linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/memremap.h>
  53#include <linux/ksm.h>
  54#include <linux/rmap.h>
  55#include <linux/export.h>
  56#include <linux/delayacct.h>
  57#include <linux/init.h>
  58#include <linux/pfn_t.h>
  59#include <linux/writeback.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/kallsyms.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73
  74#include <asm/io.h>
  75#include <asm/mmu_context.h>
  76#include <asm/pgalloc.h>
  77#include <linux/uaccess.h>
  78#include <asm/tlb.h>
  79#include <asm/tlbflush.h>
  80#include <asm/pgtable.h>
  81
  82#include "internal.h"
  83
  84#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  85#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  86#endif
  87
  88#ifndef CONFIG_NEED_MULTIPLE_NODES
  89/* use the per-pgdat data instead for discontigmem - mbligh */
  90unsigned long max_mapnr;
  91EXPORT_SYMBOL(max_mapnr);
  92
  93struct page *mem_map;
  94EXPORT_SYMBOL(mem_map);
  95#endif
  96
  97/*
  98 * A number of key systems in x86 including ioremap() rely on the assumption
  99 * that high_memory defines the upper bound on direct map memory, then end
 100 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 102 * and ZONE_HIGHMEM.
 103 */
 104void *high_memory;
 105EXPORT_SYMBOL(high_memory);
 106
 107/*
 108 * Randomize the address space (stacks, mmaps, brk, etc.).
 109 *
 110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 111 *   as ancient (libc5 based) binaries can segfault. )
 112 */
 113int randomize_va_space __read_mostly =
 114#ifdef CONFIG_COMPAT_BRK
 115                                        1;
 116#else
 117                                        2;
 118#endif
 119
 120static int __init disable_randmaps(char *s)
 121{
 122        randomize_va_space = 0;
 123        return 1;
 124}
 125__setup("norandmaps", disable_randmaps);
 126
 127unsigned long zero_pfn __read_mostly;
 128EXPORT_SYMBOL(zero_pfn);
 129
 130unsigned long highest_memmap_pfn __read_mostly;
 131
 132/*
 133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 134 */
 135static int __init init_zero_pfn(void)
 136{
 137        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 138        return 0;
 139}
 140core_initcall(init_zero_pfn);
 141
 142
 143#if defined(SPLIT_RSS_COUNTING)
 144
 145void sync_mm_rss(struct mm_struct *mm)
 146{
 147        int i;
 148
 149        for (i = 0; i < NR_MM_COUNTERS; i++) {
 150                if (current->rss_stat.count[i]) {
 151                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 152                        current->rss_stat.count[i] = 0;
 153                }
 154        }
 155        current->rss_stat.events = 0;
 156}
 157
 158static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 159{
 160        struct task_struct *task = current;
 161
 162        if (likely(task->mm == mm))
 163                task->rss_stat.count[member] += val;
 164        else
 165                add_mm_counter(mm, member, val);
 166}
 167#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 168#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 169
 170/* sync counter once per 64 page faults */
 171#define TASK_RSS_EVENTS_THRESH  (64)
 172static void check_sync_rss_stat(struct task_struct *task)
 173{
 174        if (unlikely(task != current))
 175                return;
 176        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 177                sync_mm_rss(task->mm);
 178}
 179#else /* SPLIT_RSS_COUNTING */
 180
 181#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 182#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 183
 184static void check_sync_rss_stat(struct task_struct *task)
 185{
 186}
 187
 188#endif /* SPLIT_RSS_COUNTING */
 189
 190#ifdef HAVE_GENERIC_MMU_GATHER
 191
 192static bool tlb_next_batch(struct mmu_gather *tlb)
 193{
 194        struct mmu_gather_batch *batch;
 195
 196        batch = tlb->active;
 197        if (batch->next) {
 198                tlb->active = batch->next;
 199                return true;
 200        }
 201
 202        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 203                return false;
 204
 205        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 206        if (!batch)
 207                return false;
 208
 209        tlb->batch_count++;
 210        batch->next = NULL;
 211        batch->nr   = 0;
 212        batch->max  = MAX_GATHER_BATCH;
 213
 214        tlb->active->next = batch;
 215        tlb->active = batch;
 216
 217        return true;
 218}
 219
 220void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 221                                unsigned long start, unsigned long end)
 222{
 223        tlb->mm = mm;
 224
 225        /* Is it from 0 to ~0? */
 226        tlb->fullmm     = !(start | (end+1));
 227        tlb->need_flush_all = 0;
 228        tlb->local.next = NULL;
 229        tlb->local.nr   = 0;
 230        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 231        tlb->active     = &tlb->local;
 232        tlb->batch_count = 0;
 233
 234#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 235        tlb->batch = NULL;
 236#endif
 237        tlb->page_size = 0;
 238
 239        __tlb_reset_range(tlb);
 240}
 241
 242static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 243{
 244        if (!tlb->end)
 245                return;
 246
 247        tlb_flush(tlb);
 248        mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 249#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 250        tlb_table_flush(tlb);
 251#endif
 252        __tlb_reset_range(tlb);
 253}
 254
 255static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 256{
 257        struct mmu_gather_batch *batch;
 258
 259        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 260                free_pages_and_swap_cache(batch->pages, batch->nr);
 261                batch->nr = 0;
 262        }
 263        tlb->active = &tlb->local;
 264}
 265
 266void tlb_flush_mmu(struct mmu_gather *tlb)
 267{
 268        tlb_flush_mmu_tlbonly(tlb);
 269        tlb_flush_mmu_free(tlb);
 270}
 271
 272/* tlb_finish_mmu
 273 *      Called at the end of the shootdown operation to free up any resources
 274 *      that were required.
 275 */
 276void arch_tlb_finish_mmu(struct mmu_gather *tlb,
 277                unsigned long start, unsigned long end, bool force)
 278{
 279        struct mmu_gather_batch *batch, *next;
 280
 281        if (force)
 282                __tlb_adjust_range(tlb, start, end - start);
 283
 284        tlb_flush_mmu(tlb);
 285
 286        /* keep the page table cache within bounds */
 287        check_pgt_cache();
 288
 289        for (batch = tlb->local.next; batch; batch = next) {
 290                next = batch->next;
 291                free_pages((unsigned long)batch, 0);
 292        }
 293        tlb->local.next = NULL;
 294}
 295
 296/* __tlb_remove_page
 297 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 298 *      handling the additional races in SMP caused by other CPUs caching valid
 299 *      mappings in their TLBs. Returns the number of free page slots left.
 300 *      When out of page slots we must call tlb_flush_mmu().
 301 *returns true if the caller should flush.
 302 */
 303bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 304{
 305        struct mmu_gather_batch *batch;
 306
 307        VM_BUG_ON(!tlb->end);
 308        VM_WARN_ON(tlb->page_size != page_size);
 309
 310        batch = tlb->active;
 311        /*
 312         * Add the page and check if we are full. If so
 313         * force a flush.
 314         */
 315        batch->pages[batch->nr++] = page;
 316        if (batch->nr == batch->max) {
 317                if (!tlb_next_batch(tlb))
 318                        return true;
 319                batch = tlb->active;
 320        }
 321        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 322
 323        return false;
 324}
 325
 326#endif /* HAVE_GENERIC_MMU_GATHER */
 327
 328#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 329
 330/*
 331 * See the comment near struct mmu_table_batch.
 332 */
 333
 334static void tlb_remove_table_smp_sync(void *arg)
 335{
 336        /* Simply deliver the interrupt */
 337}
 338
 339static void tlb_remove_table_one(void *table)
 340{
 341        /*
 342         * This isn't an RCU grace period and hence the page-tables cannot be
 343         * assumed to be actually RCU-freed.
 344         *
 345         * It is however sufficient for software page-table walkers that rely on
 346         * IRQ disabling. See the comment near struct mmu_table_batch.
 347         */
 348        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 349        __tlb_remove_table(table);
 350}
 351
 352static void tlb_remove_table_rcu(struct rcu_head *head)
 353{
 354        struct mmu_table_batch *batch;
 355        int i;
 356
 357        batch = container_of(head, struct mmu_table_batch, rcu);
 358
 359        for (i = 0; i < batch->nr; i++)
 360                __tlb_remove_table(batch->tables[i]);
 361
 362        free_page((unsigned long)batch);
 363}
 364
 365void tlb_table_flush(struct mmu_gather *tlb)
 366{
 367        struct mmu_table_batch **batch = &tlb->batch;
 368
 369        if (*batch) {
 370                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 371                *batch = NULL;
 372        }
 373}
 374
 375void tlb_remove_table(struct mmu_gather *tlb, void *table)
 376{
 377        struct mmu_table_batch **batch = &tlb->batch;
 378
 379        /*
 380         * When there's less then two users of this mm there cannot be a
 381         * concurrent page-table walk.
 382         */
 383        if (atomic_read(&tlb->mm->mm_users) < 2) {
 384                __tlb_remove_table(table);
 385                return;
 386        }
 387
 388        if (*batch == NULL) {
 389                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 390                if (*batch == NULL) {
 391                        tlb_remove_table_one(table);
 392                        return;
 393                }
 394                (*batch)->nr = 0;
 395        }
 396        (*batch)->tables[(*batch)->nr++] = table;
 397        if ((*batch)->nr == MAX_TABLE_BATCH)
 398                tlb_table_flush(tlb);
 399}
 400
 401#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 402
 403/* tlb_gather_mmu
 404 *      Called to initialize an (on-stack) mmu_gather structure for page-table
 405 *      tear-down from @mm. The @fullmm argument is used when @mm is without
 406 *      users and we're going to destroy the full address space (exit/execve).
 407 */
 408void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 409                        unsigned long start, unsigned long end)
 410{
 411        arch_tlb_gather_mmu(tlb, mm, start, end);
 412        inc_tlb_flush_pending(tlb->mm);
 413}
 414
 415void tlb_finish_mmu(struct mmu_gather *tlb,
 416                unsigned long start, unsigned long end)
 417{
 418        /*
 419         * If there are parallel threads are doing PTE changes on same range
 420         * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
 421         * flush by batching, a thread has stable TLB entry can fail to flush
 422         * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
 423         * forcefully if we detect parallel PTE batching threads.
