linux/mm/khugepaged.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   3
   4#include <linux/mm.h>
   5#include <linux/sched.h>
   6#include <linux/sched/mm.h>
   7#include <linux/sched/coredump.h>
   8#include <linux/mmu_notifier.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/mm_inline.h>
  12#include <linux/kthread.h>
  13#include <linux/khugepaged.h>
  14#include <linux/freezer.h>
  15#include <linux/mman.h>
  16#include <linux/hashtable.h>
  17#include <linux/userfaultfd_k.h>
  18#include <linux/page_idle.h>
  19#include <linux/swapops.h>
  20#include <linux/shmem_fs.h>
  21
  22#include <asm/tlb.h>
  23#include <asm/pgalloc.h>
  24#include "internal.h"
  25
  26enum scan_result {
  27        SCAN_FAIL,
  28        SCAN_SUCCEED,
  29        SCAN_PMD_NULL,
  30        SCAN_EXCEED_NONE_PTE,
  31        SCAN_PTE_NON_PRESENT,
  32        SCAN_PAGE_RO,
  33        SCAN_LACK_REFERENCED_PAGE,
  34        SCAN_PAGE_NULL,
  35        SCAN_SCAN_ABORT,
  36        SCAN_PAGE_COUNT,
  37        SCAN_PAGE_LRU,
  38        SCAN_PAGE_LOCK,
  39        SCAN_PAGE_ANON,
  40        SCAN_PAGE_COMPOUND,
  41        SCAN_ANY_PROCESS,
  42        SCAN_VMA_NULL,
  43        SCAN_VMA_CHECK,
  44        SCAN_ADDRESS_RANGE,
  45        SCAN_SWAP_CACHE_PAGE,
  46        SCAN_DEL_PAGE_LRU,
  47        SCAN_ALLOC_HUGE_PAGE_FAIL,
  48        SCAN_CGROUP_CHARGE_FAIL,
  49        SCAN_EXCEED_SWAP_PTE,
  50        SCAN_TRUNCATED,
  51};
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/huge_memory.h>
  55
  56/* default scan 8*512 pte (or vmas) every 30 second */
  57static unsigned int khugepaged_pages_to_scan __read_mostly;
  58static unsigned int khugepaged_pages_collapsed;
  59static unsigned int khugepaged_full_scans;
  60static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  61/* during fragmentation poll the hugepage allocator once every minute */
  62static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  63static unsigned long khugepaged_sleep_expire;
  64static DEFINE_SPINLOCK(khugepaged_mm_lock);
  65static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  66/*
  67 * default collapse hugepages if there is at least one pte mapped like
  68 * it would have happened if the vma was large enough during page
  69 * fault.
  70 */
  71static unsigned int khugepaged_max_ptes_none __read_mostly;
  72static unsigned int khugepaged_max_ptes_swap __read_mostly;
  73
  74#define MM_SLOTS_HASH_BITS 10
  75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  76
  77static struct kmem_cache *mm_slot_cache __read_mostly;
  78
  79/**
  80 * struct mm_slot - hash lookup from mm to mm_slot
  81 * @hash: hash collision list
  82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  83 * @mm: the mm that this information is valid for
  84 */
  85struct mm_slot {
  86        struct hlist_node hash;
  87        struct list_head mm_node;
  88        struct mm_struct *mm;
  89};
  90
  91/**
  92 * struct khugepaged_scan - cursor for scanning
  93 * @mm_head: the head of the mm list to scan
  94 * @mm_slot: the current mm_slot we are scanning
  95 * @address: the next address inside that to be scanned
  96 *
  97 * There is only the one khugepaged_scan instance of this cursor structure.
  98 */
  99struct khugepaged_scan {
 100        struct list_head mm_head;
 101        struct mm_slot *mm_slot;
 102        unsigned long address;
 103};
 104
 105static struct khugepaged_scan khugepaged_scan = {
 106        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 107};
 108
 109#ifdef CONFIG_SYSFS
 110static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 111                                         struct kobj_attribute *attr,
 112                                         char *buf)
 113{
 114        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 115}
 116
 117static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 118                                          struct kobj_attribute *attr,
 119                                          const char *buf, size_t count)
 120{
 121        unsigned long msecs;
 122        int err;
 123
 124        err = kstrtoul(buf, 10, &msecs);
 125        if (err || msecs > UINT_MAX)
 126                return -EINVAL;
 127
 128        khugepaged_scan_sleep_millisecs = msecs;
 129        khugepaged_sleep_expire = 0;
 130        wake_up_interruptible(&khugepaged_wait);
 131
 132        return count;
 133}
 134static struct kobj_attribute scan_sleep_millisecs_attr =
 135        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 136               scan_sleep_millisecs_store);
 137
 138static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 139                                          struct kobj_attribute *attr,
 140                                          char *buf)
 141{
 142        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 143}
 144
 145static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 146                                           struct kobj_attribute *attr,
 147                                           const char *buf, size_t count)
 148{
 149        unsigned long msecs;
 150        int err;
 151
 152        err = kstrtoul(buf, 10, &msecs);
 153        if (err || msecs > UINT_MAX)
 154                return -EINVAL;
 155
 156        khugepaged_alloc_sleep_millisecs = msecs;
 157        khugepaged_sleep_expire = 0;
 158        wake_up_interruptible(&khugepaged_wait);
 159
 160        return count;
 161}
 162static struct kobj_attribute alloc_sleep_millisecs_attr =
 163        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 164               alloc_sleep_millisecs_store);
 165
 166static ssize_t pages_to_scan_show(struct kobject *kobj,
 167                                  struct kobj_attribute *attr,
 168                                  char *buf)
 169{
 170        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 171}
 172static ssize_t pages_to_scan_store(struct kobject *kobj,
 173                                   struct kobj_attribute *attr,
 174                                   const char *buf, size_t count)
 175{
 176        int err;
 177        unsigned long pages;
 178
 179        err = kstrtoul(buf, 10, &pages);
 180        if (err || !pages || pages > UINT_MAX)
 181                return -EINVAL;
 182
 183        khugepaged_pages_to_scan = pages;
 184
 185        return count;
 186}
 187static struct kobj_attribute pages_to_scan_attr =
 188        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 189               pages_to_scan_store);
 190
 191static ssize_t pages_collapsed_show(struct kobject *kobj,
 192                                    struct kobj_attribute *attr,
 193                                    char *buf)
 194{
 195        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 196}
 197static struct kobj_attribute pages_collapsed_attr =
 198        __ATTR_RO(pages_collapsed);
 199
 200static ssize_t full_scans_show(struct kobject *kobj,
 201                               struct kobj_attribute *attr,
 202                               char *buf)
 203{
 204        return sprintf(buf, "%u\n", khugepaged_full_scans);
 205}
 206static struct kobj_attribute full_scans_attr =
 207        __ATTR_RO(full_scans);
 208
 209static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 210                                      struct kobj_attribute *attr, char *buf)
 211{
 212        return single_hugepage_flag_show(kobj, attr, buf,
 213                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 214}
 215static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 216                                       struct kobj_attribute *attr,
 217                                       const char *buf, size_t count)
 218{
 219        return single_hugepage_flag_store(kobj, attr, buf, count,
 220                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 221}
 222static struct kobj_attribute khugepaged_defrag_attr =
 223        __ATTR(defrag, 0644, khugepaged_defrag_show,
 224               khugepaged_defrag_store);
 225
 226/*
 227 * max_ptes_none controls if khugepaged should collapse hugepages over
 228 * any unmapped ptes in turn potentially increasing the memory
 229 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 230 * reduce the available free memory in the system as it
 231 * runs. Increasing max_ptes_none will instead potentially reduce the
 232 * free memory in the system during the khugepaged scan.
