linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
  84        struct address_space *mapping;
  85        dev_t dev;
  86
  87        if (hwpoison_filter_dev_major == ~0U &&
  88            hwpoison_filter_dev_minor == ~0U)
  89                return 0;
  90
  91        /*
  92         * page_mapping() does not accept slab pages.
  93         */
  94        if (PageSlab(p))
  95                return -EINVAL;
  96
  97        mapping = page_mapping(p);
  98        if (mapping == NULL || mapping->host == NULL)
  99                return -EINVAL;
 100
 101        dev = mapping->host->i_sb->s_dev;
 102        if (hwpoison_filter_dev_major != ~0U &&
 103            hwpoison_filter_dev_major != MAJOR(dev))
 104                return -EINVAL;
 105        if (hwpoison_filter_dev_minor != ~0U &&
 106            hwpoison_filter_dev_minor != MINOR(dev))
 107                return -EINVAL;
 108
 109        return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114        if (!hwpoison_filter_flags_mask)
 115                return 0;
 116
 117        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118                                    hwpoison_filter_flags_value)
 119                return 0;
 120        else
 121                return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 139        if (!hwpoison_filter_memcg)
 140                return 0;
 141
 142        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 143                return -EINVAL;
 144
 145        return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153        if (!hwpoison_filter_enable)
 154                return 0;
 155
 156        if (hwpoison_filter_dev(p))
 157                return -EINVAL;
 158
 159        if (hwpoison_filter_flags(p))
 160                return -EINVAL;
 161
 162        if (hwpoison_filter_task(p))
 163                return -EINVAL;
 164
 165        return 0;
 166}
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170        return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
 182                        unsigned long pfn, struct page *page, int flags)
 183{
 184        struct siginfo si;
 185        int ret;
 186
 187        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 188                pfn, t->comm, t->pid);
 189        si.si_signo = SIGBUS;
 190        si.si_errno = 0;
 191        si.si_addr = (void *)addr;
 192#ifdef __ARCH_SI_TRAPNO
 193        si.si_trapno = trapno;
 194#endif
 195        si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 196
 197        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 198                si.si_code = BUS_MCEERR_AR;
 199                ret = force_sig_info(SIGBUS, &si, current);
 200        } else {
 201                /*
 202                 * Don't use force here, it's convenient if the signal
 203                 * can be temporarily blocked.
 204                 * This could cause a loop when the user sets SIGBUS
 205                 * to SIG_IGN, but hopefully no one will do that?
 206                 */
 207                si.si_code = BUS_MCEERR_AO;
 208                ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 209        }
 210        if (ret < 0)
 211                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 212                        t->comm, t->pid, ret);
 213        return ret;
 214}
 215
 216/*
 217 * When a unknown page type is encountered drain as many buffers as possible
 218 * in the hope to turn the page into a LRU or free page, which we can handle.
 219 */
 220void shake_page(struct page *p, int access)
 221{
 222        if (PageHuge(p))
 223                return;
 224
 225        if (!PageSlab(p)) {
 226                lru_add_drain_all();
 227                if (PageLRU(p))
 228                        return;
 229                drain_all_pages(page_zone(p));
 230                if (PageLRU(p) || is_free_buddy_page(p))
 231                        return;
 232        }
 233
 234        /*
 235         * Only call shrink_node_slabs here (which would also shrink
 236         * other caches) if access is not potentially fatal.
 237         */
 238        if (access)
 239                drop_slab_node(page_to_nid(p));
 240}
 241EXPORT_SYMBOL_GPL(shake_page);
 242
 243/*
 244 * Kill all processes that have a poisoned page mapped and then isolate
 245 * the page.
 246 *
 247 * General strategy:
 248 * Find all processes having the page mapped and kill them.
 249 * But we keep a page reference around so that the page is not
 250 * actually freed yet.
 251 * Then stash the page away
 252 *
 253 * There's no convenient way to get back to mapped processes
 254 * from the VMAs. So do a brute-force search over all
 255 * running processes.
 256 *
 257 * Remember that machine checks are not common (or rather
 258 * if they are common you have other problems), so this shouldn't
 259 * be a performance issue.
 260 *
 261 * Also there are some races possible while we get from the
 262 * error detection to actually handle it.
 263 */
 264
 265struct to_kill {
 266        struct list_head nd;
 267        struct task_struct *tsk;
 268        unsigned long addr;
 269        char addr_valid;
 270};
 271
 272/*
 273 * Failure handling: if we can't find or can't kill a process there's
 274 * not much we can do.  We just print a message and ignore otherwise.
 275 */
 276
 277/*
 278 * Schedule a process for later kill.
 279 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 280 * TBD would GFP_NOIO be enough?
 281 */
 282static void add_to_kill(struct task_struct *tsk, struct page *p,
 283                       struct vm_area_struct *vma,
 284                       struct list_head *to_kill,
 285                       struct to_kill **tkc)
 286{
 287        struct to_kill *tk;
 288
 289        if (*tkc) {
 290                tk = *tkc;
 291                *tkc = NULL;
 292        } else {
 293                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 294                if (!tk) {
 295                        pr_err("Memory failure: Out of memory while machine check handling\n");
 296                        return;
 297                }
 298        }
 299        tk->addr = page_address_in_vma(p, vma);
 300        tk->addr_valid = 1;
 301
 302        /*
 303         * In theory we don't have to kill when the page was
 304         * munmaped. But it could be also a mremap. Since that's
 305         * likely very rare kill anyways just out of paranoia, but use
 306         * a SIGKILL because the error is not contained anymore.
 307         */
 308        if (tk->addr == -EFAULT) {
 309                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 310                        page_to_pfn(p), tsk->comm);
 311                tk->addr_valid = 0;
 312        }
 313        get_task_struct(tsk);
 314        tk->tsk = tsk;
 315        list_add_tail(&tk->nd, to_kill);
 316}
 317
 318/*
 319 * Kill the processes that have been collected earlier.
 320 *
 321 * Only do anything when DOIT is set, otherwise just free the list
 322 * (this is used for clean pages which do not need killing)
 323 * Also when FAIL is set do a force kill because something went
 324 * wrong earlier.