 424         */
 425        bool force = mm_tlb_flush_nested(tlb->mm);
 426
 427        arch_tlb_finish_mmu(tlb, start, end, force);
 428        dec_tlb_flush_pending(tlb->mm);
 429}
 430
 431/*
 432 * Note: this doesn't free the actual pages themselves. That
 433 * has been handled earlier when unmapping all the memory regions.
 434 */
 435static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 436                           unsigned long addr)
 437{
 438        pgtable_t token = pmd_pgtable(*pmd);
 439        pmd_clear(pmd);
 440        pte_free_tlb(tlb, token, addr);
 441        mm_dec_nr_ptes(tlb->mm);
 442}
 443
 444static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 445                                unsigned long addr, unsigned long end,
 446                                unsigned long floor, unsigned long ceiling)
 447{
 448        pmd_t *pmd;
 449        unsigned long next;
 450        unsigned long start;
 451
 452        start = addr;
 453        pmd = pmd_offset(pud, addr);
 454        do {
 455                next = pmd_addr_end(addr, end);
 456                if (pmd_none_or_clear_bad(pmd))
 457                        continue;
 458                free_pte_range(tlb, pmd, addr);
 459        } while (pmd++, addr = next, addr != end);
 460
 461        start &= PUD_MASK;
 462        if (start < floor)
 463                return;
 464        if (ceiling) {
 465                ceiling &= PUD_MASK;
 466                if (!ceiling)
 467                        return;
 468        }
 469        if (end - 1 > ceiling - 1)
 470                return;
 471
 472        pmd = pmd_offset(pud, start);
 473        pud_clear(pud);
 474        pmd_free_tlb(tlb, pmd, start);
 475        mm_dec_nr_pmds(tlb->mm);
 476}
 477
 478static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 479                                unsigned long addr, unsigned long end,
 480                                unsigned long floor, unsigned long ceiling)
 481{
 482        pud_t *pud;
 483        unsigned long next;
 484        unsigned long start;
 485
 486        start = addr;
 487        pud = pud_offset(p4d, addr);
 488        do {
 489                next = pud_addr_end(addr, end);
 490                if (pud_none_or_clear_bad(pud))
 491                        continue;
 492                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 493        } while (pud++, addr = next, addr != end);
 494
 495        start &= P4D_MASK;
 496        if (start < floor)
 497                return;
 498        if (ceiling) {
 499                ceiling &= P4D_MASK;
 500                if (!ceiling)
 501                        return;
 502        }
 503        if (end - 1 > ceiling - 1)
 504                return;
 505
 506        pud = pud_offset(p4d, start);
 507        p4d_clear(p4d);
 508        pud_free_tlb(tlb, pud, start);
 509        mm_dec_nr_puds(tlb->mm);
 510}
 511
 512static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 513                                unsigned long addr, unsigned long end,
 514                                unsigned long floor, unsigned long ceiling)
 515{
 516        p4d_t *p4d;
 517        unsigned long next;
 518        unsigned long start;
 519
 520        start = addr;
 521        p4d = p4d_offset(pgd, addr);
 522        do {
 523                next = p4d_addr_end(addr, end);
 524                if (p4d_none_or_clear_bad(p4d))
 525                        continue;
 526                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 527        } while (p4d++, addr = next, addr != end);
 528
 529        start &= PGDIR_MASK;
 530        if (start < floor)
 531                return;
 532        if (ceiling) {
 533                ceiling &= PGDIR_MASK;
 534                if (!ceiling)
 535                        return;
 536        }
 537        if (end - 1 > ceiling - 1)
 538                return;
 539
 540        p4d = p4d_offset(pgd, start);
 541        pgd_clear(pgd);
 542        p4d_free_tlb(tlb, p4d, start);
 543}
 544
 545/*
 546 * This function frees user-level page tables of a process.
 547 */
 548void free_pgd_range(struct mmu_gather *tlb,
 549                        unsigned long addr, unsigned long end,
 550                        unsigned long floor, unsigned long ceiling)
 551{
 552        pgd_t *pgd;
 553        unsigned long next;
 554
 555        /*
 556         * The next few lines have given us lots of grief...
 557         *
 558         * Why are we testing PMD* at this top level?  Because often
 559         * there will be no work to do at all, and we'd prefer not to
 560         * go all the way down to the bottom just to discover that.
 561         *
 562         * Why all these "- 1"s?  Because 0 represents both the bottom
 563         * of the address space and the top of it (using -1 for the
 564         * top wouldn't help much: the masks would do the wrong thing).
 565         * The rule is that addr 0 and floor 0 refer to the bottom of
 566         * the address space, but end 0 and ceiling 0 refer to the top
 567         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 568         * that end 0 case should be mythical).
 569         *
 570         * Wherever addr is brought up or ceiling brought down, we must
 571         * be careful to reject "the opposite 0" before it confuses the
 572         * subsequent tests.  But what about where end is brought down
 573         * by PMD_SIZE below? no, end can't go down to 0 there.
 574         *
 575         * Whereas we round start (addr) and ceiling down, by different
 576         * masks at different levels, in order to test whether a table
 577         * now has no other vmas using it, so can be freed, we don't
 578         * bother to round floor or end up - the tests don't need that.
 579         */
 580
 581        addr &= PMD_MASK;
 582        if (addr < floor) {
 583                addr += PMD_SIZE;
 584                if (!addr)
 585                        return;
 586        }
 587        if (ceiling) {
 588                ceiling &= PMD_MASK;
 589                if (!ceiling)
 590                        return;
 591        }
 592        if (end - 1 > ceiling - 1)
 593                end -= PMD_SIZE;
 594        if (addr > end - 1)
 595                return;
 596        /*
 597         * We add page table cache pages with PAGE_SIZE,
 598         * (see pte_free_tlb()), flush the tlb if we need
 599         */
 600        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 601        pgd = pgd_offset(tlb->mm, addr);
 602        do {
 603                next = pgd_addr_end(addr, end);
 604                if (pgd_none_or_clear_bad(pgd))
 605                        continue;
 606                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 607        } while (pgd++, addr = next, addr != end);
 608}
 609
 610void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 611                unsigned long floor, unsigned long ceiling)
 612{
 613        while (vma) {
 614                struct vm_area_struct *next = vma->vm_next;
 615                unsigned long addr = vma->vm_start;
 616
 617                /*
 618                 * Hide vma from rmap and truncate_pagecache before freeing
 619                 * pgtables
 620                 */
 621                unlink_anon_vmas(vma);
 622                unlink_file_vma(vma);
 623
 624                if (is_vm_hugetlb_page(vma)) {
 625                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 626                                floor, next ? next->vm_start : ceiling);
 627                } else {
 628                        /*
 629                         * Optimization: gather nearby vmas into one call down
 630                         */
 631                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 632                               && !is_vm_hugetlb_page(next)) {
 633                                vma = next;
 634                                next = vma->vm_next;
 635                                unlink_anon_vmas(vma);
 636                                unlink_file_vma(vma);
 637                        }
 638                        free_pgd_range(tlb, addr, vma->vm_end,
 639                                floor, next ? next->vm_start : ceiling);
 640                }
 641                vma = next;
 642        }
 643}
 644
 645int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 646{
 647        spinlock_t *ptl;
 648        pgtable_t new = pte_alloc_one(mm, address);
 649        if (!new)
 650                return -ENOMEM;
 651
 652        /*
 653         * Ensure all pte setup (eg. pte page lock and page clearing) are
 654         * visible before the pte is made visible to other CPUs by being
 655         * put into page tables.
 656         *
 657         * The other side of the story is the pointer chasing in the page
 658         * table walking code (when walking the page table without locking;
 659         * ie. most of the time). Fortunately, these data accesses consist
 660         * of a chain of data-dependent loads, meaning most CPUs (alpha
 661         * being the notable exception) will already guarantee loads are
 662         * seen in-order. See the alpha page table accessors for the
 663         * smp_read_barrier_depends() barriers in page table walking code.
 664         */
 665        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 666
 667        ptl = pmd_lock(mm, pmd);
 668        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 669                mm_inc_nr_ptes(mm);
 670                pmd_populate(mm, pmd, new);
 671                new = NULL;
 672        }
 673        spin_unlock(ptl);
 674        if (new)
 675                pte_free(mm, new);
 676        return 0;
 677}
 678
 679int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 680{
 681        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 682        if (!new)
 683                return -ENOMEM;
 684
 685        smp_wmb(); /* See comment in __pte_alloc */
 686
 687        spin_lock(&init_mm.page_table_lock);
 688        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 689                pmd_populate_kernel(&init_mm, pmd, new);
 690                new = NULL;
 691        }
 692        spin_unlock(&init_mm.page_table_lock);
 693        if (new)
 694                pte_free_kernel(&init_mm, new);
 695        return 0;
 696}
 697
 698static inline void init_rss_vec(int *rss)
 699{
 700        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 701}
 702
 703static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 704{
 705        int i;
 706
 707        if (current->mm == mm)
 708                sync_mm_rss(mm);
 709        for (i = 0; i < NR_MM_COUNTERS; i++)
 710                if (rss[i])
 711                        add_mm_counter(mm, i, rss[i]);
 712}
 713
 714/*
 715 * This function is called to print an error when a bad pte
 716 * is found. For example, we might have a PFN-mapped pte in
 717 * a region that doesn't allow it.
 718 *
 719 * The calling function must still handle the error.
 720 */
 721static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 722                          pte_t pte, struct page *page)
 723{
 724        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 725        p4d_t *p4d = p4d_offset(pgd, addr);
 726        pud_t *pud = pud_offset(p4d, addr);
 727        pmd_t *pmd = pmd_offset(pud, addr);
 728        struct address_space *mapping;
 729        pgoff_t index;
 730        static unsigned long resume;
 731        static unsigned long nr_shown;
 732        static unsigned long nr_unshown;
 733
 734        /*
 735         * Allow a burst of 60 reports, then keep quiet for that minute;
 736         * or allow a steady drip of one report per second.