 233 */
 234static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 235                                             struct kobj_attribute *attr,
 236                                             char *buf)
 237{
 238        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 239}
 240static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 241                                              struct kobj_attribute *attr,
 242                                              const char *buf, size_t count)
 243{
 244        int err;
 245        unsigned long max_ptes_none;
 246
 247        err = kstrtoul(buf, 10, &max_ptes_none);
 248        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 249                return -EINVAL;
 250
 251        khugepaged_max_ptes_none = max_ptes_none;
 252
 253        return count;
 254}
 255static struct kobj_attribute khugepaged_max_ptes_none_attr =
 256        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 257               khugepaged_max_ptes_none_store);
 258
 259static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
 260                                             struct kobj_attribute *attr,
 261                                             char *buf)
 262{
 263        return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
 264}
 265
 266static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
 267                                              struct kobj_attribute *attr,
 268                                              const char *buf, size_t count)
 269{
 270        int err;
 271        unsigned long max_ptes_swap;
 272
 273        err  = kstrtoul(buf, 10, &max_ptes_swap);
 274        if (err || max_ptes_swap > HPAGE_PMD_NR-1)
 275                return -EINVAL;
 276
 277        khugepaged_max_ptes_swap = max_ptes_swap;
 278
 279        return count;
 280}
 281
 282static struct kobj_attribute khugepaged_max_ptes_swap_attr =
 283        __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
 284               khugepaged_max_ptes_swap_store);
 285
 286static struct attribute *khugepaged_attr[] = {
 287        &khugepaged_defrag_attr.attr,
 288        &khugepaged_max_ptes_none_attr.attr,
 289        &pages_to_scan_attr.attr,
 290        &pages_collapsed_attr.attr,
 291        &full_scans_attr.attr,
 292        &scan_sleep_millisecs_attr.attr,
 293        &alloc_sleep_millisecs_attr.attr,
 294        &khugepaged_max_ptes_swap_attr.attr,
 295        NULL,
 296};
 297
 298struct attribute_group khugepaged_attr_group = {
 299        .attrs = khugepaged_attr,
 300        .name = "khugepaged",
 301};
 302#endif /* CONFIG_SYSFS */
 303
 304#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 305
 306int hugepage_madvise(struct vm_area_struct *vma,
 307                     unsigned long *vm_flags, int advice)
 308{
 309        switch (advice) {
 310        case MADV_HUGEPAGE:
 311#ifdef CONFIG_S390
 312                /*
 313                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 314                 * can't handle this properly after s390_enable_sie, so we simply
 315                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 316                 */
 317                if (mm_has_pgste(vma->vm_mm))
 318                        return 0;
 319#endif
 320                *vm_flags &= ~VM_NOHUGEPAGE;
 321                *vm_flags |= VM_HUGEPAGE;
 322                /*
 323                 * If the vma become good for khugepaged to scan,
 324                 * register it here without waiting a page fault that
 325                 * may not happen any time soon.
 326                 */
 327                if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
 328                                khugepaged_enter_vma_merge(vma, *vm_flags))
 329                        return -ENOMEM;
 330                break;
 331        case MADV_NOHUGEPAGE:
 332                *vm_flags &= ~VM_HUGEPAGE;
 333                *vm_flags |= VM_NOHUGEPAGE;
 334                /*
 335                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 336                 * this vma even if we leave the mm registered in khugepaged if
 337                 * it got registered before VM_NOHUGEPAGE was set.
 338                 */
 339                break;
 340        }
 341
 342        return 0;
 343}
 344
 345int __init khugepaged_init(void)
 346{
 347        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 348                                          sizeof(struct mm_slot),
 349                                          __alignof__(struct mm_slot), 0, NULL);
 350        if (!mm_slot_cache)
 351                return -ENOMEM;
 352
 353        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 354        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 355        khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
 356
 357        return 0;
 358}
 359
 360void __init khugepaged_destroy(void)
 361{
 362        kmem_cache_destroy(mm_slot_cache);
 363}
 364
 365static inline struct mm_slot *alloc_mm_slot(void)
 366{
 367        if (!mm_slot_cache)     /* initialization failed */
 368                return NULL;
 369        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 370}
 371
 372static inline void free_mm_slot(struct mm_slot *mm_slot)
 373{
 374        kmem_cache_free(mm_slot_cache, mm_slot);
 375}
 376
 377static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 378{
 379        struct mm_slot *mm_slot;
 380
 381        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 382                if (mm == mm_slot->mm)
 383                        return mm_slot;
 384
 385        return NULL;
 386}
 387
 388static void insert_to_mm_slots_hash(struct mm_struct *mm,
 389                                    struct mm_slot *mm_slot)
 390{
 391        mm_slot->mm = mm;
 392        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 393}
 394
 395static inline int khugepaged_test_exit(struct mm_struct *mm)
 396{
 397        return atomic_read(&mm->mm_users) == 0;
 398}
 399
 400int __khugepaged_enter(struct mm_struct *mm)
 401{
 402        struct mm_slot *mm_slot;
 403        int wakeup;
 404
 405        mm_slot = alloc_mm_slot();
 406        if (!mm_slot)
 407                return -ENOMEM;
 408
 409        /* __khugepaged_exit() must not run from under us */
 410        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 411        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 412                free_mm_slot(mm_slot);
 413                return 0;
 414        }
 415
 416        spin_lock(&khugepaged_mm_lock);
 417        insert_to_mm_slots_hash(mm, mm_slot);
 418        /*
 419         * Insert just behind the scanning cursor, to let the area settle
 420         * down a little.
 421         */
 422        wakeup = list_empty(&khugepaged_scan.mm_head);
 423        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 424        spin_unlock(&khugepaged_mm_lock);
 425
 426        mmgrab(mm);
 427        if (wakeup)
 428                wake_up_interruptible(&khugepaged_wait);
 429
 430        return 0;
 431}
 432
 433int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 434                               unsigned long vm_flags)
 435{
 436        unsigned long hstart, hend;
 437        if (!vma->anon_vma)
 438                /*
 439                 * Not yet faulted in so we will register later in the
 440                 * page fault if needed.
 441                 */
 442                return 0;
 443        if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
 444                /* khugepaged not yet working on file or special mappings */
 445                return 0;
 446        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 447        hend = vma->vm_end & HPAGE_PMD_MASK;
 448        if (hstart < hend)
 449                return khugepaged_enter(vma, vm_flags);
 450        return 0;
 451}
 452
 453void __khugepaged_exit(struct mm_struct *mm)
 454{
 455        struct mm_slot *mm_slot;
 456        int free = 0;
 457
 458        spin_lock(&khugepaged_mm_lock);
 459        mm_slot = get_mm_slot(mm);
 460        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 461                hash_del(&mm_slot->hash);
 462                list_del(&mm_slot->mm_node);
 463                free = 1;
 464        }
 465        spin_unlock(&khugepaged_mm_lock);
 466
 467        if (free) {
 468                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 469                free_mm_slot(mm_slot);
 470                mmdrop(mm);
 471        } else if (mm_slot) {
 472                /*
 473                 * This is required to serialize against
 474                 * khugepaged_test_exit() (which is guaranteed to run
 475                 * under mmap sem read mode). Stop here (after we
 476                 * return all pagetables will be destroyed) until
 477                 * khugepaged has finished working on the pagetables
 478                 * under the mmap_sem.