 325 */
 326static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
 327                          bool fail, struct page *page, unsigned long pfn,
 328                          int flags)
 329{
 330        struct to_kill *tk, *next;
 331
 332        list_for_each_entry_safe (tk, next, to_kill, nd) {
 333                if (forcekill) {
 334                        /*
 335                         * In case something went wrong with munmapping
 336                         * make sure the process doesn't catch the
 337                         * signal and then access the memory. Just kill it.
 338                         */
 339                        if (fail || tk->addr_valid == 0) {
 340                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 341                                       pfn, tk->tsk->comm, tk->tsk->pid);
 342                                force_sig(SIGKILL, tk->tsk);
 343                        }
 344
 345                        /*
 346                         * In theory the process could have mapped
 347                         * something else on the address in-between. We could
 348                         * check for that, but we need to tell the
 349                         * process anyways.
 350                         */
 351                        else if (kill_proc(tk->tsk, tk->addr, trapno,
 352                                              pfn, page, flags) < 0)
 353                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 354                                       pfn, tk->tsk->comm, tk->tsk->pid);
 355                }
 356                put_task_struct(tk->tsk);
 357                kfree(tk);
 358        }
 359}
 360
 361/*
 362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 363 * on behalf of the thread group. Return task_struct of the (first found)
 364 * dedicated thread if found, and return NULL otherwise.
 365 *
 366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 367 * have to call rcu_read_lock/unlock() in this function.
 368 */
 369static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 370{
 371        struct task_struct *t;
 372
 373        for_each_thread(tsk, t)
 374                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 375                        return t;
 376        return NULL;
 377}
 378
 379/*
 380 * Determine whether a given process is "early kill" process which expects
 381 * to be signaled when some page under the process is hwpoisoned.
 382 * Return task_struct of the dedicated thread (main thread unless explicitly
 383 * specified) if the process is "early kill," and otherwise returns NULL.
 384 */
 385static struct task_struct *task_early_kill(struct task_struct *tsk,
 386                                           int force_early)
 387{
 388        struct task_struct *t;
 389        if (!tsk->mm)
 390                return NULL;
 391        if (force_early)
 392                return tsk;
 393        t = find_early_kill_thread(tsk);
 394        if (t)
 395                return t;
 396        if (sysctl_memory_failure_early_kill)
 397                return tsk;
 398        return NULL;
 399}
 400
 401/*
 402 * Collect processes when the error hit an anonymous page.
 403 */
 404static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 405                              struct to_kill **tkc, int force_early)
 406{
 407        struct vm_area_struct *vma;
 408        struct task_struct *tsk;
 409        struct anon_vma *av;
 410        pgoff_t pgoff;
 411
 412        av = page_lock_anon_vma_read(page);
 413        if (av == NULL) /* Not actually mapped anymore */
 414                return;
 415
 416        pgoff = page_to_pgoff(page);
 417        read_lock(&tasklist_lock);
 418        for_each_process (tsk) {
 419                struct anon_vma_chain *vmac;
 420                struct task_struct *t = task_early_kill(tsk, force_early);
 421
 422                if (!t)
 423                        continue;
 424                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 425                                               pgoff, pgoff) {
 426                        vma = vmac->vma;
 427                        if (!page_mapped_in_vma(page, vma))
 428                                continue;
 429                        if (vma->vm_mm == t->mm)
 430                                add_to_kill(t, page, vma, to_kill, tkc);
 431                }
 432        }
 433        read_unlock(&tasklist_lock);
 434        page_unlock_anon_vma_read(av);
 435}
 436
 437/*
 438 * Collect processes when the error hit a file mapped page.
 439 */
 440static void collect_procs_file(struct page *page, struct list_head *to_kill,
 441                              struct to_kill **tkc, int force_early)
 442{
 443        struct vm_area_struct *vma;
 444        struct task_struct *tsk;
 445        struct address_space *mapping = page->mapping;
 446
 447        i_mmap_lock_read(mapping);
 448        read_lock(&tasklist_lock);
 449        for_each_process(tsk) {
 450                pgoff_t pgoff = page_to_pgoff(page);
 451                struct task_struct *t = task_early_kill(tsk, force_early);
 452
 453                if (!t)
 454                        continue;
 455                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 456                                      pgoff) {
 457                        /*
 458                         * Send early kill signal to tasks where a vma covers
 459                         * the page but the corrupted page is not necessarily
 460                         * mapped it in its pte.
 461                         * Assume applications who requested early kill want
 462                         * to be informed of all such data corruptions.
 463                         */
 464                        if (vma->vm_mm == t->mm)
 465                                add_to_kill(t, page, vma, to_kill, tkc);
 466                }
 467        }
 468        read_unlock(&tasklist_lock);
 469        i_mmap_unlock_read(mapping);
 470}
 471
 472/*
 473 * Collect the processes who have the corrupted page mapped to kill.
 474 * This is done in two steps for locking reasons.
 475 * First preallocate one tokill structure outside the spin locks,
 476 * so that we can kill at least one process reasonably reliable.
 477 */
 478static void collect_procs(struct page *page, struct list_head *tokill,
 479                                int force_early)
 480{
 481        struct to_kill *tk;
 482
 483        if (!page->mapping)
 484                return;
 485
 486        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 487        if (!tk)
 488                return;
 489        if (PageAnon(page))
 490                collect_procs_anon(page, tokill, &tk, force_early);
 491        else
 492                collect_procs_file(page, tokill, &tk, force_early);
 493        kfree(tk);
 494}
 495
 496static const char *action_name[] = {
 497        [MF_IGNORED] = "Ignored",
 498        [MF_FAILED] = "Failed",
 499        [MF_DELAYED] = "Delayed",
 500        [MF_RECOVERED] = "Recovered",
 501};
 502
 503static const char * const action_page_types[] = {
 504        [MF_MSG_KERNEL]                 = "reserved kernel page",
 505        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 506        [MF_MSG_SLAB]                   = "kernel slab page",
 507        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 508        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 509        [MF_MSG_HUGE]                   = "huge page",
 510        [MF_MSG_FREE_HUGE]              = "free huge page",
 511        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 512        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 513        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 514        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 515        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 516        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 517        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 518        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 519        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 520        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 521        [MF_MSG_BUDDY]                  = "free buddy page",
 522        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 523        [MF_MSG_UNKNOWN]                = "unknown page",
 524};
 525
 526/*
 527 * XXX: It is possible that a page is isolated from LRU cache,
 528 * and then kept in swap cache or failed to remove from page cache.