 737         */
 738        if (nr_shown == 60) {
 739                if (time_before(jiffies, resume)) {
 740                        nr_unshown++;
 741                        return;
 742                }
 743                if (nr_unshown) {
 744                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 745                                 nr_unshown);
 746                        nr_unshown = 0;
 747                }
 748                nr_shown = 0;
 749        }
 750        if (nr_shown++ == 0)
 751                resume = jiffies + 60 * HZ;
 752
 753        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 754        index = linear_page_index(vma, addr);
 755
 756        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 757                 current->comm,
 758                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 759        if (page)
 760                dump_page(page, "bad pte");
 761        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 762                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 763        /*
 764         * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 765         */
 766        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 767                 vma->vm_file,
 768                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 769                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 770                 mapping ? mapping->a_ops->readpage : NULL);
 771        dump_stack();
 772        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 773}
 774
 775/*
 776 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 777 *
 778 * "Special" mappings do not wish to be associated with a "struct page" (either
 779 * it doesn't exist, or it exists but they don't want to touch it). In this
 780 * case, NULL is returned here. "Normal" mappings do have a struct page.
 781 *
 782 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 783 * pte bit, in which case this function is trivial. Secondly, an architecture
 784 * may not have a spare pte bit, which requires a more complicated scheme,
 785 * described below.
 786 *
 787 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 788 * special mapping (even if there are underlying and valid "struct pages").
 789 * COWed pages of a VM_PFNMAP are always normal.
 790 *
 791 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 792 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 793 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 794 * mapping will always honor the rule
 795 *
 796 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 797 *
 798 * And for normal mappings this is false.
 799 *
 800 * This restricts such mappings to be a linear translation from virtual address
 801 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 802 * as the vma is not a COW mapping; in that case, we know that all ptes are
 803 * special (because none can have been COWed).
 804 *
 805 *
 806 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 807 *
 808 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 809 * page" backing, however the difference is that _all_ pages with a struct
 810 * page (that is, those where pfn_valid is true) are refcounted and considered
 811 * normal pages by the VM. The disadvantage is that pages are refcounted
 812 * (which can be slower and simply not an option for some PFNMAP users). The
 813 * advantage is that we don't have to follow the strict linearity rule of
 814 * PFNMAP mappings in order to support COWable mappings.
 815 *
 816 */
 817#ifdef __HAVE_ARCH_PTE_SPECIAL
 818# define HAVE_PTE_SPECIAL 1
 819#else
 820# define HAVE_PTE_SPECIAL 0
 821#endif
 822struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 823                             pte_t pte, bool with_public_device)
 824{
 825        unsigned long pfn = pte_pfn(pte);
 826
 827        if (HAVE_PTE_SPECIAL) {
 828                if (likely(!pte_special(pte)))
 829                        goto check_pfn;
 830                if (vma->vm_ops && vma->vm_ops->find_special_page)
 831                        return vma->vm_ops->find_special_page(vma, addr);
 832                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 833                        return NULL;
 834                if (is_zero_pfn(pfn))
 835                        return NULL;
 836
 837                /*
 838                 * Device public pages are special pages (they are ZONE_DEVICE
 839                 * pages but different from persistent memory). They behave
 840                 * allmost like normal pages. The difference is that they are
 841                 * not on the lru and thus should never be involve with any-
 842                 * thing that involve lru manipulation (mlock, numa balancing,
 843                 * ...).
 844                 *
 845                 * This is why we still want to return NULL for such page from
 846                 * vm_normal_page() so that we do not have to special case all
 847                 * call site of vm_normal_page().
 848                 */
 849                if (likely(pfn <= highest_memmap_pfn)) {
 850                        struct page *page = pfn_to_page(pfn);
 851
 852                        if (is_device_public_page(page)) {
 853                                if (with_public_device)
 854                                        return page;
 855                                return NULL;
 856                        }
 857                }
 858                print_bad_pte(vma, addr, pte, NULL);
 859                return NULL;
 860        }
 861
 862        /* !HAVE_PTE_SPECIAL case follows: */
 863
 864        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 865                if (vma->vm_flags & VM_MIXEDMAP) {
 866                        if (!pfn_valid(pfn))
 867                                return NULL;
 868                        goto out;
 869                } else {
 870                        unsigned long off;
 871                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 872                        if (pfn == vma->vm_pgoff + off)
 873                                return NULL;
 874                        if (!is_cow_mapping(vma->vm_flags))
 875                                return NULL;
 876                }
 877        }
 878
 879        if (is_zero_pfn(pfn))
 880                return NULL;
 881check_pfn:
 882        if (unlikely(pfn > highest_memmap_pfn)) {
 883                print_bad_pte(vma, addr, pte, NULL);
 884                return NULL;
 885        }
 886
 887        /*
 888         * NOTE! We still have PageReserved() pages in the page tables.
 889         * eg. VDSO mappings can cause them to exist.
 890         */
 891out:
 892        return pfn_to_page(pfn);
 893}
 894
 895#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 896struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 897                                pmd_t pmd)
 898{
 899        unsigned long pfn = pmd_pfn(pmd);
 900
 901        /*
 902         * There is no pmd_special() but there may be special pmds, e.g.
 903         * in a direct-access (dax) mapping, so let's just replicate the
 904         * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 905         */
 906        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 907                if (vma->vm_flags & VM_MIXEDMAP) {
 908                        if (!pfn_valid(pfn))
 909                                return NULL;
 910                        goto out;
 911                } else {
 912                        unsigned long off;
 913                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 914                        if (pfn == vma->vm_pgoff + off)
 915                                return NULL;
 916                        if (!is_cow_mapping(vma->vm_flags))
 917                                return NULL;
 918                }
 919        }
 920
 921        if (is_zero_pfn(pfn))
 922                return NULL;
 923        if (unlikely(pfn > highest_memmap_pfn))
 924                return NULL;
 925
 926        /*
 927         * NOTE! We still have PageReserved() pages in the page tables.
 928         * eg. VDSO mappings can cause them to exist.
 929         */
 930out:
 931        return pfn_to_page(pfn);
 932}
 933#endif
 934
 935/*
 936 * copy one vm_area from one task to the other. Assumes the page tables
 937 * already present in the new task to be cleared in the whole range
 938 * covered by this vma.
 939 */
 940
 941static inline unsigned long
 942copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 943                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 944                unsigned long addr, int *rss)
 945{
 946        unsigned long vm_flags = vma->vm_flags;
 947        pte_t pte = *src_pte;
 948        struct page *page;
 949
 950        /* pte contains position in swap or file, so copy. */
 951        if (unlikely(!pte_present(pte))) {
 952                swp_entry_t entry = pte_to_swp_entry(pte);
 953
 954                if (likely(!non_swap_entry(entry))) {
 955                        if (swap_duplicate(entry) < 0)
 956                                return entry.val;
 957
 958                        /* make sure dst_mm is on swapoff's mmlist. */
 959                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 960                                spin_lock(&mmlist_lock);
 961                                if (list_empty(&dst_mm->mmlist))
 962                                        list_add(&dst_mm->mmlist,
 963                                                        &src_mm->mmlist);
 964                                spin_unlock(&mmlist_lock);
 965                        }
 966                        rss[MM_SWAPENTS]++;
 967                } else if (is_migration_entry(entry)) {
 968                        page = migration_entry_to_page(entry);
 969
 970                        rss[mm_counter(page)]++;
 971
 972                        if (is_write_migration_entry(entry) &&
 973                                        is_cow_mapping(vm_flags)) {
 974                                /*
 975                                 * COW mappings require pages in both
 976                                 * parent and child to be set to read.
 977                                 */
 978                                make_migration_entry_read(&entry);
 979                                pte = swp_entry_to_pte(entry);
 980                                if (pte_swp_soft_dirty(*src_pte))
 981                                        pte = pte_swp_mksoft_dirty(pte);
 982                                set_pte_at(src_mm, addr, src_pte, pte);
 983                        }
 984                } else if (is_device_private_entry(entry)) {
 985                        page = device_private_entry_to_page(entry);
 986
 987                        /*
 988                         * Update rss count even for unaddressable pages, as
 989                         * they should treated just like normal pages in this
 990                         * respect.
 991                         *
 992                         * We will likely want to have some new rss counters
 993                         * for unaddressable pages, at some point. But for now
 994                         * keep things as they are.
 995                         */
 996                        get_page(page);
 997                        rss[mm_counter(page)]++;
 998                        page_dup_rmap(page, false);
 999
1000                        /*
1001                         * We do not preserve soft-dirty information, because so
1002                         * far, checkpoint/restore is the only feature that
1003                         * requires that. And checkpoint/restore does not work
1004                         * when a device driver is involved (you cannot easily
1005                         * save and restore device driver state).
1006                         */
1007                        if (is_write_device_private_entry(entry) &&
1008                            is_cow_mapping(vm_flags)) {
1009                                make_device_private_entry_read(&entry);
1010                                pte = swp_entry_to_pte(entry);
1011                                set_pte_at(src_mm, addr, src_pte, pte);
1012                        }
1013                }
1014                goto out_set_pte;
1015        }
1016
1017        /*
1018         * If it's a COW mapping, write protect it both
1019         * in the parent and the child
1020         */
1021        if (is_cow_mapping(vm_flags)) {
1022                ptep_set_wrprotect(src_mm, addr, src_pte);
1023                pte = pte_wrprotect(pte);
1024        }
1025
1026        /*
1027         * If it's a shared mapping, mark it clean in
1028         * the child
1029         */
1030        if (vm_flags & VM_SHARED)
1031                pte = pte_mkclean(pte);
1032        pte = pte_mkold(pte);
1033
1034        page = vm_normal_page(vma, addr, pte);
1035        if (page) {
1036                get_page(page);
1037                page_dup_rmap(page, false);
1038                rss[mm_counter(page)]++;
1039        } else if (pte_devmap(pte)) {
1040                page = pte_page(pte);
1041
1042                /*
1043                 * Cache coherent device memory behave like regular page and
1044                 * not like persistent memory page. For more informations see
1045                 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046                 */
1047                if (is_device_public_page(page)) {
1048                        get_page(page);
1049                        page_dup_rmap(page, false);
1050                        rss[mm_counter(page)]++;
1051                }
1052        }
1053
1054out_set_pte:
1055        set_pte_at(dst_mm, addr, dst_pte, pte);
1056        return 0;
1057}
1058
1059static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1061                   unsigned long addr, unsigned long end)
1062{
1063        pte_t *orig_src_pte, *orig_dst_pte;
1064        pte_t *src_pte, *dst_pte;
1065        spinlock_t *src_ptl, *dst_ptl;
1066        int progress = 0;
1067        int rss[NR_MM_COUNTERS];
1068        swp_entry_t entry = (swp_entry_t){0};
1069
1070again:
1071        init_rss_vec(rss);
1072
1073        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1074        if (!dst_pte)
1075                return -ENOMEM;
1076        src_pte = pte_offset_map(src_pmd, addr);
1077        src_ptl = pte_lockptr(src_mm, src_pmd);
1078        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1079        orig_src_pte = src_pte;
1080        orig_dst_pte = dst_pte;
1081        arch_enter_lazy_mmu_mode();
1082
1083        do {
1084                /*
1085                 * We are holding two locks at this point - either of them
1086                 * could generate latencies in another task on another CPU.