 479                 */
 480                down_write(&mm->mmap_sem);
 481                up_write(&mm->mmap_sem);
 482        }
 483}
 484
 485static void release_pte_page(struct page *page)
 486{
 487        dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
 488        unlock_page(page);
 489        putback_lru_page(page);
 490}
 491
 492static void release_pte_pages(pte_t *pte, pte_t *_pte)
 493{
 494        while (--_pte >= pte) {
 495                pte_t pteval = *_pte;
 496                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 497                        release_pte_page(pte_page(pteval));
 498        }
 499}
 500
 501static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 502                                        unsigned long address,
 503                                        pte_t *pte)
 504{
 505        struct page *page = NULL;
 506        pte_t *_pte;
 507        int none_or_zero = 0, result = 0, referenced = 0;
 508        bool writable = false;
 509
 510        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 511             _pte++, address += PAGE_SIZE) {
 512                pte_t pteval = *_pte;
 513                if (pte_none(pteval) || (pte_present(pteval) &&
 514                                is_zero_pfn(pte_pfn(pteval)))) {
 515                        if (!userfaultfd_armed(vma) &&
 516                            ++none_or_zero <= khugepaged_max_ptes_none) {
 517                                continue;
 518                        } else {
 519                                result = SCAN_EXCEED_NONE_PTE;
 520                                goto out;
 521                        }
 522                }
 523                if (!pte_present(pteval)) {
 524                        result = SCAN_PTE_NON_PRESENT;
 525                        goto out;
 526                }
 527                page = vm_normal_page(vma, address, pteval);
 528                if (unlikely(!page)) {
 529                        result = SCAN_PAGE_NULL;
 530                        goto out;
 531                }
 532
 533                VM_BUG_ON_PAGE(PageCompound(page), page);
 534                VM_BUG_ON_PAGE(!PageAnon(page), page);
 535
 536                /*
 537                 * We can do it before isolate_lru_page because the
 538                 * page can't be freed from under us. NOTE: PG_lock
 539                 * is needed to serialize against split_huge_page
 540                 * when invoked from the VM.
 541                 */
 542                if (!trylock_page(page)) {
 543                        result = SCAN_PAGE_LOCK;
 544                        goto out;
 545                }
 546
 547                /*
 548                 * cannot use mapcount: can't collapse if there's a gup pin.
 549                 * The page must only be referenced by the scanned process
 550                 * and page swap cache.
 551                 */
 552                if (page_count(page) != 1 + PageSwapCache(page)) {
 553                        unlock_page(page);
 554                        result = SCAN_PAGE_COUNT;
 555                        goto out;
 556                }
 557                if (pte_write(pteval)) {
 558                        writable = true;
 559                } else {
 560                        if (PageSwapCache(page) &&
 561                            !reuse_swap_page(page, NULL)) {
 562                                unlock_page(page);
 563                                result = SCAN_SWAP_CACHE_PAGE;
 564                                goto out;
 565                        }
 566                        /*
 567                         * Page is not in the swap cache. It can be collapsed
 568                         * into a THP.
 569                         */
 570                }
 571
 572                /*
 573                 * Isolate the page to avoid collapsing an hugepage
 574                 * currently in use by the VM.
 575                 */
 576                if (isolate_lru_page(page)) {
 577                        unlock_page(page);
 578                        result = SCAN_DEL_PAGE_LRU;
 579                        goto out;
 580                }
 581                inc_node_page_state(page,
 582                                NR_ISOLATED_ANON + page_is_file_cache(page));
 583                VM_BUG_ON_PAGE(!PageLocked(page), page);
 584                VM_BUG_ON_PAGE(PageLRU(page), page);
 585
 586                /* There should be enough young pte to collapse the page */
 587                if (pte_young(pteval) ||
 588                    page_is_young(page) || PageReferenced(page) ||
 589                    mmu_notifier_test_young(vma->vm_mm, address))
 590                        referenced++;
 591        }
 592        if (likely(writable)) {
 593                if (likely(referenced)) {
 594                        result = SCAN_SUCCEED;
 595                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 596                                                            referenced, writable, result);
 597                        return 1;
 598                }
 599        } else {
 600                result = SCAN_PAGE_RO;
 601        }
 602
 603out:
 604        release_pte_pages(pte, _pte);
 605        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 606                                            referenced, writable, result);
 607        return 0;
 608}
 609
 610static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 611                                      struct vm_area_struct *vma,
 612                                      unsigned long address,
 613                                      spinlock_t *ptl)
 614{
 615        pte_t *_pte;
 616        for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
 617                                _pte++, page++, address += PAGE_SIZE) {
 618                pte_t pteval = *_pte;
 619                struct page *src_page;
 620
 621                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 622                        clear_user_highpage(page, address);
 623                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 624                        if (is_zero_pfn(pte_pfn(pteval))) {
 625                                /*
 626                                 * ptl mostly unnecessary.
 627                                 */
 628                                spin_lock(ptl);
 629                                /*
 630                                 * paravirt calls inside pte_clear here are
 631                                 * superfluous.
 632                                 */
 633                                pte_clear(vma->vm_mm, address, _pte);
 634                                spin_unlock(ptl);
 635                        }
 636                } else {
 637                        src_page = pte_page(pteval);
 638                        copy_user_highpage(page, src_page, address, vma);
 639                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 640                        release_pte_page(src_page);
 641                        /*
 642                         * ptl mostly unnecessary, but preempt has to
 643                         * be disabled to update the per-cpu stats
 644                         * inside page_remove_rmap().
 645                         */
 646                        spin_lock(ptl);
 647                        /*
 648                         * paravirt calls inside pte_clear here are
 649                         * superfluous.
 650                         */
 651                        pte_clear(vma->vm_mm, address, _pte);
 652                        page_remove_rmap(src_page, false);
 653                        spin_unlock(ptl);
 654                        free_page_and_swap_cache(src_page);
 655                }
 656        }
 657}
 658
 659static void khugepaged_alloc_sleep(void)
 660{
 661        DEFINE_WAIT(wait);
 662
 663        add_wait_queue(&khugepaged_wait, &wait);
 664        freezable_schedule_timeout_interruptible(
 665                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 666        remove_wait_queue(&khugepaged_wait, &wait);
 667}
 668
 669static int khugepaged_node_load[MAX_NUMNODES];
 670
 671static bool khugepaged_scan_abort(int nid)
 672{
 673        int i;
 674
 675        /*
 676         * If node_reclaim_mode is disabled, then no extra effort is made to
 677         * allocate memory locally.