 529 * The page count will stop it from being freed by unpoison.
 530 * Stress tests should be aware of this memory leak problem.
 531 */
 532static int delete_from_lru_cache(struct page *p)
 533{
 534        if (!isolate_lru_page(p)) {
 535                /*
 536                 * Clear sensible page flags, so that the buddy system won't
 537                 * complain when the page is unpoison-and-freed.
 538                 */
 539                ClearPageActive(p);
 540                ClearPageUnevictable(p);
 541
 542                /*
 543                 * Poisoned page might never drop its ref count to 0 so we have
 544                 * to uncharge it manually from its memcg.
 545                 */
 546                mem_cgroup_uncharge(p);
 547
 548                /*
 549                 * drop the page count elevated by isolate_lru_page()
 550                 */
 551                put_page(p);
 552                return 0;
 553        }
 554        return -EIO;
 555}
 556
 557static int truncate_error_page(struct page *p, unsigned long pfn,
 558                                struct address_space *mapping)
 559{
 560        int ret = MF_FAILED;
 561
 562        if (mapping->a_ops->error_remove_page) {
 563                int err = mapping->a_ops->error_remove_page(mapping, p);
 564
 565                if (err != 0) {
 566                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 567                                pfn, err);
 568                } else if (page_has_private(p) &&
 569                           !try_to_release_page(p, GFP_NOIO)) {
 570                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 571                                pfn);
 572                } else {
 573                        ret = MF_RECOVERED;
 574                }
 575        } else {
 576                /*
 577                 * If the file system doesn't support it just invalidate
 578                 * This fails on dirty or anything with private pages
 579                 */
 580                if (invalidate_inode_page(p))
 581                        ret = MF_RECOVERED;
 582                else
 583                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 584                                pfn);
 585        }
 586
 587        return ret;
 588}
 589
 590/*
 591 * Error hit kernel page.
 592 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 593 * could be more sophisticated.
 594 */
 595static int me_kernel(struct page *p, unsigned long pfn)
 596{
 597        return MF_IGNORED;
 598}
 599
 600/*
 601 * Page in unknown state. Do nothing.
 602 */
 603static int me_unknown(struct page *p, unsigned long pfn)
 604{
 605        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 606        return MF_FAILED;
 607}
 608
 609/*
 610 * Clean (or cleaned) page cache page.
 611 */
 612static int me_pagecache_clean(struct page *p, unsigned long pfn)
 613{
 614        struct address_space *mapping;
 615
 616        delete_from_lru_cache(p);
 617
 618        /*
 619         * For anonymous pages we're done the only reference left
 620         * should be the one m_f() holds.
 621         */
 622        if (PageAnon(p))
 623                return MF_RECOVERED;
 624
 625        /*
 626         * Now truncate the page in the page cache. This is really
 627         * more like a "temporary hole punch"
 628         * Don't do this for block devices when someone else
 629         * has a reference, because it could be file system metadata
 630         * and that's not safe to truncate.
 631         */
 632        mapping = page_mapping(p);
 633        if (!mapping) {
 634                /*
 635                 * Page has been teared down in the meanwhile
 636                 */
 637                return MF_FAILED;
 638        }
 639
 640        /*
 641         * Truncation is a bit tricky. Enable it per file system for now.
 642         *
 643         * Open: to take i_mutex or not for this? Right now we don't.
 644         */
 645        return truncate_error_page(p, pfn, mapping);
 646}
 647
 648/*
 649 * Dirty pagecache page
 650 * Issues: when the error hit a hole page the error is not properly
 651 * propagated.
 652 */
 653static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 654{
 655        struct address_space *mapping = page_mapping(p);
 656
 657        SetPageError(p);
 658        /* TBD: print more information about the file. */
 659        if (mapping) {
 660                /*
 661                 * IO error will be reported by write(), fsync(), etc.
 662                 * who check the mapping.
 663                 * This way the application knows that something went
 664                 * wrong with its dirty file data.
 665                 *
 666                 * There's one open issue:
 667                 *
 668                 * The EIO will be only reported on the next IO
 669                 * operation and then cleared through the IO map.
 670                 * Normally Linux has two mechanisms to pass IO error
 671                 * first through the AS_EIO flag in the address space
 672                 * and then through the PageError flag in the page.
 673                 * Since we drop pages on memory failure handling the
 674                 * only mechanism open to use is through AS_AIO.
 675                 *
 676                 * This has the disadvantage that it gets cleared on
 677                 * the first operation that returns an error, while
 678                 * the PageError bit is more sticky and only cleared
 679                 * when the page is reread or dropped.  If an
 680                 * application assumes it will always get error on
 681                 * fsync, but does other operations on the fd before
 682                 * and the page is dropped between then the error
 683                 * will not be properly reported.
 684                 *
 685                 * This can already happen even without hwpoisoned
 686                 * pages: first on metadata IO errors (which only
 687                 * report through AS_EIO) or when the page is dropped
 688                 * at the wrong time.
 689                 *
 690                 * So right now we assume that the application DTRT on
 691                 * the first EIO, but we're not worse than other parts
 692                 * of the kernel.
 693                 */
 694                mapping_set_error(mapping, -EIO);
 695        }
 696
 697        return me_pagecache_clean(p, pfn);
 698}
 699
 700/*
 701 * Clean and dirty swap cache.
 702 *
 703 * Dirty swap cache page is tricky to handle. The page could live both in page
 704 * cache and swap cache(ie. page is freshly swapped in). So it could be
 705 * referenced concurrently by 2 types of PTEs:
 706 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 707 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 708 * and then
 709 *      - clear dirty bit to prevent IO
 710 *      - remove from LRU
 711 *      - but keep in the swap cache, so that when we return to it on
 712 *        a later page fault, we know the application is accessing
 713 *        corrupted data and shall be killed (we installed simple
 714 *        interception code in do_swap_page to catch it).
 715 *
 716 * Clean swap cache pages can be directly isolated. A later page fault will
 717 * bring in the known good data from disk.