1087                 */
1088                if (progress >= 32) {
1089                        progress = 0;
1090                        if (need_resched() ||
1091                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1092                                break;
1093                }
1094                if (pte_none(*src_pte)) {
1095                        progress++;
1096                        continue;
1097                }
1098                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1099                                                        vma, addr, rss);
1100                if (entry.val)
1101                        break;
1102                progress += 8;
1103        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104
1105        arch_leave_lazy_mmu_mode();
1106        spin_unlock(src_ptl);
1107        pte_unmap(orig_src_pte);
1108        add_mm_rss_vec(dst_mm, rss);
1109        pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110        cond_resched();
1111
1112        if (entry.val) {
1113                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1114                        return -ENOMEM;
1115                progress = 0;
1116        }
1117        if (addr != end)
1118                goto again;
1119        return 0;
1120}
1121
1122static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1124                unsigned long addr, unsigned long end)
1125{
1126        pmd_t *src_pmd, *dst_pmd;
1127        unsigned long next;
1128
1129        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1130        if (!dst_pmd)
1131                return -ENOMEM;
1132        src_pmd = pmd_offset(src_pud, addr);
1133        do {
1134                next = pmd_addr_end(addr, end);
1135                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1136                        || pmd_devmap(*src_pmd)) {
1137                        int err;
1138                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1139                        err = copy_huge_pmd(dst_mm, src_mm,
1140                                            dst_pmd, src_pmd, addr, vma);
1141                        if (err == -ENOMEM)
1142                                return -ENOMEM;
1143                        if (!err)
1144                                continue;
1145                        /* fall through */
1146                }
1147                if (pmd_none_or_clear_bad(src_pmd))
1148                        continue;
1149                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1150                                                vma, addr, next))
1151                        return -ENOMEM;
1152        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1153        return 0;
1154}
1155
1156static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1157                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1158                unsigned long addr, unsigned long end)
1159{
1160        pud_t *src_pud, *dst_pud;
1161        unsigned long next;
1162
1163        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1164        if (!dst_pud)
1165                return -ENOMEM;
1166        src_pud = pud_offset(src_p4d, addr);
1167        do {
1168                next = pud_addr_end(addr, end);
1169                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1170                        int err;
1171
1172                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1173                        err = copy_huge_pud(dst_mm, src_mm,
1174                                            dst_pud, src_pud, addr, vma);
1175                        if (err == -ENOMEM)
1176                                return -ENOMEM;
1177                        if (!err)
1178                                continue;
1179                        /* fall through */
1180                }
1181                if (pud_none_or_clear_bad(src_pud))
1182                        continue;
1183                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1184                                                vma, addr, next))
1185                        return -ENOMEM;
1186        } while (dst_pud++, src_pud++, addr = next, addr != end);
1187        return 0;
1188}
1189
1190static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1192                unsigned long addr, unsigned long end)
1193{
1194        p4d_t *src_p4d, *dst_p4d;
1195        unsigned long next;
1196
1197        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1198        if (!dst_p4d)
1199                return -ENOMEM;
1200        src_p4d = p4d_offset(src_pgd, addr);
1201        do {
1202                next = p4d_addr_end(addr, end);
1203                if (p4d_none_or_clear_bad(src_p4d))
1204                        continue;
1205                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1206                                                vma, addr, next))
1207                        return -ENOMEM;
1208        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1209        return 0;
1210}
1211
1212int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1213                struct vm_area_struct *vma)
1214{
1215        pgd_t *src_pgd, *dst_pgd;
1216        unsigned long next;
1217        unsigned long addr = vma->vm_start;
1218        unsigned long end = vma->vm_end;
1219        unsigned long mmun_start;       /* For mmu_notifiers */
1220        unsigned long mmun_end;         /* For mmu_notifiers */
1221        bool is_cow;
1222        int ret;
1223
1224        /*
1225         * Don't copy ptes where a page fault will fill them correctly.
1226         * Fork becomes much lighter when there are big shared or private
1227         * readonly mappings. The tradeoff is that copy_page_range is more
1228         * efficient than faulting.
1229         */
1230        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231                        !vma->anon_vma)
1232                return 0;
1233
1234        if (is_vm_hugetlb_page(vma))
1235                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236
1237        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238                /*
1239                 * We do not free on error cases below as remove_vma
1240                 * gets called on error from higher level routine
1241                 */
1242                ret = track_pfn_copy(vma);
1243                if (ret)
1244                        return ret;
1245        }
1246
1247        /*
1248         * We need to invalidate the secondary MMU mappings only when
1249         * there could be a permission downgrade on the ptes of the
1250         * parent mm. And a permission downgrade will only happen if
1251         * is_cow_mapping() returns true.
1252         */
1253        is_cow = is_cow_mapping(vma->vm_flags);
1254        mmun_start = addr;
1255        mmun_end   = end;
1256        if (is_cow)
1257                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1258                                                    mmun_end);
1259
1260        ret = 0;
1261        dst_pgd = pgd_offset(dst_mm, addr);
1262        src_pgd = pgd_offset(src_mm, addr);
1263        do {
1264                next = pgd_addr_end(addr, end);
1265                if (pgd_none_or_clear_bad(src_pgd))
1266                        continue;
1267                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1268                                            vma, addr, next))) {
1269                        ret = -ENOMEM;
1270                        break;
1271                }
1272        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273
1274        if (is_cow)
1275                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1276        return ret;
1277}
1278
1279static unsigned long zap_pte_range(struct mmu_gather *tlb,
1280                                struct vm_area_struct *vma, pmd_t *pmd,
1281                                unsigned long addr, unsigned long end,
1282                                struct zap_details *details)
1283{
1284        struct mm_struct *mm = tlb->mm;
1285        int force_flush = 0;
1286        int rss[NR_MM_COUNTERS];
1287        spinlock_t *ptl;
1288        pte_t *start_pte;
1289        pte_t *pte;
1290        swp_entry_t entry;
1291
1292        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1293again:
1294        init_rss_vec(rss);
1295        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1296        pte = start_pte;
1297        flush_tlb_batched_pending(mm);
1298        arch_enter_lazy_mmu_mode();
1299        do {
1300                pte_t ptent = *pte;
1301                if (pte_none(ptent))
1302                        continue;
1303
1304                if (pte_present(ptent)) {
1305                        struct page *page;
1306
1307                        page = _vm_normal_page(vma, addr, ptent, true);
1308                        if (unlikely(details) && page) {
1309                                /*
1310                                 * unmap_shared_mapping_pages() wants to
1311                                 * invalidate cache without truncating:
1312                                 * unmap shared but keep private pages.
1313                                 */
1314                                if (details->check_mapping &&
1315                                    details->check_mapping != page_rmapping(page))
1316                                        continue;
1317                        }
1318                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1319                                                        tlb->fullmm);
1320                        tlb_remove_tlb_entry(tlb, pte, addr);
1321                        if (unlikely(!page))
1322                                continue;
1323
1324                        if (!PageAnon(page)) {
1325                                if (pte_dirty(ptent)) {
1326                                        force_flush = 1;
1327                                        set_page_dirty(page);
1328                                }
1329                                if (pte_young(ptent) &&
1330                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1331                                        mark_page_accessed(page);
1332                        }
1333                        rss[mm_counter(page)]--;
1334                        page_remove_rmap(page, false);
1335                        if (unlikely(page_mapcount(page) < 0))
1336                                print_bad_pte(vma, addr, ptent, page);
1337                        if (unlikely(__tlb_remove_page(tlb, page))) {
1338                                force_flush = 1;
1339                                addr += PAGE_SIZE;
1340                                break;
1341                        }
1342                        continue;
1343                }
1344
1345                entry = pte_to_swp_entry(ptent);
1346                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1347                        struct page *page = device_private_entry_to_page(entry);
1348
1349                        if (unlikely(details && details->check_mapping)) {
1350                                /*
1351                                 * unmap_shared_mapping_pages() wants to
1352                                 * invalidate cache without truncating:
1353                                 * unmap shared but keep private pages.
1354                                 */
1355                                if (details->check_mapping !=
1356                                    page_rmapping(page))
1357                                        continue;
1358                        }
1359
1360                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1361                        rss[mm_counter(page)]--;
1362                        page_remove_rmap(page, false);
1363                        put_page(page);
1364                        continue;
1365                }
1366
1367                /* If details->check_mapping, we leave swap entries. */
1368                if (unlikely(details))
1369                        continue;
1370
1371                entry = pte_to_swp_entry(ptent);
1372                if (!non_swap_entry(entry))
1373                        rss[MM_SWAPENTS]--;
1374                else if (is_migration_entry(entry)) {
1375                        struct page *page;
1376
1377                        page = migration_entry_to_page(entry);
1378                        rss[mm_counter(page)]--;
1379                }
1380                if (unlikely(!free_swap_and_cache(entry)))
1381                        print_bad_pte(vma, addr, ptent, NULL);
1382                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1383        } while (pte++, addr += PAGE_SIZE, addr != end);
1384
1385        add_mm_rss_vec(mm, rss);
1386        arch_leave_lazy_mmu_mode();
1387
1388        /* Do the actual TLB flush before dropping ptl */
1389        if (force_flush)
1390                tlb_flush_mmu_tlbonly(tlb);
1391        pte_unmap_unlock(start_pte, ptl);
1392
1393        /*
1394         * If we forced a TLB flush (either due to running out of
1395         * batch buffers or because we needed to flush dirty TLB
1396         * entries before releasing the ptl), free the batched
1397         * memory too. Restart if we didn't do everything.