 678         */
 679        if (!node_reclaim_mode)
 680                return false;
 681
 682        /* If there is a count for this node already, it must be acceptable */
 683        if (khugepaged_node_load[nid])
 684                return false;
 685
 686        for (i = 0; i < MAX_NUMNODES; i++) {
 687                if (!khugepaged_node_load[i])
 688                        continue;
 689                if (node_distance(nid, i) > RECLAIM_DISTANCE)
 690                        return true;
 691        }
 692        return false;
 693}
 694
 695/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 696static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 697{
 698        return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
 699}
 700
 701#ifdef CONFIG_NUMA
 702static int khugepaged_find_target_node(void)
 703{
 704        static int last_khugepaged_target_node = NUMA_NO_NODE;
 705        int nid, target_node = 0, max_value = 0;
 706
 707        /* find first node with max normal pages hit */
 708        for (nid = 0; nid < MAX_NUMNODES; nid++)
 709                if (khugepaged_node_load[nid] > max_value) {
 710                        max_value = khugepaged_node_load[nid];
 711                        target_node = nid;
 712                }
 713
 714        /* do some balance if several nodes have the same hit record */
 715        if (target_node <= last_khugepaged_target_node)
 716                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 717                                nid++)
 718                        if (max_value == khugepaged_node_load[nid]) {
 719                                target_node = nid;
 720                                break;
 721                        }
 722
 723        last_khugepaged_target_node = target_node;
 724        return target_node;
 725}
 726
 727static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 728{
 729        if (IS_ERR(*hpage)) {
 730                if (!*wait)
 731                        return false;
 732
 733                *wait = false;
 734                *hpage = NULL;
 735                khugepaged_alloc_sleep();
 736        } else if (*hpage) {
 737                put_page(*hpage);
 738                *hpage = NULL;
 739        }
 740
 741        return true;
 742}
 743
 744static struct page *
 745khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 746{
 747        VM_BUG_ON_PAGE(*hpage, *hpage);
 748
 749        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 750        if (unlikely(!*hpage)) {
 751                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 752                *hpage = ERR_PTR(-ENOMEM);
 753                return NULL;
 754        }
 755
 756        prep_transhuge_page(*hpage);
 757        count_vm_event(THP_COLLAPSE_ALLOC);
 758        return *hpage;
 759}
 760#else
 761static int khugepaged_find_target_node(void)
 762{
 763        return 0;
 764}
 765
 766static inline struct page *alloc_khugepaged_hugepage(void)
 767{
 768        struct page *page;
 769
 770        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
 771                           HPAGE_PMD_ORDER);
 772        if (page)
 773                prep_transhuge_page(page);
 774        return page;
 775}
 776
 777static struct page *khugepaged_alloc_hugepage(bool *wait)
 778{
 779        struct page *hpage;
 780
 781        do {
 782                hpage = alloc_khugepaged_hugepage();
 783                if (!hpage) {
 784                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 785                        if (!*wait)
 786                                return NULL;
 787
 788                        *wait = false;
 789                        khugepaged_alloc_sleep();
 790                } else
 791                        count_vm_event(THP_COLLAPSE_ALLOC);
 792        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
 793
 794        return hpage;
 795}
 796
 797static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 798{
 799        if (!*hpage)
 800                *hpage = khugepaged_alloc_hugepage(wait);
 801
 802        if (unlikely(!*hpage))
 803                return false;
 804
 805        return true;
 806}
 807
 808static struct page *
 809khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
 810{
 811        VM_BUG_ON(!*hpage);
 812
 813        return  *hpage;
 814}
 815#endif
 816
 817static bool hugepage_vma_check(struct vm_area_struct *vma)
 818{
 819        if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 820            (vma->vm_flags & VM_NOHUGEPAGE) ||
 821            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
 822                return false;
 823        if (shmem_file(vma->vm_file)) {
 824                if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
 825                        return false;
 826                return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
 827                                HPAGE_PMD_NR);
 828        }
 829        if (!vma->anon_vma || vma->vm_ops)
 830                return false;
 831        if (is_vma_temporary_stack(vma))
 832                return false;
 833        return !(vma->vm_flags & VM_NO_KHUGEPAGED);
 834}
 835
 836/*
 837 * If mmap_sem temporarily dropped, revalidate vma
 838 * before taking mmap_sem.
 839 * Return 0 if succeeds, otherwise return none-zero
 840 * value (scan code).
 841 */
 842
 843static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
 844                struct vm_area_struct **vmap)
 845{
 846        struct vm_area_struct *vma;
 847        unsigned long hstart, hend;
 848
 849        if (unlikely(khugepaged_test_exit(mm)))
 850                return SCAN_ANY_PROCESS;
 851
 852        *vmap = vma = find_vma(mm, address);
 853        if (!vma)
 854                return SCAN_VMA_NULL;
 855
 856        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 857        hend = vma->vm_end & HPAGE_PMD_MASK;
 858        if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 859                return SCAN_ADDRESS_RANGE;
 860        if (!hugepage_vma_check(vma))
 861                return SCAN_VMA_CHECK;
 862        return 0;
 863}
 864
 865/*
 866 * Bring missing pages in from swap, to complete THP collapse.
 867 * Only done if khugepaged_scan_pmd believes it is worthwhile.
 868 *
 869 * Called and returns without pte mapped or spinlocks held,
 870 * but with mmap_sem held to protect against vma changes.
 871 */
 872
 873static bool __collapse_huge_page_swapin(struct mm_struct *mm,
 874                                        struct vm_area_struct *vma,
 875                                        unsigned long address, pmd_t *pmd,
 876                                        int referenced)
 877{
 878        int swapped_in = 0, ret = 0;
 879        struct vm_fault vmf = {
 880                .vma = vma,
 881                .address = address,
 882                .flags = FAULT_FLAG_ALLOW_RETRY,
 883                .pmd = pmd,
 884                .pgoff = linear_page_index(vma, address),
 885        };
 886
 887        /* we only decide to swapin, if there is enough young ptes */
 888        if (referenced < HPAGE_PMD_NR/2) {
 889                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 890                return false;
 891        }
 892        vmf.pte = pte_offset_map(pmd, address);
 893        for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
 894                        vmf.pte++, vmf.address += PAGE_SIZE) {
 895                vmf.orig_pte = *vmf.pte;
 896                if (!is_swap_pte(vmf.orig_pte))
 897                        continue;
 898                swapped_in++;
 899                ret = do_swap_page(&vmf);
 900
 901                /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
 902                if (ret & VM_FAULT_RETRY) {
 903                        down_read(&mm->mmap_sem);
 904                        if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
 905                                /* vma is no longer available, don't continue to swapin */
 906                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 907                                return false;
 908                        }
 909                        /* check if the pmd is still valid */
 910                        if (mm_find_pmd(mm, address) != pmd) {
 911                                trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 912                                return false;
 913                        }
 914                }
 915                if (ret & VM_FAULT_ERROR) {
 916                        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
 917                        return false;
 918                }
 919                /* pte is unmapped now, we need to map it */
 920                vmf.pte = pte_offset_map(pmd, vmf.address);
 921        }
 922        vmf.pte--;
 923        pte_unmap(vmf.pte);
 924        trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
 925        return true;
 926}
 927
 928static void collapse_huge_page(struct mm_struct *mm,
 929                                   unsigned long address,
 930                                   struct page **hpage,
 931                                   int node, int referenced)
 932{
 933        pmd_t *pmd, _pmd;
 934        pte_t *pte;
 935        pgtable_t pgtable;
 936        struct page *new_page;
 937        spinlock_t *pmd_ptl, *pte_ptl;
 938        int isolated = 0, result = 0;
 939        struct mem_cgroup *memcg;
 940        struct vm_area_struct *vma;
 941        unsigned long mmun_start;       /* For mmu_notifiers */
 942        unsigned long mmun_end;         /* For mmu_notifiers */
 943        gfp_t gfp;
 944
 945        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 946
 947        /* Only allocate from the target node */
 948        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
 949
 950        /*
 951         * Before allocating the hugepage, release the mmap_sem read lock.
 952         * The allocation can take potentially a long time if it involves
 953         * sync compaction, and we do not need to hold the mmap_sem during
 954         * that. We will recheck the vma after taking it again in write mode.
 955         */
 956        up_read(&mm->mmap_sem);
 957        new_page = khugepaged_alloc_page(hpage, gfp, node);
 958        if (!new_page) {
 959                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 960                goto out_nolock;
 961        }
 962
 963        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 964                result = SCAN_CGROUP_CHARGE_FAIL;
 965                goto out_nolock;
 966        }
 967
 968        down_read(&mm->mmap_sem);
 969        result = hugepage_vma_revalidate(mm, address, &vma);
 970        if (result) {
 971                mem_cgroup_cancel_charge(new_page, memcg, true);
 972                up_read(&mm->mmap_sem);
 973                goto out_nolock;
 974        }
 975
 976        pmd = mm_find_pmd(mm, address);
 977        if (!pmd) {
 978                result = SCAN_PMD_NULL;
 979                mem_cgroup_cancel_charge(new_page, memcg, true);
 980                up_read(&mm->mmap_sem);
 981                goto out_nolock;
 982        }
 983
 984        /*
 985         * __collapse_huge_page_swapin always returns with mmap_sem locked.
 986         * If it fails, we release mmap_sem and jump out_nolock.
 987         * Continuing to collapse causes inconsistency.
 988         */
 989        if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
 990                mem_cgroup_cancel_charge(new_page, memcg, true);
 991                up_read(&mm->mmap_sem);
 992                goto out_nolock;
 993        }
 994
 995        up_read(&mm->mmap_sem);
 996        /*
 997         * Prevent all access to pagetables with the exception of
 998         * gup_fast later handled by the ptep_clear_flush and the VM
 999         * handled by the anon_vma lock + PG_lock.