 718 */
 719static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 720{
 721        ClearPageDirty(p);
 722        /* Trigger EIO in shmem: */
 723        ClearPageUptodate(p);
 724
 725        if (!delete_from_lru_cache(p))
 726                return MF_DELAYED;
 727        else
 728                return MF_FAILED;
 729}
 730
 731static int me_swapcache_clean(struct page *p, unsigned long pfn)
 732{
 733        delete_from_swap_cache(p);
 734
 735        if (!delete_from_lru_cache(p))
 736                return MF_RECOVERED;
 737        else
 738                return MF_FAILED;
 739}
 740
 741/*
 742 * Huge pages. Needs work.
 743 * Issues:
 744 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 745 *   To narrow down kill region to one page, we need to break up pmd.
 746 */
 747static int me_huge_page(struct page *p, unsigned long pfn)
 748{
 749        int res = 0;
 750        struct page *hpage = compound_head(p);
 751        struct address_space *mapping;
 752
 753        if (!PageHuge(hpage))
 754                return MF_DELAYED;
 755
 756        mapping = page_mapping(hpage);
 757        if (mapping) {
 758                res = truncate_error_page(hpage, pfn, mapping);
 759        } else {
 760                unlock_page(hpage);
 761                /*
 762                 * migration entry prevents later access on error anonymous
 763                 * hugepage, so we can free and dissolve it into buddy to
 764                 * save healthy subpages.
 765                 */
 766                if (PageAnon(hpage))
 767                        put_page(hpage);
 768                dissolve_free_huge_page(p);
 769                res = MF_RECOVERED;
 770                lock_page(hpage);
 771        }
 772
 773        return res;
 774}
 775
 776/*
 777 * Various page states we can handle.
 778 *
 779 * A page state is defined by its current page->flags bits.
 780 * The table matches them in order and calls the right handler.
 781 *
 782 * This is quite tricky because we can access page at any time
 783 * in its live cycle, so all accesses have to be extremely careful.
 784 *
 785 * This is not complete. More states could be added.
 786 * For any missing state don't attempt recovery.
 787 */
 788
 789#define dirty           (1UL << PG_dirty)
 790#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 791#define unevict         (1UL << PG_unevictable)
 792#define mlock           (1UL << PG_mlocked)
 793#define writeback       (1UL << PG_writeback)
 794#define lru             (1UL << PG_lru)
 795#define head            (1UL << PG_head)
 796#define slab            (1UL << PG_slab)
 797#define reserved        (1UL << PG_reserved)
 798
 799static struct page_state {
 800        unsigned long mask;
 801        unsigned long res;
 802        enum mf_action_page_type type;
 803        int (*action)(struct page *p, unsigned long pfn);
 804} error_states[] = {
 805        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 806        /*
 807         * free pages are specially detected outside this table:
 808         * PG_buddy pages only make a small fraction of all free pages.
 809         */
 810
 811        /*
 812         * Could in theory check if slab page is free or if we can drop
 813         * currently unused objects without touching them. But just
 814         * treat it as standard kernel for now.
 815         */
 816        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 817
 818        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 819
 820        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 821        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 822
 823        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 824        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 825
 826        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 827        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 828
 829        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 830        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 831
 832        /*
 833         * Catchall entry: must be at end.
 834         */
 835        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 836};
 837
 838#undef dirty
 839#undef sc
 840#undef unevict
 841#undef mlock
 842#undef writeback
 843#undef lru
 844#undef head
 845#undef slab
 846#undef reserved
 847
 848/*
 849 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 850 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 851 */
 852static void action_result(unsigned long pfn, enum mf_action_page_type type,
 853                          enum mf_result result)
 854{
 855        trace_memory_failure_event(pfn, type, result);
 856
 857        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 858                pfn, action_page_types[type], action_name[result]);
 859}
 860
 861static int page_action(struct page_state *ps, struct page *p,
 862                        unsigned long pfn)
 863{
 864        int result;
 865        int count;
 866
 867        result = ps->action(p, pfn);
 868
 869        count = page_count(p) - 1;
 870        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 871                count--;
 872        if (count > 0) {
 873                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 874                       pfn, action_page_types[ps->type], count);
 875                result = MF_FAILED;
 876        }
 877        action_result(pfn, ps->type, result);
 878
 879        /* Could do more checks here if page looks ok */
 880        /*
 881         * Could adjust zone counters here to correct for the missing page.
 882         */
 883
 884        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 885}
 886
 887/**
 888 * get_hwpoison_page() - Get refcount for memory error handling:
 889 * @page:       raw error page (hit by memory error)
 890 *
 891 * Return: return 0 if failed to grab the refcount, otherwise true (some
 892 * non-zero value.)
 893 */
 894int get_hwpoison_page(struct page *page)
 895{
 896        struct page *head = compound_head(page);
 897
 898        if (!PageHuge(head) && PageTransHuge(head)) {
 899                /*
 900                 * Non anonymous thp exists only in allocation/free time. We
 901                 * can't handle such a case correctly, so let's give it up.
 902                 * This should be better than triggering BUG_ON when kernel
 903                 * tries to touch the "partially handled" page.
 904                 */
 905                if (!PageAnon(head)) {
 906                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 907                                page_to_pfn(page));
 908                        return 0;
 909                }
 910        }
 911
 912        if (get_page_unless_zero(head)) {
 913                if (head == compound_head(page))
 914                        return 1;
 915
 916                pr_info("Memory failure: %#lx cannot catch tail\n",
 917                        page_to_pfn(page));
 918                put_page(head);
 919        }
 920
 921        return 0;
 922}
 923EXPORT_SYMBOL_GPL(get_hwpoison_page);
 924
 925/*
 926 * Do all that is necessary to remove user space mappings. Unmap
 927 * the pages and send SIGBUS to the processes if the data was dirty.
 928 */
 929static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 930                                  int trapno, int flags, struct page **hpagep)
 931{
 932        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 933        struct address_space *mapping;
 934        LIST_HEAD(tokill);
 935        bool unmap_success;
 936        int kill = 1, forcekill;
 937        struct page *hpage = *hpagep;
 938        bool mlocked = PageMlocked(hpage);
 939
 940        /*
 941         * Here we are interested only in user-mapped pages, so skip any
 942         * other types of pages.