1398         */
1399        if (force_flush) {
1400                force_flush = 0;
1401                tlb_flush_mmu_free(tlb);
1402                if (addr != end)
1403                        goto again;
1404        }
1405
1406        return addr;
1407}
1408
1409static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1410                                struct vm_area_struct *vma, pud_t *pud,
1411                                unsigned long addr, unsigned long end,
1412                                struct zap_details *details)
1413{
1414        pmd_t *pmd;
1415        unsigned long next;
1416
1417        pmd = pmd_offset(pud, addr);
1418        do {
1419                next = pmd_addr_end(addr, end);
1420                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1421                        if (next - addr != HPAGE_PMD_SIZE) {
1422                                VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1423                                    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1424                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1425                        } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1426                                goto next;
1427                        /* fall through */
1428                }
1429                /*
1430                 * Here there can be other concurrent MADV_DONTNEED or
1431                 * trans huge page faults running, and if the pmd is
1432                 * none or trans huge it can change under us. This is
1433                 * because MADV_DONTNEED holds the mmap_sem in read
1434                 * mode.
1435                 */
1436                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1437                        goto next;
1438                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1439next:
1440                cond_resched();
1441        } while (pmd++, addr = next, addr != end);
1442
1443        return addr;
1444}
1445
1446static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1447                                struct vm_area_struct *vma, p4d_t *p4d,
1448                                unsigned long addr, unsigned long end,
1449                                struct zap_details *details)
1450{
1451        pud_t *pud;
1452        unsigned long next;
1453
1454        pud = pud_offset(p4d, addr);
1455        do {
1456                next = pud_addr_end(addr, end);
1457                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1458                        if (next - addr != HPAGE_PUD_SIZE) {
1459                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1460                                split_huge_pud(vma, pud, addr);
1461                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1462                                goto next;
1463                        /* fall through */
1464                }
1465                if (pud_none_or_clear_bad(pud))
1466                        continue;
1467                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1468next:
1469                cond_resched();
1470        } while (pud++, addr = next, addr != end);
1471
1472        return addr;
1473}
1474
1475static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1476                                struct vm_area_struct *vma, pgd_t *pgd,
1477                                unsigned long addr, unsigned long end,
1478                                struct zap_details *details)
1479{
1480        p4d_t *p4d;
1481        unsigned long next;
1482
1483        p4d = p4d_offset(pgd, addr);
1484        do {
1485                next = p4d_addr_end(addr, end);
1486                if (p4d_none_or_clear_bad(p4d))
1487                        continue;
1488                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1489        } while (p4d++, addr = next, addr != end);
1490
1491        return addr;
1492}
1493
1494void unmap_page_range(struct mmu_gather *tlb,
1495                             struct vm_area_struct *vma,
1496                             unsigned long addr, unsigned long end,
1497                             struct zap_details *details)
1498{
1499        pgd_t *pgd;
1500        unsigned long next;
1501
1502        BUG_ON(addr >= end);
1503        tlb_start_vma(tlb, vma);
1504        pgd = pgd_offset(vma->vm_mm, addr);
1505        do {
1506                next = pgd_addr_end(addr, end);
1507                if (pgd_none_or_clear_bad(pgd))
1508                        continue;
1509                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1510        } while (pgd++, addr = next, addr != end);
1511        tlb_end_vma(tlb, vma);
1512}
1513
1514
1515static void unmap_single_vma(struct mmu_gather *tlb,
1516                struct vm_area_struct *vma, unsigned long start_addr,
1517                unsigned long end_addr,
1518                struct zap_details *details)
1519{
1520        unsigned long start = max(vma->vm_start, start_addr);
1521        unsigned long end;
1522
1523        if (start >= vma->vm_end)
1524                return;
1525        end = min(vma->vm_end, end_addr);
1526        if (end <= vma->vm_start)
1527                return;
1528
1529        if (vma->vm_file)
1530                uprobe_munmap(vma, start, end);
1531
1532        if (unlikely(vma->vm_flags & VM_PFNMAP))
1533                untrack_pfn(vma, 0, 0);
1534
1535        if (start != end) {
1536                if (unlikely(is_vm_hugetlb_page(vma))) {
1537                        /*
1538                         * It is undesirable to test vma->vm_file as it
1539                         * should be non-null for valid hugetlb area.
1540                         * However, vm_file will be NULL in the error
1541                         * cleanup path of mmap_region. When
1542                         * hugetlbfs ->mmap method fails,
1543                         * mmap_region() nullifies vma->vm_file
1544                         * before calling this function to clean up.
1545                         * Since no pte has actually been setup, it is
1546                         * safe to do nothing in this case.
1547                         */
1548                        if (vma->vm_file) {
1549                                i_mmap_lock_write(vma->vm_file->f_mapping);
1550                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1551                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1552                        }
1553                } else
1554                        unmap_page_range(tlb, vma, start, end, details);
1555        }
1556}
1557
1558/**
1559 * unmap_vmas - unmap a range of memory covered by a list of vma's
1560 * @tlb: address of the caller's struct mmu_gather
1561 * @vma: the starting vma
1562 * @start_addr: virtual address at which to start unmapping
1563 * @end_addr: virtual address at which to end unmapping
1564 *
1565 * Unmap all pages in the vma list.
1566 *
1567 * Only addresses between `start' and `end' will be unmapped.
1568 *
1569 * The VMA list must be sorted in ascending virtual address order.
1570 *
1571 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1572 * range after unmap_vmas() returns.  So the only responsibility here is to
1573 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1574 * drops the lock and schedules.
1575 */
1576void unmap_vmas(struct mmu_gather *tlb,
1577                struct vm_area_struct *vma, unsigned long start_addr,
1578                unsigned long end_addr)
1579{
1580        struct mm_struct *mm = vma->vm_mm;
1581
1582        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1583        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1584                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1585        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1586}
1587
1588/**
1589 * zap_page_range - remove user pages in a given range
1590 * @vma: vm_area_struct holding the applicable pages
1591 * @start: starting address of pages to zap
1592 * @size: number of bytes to zap
1593 *
1594 * Caller must protect the VMA list
1595 */
1596void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1597                unsigned long size)
1598{
1599        struct mm_struct *mm = vma->vm_mm;
1600        struct mmu_gather tlb;
1601        unsigned long end = start + size;
1602
1603        lru_add_drain();
1604        tlb_gather_mmu(&tlb, mm, start, end);
1605        update_hiwater_rss(mm);
1606        mmu_notifier_invalidate_range_start(mm, start, end);
1607        for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1608                unmap_single_vma(&tlb, vma, start, end, NULL);
1609
1610                /*
1611                 * zap_page_range does not specify whether mmap_sem should be
1612                 * held for read or write. That allows parallel zap_page_range
1613                 * operations to unmap a PTE and defer a flush meaning that
1614                 * this call observes pte_none and fails to flush the TLB.
1615                 * Rather than adding a complex API, ensure that no stale
1616                 * TLB entries exist when this call returns.
1617                 */
1618                flush_tlb_range(vma, start, end);
1619        }
1620
1621        mmu_notifier_invalidate_range_end(mm, start, end);
1622        tlb_finish_mmu(&tlb, start, end);
1623}
1624
1625/**
1626 * zap_page_range_single - remove user pages in a given range
1627 * @vma: vm_area_struct holding the applicable pages
1628 * @address: starting address of pages to zap
1629 * @size: number of bytes to zap
1630 * @details: details of shared cache invalidation
1631 *
1632 * The range must fit into one VMA.
1633 */
1634static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1635                unsigned long size, struct zap_details *details)
1636{
1637        struct mm_struct *mm = vma->vm_mm;
1638        struct mmu_gather tlb;
1639        unsigned long end = address + size;
1640
1641        lru_add_drain();
1642        tlb_gather_mmu(&tlb, mm, address, end);
1643        update_hiwater_rss(mm);
1644        mmu_notifier_invalidate_range_start(mm, address, end);
1645        unmap_single_vma(&tlb, vma, address, end, details);
1646        mmu_notifier_invalidate_range_end(mm, address, end);
1647        tlb_finish_mmu(&tlb, address, end);
1648}
1649
1650/**
1651 * zap_vma_ptes - remove ptes mapping the vma
1652 * @vma: vm_area_struct holding ptes to be zapped
1653 * @address: starting address of pages to zap
1654 * @size: number of bytes to zap
1655 *
1656 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657 *
1658 * The entire address range must be fully contained within the vma.
1659 *
1660 * Returns 0 if successful.
1661 */
1662int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1663                unsigned long size)
1664{
1665        if (address < vma->vm_start || address + size > vma->vm_end ||
1666                        !(vma->vm_flags & VM_PFNMAP))
1667                return -1;
1668        zap_page_range_single(vma, address, size, NULL);
1669        return 0;
1670}
1671EXPORT_SYMBOL_GPL(zap_vma_ptes);
1672
1673pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1674                        spinlock_t **ptl)
1675{
1676        pgd_t *pgd;
1677        p4d_t *p4d;
1678        pud_t *pud;
1679        pmd_t *pmd;
1680
1681        pgd = pgd_offset(mm, addr);
1682        p4d = p4d_alloc(mm, pgd, addr);
1683        if (!p4d)
1684                return NULL;
1685        pud = pud_alloc(mm, p4d, addr);
1686        if (!pud)
1687                return NULL;
1688        pmd = pmd_alloc(mm, pud, addr);
1689        if (!pmd)
1690                return NULL;
1691
1692        VM_BUG_ON(pmd_trans_huge(*pmd));
1693        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1694}
1695
1696/*
1697 * This is the old fallback for page remapping.
1698 *
1699 * For historical reasons, it only allows reserved pages. Only
1700 * old drivers should use this, and they needed to mark their
1701 * pages reserved for the old functions anyway.
1702 */
1703static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1704                        struct page *page, pgprot_t prot)
1705{
1706        struct mm_struct *mm = vma->vm_mm;
1707        int retval;
1708        pte_t *pte;
1709        spinlock_t *ptl;
1710
1711        retval = -EINVAL;
1712        if (PageAnon(page))
1713                goto out;
1714        retval = -ENOMEM;
1715        flush_dcache_page(page);
1716        pte = get_locked_pte(mm, addr, &ptl);
1717        if (!pte)
1718                goto out;
1719        retval = -EBUSY;
1720        if (!pte_none(*pte))
1721                goto out_unlock;
1722
1723        /* Ok, finally just insert the thing.. */
1724        get_page(page);
1725        inc_mm_counter_fast(mm, mm_counter_file(page));
1726        page_add_file_rmap(page, false);
1727        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1728
1729        retval = 0;
1730        pte_unmap_unlock(pte, ptl);
1731        return retval;
1732out_unlock:
1733        pte_unmap_unlock(pte, ptl);
1734out:
1735        return retval;
1736}
1737
1738/**
1739 * vm_insert_page - insert single page into user vma
1740 * @vma: user vma to map to
1741 * @addr: target user address of this page
1742 * @page: source kernel page
1743 *
1744 * This allows drivers to insert individual pages they've allocated
1745 * into a user vma.