1000         */
1001        down_write(&mm->mmap_sem);
1002        result = hugepage_vma_revalidate(mm, address, &vma);
1003        if (result)
1004                goto out;
1005        /* check if the pmd is still valid */
1006        if (mm_find_pmd(mm, address) != pmd)
1007                goto out;
1008
1009        anon_vma_lock_write(vma->anon_vma);
1010
1011        pte = pte_offset_map(pmd, address);
1012        pte_ptl = pte_lockptr(mm, pmd);
1013
1014        mmun_start = address;
1015        mmun_end   = address + HPAGE_PMD_SIZE;
1016        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1017        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1018        /*
1019         * After this gup_fast can't run anymore. This also removes
1020         * any huge TLB entry from the CPU so we won't allow
1021         * huge and small TLB entries for the same virtual address
1022         * to avoid the risk of CPU bugs in that area.
1023         */
1024        _pmd = pmdp_collapse_flush(vma, address, pmd);
1025        spin_unlock(pmd_ptl);
1026        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028        spin_lock(pte_ptl);
1029        isolated = __collapse_huge_page_isolate(vma, address, pte);
1030        spin_unlock(pte_ptl);
1031
1032        if (unlikely(!isolated)) {
1033                pte_unmap(pte);
1034                spin_lock(pmd_ptl);
1035                BUG_ON(!pmd_none(*pmd));
1036                /*
1037                 * We can only use set_pmd_at when establishing
1038                 * hugepmds and never for establishing regular pmds that
1039                 * points to regular pagetables. Use pmd_populate for that
1040                 */
1041                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1042                spin_unlock(pmd_ptl);
1043                anon_vma_unlock_write(vma->anon_vma);
1044                result = SCAN_FAIL;
1045                goto out;
1046        }
1047
1048        /*
1049         * All pages are isolated and locked so anon_vma rmap
1050         * can't run anymore.
1051         */
1052        anon_vma_unlock_write(vma->anon_vma);
1053
1054        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1055        pte_unmap(pte);
1056        __SetPageUptodate(new_page);
1057        pgtable = pmd_pgtable(_pmd);
1058
1059        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1060        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1061
1062        /*
1063         * spin_lock() below is not the equivalent of smp_wmb(), so
1064         * this is needed to avoid the copy_huge_page writes to become
1065         * visible after the set_pmd_at() write.
1066         */
1067        smp_wmb();
1068
1069        spin_lock(pmd_ptl);
1070        BUG_ON(!pmd_none(*pmd));
1071        page_add_new_anon_rmap(new_page, vma, address, true);
1072        mem_cgroup_commit_charge(new_page, memcg, false, true);
1073        lru_cache_add_active_or_unevictable(new_page, vma);
1074        pgtable_trans_huge_deposit(mm, pmd, pgtable);
1075        set_pmd_at(mm, address, pmd, _pmd);
1076        update_mmu_cache_pmd(vma, address, pmd);
1077        spin_unlock(pmd_ptl);
1078
1079        *hpage = NULL;
1080
1081        khugepaged_pages_collapsed++;
1082        result = SCAN_SUCCEED;
1083out_up_write:
1084        up_write(&mm->mmap_sem);
1085out_nolock:
1086        trace_mm_collapse_huge_page(mm, isolated, result);
1087        return;
1088out:
1089        mem_cgroup_cancel_charge(new_page, memcg, true);
1090        goto out_up_write;
1091}
1092
1093static int khugepaged_scan_pmd(struct mm_struct *mm,
1094                               struct vm_area_struct *vma,
1095                               unsigned long address,
1096                               struct page **hpage)
1097{
1098        pmd_t *pmd;
1099        pte_t *pte, *_pte;
1100        int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1101        struct page *page = NULL;
1102        unsigned long _address;
1103        spinlock_t *ptl;
1104        int node = NUMA_NO_NODE, unmapped = 0;
1105        bool writable = false;
1106
1107        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1108
1109        pmd = mm_find_pmd(mm, address);
1110        if (!pmd) {
1111                result = SCAN_PMD_NULL;
1112                goto out;
1113        }
1114
1115        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1116        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1117        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1118             _pte++, _address += PAGE_SIZE) {
1119                pte_t pteval = *_pte;
1120                if (is_swap_pte(pteval)) {
1121                        if (++unmapped <= khugepaged_max_ptes_swap) {
1122                                continue;
1123                        } else {
1124                                result = SCAN_EXCEED_SWAP_PTE;
1125                                goto out_unmap;
1126                        }
1127                }
1128                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1129                        if (!userfaultfd_armed(vma) &&
1130                            ++none_or_zero <= khugepaged_max_ptes_none) {
1131                                continue;
1132                        } else {
1133                                result = SCAN_EXCEED_NONE_PTE;
1134                                goto out_unmap;
1135                        }
1136                }
1137                if (!pte_present(pteval)) {
1138                        result = SCAN_PTE_NON_PRESENT;
1139                        goto out_unmap;
1140                }
1141                if (pte_write(pteval))
1142                        writable = true;
1143
1144                page = vm_normal_page(vma, _address, pteval);
1145                if (unlikely(!page)) {
1146                        result = SCAN_PAGE_NULL;
1147                        goto out_unmap;
1148                }
1149
1150                /* TODO: teach khugepaged to collapse THP mapped with pte */
1151                if (PageCompound(page)) {
1152                        result = SCAN_PAGE_COMPOUND;
1153                        goto out_unmap;
1154                }
1155
1156                /*
1157                 * Record which node the original page is from and save this
1158                 * information to khugepaged_node_load[].
1159                 * Khupaged will allocate hugepage from the node has the max
1160                 * hit record.
1161                 */
1162                node = page_to_nid(page);
1163                if (khugepaged_scan_abort(node)) {
1164                        result = SCAN_SCAN_ABORT;
1165                        goto out_unmap;
1166                }
1167                khugepaged_node_load[node]++;
1168                if (!PageLRU(page)) {
1169                        result = SCAN_PAGE_LRU;
1170                        goto out_unmap;
1171                }
1172                if (PageLocked(page)) {
1173                        result = SCAN_PAGE_LOCK;
1174                        goto out_unmap;
1175                }
1176                if (!PageAnon(page)) {
1177                        result = SCAN_PAGE_ANON;
1178                        goto out_unmap;
1179                }
1180
1181                /*
1182                 * cannot use mapcount: can't collapse if there's a gup pin.
1183                 * The page must only be referenced by the scanned process
1184                 * and page swap cache.
1185                 */
1186                if (page_count(page) != 1 + PageSwapCache(page)) {
1187                        result = SCAN_PAGE_COUNT;
1188                        goto out_unmap;
1189                }
1190                if (pte_young(pteval) ||
1191                    page_is_young(page) || PageReferenced(page) ||
1192                    mmu_notifier_test_young(vma->vm_mm, address))
1193                        referenced++;
1194        }
1195        if (writable) {
1196                if (referenced) {
1197                        result = SCAN_SUCCEED;
1198                        ret = 1;
1199                } else {
1200                        result = SCAN_LACK_REFERENCED_PAGE;
1201                }
1202        } else {
1203                result = SCAN_PAGE_RO;
1204        }
1205out_unmap:
1206        pte_unmap_unlock(pte, ptl);
1207        if (ret) {
1208                node = khugepaged_find_target_node();
1209                /* collapse_huge_page will return with the mmap_sem released */
1210                collapse_huge_page(mm, address, hpage, node, referenced);
1211        }
1212out:
1213        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1214                                     none_or_zero, result, unmapped);
1215        return ret;
1216}
1217
1218static void collect_mm_slot(struct mm_slot *mm_slot)
1219{
1220        struct mm_struct *mm = mm_slot->mm;
1221
1222        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1223
1224        if (khugepaged_test_exit(mm)) {
1225                /* free mm_slot */
1226                hash_del(&mm_slot->hash);
1227                list_del(&mm_slot->mm_node);
1228
1229                /*
1230                 * Not strictly needed because the mm exited already.