 943         */
 944        if (PageReserved(p) || PageSlab(p))
 945                return true;
 946        if (!(PageLRU(hpage) || PageHuge(p)))
 947                return true;
 948
 949        /*
 950         * This check implies we don't kill processes if their pages
 951         * are in the swap cache early. Those are always late kills.
 952         */
 953        if (!page_mapped(hpage))
 954                return true;
 955
 956        if (PageKsm(p)) {
 957                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 958                return false;
 959        }
 960
 961        if (PageSwapCache(p)) {
 962                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 963                        pfn);
 964                ttu |= TTU_IGNORE_HWPOISON;
 965        }
 966
 967        /*
 968         * Propagate the dirty bit from PTEs to struct page first, because we
 969         * need this to decide if we should kill or just drop the page.
 970         * XXX: the dirty test could be racy: set_page_dirty() may not always
 971         * be called inside page lock (it's recommended but not enforced).
 972         */
 973        mapping = page_mapping(hpage);
 974        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 975            mapping_cap_writeback_dirty(mapping)) {
 976                if (page_mkclean(hpage)) {
 977                        SetPageDirty(hpage);
 978                } else {
 979                        kill = 0;
 980                        ttu |= TTU_IGNORE_HWPOISON;
 981                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 982                                pfn);
 983                }
 984        }
 985
 986        /*
 987         * First collect all the processes that have the page
 988         * mapped in dirty form.  This has to be done before try_to_unmap,
 989         * because ttu takes the rmap data structures down.
 990         *
 991         * Error handling: We ignore errors here because
 992         * there's nothing that can be done.
 993         */
 994        if (kill)
 995                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 996
 997        unmap_success = try_to_unmap(hpage, ttu);
 998        if (!unmap_success)
 999                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1000                       pfn, page_mapcount(hpage));
1001
1002        /*
1003         * try_to_unmap() might put mlocked page in lru cache, so call
1004         * shake_page() again to ensure that it's flushed.
1005         */
1006        if (mlocked)
1007                shake_page(hpage, 0);
1008
1009        /*
1010         * Now that the dirty bit has been propagated to the
1011         * struct page and all unmaps done we can decide if
1012         * killing is needed or not.  Only kill when the page
1013         * was dirty or the process is not restartable,
1014         * otherwise the tokill list is merely
1015         * freed.  When there was a problem unmapping earlier
1016         * use a more force-full uncatchable kill to prevent
1017         * any accesses to the poisoned memory.
1018         */
1019        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1020        kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1021
1022        return unmap_success;
1023}
1024
1025static int identify_page_state(unsigned long pfn, struct page *p,
1026                                unsigned long page_flags)
1027{
1028        struct page_state *ps;
1029
1030        /*
1031         * The first check uses the current page flags which may not have any
1032         * relevant information. The second check with the saved page flags is
1033         * carried out only if the first check can't determine the page status.
1034         */
1035        for (ps = error_states;; ps++)
1036                if ((p->flags & ps->mask) == ps->res)
1037                        break;
1038
1039        page_flags |= (p->flags & (1UL << PG_dirty));
1040
1041        if (!ps->mask)
1042                for (ps = error_states;; ps++)
1043                        if ((page_flags & ps->mask) == ps->res)
1044                                break;
1045        return page_action(ps, p, pfn);
1046}
1047
1048static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1049{
1050        struct page *p = pfn_to_page(pfn);
1051        struct page *head = compound_head(p);
1052        int res;
1053        unsigned long page_flags;
1054
1055        if (TestSetPageHWPoison(head)) {
1056                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1057                       pfn);
1058                return 0;
1059        }
1060
1061        num_poisoned_pages_inc();
1062
1063        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1064                /*
1065                 * Check "filter hit" and "race with other subpage."
1066                 */
1067                lock_page(head);
1068                if (PageHWPoison(head)) {
1069                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1070                            || (p != head && TestSetPageHWPoison(head))) {
1071                                num_poisoned_pages_dec();
1072                                unlock_page(head);
1073                                return 0;
1074                        }
1075                }
1076                unlock_page(head);
1077                dissolve_free_huge_page(p);
1078                action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1079                return 0;
1080        }
1081
1082        lock_page(head);
1083        page_flags = head->flags;
1084
1085        if (!PageHWPoison(head)) {
1086                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1087                num_poisoned_pages_dec();
1088                unlock_page(head);
1089                put_hwpoison_page(head);
1090                return 0;
1091        }
1092
1093        if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1094                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1095                res = -EBUSY;
1096                goto out;
1097        }
1098
1099        res = identify_page_state(pfn, p, page_flags);
1100out:
1101        unlock_page(head);
1102        return res;
1103}
1104
1105/**
1106 * memory_failure - Handle memory failure of a page.
1107 * @pfn: Page Number of the corrupted page
1108 * @trapno: Trap number reported in the signal to user space.
1109 * @flags: fine tune action taken
1110 *
1111 * This function is called by the low level machine check code
1112 * of an architecture when it detects hardware memory corruption
1113 * of a page. It tries its best to recover, which includes
1114 * dropping pages, killing processes etc.
1115 *
1116 * The function is primarily of use for corruptions that
1117 * happen outside the current execution context (e.g. when
1118 * detected by a background scrubber)
1119 *
1120 * Must run in process context (e.g. a work queue) with interrupts
1121 * enabled and no spinlocks hold.
1122 */
1123int memory_failure(unsigned long pfn, int trapno, int flags)
1124{
1125        struct page *p;
1126        struct page *hpage;
1127        struct page *orig_head;
1128        int res;
1129        unsigned long page_flags;
1130
1131        if (!sysctl_memory_failure_recovery)
1132                panic("Memory failure from trap %d on page %lx", trapno, pfn);
1133
1134        if (!pfn_valid(pfn)) {
1135                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1136                        pfn);
1137                return -ENXIO;
1138        }
1139
1140        p = pfn_to_page(pfn);
1141        if (PageHuge(p))
1142                return memory_failure_hugetlb(pfn, trapno, flags);
1143        if (TestSetPageHWPoison(p)) {
1144                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1145                        pfn);
1146                return 0;
1147        }
1148
1149        arch_unmap_kpfn(pfn);
1150
1151        orig_head = hpage = compound_head(p);
1152        num_poisoned_pages_inc();
1153
1154        /*
1155         * We need/can do nothing about count=0 pages.