1746 *
1747 * The page has to be a nice clean _individual_ kernel allocation.
1748 * If you allocate a compound page, you need to have marked it as
1749 * such (__GFP_COMP), or manually just split the page up yourself
1750 * (see split_page()).
1751 *
1752 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1753 * took an arbitrary page protection parameter. This doesn't allow
1754 * that. Your vma protection will have to be set up correctly, which
1755 * means that if you want a shared writable mapping, you'd better
1756 * ask for a shared writable mapping!
1757 *
1758 * The page does not need to be reserved.
1759 *
1760 * Usually this function is called from f_op->mmap() handler
1761 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1762 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1763 * function from other places, for example from page-fault handler.
1764 */
1765int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1766                        struct page *page)
1767{
1768        if (addr < vma->vm_start || addr >= vma->vm_end)
1769                return -EFAULT;
1770        if (!page_count(page))
1771                return -EINVAL;
1772        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1773                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1774                BUG_ON(vma->vm_flags & VM_PFNMAP);
1775                vma->vm_flags |= VM_MIXEDMAP;
1776        }
1777        return insert_page(vma, addr, page, vma->vm_page_prot);
1778}
1779EXPORT_SYMBOL(vm_insert_page);
1780
1781static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1782                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1783{
1784        struct mm_struct *mm = vma->vm_mm;
1785        int retval;
1786        pte_t *pte, entry;
1787        spinlock_t *ptl;
1788
1789        retval = -ENOMEM;
1790        pte = get_locked_pte(mm, addr, &ptl);
1791        if (!pte)
1792                goto out;
1793        retval = -EBUSY;
1794        if (!pte_none(*pte)) {
1795                if (mkwrite) {
1796                        /*
1797                         * For read faults on private mappings the PFN passed
1798                         * in may not match the PFN we have mapped if the
1799                         * mapped PFN is a writeable COW page.  In the mkwrite
1800                         * case we are creating a writable PTE for a shared
1801                         * mapping and we expect the PFNs to match.
1802                         */
1803                        if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1804                                goto out_unlock;
1805                        entry = *pte;
1806                        goto out_mkwrite;
1807                } else
1808                        goto out_unlock;
1809        }
1810
1811        /* Ok, finally just insert the thing.. */
1812        if (pfn_t_devmap(pfn))
1813                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1814        else
1815                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1816
1817out_mkwrite:
1818        if (mkwrite) {
1819                entry = pte_mkyoung(entry);
1820                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1821        }
1822
1823        set_pte_at(mm, addr, pte, entry);
1824        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1825
1826        retval = 0;
1827out_unlock:
1828        pte_unmap_unlock(pte, ptl);
1829out:
1830        return retval;
1831}
1832
1833/**
1834 * vm_insert_pfn - insert single pfn into user vma
1835 * @vma: user vma to map to
1836 * @addr: target user address of this page
1837 * @pfn: source kernel pfn
1838 *
1839 * Similar to vm_insert_page, this allows drivers to insert individual pages
1840 * they've allocated into a user vma. Same comments apply.
1841 *
1842 * This function should only be called from a vm_ops->fault handler, and
1843 * in that case the handler should return NULL.
1844 *
1845 * vma cannot be a COW mapping.
1846 *
1847 * As this is called only for pages that do not currently exist, we
1848 * do not need to flush old virtual caches or the TLB.
1849 */
1850int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1851                        unsigned long pfn)
1852{
1853        return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1854}
1855EXPORT_SYMBOL(vm_insert_pfn);
1856
1857/**
1858 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1859 * @vma: user vma to map to
1860 * @addr: target user address of this page
1861 * @pfn: source kernel pfn
1862 * @pgprot: pgprot flags for the inserted page
1863 *
1864 * This is exactly like vm_insert_pfn, except that it allows drivers to
1865 * to override pgprot on a per-page basis.
1866 *
1867 * This only makes sense for IO mappings, and it makes no sense for
1868 * cow mappings.  In general, using multiple vmas is preferable;
1869 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1870 * impractical.
1871 */
1872int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1873                        unsigned long pfn, pgprot_t pgprot)
1874{
1875        int ret;
1876        /*
1877         * Technically, architectures with pte_special can avoid all these
1878         * restrictions (same for remap_pfn_range).  However we would like
1879         * consistency in testing and feature parity among all, so we should
1880         * try to keep these invariants in place for everybody.
1881         */
1882        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1883        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1884                                                (VM_PFNMAP|VM_MIXEDMAP));
1885        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1886        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1887
1888        if (addr < vma->vm_start || addr >= vma->vm_end)
1889                return -EFAULT;
1890
1891        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1892
1893        ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1894                        false);
1895
1896        return ret;
1897}
1898EXPORT_SYMBOL(vm_insert_pfn_prot);
1899
1900static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1901                        pfn_t pfn, bool mkwrite)
1902{
1903        pgprot_t pgprot = vma->vm_page_prot;
1904
1905        BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1906
1907        if (addr < vma->vm_start || addr >= vma->vm_end)
1908                return -EFAULT;
1909
1910        track_pfn_insert(vma, &pgprot, pfn);
1911
1912        /*
1913         * If we don't have pte special, then we have to use the pfn_valid()
1914         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1915         * refcount the page if pfn_valid is true (hence insert_page rather
1916         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1917         * without pte special, it would there be refcounted as a normal page.
1918         */
1919        if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1920                struct page *page;
1921
1922                /*
1923                 * At this point we are committed to insert_page()
1924                 * regardless of whether the caller specified flags that
1925                 * result in pfn_t_has_page() == false.
1926                 */
1927                page = pfn_to_page(pfn_t_to_pfn(pfn));
1928                return insert_page(vma, addr, page, pgprot);
1929        }
1930        return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1931}
1932
1933int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1934                        pfn_t pfn)
1935{
1936        return __vm_insert_mixed(vma, addr, pfn, false);
1937
1938}
1939EXPORT_SYMBOL(vm_insert_mixed);
1940
1941int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1942                        pfn_t pfn)
1943{
1944        return __vm_insert_mixed(vma, addr, pfn, true);
1945}
1946EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1947
1948/*
1949 * maps a range of physical memory into the requested pages. the old
1950 * mappings are removed. any references to nonexistent pages results
1951 * in null mappings (currently treated as "copy-on-access")
1952 */
1953static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1954                        unsigned long addr, unsigned long end,
1955                        unsigned long pfn, pgprot_t prot)
1956{
1957        pte_t *pte;
1958        spinlock_t *ptl;
1959
1960        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1961        if (!pte)
1962                return -ENOMEM;
1963        arch_enter_lazy_mmu_mode();
1964        do {
1965                BUG_ON(!pte_none(*pte));
1966                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1967                pfn++;
1968        } while (pte++, addr += PAGE_SIZE, addr != end);
1969        arch_leave_lazy_mmu_mode();
1970        pte_unmap_unlock(pte - 1, ptl);
1971        return 0;
1972}
1973
1974static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1975                        unsigned long addr, unsigned long end,
1976                        unsigned long pfn, pgprot_t prot)
1977{
1978        pmd_t *pmd;
1979        unsigned long next;
1980
1981        pfn -= addr >> PAGE_SHIFT;
1982        pmd = pmd_alloc(mm, pud, addr);
1983        if (!pmd)
1984                return -ENOMEM;
1985        VM_BUG_ON(pmd_trans_huge(*pmd));
1986        do {
1987                next = pmd_addr_end(addr, end);
1988                if (remap_pte_range(mm, pmd, addr, next,
1989                                pfn + (addr >> PAGE_SHIFT), prot))
1990                        return -ENOMEM;
1991        } while (pmd++, addr = next, addr != end);
1992        return 0;
1993}
1994
1995static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1996                        unsigned long addr, unsigned long end,
1997                        unsigned long pfn, pgprot_t prot)
1998{
1999        pud_t *pud;
2000        unsigned long next;
2001
2002        pfn -= addr >> PAGE_SHIFT;
2003        pud = pud_alloc(mm, p4d, addr);
2004        if (!pud)
2005                return -ENOMEM;
2006        do {
2007                next = pud_addr_end(addr, end);
2008                if (remap_pmd_range(mm, pud, addr, next,
2009                                pfn + (addr >> PAGE_SHIFT), prot))
2010                        return -ENOMEM;
2011        } while (pud++, addr = next, addr != end);
2012        return 0;
2013}
2014
2015static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2016                        unsigned long addr, unsigned long end,
2017                        unsigned long pfn, pgprot_t prot)
2018{
2019        p4d_t *p4d;
2020        unsigned long next;
2021
2022        pfn -= addr >> PAGE_SHIFT;
2023        p4d = p4d_alloc(mm, pgd, addr);
2024        if (!p4d)
2025                return -ENOMEM;
2026        do {
2027                next = p4d_addr_end(addr, end);
2028                if (remap_pud_range(mm, p4d, addr, next,
2029                                pfn + (addr >> PAGE_SHIFT), prot))
2030                        return -ENOMEM;
2031        } while (p4d++, addr = next, addr != end);
2032        return 0;
2033}
2034
2035/**
2036 * remap_pfn_range - remap kernel memory to userspace
2037 * @vma: user vma to map to
2038 * @addr: target user address to start at
2039 * @pfn: physical address of kernel memory
2040 * @size: size of map area
2041 * @prot: page protection flags for this mapping
2042 *
2043 *  Note: this is only safe if the mm semaphore is held when called.
2044 */
2045int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2046                    unsigned long pfn, unsigned long size, pgprot_t prot)
2047{
2048        pgd_t *pgd;
2049        unsigned long next;
2050        unsigned long end = addr + PAGE_ALIGN(size);
2051        struct mm_struct *mm = vma->vm_mm;
2052        unsigned long remap_pfn = pfn;
2053        int err;
2054
2055        /*
2056         * Physically remapped pages are special. Tell the
2057         * rest of the world about it:
2058         *   VM_IO tells people not to look at these pages
2059         *      (accesses can have side effects).