1231                 *
1232                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1233                 */
1234
1235                /* khugepaged_mm_lock actually not necessary for the below */
1236                free_mm_slot(mm_slot);
1237                mmdrop(mm);
1238        }
1239}
1240
1241#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1242static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1243{
1244        struct vm_area_struct *vma;
1245        unsigned long addr;
1246        pmd_t *pmd, _pmd;
1247
1248        i_mmap_lock_write(mapping);
1249        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1250                /* probably overkill */
1251                if (vma->anon_vma)
1252                        continue;
1253                addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1254                if (addr & ~HPAGE_PMD_MASK)
1255                        continue;
1256                if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1257                        continue;
1258                pmd = mm_find_pmd(vma->vm_mm, addr);
1259                if (!pmd)
1260                        continue;
1261                /*
1262                 * We need exclusive mmap_sem to retract page table.
1263                 * If trylock fails we would end up with pte-mapped THP after
1264                 * re-fault. Not ideal, but it's more important to not disturb
1265                 * the system too much.
1266                 */
1267                if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1268                        spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1269                        /* assume page table is clear */
1270                        _pmd = pmdp_collapse_flush(vma, addr, pmd);
1271                        spin_unlock(ptl);
1272                        up_write(&vma->vm_mm->mmap_sem);
1273                        mm_dec_nr_ptes(vma->vm_mm);
1274                        pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1275                }
1276        }
1277        i_mmap_unlock_write(mapping);
1278}
1279
1280/**
1281 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1282 *
1283 * Basic scheme is simple, details are more complex:
1284 *  - allocate and freeze a new huge page;
1285 *  - scan over radix tree replacing old pages the new one
1286 *    + swap in pages if necessary;
1287 *    + fill in gaps;
1288 *    + keep old pages around in case if rollback is required;
1289 *  - if replacing succeed:
1290 *    + copy data over;
1291 *    + free old pages;
1292 *    + unfreeze huge page;
1293 *  - if replacing failed;
1294 *    + put all pages back and unfreeze them;
1295 *    + restore gaps in the radix-tree;
1296 *    + free huge page;
1297 */
1298static void collapse_shmem(struct mm_struct *mm,
1299                struct address_space *mapping, pgoff_t start,
1300                struct page **hpage, int node)
1301{
1302        gfp_t gfp;
1303        struct page *page, *new_page, *tmp;
1304        struct mem_cgroup *memcg;
1305        pgoff_t index, end = start + HPAGE_PMD_NR;
1306        LIST_HEAD(pagelist);
1307        struct radix_tree_iter iter;
1308        void **slot;
1309        int nr_none = 0, result = SCAN_SUCCEED;
1310
1311        VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1312
1313        /* Only allocate from the target node */
1314        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1315
1316        new_page = khugepaged_alloc_page(hpage, gfp, node);
1317        if (!new_page) {
1318                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1319                goto out;
1320        }
1321
1322        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1323                result = SCAN_CGROUP_CHARGE_FAIL;
1324                goto out;
1325        }
1326
1327        new_page->index = start;
1328        new_page->mapping = mapping;
1329        __SetPageSwapBacked(new_page);
1330        __SetPageLocked(new_page);
1331        BUG_ON(!page_ref_freeze(new_page, 1));
1332
1333
1334        /*
1335         * At this point the new_page is 'frozen' (page_count() is zero), locked
1336         * and not up-to-date. It's safe to insert it into radix tree, because
1337         * nobody would be able to map it or use it in other way until we
1338         * unfreeze it.
1339         */
1340
1341        index = start;
1342        spin_lock_irq(&mapping->tree_lock);
1343        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1344                int n = min(iter.index, end) - index;
1345
1346                /*
1347                 * Handle holes in the radix tree: charge it from shmem and
1348                 * insert relevant subpage of new_page into the radix-tree.
1349                 */
1350                if (n && !shmem_charge(mapping->host, n)) {
1351                        result = SCAN_FAIL;
1352                        break;
1353                }
1354                nr_none += n;
1355                for (; index < min(iter.index, end); index++) {
1356                        radix_tree_insert(&mapping->page_tree, index,
1357                                        new_page + (index % HPAGE_PMD_NR));
1358                }
1359
1360                /* We are done. */
1361                if (index >= end)
1362                        break;
1363
1364                page = radix_tree_deref_slot_protected(slot,
1365                                &mapping->tree_lock);
1366                if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1367                        spin_unlock_irq(&mapping->tree_lock);
1368                        /* swap in or instantiate fallocated page */
1369                        if (shmem_getpage(mapping->host, index, &page,
1370                                                SGP_NOHUGE)) {
1371                                result = SCAN_FAIL;
1372                                goto tree_unlocked;
1373                        }
1374                        spin_lock_irq(&mapping->tree_lock);
1375                } else if (trylock_page(page)) {
1376                        get_page(page);
1377                } else {
1378                        result = SCAN_PAGE_LOCK;
1379                        break;
1380                }
1381
1382                /*
1383                 * The page must be locked, so we can drop the tree_lock
1384                 * without racing with truncate.
1385                 */
1386                VM_BUG_ON_PAGE(!PageLocked(page), page);
1387                VM_BUG_ON_PAGE(!PageUptodate(page), page);
1388                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1389
1390                if (page_mapping(page) != mapping) {
1391                        result = SCAN_TRUNCATED;
1392                        goto out_unlock;
1393                }
1394                spin_unlock_irq(&mapping->tree_lock);
1395
1396                if (isolate_lru_page(page)) {
1397                        result = SCAN_DEL_PAGE_LRU;
1398                        goto out_isolate_failed;
1399                }
1400
1401                if (page_mapped(page))
1402                        unmap_mapping_range(mapping, index << PAGE_SHIFT,
1403                                        PAGE_SIZE, 0);
1404
1405                spin_lock_irq(&mapping->tree_lock);
1406
1407                slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1408                VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1409                                        &mapping->tree_lock), page);
1410                VM_BUG_ON_PAGE(page_mapped(page), page);
1411
1412                /*
1413                 * The page is expected to have page_count() == 3:
1414                 *  - we hold a pin on it;
1415                 *  - one reference from radix tree;
1416                 *  - one from isolate_lru_page;
1417                 */
1418                if (!page_ref_freeze(page, 3)) {
1419                        result = SCAN_PAGE_COUNT;
1420                        goto out_lru;
1421                }
1422
1423                /*
1424                 * Add the page to the list to be able to undo the collapse if
1425                 * something go wrong.
1426                 */
1427                list_add_tail(&page->lru, &pagelist);
1428
1429                /* Finally, replace with the new page. */
1430                radix_tree_replace_slot(&mapping->page_tree, slot,
1431                                new_page + (index % HPAGE_PMD_NR));
1432
1433                slot = radix_tree_iter_resume(slot, &iter);
1434                index++;
1435                continue;
1436out_lru:
1437                spin_unlock_irq(&mapping->tree_lock);
1438                putback_lru_page(page);
1439out_isolate_failed:
1440                unlock_page(page);
1441                put_page(page);
1442                goto tree_unlocked;
1443out_unlock:
1444                unlock_page(page);
1445                put_page(page);
1446                break;
1447        }
1448
1449        /*
1450         * Handle hole in radix tree at the end of the range.
1451         * This code only triggers if there's nothing in radix tree
1452         * beyond 'end'.