1156         * 1) it's a free page, and therefore in safe hand:
1157         *    prep_new_page() will be the gate keeper.
1158         * 2) it's part of a non-compound high order page.
1159         *    Implies some kernel user: cannot stop them from
1160         *    R/W the page; let's pray that the page has been
1161         *    used and will be freed some time later.
1162         * In fact it's dangerous to directly bump up page count from 0,
1163         * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1164         */
1165        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1166                if (is_free_buddy_page(p)) {
1167                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1168                        return 0;
1169                } else {
1170                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1171                        return -EBUSY;
1172                }
1173        }
1174
1175        if (PageTransHuge(hpage)) {
1176                lock_page(p);
1177                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1178                        unlock_page(p);
1179                        if (!PageAnon(p))
1180                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1181                                        pfn);
1182                        else
1183                                pr_err("Memory failure: %#lx: thp split failed\n",
1184                                        pfn);
1185                        if (TestClearPageHWPoison(p))
1186                                num_poisoned_pages_dec();
1187                        put_hwpoison_page(p);
1188                        return -EBUSY;
1189                }
1190                unlock_page(p);
1191                VM_BUG_ON_PAGE(!page_count(p), p);
1192                hpage = compound_head(p);
1193        }
1194
1195        /*
1196         * We ignore non-LRU pages for good reasons.
1197         * - PG_locked is only well defined for LRU pages and a few others
1198         * - to avoid races with __SetPageLocked()
1199         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1200         * The check (unnecessarily) ignores LRU pages being isolated and
1201         * walked by the page reclaim code, however that's not a big loss.
1202         */
1203        shake_page(p, 0);
1204        /* shake_page could have turned it free. */
1205        if (!PageLRU(p) && is_free_buddy_page(p)) {
1206                if (flags & MF_COUNT_INCREASED)
1207                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1208                else
1209                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1210                return 0;
1211        }
1212
1213        lock_page(p);
1214
1215        /*
1216         * The page could have changed compound pages during the locking.
1217         * If this happens just bail out.
1218         */
1219        if (PageCompound(p) && compound_head(p) != orig_head) {
1220                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1221                res = -EBUSY;
1222                goto out;
1223        }
1224
1225        /*
1226         * We use page flags to determine what action should be taken, but
1227         * the flags can be modified by the error containment action.  One
1228         * example is an mlocked page, where PG_mlocked is cleared by
1229         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1230         * correctly, we save a copy of the page flags at this time.
1231         */
1232        if (PageHuge(p))
1233                page_flags = hpage->flags;
1234        else
1235                page_flags = p->flags;
1236
1237        /*
1238         * unpoison always clear PG_hwpoison inside page lock
1239         */
1240        if (!PageHWPoison(p)) {
1241                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1242                num_poisoned_pages_dec();
1243                unlock_page(p);
1244                put_hwpoison_page(p);
1245                return 0;
1246        }
1247        if (hwpoison_filter(p)) {
1248                if (TestClearPageHWPoison(p))
1249                        num_poisoned_pages_dec();
1250                unlock_page(p);
1251                put_hwpoison_page(p);
1252                return 0;
1253        }
1254
1255        if (!PageTransTail(p) && !PageLRU(p))
1256                goto identify_page_state;
1257
1258        /*
1259         * It's very difficult to mess with pages currently under IO
1260         * and in many cases impossible, so we just avoid it here.
1261         */
1262        wait_on_page_writeback(p);
1263
1264        /*
1265         * Now take care of user space mappings.
1266         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1267         *
1268         * When the raw error page is thp tail page, hpage points to the raw
1269         * page after thp split.
1270         */
1271        if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
1272                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1273                res = -EBUSY;
1274                goto out;
1275        }
1276
1277        /*
1278         * Torn down by someone else?
1279         */
1280        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1281                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1282                res = -EBUSY;
1283                goto out;
1284        }
1285
1286identify_page_state:
1287        res = identify_page_state(pfn, p, page_flags);
1288out:
1289        unlock_page(p);
1290        return res;
1291}
1292EXPORT_SYMBOL_GPL(memory_failure);
1293
1294#define MEMORY_FAILURE_FIFO_ORDER       4
1295#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1296
1297struct memory_failure_entry {
1298        unsigned long pfn;
1299        int trapno;
1300        int flags;
1301};
1302
1303struct memory_failure_cpu {
1304        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1305                      MEMORY_FAILURE_FIFO_SIZE);
1306        spinlock_t lock;
1307        struct work_struct work;
1308};
1309
1310static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1311
1312/**
1313 * memory_failure_queue - Schedule handling memory failure of a page.
1314 * @pfn: Page Number of the corrupted page
1315 * @trapno: Trap number reported in the signal to user space.
1316 * @flags: Flags for memory failure handling
1317 *
1318 * This function is called by the low level hardware error handler
1319 * when it detects hardware memory corruption of a page. It schedules
1320 * the recovering of error page, including dropping pages, killing
1321 * processes etc.
1322 *
1323 * The function is primarily of use for corruptions that
1324 * happen outside the current execution context (e.g. when
1325 * detected by a background scrubber)
1326 *
1327 * Can run in IRQ context.