2060         *   VM_PFNMAP tells the core MM that the base pages are just
2061         *      raw PFN mappings, and do not have a "struct page" associated
2062         *      with them.
2063         *   VM_DONTEXPAND
2064         *      Disable vma merging and expanding with mremap().
2065         *   VM_DONTDUMP
2066         *      Omit vma from core dump, even when VM_IO turned off.
2067         *
2068         * There's a horrible special case to handle copy-on-write
2069         * behaviour that some programs depend on. We mark the "original"
2070         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2071         * See vm_normal_page() for details.
2072         */
2073        if (is_cow_mapping(vma->vm_flags)) {
2074                if (addr != vma->vm_start || end != vma->vm_end)
2075                        return -EINVAL;
2076                vma->vm_pgoff = pfn;
2077        }
2078
2079        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2080        if (err)
2081                return -EINVAL;
2082
2083        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2084
2085        BUG_ON(addr >= end);
2086        pfn -= addr >> PAGE_SHIFT;
2087        pgd = pgd_offset(mm, addr);
2088        flush_cache_range(vma, addr, end);
2089        do {
2090                next = pgd_addr_end(addr, end);
2091                err = remap_p4d_range(mm, pgd, addr, next,
2092                                pfn + (addr >> PAGE_SHIFT), prot);
2093                if (err)
2094                        break;
2095        } while (pgd++, addr = next, addr != end);
2096
2097        if (err)
2098                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2099
2100        return err;
2101}
2102EXPORT_SYMBOL(remap_pfn_range);
2103
2104/**
2105 * vm_iomap_memory - remap memory to userspace
2106 * @vma: user vma to map to
2107 * @start: start of area
2108 * @len: size of area
2109 *
2110 * This is a simplified io_remap_pfn_range() for common driver use. The
2111 * driver just needs to give us the physical memory range to be mapped,
2112 * we'll figure out the rest from the vma information.
2113 *
2114 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2115 * whatever write-combining details or similar.
2116 */
2117int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2118{
2119        unsigned long vm_len, pfn, pages;
2120
2121        /* Check that the physical memory area passed in looks valid */
2122        if (start + len < start)
2123                return -EINVAL;
2124        /*
2125         * You *really* shouldn't map things that aren't page-aligned,
2126         * but we've historically allowed it because IO memory might
2127         * just have smaller alignment.
2128         */
2129        len += start & ~PAGE_MASK;
2130        pfn = start >> PAGE_SHIFT;
2131        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2132        if (pfn + pages < pfn)
2133                return -EINVAL;
2134
2135        /* We start the mapping 'vm_pgoff' pages into the area */
2136        if (vma->vm_pgoff > pages)
2137                return -EINVAL;
2138        pfn += vma->vm_pgoff;
2139        pages -= vma->vm_pgoff;
2140
2141        /* Can we fit all of the mapping? */
2142        vm_len = vma->vm_end - vma->vm_start;
2143        if (vm_len >> PAGE_SHIFT > pages)
2144                return -EINVAL;
2145
2146        /* Ok, let it rip */
2147        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2148}
2149EXPORT_SYMBOL(vm_iomap_memory);
2150
2151static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2152                                     unsigned long addr, unsigned long end,
2153                                     pte_fn_t fn, void *data)
2154{
2155        pte_t *pte;
2156        int err;
2157        pgtable_t token;
2158        spinlock_t *uninitialized_var(ptl);
2159
2160        pte = (mm == &init_mm) ?
2161                pte_alloc_kernel(pmd, addr) :
2162                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163        if (!pte)
2164                return -ENOMEM;
2165
2166        BUG_ON(pmd_huge(*pmd));
2167
2168        arch_enter_lazy_mmu_mode();
2169
2170        token = pmd_pgtable(*pmd);
2171
2172        do {
2173                err = fn(pte++, token, addr, data);
2174                if (err)
2175                        break;
2176        } while (addr += PAGE_SIZE, addr != end);
2177
2178        arch_leave_lazy_mmu_mode();
2179
2180        if (mm != &init_mm)
2181                pte_unmap_unlock(pte-1, ptl);
2182        return err;
2183}
2184
2185static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2186                                     unsigned long addr, unsigned long end,
2187                                     pte_fn_t fn, void *data)
2188{
2189        pmd_t *pmd;
2190        unsigned long next;
2191        int err;
2192
2193        BUG_ON(pud_huge(*pud));
2194
2195        pmd = pmd_alloc(mm, pud, addr);
2196        if (!pmd)
2197                return -ENOMEM;
2198        do {
2199                next = pmd_addr_end(addr, end);
2200                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2201                if (err)
2202                        break;
2203        } while (pmd++, addr = next, addr != end);
2204        return err;
2205}
2206
2207static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2208                                     unsigned long addr, unsigned long end,
2209                                     pte_fn_t fn, void *data)
2210{
2211        pud_t *pud;
2212        unsigned long next;
2213        int err;
2214
2215        pud = pud_alloc(mm, p4d, addr);
2216        if (!pud)
2217                return -ENOMEM;
2218        do {
2219                next = pud_addr_end(addr, end);
2220                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2221                if (err)
2222                        break;
2223        } while (pud++, addr = next, addr != end);
2224        return err;
2225}
2226
2227static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2228                                     unsigned long addr, unsigned long end,
2229                                     pte_fn_t fn, void *data)
2230{
2231        p4d_t *p4d;
2232        unsigned long next;
2233        int err;
2234
2235        p4d = p4d_alloc(mm, pgd, addr);
2236        if (!p4d)
2237                return -ENOMEM;
2238        do {
2239                next = p4d_addr_end(addr, end);
2240                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2241                if (err)
2242                        break;
2243        } while (p4d++, addr = next, addr != end);
2244        return err;
2245}
2246
2247/*
2248 * Scan a region of virtual memory, filling in page tables as necessary
2249 * and calling a provided function on each leaf page table.
2250 */
2251int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2252                        unsigned long size, pte_fn_t fn, void *data)
2253{
2254        pgd_t *pgd;
2255        unsigned long next;
2256        unsigned long end = addr + size;
2257        int err;
2258
2259        if (WARN_ON(addr >= end))
2260                return -EINVAL;
2261
2262        pgd = pgd_offset(mm, addr);
2263        do {
2264                next = pgd_addr_end(addr, end);
2265                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2266                if (err)
2267                        break;
2268        } while (pgd++, addr = next, addr != end);
2269
2270        return err;
2271}
2272EXPORT_SYMBOL_GPL(apply_to_page_range);
2273
2274/*
2275 * handle_pte_fault chooses page fault handler according to an entry which was
2276 * read non-atomically.  Before making any commitment, on those architectures
2277 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2278 * parts, do_swap_page must check under lock before unmapping the pte and
2279 * proceeding (but do_wp_page is only called after already making such a check;
2280 * and do_anonymous_page can safely check later on).
2281 */
2282static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2283                                pte_t *page_table, pte_t orig_pte)
2284{
2285        int same = 1;
2286#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2287        if (sizeof(pte_t) > sizeof(unsigned long)) {
2288                spinlock_t *ptl = pte_lockptr(mm, pmd);
2289                spin_lock(ptl);
2290                same = pte_same(*page_table, orig_pte);
2291                spin_unlock(ptl);
2292        }
2293#endif
2294        pte_unmap(page_table);
2295        return same;
2296}
2297
2298static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2299{
2300        debug_dma_assert_idle(src);
2301
2302        /*
2303         * If the source page was a PFN mapping, we don't have
2304         * a "struct page" for it. We do a best-effort copy by
2305         * just copying from the original user address. If that
2306         * fails, we just zero-fill it. Live with it.
2307         */
2308        if (unlikely(!src)) {
2309                void *kaddr = kmap_atomic(dst);
2310                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2311
2312                /*
2313                 * This really shouldn't fail, because the page is there
2314                 * in the page tables. But it might just be unreadable,
2315                 * in which case we just give up and fill the result with
2316                 * zeroes.
2317                 */
2318                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2319                        clear_page(kaddr);
2320                kunmap_atomic(kaddr);
2321                flush_dcache_page(dst);
2322        } else
2323                copy_user_highpage(dst, src, va, vma);
2324}
2325
2326static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2327{
2328        struct file *vm_file = vma->vm_file;
2329
2330        if (vm_file)
2331                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2332
2333        /*
2334         * Special mappings (e.g. VDSO) do not have any file so fake
2335         * a default GFP_KERNEL for them.
2336         */
2337        return GFP_KERNEL;
2338}
2339
2340/*
2341 * Notify the address space that the page is about to become writable so that
2342 * it can prohibit this or wait for the page to get into an appropriate state.
2343 *
2344 * We do this without the lock held, so that it can sleep if it needs to.
2345 */
2346static int do_page_mkwrite(struct vm_fault *vmf)
2347{
2348        int ret;
2349        struct page *page = vmf->page;
2350        unsigned int old_flags = vmf->flags;
2351
2352        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2353
2354        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2355        /* Restore original flags so that caller is not surprised */
2356        vmf->flags = old_flags;
2357        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2358                return ret;
2359        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2360                lock_page(page);
2361                if (!page->mapping) {
2362                        unlock_page(page);
2363                        return 0; /* retry */
2364                }
2365                ret |= VM_FAULT_LOCKED;
2366        } else
2367                VM_BUG_ON_PAGE(!PageLocked(page), page);
2368        return ret;
2369}
2370
2371/*
2372 * Handle dirtying of a page in shared file mapping on a write fault.
2373 *
2374 * The function expects the page to be locked and unlocks it.
2375 */
2376static void fault_dirty_shared_page(struct vm_area_struct *vma,
2377                                    struct page *page)
2378{
2379        struct address_space *mapping;
2380        bool dirtied;
2381        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2382
2383        dirtied = set_page_dirty(page);
2384        VM_BUG_ON_PAGE(PageAnon(page), page);
2385        /*
2386         * Take a local copy of the address_space - page.mapping may be zeroed
2387         * by truncate after unlock_page().   The address_space itself remains
2388         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2389         * release semantics to prevent the compiler from undoing this copying.