1453         */
1454        if (result == SCAN_SUCCEED && index < end) {
1455                int n = end - index;
1456
1457                if (!shmem_charge(mapping->host, n)) {
1458                        result = SCAN_FAIL;
1459                        goto tree_locked;
1460                }
1461
1462                for (; index < end; index++) {
1463                        radix_tree_insert(&mapping->page_tree, index,
1464                                        new_page + (index % HPAGE_PMD_NR));
1465                }
1466                nr_none += n;
1467        }
1468
1469tree_locked:
1470        spin_unlock_irq(&mapping->tree_lock);
1471tree_unlocked:
1472
1473        if (result == SCAN_SUCCEED) {
1474                unsigned long flags;
1475                struct zone *zone = page_zone(new_page);
1476
1477                /*
1478                 * Replacing old pages with new one has succeed, now we need to
1479                 * copy the content and free old pages.
1480                 */
1481                list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1482                        copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1483                                        page);
1484                        list_del(&page->lru);
1485                        unlock_page(page);
1486                        page_ref_unfreeze(page, 1);
1487                        page->mapping = NULL;
1488                        ClearPageActive(page);
1489                        ClearPageUnevictable(page);
1490                        put_page(page);
1491                }
1492
1493                local_irq_save(flags);
1494                __inc_node_page_state(new_page, NR_SHMEM_THPS);
1495                if (nr_none) {
1496                        __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1497                        __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1498                }
1499                local_irq_restore(flags);
1500
1501                /*
1502                 * Remove pte page tables, so we can re-faulti
1503                 * the page as huge.
1504                 */
1505                retract_page_tables(mapping, start);
1506
1507                /* Everything is ready, let's unfreeze the new_page */
1508                set_page_dirty(new_page);
1509                SetPageUptodate(new_page);
1510                page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1511                mem_cgroup_commit_charge(new_page, memcg, false, true);
1512                lru_cache_add_anon(new_page);
1513                unlock_page(new_page);
1514
1515                *hpage = NULL;
1516        } else {
1517                /* Something went wrong: rollback changes to the radix-tree */
1518                shmem_uncharge(mapping->host, nr_none);
1519                spin_lock_irq(&mapping->tree_lock);
1520                radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1521                                start) {
1522                        if (iter.index >= end)
1523                                break;
1524                        page = list_first_entry_or_null(&pagelist,
1525                                        struct page, lru);
1526                        if (!page || iter.index < page->index) {
1527                                if (!nr_none)
1528                                        break;
1529                                nr_none--;
1530                                /* Put holes back where they were */
1531                                radix_tree_delete(&mapping->page_tree,
1532                                                  iter.index);
1533                                continue;
1534                        }
1535
1536                        VM_BUG_ON_PAGE(page->index != iter.index, page);
1537
1538                        /* Unfreeze the page. */
1539                        list_del(&page->lru);
1540                        page_ref_unfreeze(page, 2);
1541                        radix_tree_replace_slot(&mapping->page_tree,
1542                                                slot, page);
1543                        slot = radix_tree_iter_resume(slot, &iter);
1544                        spin_unlock_irq(&mapping->tree_lock);
1545                        putback_lru_page(page);
1546                        unlock_page(page);
1547                        spin_lock_irq(&mapping->tree_lock);
1548                }
1549                VM_BUG_ON(nr_none);
1550                spin_unlock_irq(&mapping->tree_lock);
1551
1552                /* Unfreeze new_page, caller would take care about freeing it */
1553                page_ref_unfreeze(new_page, 1);
1554                mem_cgroup_cancel_charge(new_page, memcg, true);
1555                unlock_page(new_page);
1556                new_page->mapping = NULL;
1557        }
1558out:
1559        VM_BUG_ON(!list_empty(&pagelist));
1560        /* TODO: tracepoints */
1561}
1562
1563static void khugepaged_scan_shmem(struct mm_struct *mm,
1564                struct address_space *mapping,
1565                pgoff_t start, struct page **hpage)
1566{
1567        struct page *page = NULL;
1568        struct radix_tree_iter iter;
1569        void **slot;
1570        int present, swap;
1571        int node = NUMA_NO_NODE;
1572        int result = SCAN_SUCCEED;
1573
1574        present = 0;
1575        swap = 0;
1576        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1577        rcu_read_lock();
1578        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1579                if (iter.index >= start + HPAGE_PMD_NR)
1580                        break;
1581
1582                page = radix_tree_deref_slot(slot);
1583                if (radix_tree_deref_retry(page)) {
1584                        slot = radix_tree_iter_retry(&iter);
1585                        continue;
1586                }
1587
1588                if (radix_tree_exception(page)) {
1589                        if (++swap > khugepaged_max_ptes_swap) {
1590                                result = SCAN_EXCEED_SWAP_PTE;
1591                                break;
1592                        }
1593                        continue;
1594                }
1595
1596                if (PageTransCompound(page)) {
1597                        result = SCAN_PAGE_COMPOUND;
1598                        break;
1599                }
1600
1601                node = page_to_nid(page);
1602                if (khugepaged_scan_abort(node)) {
1603                        result = SCAN_SCAN_ABORT;
1604                        break;
1605                }
1606                khugepaged_node_load[node]++;
1607
1608                if (!PageLRU(page)) {
1609                        result = SCAN_PAGE_LRU;
1610                        break;
1611                }
1612
1613                if (page_count(page) != 1 + page_mapcount(page)) {
1614                        result = SCAN_PAGE_COUNT;
1615                        break;
1616                }
1617
1618                /*
1619                 * We probably should check if the page is referenced here, but
1620                 * nobody would transfer pte_young() to PageReferenced() for us.
1621                 * And rmap walk here is just too costly...
1622                 */
1623
1624                present++;
1625
1626                if (need_resched()) {
1627                        slot = radix_tree_iter_resume(slot, &iter);
1628                        cond_resched_rcu();
1629                }
1630        }
1631        rcu_read_unlock();
1632
1633        if (result == SCAN_SUCCEED) {
1634                if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1635                        result = SCAN_EXCEED_NONE_PTE;
1636                } else {
1637                        node = khugepaged_find_target_node();
1638                        collapse_shmem(mm, mapping, start, hpage, node);
1639                }
1640        }
1641
1642        /* TODO: tracepoints */
1643}
1644#else
1645static void khugepaged_scan_shmem(struct mm_struct *mm,
1646                struct address_space *mapping,
1647                pgoff_t start, struct page **hpage)
1648{
1649        BUILD_BUG();
1650}
1651#endif
1652
1653static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1654                                            struct page **hpage)
1655        __releases(&khugepaged_mm_lock)
1656        __acquires(&khugepaged_mm_lock)
1657{
1658        struct mm_slot *mm_slot;
1659        struct mm_struct *mm;
1660        struct vm_area_struct *vma;
1661        int progress = 0;
1662
1663        VM_BUG_ON(!pages);
1664        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1665
1666        if (khugepaged_scan.mm_slot)
1667                mm_slot = khugepaged_scan.mm_slot;
1668        else {
1669                mm_slot = list_entry(khugepaged_scan.mm_head.next,
1670                                     struct mm_slot, mm_node);
1671                khugepaged_scan.address = 0;
1672                khugepaged_scan.mm_slot = mm_slot;
1673        }
1674        spin_unlock(&khugepaged_mm_lock);
1675
1676        mm = mm_slot->mm;
1677        down_read(&mm->mmap_sem);
1678        if (unlikely(khugepaged_test_exit(mm)))
1679                vma = NULL;
1680        else
1681                vma = find_vma(mm, khugepaged_scan.address);
1682
1683        progress++;
1684        for (; vma; vma = vma->vm_next) {
1685                unsigned long hstart, hend;
1686
1687                cond_resched();
1688                if (unlikely(khugepaged_test_exit(mm))) {
1689                        progress++;
1690                        break;
1691                }
1692                if (!hugepage_vma_check(vma)) {
1693skip:
1694                        progress++;
1695                        continue;
1696                }
1697                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1698                hend = vma->vm_end & HPAGE_PMD_MASK;
1699                if (hstart >= hend)
1700                        goto skip;
1701                if (khugepaged_scan.address > hend)
1702                        goto skip;
1703                if (khugepaged_scan.address < hstart)
1704                        khugepaged_scan.address = hstart;
1705                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1706
1707                while (khugepaged_scan.address < hend) {
1708                        int ret;
1709                        cond_resched();
1710                        if (unlikely(khugepaged_test_exit(mm)))
1711                                goto breakouterloop;
1712
1713                        VM_BUG_ON(khugepaged_scan.address < hstart ||
1714                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
1715                                  hend);
1716                        if (shmem_file(vma->vm_file)) {
1717                                struct file *file;
1718                                pgoff_t pgoff = linear_page_index(vma,
1719                                                khugepaged_scan.address);
1720                                if (!shmem_huge_enabled(vma))
1721                                        goto skip;
1722                                file = get_file(vma->vm_file);
1723                                up_read(&mm->mmap_sem);
1724                                ret = 1;
1725                                khugepaged_scan_shmem(mm, file->f_mapping,
1726                                                pgoff, hpage);
1727                                fput(file);
1728                        } else {
1729                                ret = khugepaged_scan_pmd(mm, vma,
1730                                                khugepaged_scan.address,
1731                                                hpage);
1732                        }
1733                        /* move to next address */
1734                        khugepaged_scan.address += HPAGE_PMD_SIZE;
1735                        progress += HPAGE_PMD_NR;
1736                        if (ret)
1737                                /* we released mmap_sem so break loop */
1738                                goto breakouterloop_mmap_sem;
1739                        if (progress >= pages)
1740                                goto breakouterloop;
1741                }
1742        }
1743breakouterloop:
1744        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1745breakouterloop_mmap_sem:
1746
1747        spin_lock(&khugepaged_mm_lock);
1748        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1749        /*
1750         * Release the current mm_slot if this mm is about to die, or
1751         * if we scanned all vmas of this mm.