1328 */
1329void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1330{
1331        struct memory_failure_cpu *mf_cpu;
1332        unsigned long proc_flags;
1333        struct memory_failure_entry entry = {
1334                .pfn =          pfn,
1335                .trapno =       trapno,
1336                .flags =        flags,
1337        };
1338
1339        mf_cpu = &get_cpu_var(memory_failure_cpu);
1340        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1341        if (kfifo_put(&mf_cpu->fifo, entry))
1342                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1343        else
1344                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1345                       pfn);
1346        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1347        put_cpu_var(memory_failure_cpu);
1348}
1349EXPORT_SYMBOL_GPL(memory_failure_queue);
1350
1351static void memory_failure_work_func(struct work_struct *work)
1352{
1353        struct memory_failure_cpu *mf_cpu;
1354        struct memory_failure_entry entry = { 0, };
1355        unsigned long proc_flags;
1356        int gotten;
1357
1358        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1359        for (;;) {
1360                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1361                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1362                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1363                if (!gotten)
1364                        break;
1365                if (entry.flags & MF_SOFT_OFFLINE)
1366                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1367                else
1368                        memory_failure(entry.pfn, entry.trapno, entry.flags);
1369        }
1370}
1371
1372static int __init memory_failure_init(void)
1373{
1374        struct memory_failure_cpu *mf_cpu;
1375        int cpu;
1376
1377        for_each_possible_cpu(cpu) {
1378                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1379                spin_lock_init(&mf_cpu->lock);
1380                INIT_KFIFO(mf_cpu->fifo);
1381                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1382        }
1383
1384        return 0;
1385}
1386core_initcall(memory_failure_init);
1387
1388#define unpoison_pr_info(fmt, pfn, rs)                  \
1389({                                                      \
1390        if (__ratelimit(rs))                            \
1391                pr_info(fmt, pfn);                      \
1392})
1393
1394/**
1395 * unpoison_memory - Unpoison a previously poisoned page
1396 * @pfn: Page number of the to be unpoisoned page
1397 *
1398 * Software-unpoison a page that has been poisoned by
1399 * memory_failure() earlier.
1400 *
1401 * This is only done on the software-level, so it only works
1402 * for linux injected failures, not real hardware failures
1403 *
1404 * Returns 0 for success, otherwise -errno.
1405 */
1406int unpoison_memory(unsigned long pfn)
1407{
1408        struct page *page;
1409        struct page *p;
1410        int freeit = 0;
1411        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1412                                        DEFAULT_RATELIMIT_BURST);
1413
1414        if (!pfn_valid(pfn))
1415                return -ENXIO;
1416
1417        p = pfn_to_page(pfn);
1418        page = compound_head(p);
1419
1420        if (!PageHWPoison(p)) {
1421                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1422                                 pfn, &unpoison_rs);
1423                return 0;
1424        }
1425
1426        if (page_count(page) > 1) {
1427                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1428                                 pfn, &unpoison_rs);
1429                return 0;
1430        }
1431
1432        if (page_mapped(page)) {
1433                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1434                                 pfn, &unpoison_rs);
1435                return 0;
1436        }
1437
1438        if (page_mapping(page)) {
1439                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1440                                 pfn, &unpoison_rs);
1441                return 0;
1442        }
1443
1444        /*
1445         * unpoison_memory() can encounter thp only when the thp is being
1446         * worked by memory_failure() and the page lock is not held yet.
1447         * In such case, we yield to memory_failure() and make unpoison fail.
1448         */
1449        if (!PageHuge(page) && PageTransHuge(page)) {
1450                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1451                                 pfn, &unpoison_rs);
1452                return 0;
1453        }
1454
1455        if (!get_hwpoison_page(p)) {
1456                if (TestClearPageHWPoison(p))
1457                        num_poisoned_pages_dec();
1458                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1459                                 pfn, &unpoison_rs);
1460                return 0;
1461        }
1462
1463        lock_page(page);
1464        /*
1465         * This test is racy because PG_hwpoison is set outside of page lock.
1466         * That's acceptable because that won't trigger kernel panic. Instead,
1467         * the PG_hwpoison page will be caught and isolated on the entrance to
1468         * the free buddy page pool.
1469         */
1470        if (TestClearPageHWPoison(page)) {
1471                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1472                                 pfn, &unpoison_rs);
1473                num_poisoned_pages_dec();
1474                freeit = 1;
1475        }
1476        unlock_page(page);
1477
1478        put_hwpoison_page(page);
1479        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1480                put_hwpoison_page(page);
1481
1482        return 0;
1483}
1484EXPORT_SYMBOL(unpoison_memory);
1485
1486static struct page *new_page(struct page *p, unsigned long private, int **x)
1487{
1488        int nid = page_to_nid(p);
1489
1490        return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1491}
1492
1493/*
1494 * Safely get reference count of an arbitrary page.
1495 * Returns 0 for a free page, -EIO for a zero refcount page
1496 * that is not free, and 1 for any other page type.
1497 * For 1 the page is returned with increased page count, otherwise not.
1498 */
1499static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1500{
1501        int ret;
1502
1503        if (flags & MF_COUNT_INCREASED)
1504                return 1;
1505
1506        /*
1507         * When the target page is a free hugepage, just remove it
1508         * from free hugepage list.
1509         */
1510        if (!get_hwpoison_page(p)) {
1511                if (PageHuge(p)) {
1512                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1513                        ret = 0;
1514                } else if (is_free_buddy_page(p)) {
1515                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1516                        ret = 0;
1517                } else {
1518                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1519                                __func__, pfn, p->flags);
1520                        ret = -EIO;
1521                }
1522        } else {
1523                /* Not a free page */
1524                ret = 1;
1525        }
1526        return ret;
1527}
1528
1529static int get_any_page(struct page *page, unsigned long pfn, int flags)
1530{
1531        int ret = __get_any_page(page, pfn, flags);
1532
1533        if (ret == 1 && !PageHuge(page) &&
1534            !PageLRU(page) && !__PageMovable(page)) {
1535                /*
1536                 * Try to free it.
1537                 */
1538                put_hwpoison_page(page);
1539                shake_page(page, 1);
1540
1541                /*
1542                 * Did it turn free?
1543                 */
1544                ret = __get_any_page(page, pfn, 0);
1545                if (ret == 1 && !PageLRU(page)) {
1546                        /* Drop page reference which is from __get_any_page() */
1547                        put_hwpoison_page(page);
1548                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1549                                pfn, page->flags, &page->flags);
1550                        return -EIO;
1551                }
1552        }
1553        return ret;
1554}
1555
1556static int soft_offline_huge_page(struct page *page, int flags)
1557{
1558        int ret;
1559        unsigned long pfn = page_to_pfn(page);
1560        struct page *hpage = compound_head(page);
1561        LIST_HEAD(pagelist);
1562
1563        /*
1564         * This double-check of PageHWPoison is to avoid the race with
1565         * memory_failure(). See also comment in __soft_offline_page().
