                if (ret)
4982                        break;
4983
4984                ret = -1;
4985
4986                pr_info("         read events:   %ld\n", total_read);
4987                pr_info("         lost events:   %ld\n", total_lost);
4988                pr_info("        total events:   %ld\n", total_lost + total_read);
4989                pr_info("  recorded len bytes:   %ld\n", total_len);
4990                pr_info(" recorded size bytes:   %ld\n", total_size);
4991                if (total_lost)
4992                        pr_info(" With dropped events, record len and size may not match\n"
4993                                " alloced and written from above\n");
4994                if (!total_lost) {
4995                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996                                       total_size != total_written))
4997                                break;
4998                }
4999                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000                        break;
5001
5002                ret = 0;
5003        }
5004        if (!ret)
5005                pr_info("Ring buffer PASSED!\n");
5006
5007        ring_buffer_free(buffer);
5008        return 0;
5009}
5010
5011late_initcall(test_ringbuffer);
5012#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5013