1752         */
1753        if (khugepaged_test_exit(mm) || !vma) {
1754                /*
1755                 * Make sure that if mm_users is reaching zero while
1756                 * khugepaged runs here, khugepaged_exit will find
1757                 * mm_slot not pointing to the exiting mm.
1758                 */
1759                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1760                        khugepaged_scan.mm_slot = list_entry(
1761                                mm_slot->mm_node.next,
1762                                struct mm_slot, mm_node);
1763                        khugepaged_scan.address = 0;
1764                } else {
1765                        khugepaged_scan.mm_slot = NULL;
1766                        khugepaged_full_scans++;
1767                }
1768
1769                collect_mm_slot(mm_slot);
1770        }
1771
1772        return progress;
1773}
1774
1775static int khugepaged_has_work(void)
1776{
1777        return !list_empty(&khugepaged_scan.mm_head) &&
1778                khugepaged_enabled();
1779}
1780
1781static int khugepaged_wait_event(void)
1782{
1783        return !list_empty(&khugepaged_scan.mm_head) ||
1784                kthread_should_stop();
1785}
1786
1787static void khugepaged_do_scan(void)
1788{
1789        struct page *hpage = NULL;
1790        unsigned int progress = 0, pass_through_head = 0;
1791        unsigned int pages = khugepaged_pages_to_scan;
1792        bool wait = true;
1793
1794        barrier(); /* write khugepaged_pages_to_scan to local stack */
1795
1796        while (progress < pages) {
1797                if (!khugepaged_prealloc_page(&hpage, &wait))
1798                        break;
1799
1800                cond_resched();
1801
1802                if (unlikely(kthread_should_stop() || try_to_freeze()))
1803                        break;
1804
1805                spin_lock(&khugepaged_mm_lock);
1806                if (!khugepaged_scan.mm_slot)
1807                        pass_through_head++;
1808                if (khugepaged_has_work() &&
1809                    pass_through_head < 2)
1810                        progress += khugepaged_scan_mm_slot(pages - progress,
1811                                                            &hpage);
1812                else
1813                        progress = pages;
1814                spin_unlock(&khugepaged_mm_lock);
1815        }
1816
1817        if (!IS_ERR_OR_NULL(hpage))
1818                put_page(hpage);
1819}
1820
1821static bool khugepaged_should_wakeup(void)
1822{
1823        return kthread_should_stop() ||
1824               time_after_eq(jiffies, khugepaged_sleep_expire);
1825}
1826
1827static void khugepaged_wait_work(void)
1828{
1829        if (khugepaged_has_work()) {
1830                const unsigned long scan_sleep_jiffies =
1831                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1832
1833                if (!scan_sleep_jiffies)
1834                        return;
1835
1836                khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1837                wait_event_freezable_timeout(khugepaged_wait,
1838                                             khugepaged_should_wakeup(),
1839                                             scan_sleep_jiffies);
1840                return;
1841        }
1842
1843        if (khugepaged_enabled())
1844                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1845}
1846
1847static int khugepaged(void *none)
1848{
1849        struct mm_slot *mm_slot;
1850
1851        set_freezable();
1852        set_user_nice(current, MAX_NICE);
1853
1854        while (!kthread_should_stop()) {
1855                khugepaged_do_scan();
1856                khugepaged_wait_work();
1857        }
1858
1859        spin_lock(&khugepaged_mm_lock);
1860        mm_slot = khugepaged_scan.mm_slot;
1861        khugepaged_scan.mm_slot = NULL;
1862        if (mm_slot)
1863                collect_mm_slot(mm_slot);
1864        spin_unlock(&khugepaged_mm_lock);
1865        return 0;
1866}
1867
1868static void set_recommended_min_free_kbytes(void)
1869{
1870        struct zone *zone;
1871        int nr_zones = 0;
1872        unsigned long recommended_min;
1873
1874        for_each_populated_zone(zone)
1875                nr_zones++;
1876
1877        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1878        recommended_min = pageblock_nr_pages * nr_zones * 2;
1879
1880        /*
1881         * Make sure that on average at least two pageblocks are almost free
1882         * of another type, one for a migratetype to fall back to and a
1883         * second to avoid subsequent fallbacks of other types There are 3
1884         * MIGRATE_TYPES we care about.
1885         */
1886        recommended_min += pageblock_nr_pages * nr_zones *
1887                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1888
1889        /* don't ever allow to reserve more than 5% of the lowmem */
1890        recommended_min = min(recommended_min,
1891                              (unsigned long) nr_free_buffer_pages() / 20);
1892        recommended_min <<= (PAGE_SHIFT-10);
1893
1894        if (recommended_min > min_free_kbytes) {
1895                if (user_min_free_kbytes >= 0)
1896                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1897                                min_free_kbytes, recommended_min);
1898
1899                min_free_kbytes = recommended_min;
1900        }
1901        setup_per_zone_wmarks();
1902}
1903
1904int start_stop_khugepaged(void)
1905{
1906        static struct task_struct *khugepaged_thread __read_mostly;
1907        static DEFINE_MUTEX(khugepaged_mutex);
1908        int err = 0;
1909
1910        mutex_lock(&khugepaged_mutex);
1911        if (khugepaged_enabled()) {
1912                if (!khugepaged_thread)
1913                        khugepaged_thread = kthread_run(khugepaged, NULL,
1914                                                        "khugepaged");
1915                if (IS_ERR(khugepaged_thread)) {
1916                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1917                        err = PTR_ERR(khugepaged_thread);
1918                        khugepaged_thread = NULL;
1919                        goto fail;
1920                }
1921
1922                if (!list_empty(&khugepaged_scan.mm_head))
1923                        wake_up_interruptible(&khugepaged_wait);
1924
1925                set_recommended_min_free_kbytes();
1926        } else if (khugepaged_thread) {
1927                kthread_stop(khugepaged_thread);
1928                khugepaged_thread = NULL;
1929        }
1930fail:
1931        mutex_unlock(&khugepaged_mutex);
1932        return err;
1933}
1934