1566         */
1567        lock_page(hpage);
1568        if (PageHWPoison(hpage)) {
1569                unlock_page(hpage);
1570                put_hwpoison_page(hpage);
1571                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1572                return -EBUSY;
1573        }
1574        unlock_page(hpage);
1575
1576        ret = isolate_huge_page(hpage, &pagelist);
1577        /*
1578         * get_any_page() and isolate_huge_page() takes a refcount each,
1579         * so need to drop one here.
1580         */
1581        put_hwpoison_page(hpage);
1582        if (!ret) {
1583                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1584                return -EBUSY;
1585        }
1586
1587        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1588                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1589        if (ret) {
1590                pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1591                        pfn, ret, page->flags, &page->flags);
1592                if (!list_empty(&pagelist))
1593                        putback_movable_pages(&pagelist);
1594                if (ret > 0)
1595                        ret = -EIO;
1596        } else {
1597                if (PageHuge(page))
1598                        dissolve_free_huge_page(page);
1599        }
1600        return ret;
1601}
1602
1603static int __soft_offline_page(struct page *page, int flags)
1604{
1605        int ret;
1606        unsigned long pfn = page_to_pfn(page);
1607
1608        /*
1609         * Check PageHWPoison again inside page lock because PageHWPoison
1610         * is set by memory_failure() outside page lock. Note that
1611         * memory_failure() also double-checks PageHWPoison inside page lock,
1612         * so there's no race between soft_offline_page() and memory_failure().
1613         */
1614        lock_page(page);
1615        wait_on_page_writeback(page);
1616        if (PageHWPoison(page)) {
1617                unlock_page(page);
1618                put_hwpoison_page(page);
1619                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1620                return -EBUSY;
1621        }
1622        /*
1623         * Try to invalidate first. This should work for
1624         * non dirty unmapped page cache pages.
1625         */
1626        ret = invalidate_inode_page(page);
1627        unlock_page(page);
1628        /*
1629         * RED-PEN would be better to keep it isolated here, but we
1630         * would need to fix isolation locking first.
1631         */
1632        if (ret == 1) {
1633                put_hwpoison_page(page);
1634                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1635                SetPageHWPoison(page);
1636                num_poisoned_pages_inc();
1637                return 0;
1638        }
1639
1640        /*
1641         * Simple invalidation didn't work.
1642         * Try to migrate to a new page instead. migrate.c
1643         * handles a large number of cases for us.
1644         */
1645        if (PageLRU(page))
1646                ret = isolate_lru_page(page);
1647        else
1648                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1649        /*
1650         * Drop page reference which is came from get_any_page()
1651         * successful isolate_lru_page() already took another one.
1652         */
1653        put_hwpoison_page(page);
1654        if (!ret) {
1655                LIST_HEAD(pagelist);
1656                /*
1657                 * After isolated lru page, the PageLRU will be cleared,
1658                 * so use !__PageMovable instead for LRU page's mapping
1659                 * cannot have PAGE_MAPPING_MOVABLE.
1660                 */
1661                if (!__PageMovable(page))
1662                        inc_node_page_state(page, NR_ISOLATED_ANON +
1663                                                page_is_file_cache(page));
1664                list_add(&page->lru, &pagelist);
1665                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1666                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1667                if (ret) {
1668                        if (!list_empty(&pagelist))
1669                                putback_movable_pages(&pagelist);
1670
1671                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1672                                pfn, ret, page->flags, &page->flags);
1673                        if (ret > 0)
1674                                ret = -EIO;
1675                }
1676        } else {
1677                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1678                        pfn, ret, page_count(page), page->flags, &page->flags);
1679        }
1680        return ret;
1681}
1682
1683static int soft_offline_in_use_page(struct page *page, int flags)
1684{
1685        int ret;
1686        struct page *hpage = compound_head(page);
1687
1688        if (!PageHuge(page) && PageTransHuge(hpage)) {
1689                lock_page(hpage);
1690                if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1691                        unlock_page(hpage);
1692                        if (!PageAnon(hpage))
1693                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1694                        else
1695                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1696                        put_hwpoison_page(hpage);
1697                        return -EBUSY;
1698                }
1699                unlock_page(hpage);
1700                get_hwpoison_page(page);
1701                put_hwpoison_page(hpage);
1702        }
1703
1704        if (PageHuge(page))
1705                ret = soft_offline_huge_page(page, flags);
1706        else
1707                ret = __soft_offline_page(page, flags);
1708
1709        return ret;
1710}
1711
1712static void soft_offline_free_page(struct page *page)
1713{
1714        struct page *head = compound_head(page);
1715
1716        if (!TestSetPageHWPoison(head)) {
1717                num_poisoned_pages_inc();
1718                if (PageHuge(head))
1719                        dissolve_free_huge_page(page);
1720        }
1721}
1722
1723/**
1724 * soft_offline_page - Soft offline a page.
1725 * @page: page to offline
1726 * @flags: flags. Same as memory_failure().
1727 *
1728 * Returns 0 on success, otherwise negated errno.
1729 *
1730 * Soft offline a page, by migration or invalidation,
1731 * without killing anything. This is for the case when
1732 * a page is not corrupted yet (so it's still valid to access),
1733 * but has had a number of corrected errors and is better taken
1734 * out.
1735 *
1736 * The actual policy on when to do that is maintained by
1737 * user space.
1738 *
1739 * This should never impact any application or cause data loss,
1740 * however it might take some time.
1741 *
1742 * This is not a 100% solution for all memory, but tries to be
1743 * ``good enough'' for the majority of memory.
1744 */
1745int soft_offline_page(struct page *page, int flags)
1746{
1747        int ret;
1748        unsigned long pfn = page_to_pfn(page);
1749
1750        if (PageHWPoison(page)) {
1751                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1752                if (flags & MF_COUNT_INCREASED)
1753                        put_hwpoison_page(page);
1754                return -EBUSY;
1755        }
1756
1757        get_online_mems();
1758        ret = get_any_page(page, pfn, flags);
1759        put_online_mems();
1760
1761        if (ret > 0)
1762                ret = soft_offline_in_use_page(page, flags);
1763        else if (ret == 0)
1764                soft_offline_free_page(page);
1765
1766        return ret;
1767}
1768