2390         */
2391        mapping = page_rmapping(page);
2392        unlock_page(page);
2393
2394        if ((dirtied || page_mkwrite) && mapping) {
2395                /*
2396                 * Some device drivers do not set page.mapping
2397                 * but still dirty their pages
2398                 */
2399                balance_dirty_pages_ratelimited(mapping);
2400        }
2401
2402        if (!page_mkwrite)
2403                file_update_time(vma->vm_file);
2404}
2405
2406/*
2407 * Handle write page faults for pages that can be reused in the current vma
2408 *
2409 * This can happen either due to the mapping being with the VM_SHARED flag,
2410 * or due to us being the last reference standing to the page. In either
2411 * case, all we need to do here is to mark the page as writable and update
2412 * any related book-keeping.
2413 */
2414static inline void wp_page_reuse(struct vm_fault *vmf)
2415        __releases(vmf->ptl)
2416{
2417        struct vm_area_struct *vma = vmf->vma;
2418        struct page *page = vmf->page;
2419        pte_t entry;
2420        /*
2421         * Clear the pages cpupid information as the existing
2422         * information potentially belongs to a now completely
2423         * unrelated process.
2424         */
2425        if (page)
2426                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2427
2428        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2429        entry = pte_mkyoung(vmf->orig_pte);
2430        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2431        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2432                update_mmu_cache(vma, vmf->address, vmf->pte);
2433        pte_unmap_unlock(vmf->pte, vmf->ptl);
2434}
2435
2436/*
2437 * Handle the case of a page which we actually need to copy to a new page.
2438 *
2439 * Called with mmap_sem locked and the old page referenced, but
2440 * without the ptl held.
2441 *
2442 * High level logic flow:
2443 *
2444 * - Allocate a page, copy the content of the old page to the new one.
2445 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2446 * - Take the PTL. If the pte changed, bail out and release the allocated page
2447 * - If the pte is still the way we remember it, update the page table and all
2448 *   relevant references. This includes dropping the reference the page-table
2449 *   held to the old page, as well as updating the rmap.
2450 * - In any case, unlock the PTL and drop the reference we took to the old page.
2451 */
2452static int wp_page_copy(struct vm_fault *vmf)
2453{
2454        struct vm_area_struct *vma = vmf->vma;
2455        struct mm_struct *mm = vma->vm_mm;
2456        struct page *old_page = vmf->page;
2457        struct page *new_page = NULL;
2458        pte_t entry;
2459        int page_copied = 0;
2460        const unsigned long mmun_start = vmf->address & PAGE_MASK;
2461        const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2462        struct mem_cgroup *memcg;
2463
2464        if (unlikely(anon_vma_prepare(vma)))
2465                goto oom;
2466
2467        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2468                new_page = alloc_zeroed_user_highpage_movable(vma,
2469                                                              vmf->address);
2470                if (!new_page)
2471                        goto oom;
2472        } else {
2473                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2474                                vmf->address);
2475                if (!new_page)
2476                        goto oom;
2477                cow_user_page(new_page, old_page, vmf->address, vma);
2478        }
2479
2480        if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2481                goto oom_free_new;
2482
2483        __SetPageUptodate(new_page);
2484
2485        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486
2487        /*
2488         * Re-check the pte - we dropped the lock
2489         */
2490        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2491        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2492                if (old_page) {
2493                        if (!PageAnon(old_page)) {
2494                                dec_mm_counter_fast(mm,
2495                                                mm_counter_file(old_page));
2496                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2497                        }
2498                } else {
2499                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2500                }
2501                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2502                entry = mk_pte(new_page, vma->vm_page_prot);
2503                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2504                /*
2505                 * Clear the pte entry and flush it first, before updating the
2506                 * pte with the new entry. This will avoid a race condition
2507                 * seen in the presence of one thread doing SMC and another
2508                 * thread doing COW.
2509                 */
2510                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2511                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2512                mem_cgroup_commit_charge(new_page, memcg, false, false);
2513                lru_cache_add_active_or_unevictable(new_page, vma);
2514                /*
2515                 * We call the notify macro here because, when using secondary
2516                 * mmu page tables (such as kvm shadow page tables), we want the
2517                 * new page to be mapped directly into the secondary page table.
2518                 */
2519                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2520                update_mmu_cache(vma, vmf->address, vmf->pte);
2521                if (old_page) {
2522                        /*
2523                         * Only after switching the pte to the new page may
2524                         * we remove the mapcount here. Otherwise another
2525                         * process may come and find the rmap count decremented
2526                         * before the pte is switched to the new page, and
2527                         * "reuse" the old page writing into it while our pte
2528                         * here still points into it and can be read by other
2529                         * threads.
2530                         *
2531                         * The critical issue is to order this
2532                         * page_remove_rmap with the ptp_clear_flush above.
2533                         * Those stores are ordered by (if nothing else,)
2534                         * the barrier present in the atomic_add_negative
2535                         * in page_remove_rmap.
2536                         *
2537                         * Then the TLB flush in ptep_clear_flush ensures that
2538                         * no process can access the old page before the
2539                         * decremented mapcount is visible. And the old page
2540                         * cannot be reused until after the decremented
2541                         * mapcount is visible. So transitively, TLBs to
2542                         * old page will be flushed before it can be reused.
2543                         */
2544                        page_remove_rmap(old_page, false);
2545                }
2546
2547                /* Free the old page.. */
2548                new_page = old_page;
2549                page_copied = 1;
2550        } else {
2551                mem_cgroup_cancel_charge(new_page, memcg, false);
2552        }
2553
2554        if (new_page)
2555                put_page(new_page);
2556
2557        pte_unmap_unlock(vmf->pte, vmf->ptl);
2558        /*
2559         * No need to double call mmu_notifier->invalidate_range() callback as
2560         * the above ptep_clear_flush_notify() did already call it.
2561         */
2562        mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2563        if (old_page) {
2564                /*
2565                 * Don't let another task, with possibly unlocked vma,
2566                 * keep the mlocked page.
2567                 */
2568                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2569                        lock_page(old_page);    /* LRU manipulation */
2570                        if (PageMlocked(old_page))
2571                                munlock_vma_page(old_page);
2572                        unlock_page(old_page);
2573                }
2574                put_page(old_page);
2575        }
2576        return page_copied ? VM_FAULT_WRITE : 0;
2577oom_free_new:
2578        put_page(new_page);
2579oom:
2580        if (old_page)
2581                put_page(old_page);
2582        return VM_FAULT_OOM;
2583}
2584
2585/**
2586 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2587 *                        writeable once the page is prepared
2588 *
2589 * @vmf: structure describing the fault
2590 *
2591 * This function handles all that is needed to finish a write page fault in a
2592 * shared mapping due to PTE being read-only once the mapped page is prepared.
2593 * It handles locking of PTE and modifying it. The function returns
2594 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2595 * lock.
2596 *
2597 * The function expects the page to be locked or other protection against
2598 * concurrent faults / writeback (such as DAX radix tree locks).
2599 */
2600int finish_mkwrite_fault(struct vm_fault *vmf)
2601{
2602        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2603        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2604                                       &vmf->ptl);
2605        /*
2606         * We might have raced with another page fault while we released the
2607         * pte_offset_map_lock.
2608         */
2609        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610                pte_unmap_unlock(vmf->pte, vmf->ptl);
2611                return VM_FAULT_NOPAGE;
2612        }
2613        wp_page_reuse(vmf);
2614        return 0;
2615}
2616
2617/*
2618 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2619 * mapping
2620 */
2621static int wp_pfn_shared(struct vm_fault *vmf)
2622{
2623        struct vm_area_struct *vma = vmf->vma;
2624
2625        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2626                int ret;
2627
2628                pte_unmap_unlock(vmf->pte, vmf->ptl);
2629                vmf->flags |= FAULT_FLAG_MKWRITE;
2630                ret = vma->vm_ops->pfn_mkwrite(vmf);
2631                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2632                        return ret;
2633                return finish_mkwrite_fault(vmf);
2634        }
2635        wp_page_reuse(vmf);
2636        return VM_FAULT_WRITE;
2637}
2638
2639static int wp_page_shared(struct vm_fault *vmf)
2640        __releases(vmf->ptl)
2641{
2642        struct vm_area_struct *vma = vmf->vma;
2643
2644        get_page(vmf->page);
2645
2646        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2647                int tmp;
2648
2649                pte_unmap_unlock(vmf->pte, vmf->ptl);
2650                tmp = do_page_mkwrite(vmf);
2651                if (unlikely(!tmp || (tmp &
2652                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2653                        put_page(vmf->page);
2654                        return tmp;
2655                }
2656                tmp = finish_mkwrite_fault(vmf);
2657                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2658                        unlock_page(vmf->page);
2659                        put_page(vmf->page);
2660                        return tmp;
2661                }
2662        } else {
2663                wp_page_reuse(vmf);
2664                lock_page(vmf->page);
2665        }
2666        fault_dirty_shared_page(vma, vmf->page);
2667        put_page(vmf->page);
2668
2669        return VM_FAULT_WRITE;
2670}
2671
2672/*
2673 * This routine handles present pages, when users try to write
2674 * to a shared page. It is done by copying the page to a new address
2675 * and decrementing the shared-page counter for the old page.
2676 *
2677 * Note that this routine assumes that the protection checks have been
2678 * done by the caller (the low-level page fault routine in most cases).
2679 * Thus we can safely just mark it writable once we've done any necessary
2680 * COW.
2681 *
2682 * We also mark the page dirty at this point even though the page will
2683 * change only once the write actually happens. This avoids a few races,
2684 * and potentially makes it more efficient.
2685 *
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), with pte both mapped and locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
2689 */
2690static int do_wp_page(struct vm_fault *vmf)
2691        __releases(vmf->ptl)
2692{
2693        struct vm_area_struct *vma = vmf->vma;
2694
2695        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2696        if (!vmf->page) {
2697                /*
2698                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2699                 * VM_PFNMAP VMA.
2700                 *
2701                 * We should not cow pages in a shared writeable mapping.
2702                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2703                 */
2704                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2705                                     (VM_WRITE|VM_SHARED))
2706                        return wp_pfn_shared(vmf);
2707
2708                pte_unmap_unlock(vmf->pte, vmf->ptl);
2709                return wp_page_copy(vmf);
2710        }
2711
2712        /*
2713         * Take out anonymous pages first, anonymous shared vmas are
2714         * not dirty accountable.
2715         */
2716        if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2717                int total_map_swapcount;
2718                if (!trylock_page(vmf->page)) {
2719                        get_page(vmf->page);
2720                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2721                        lock_page(vmf->page);
2722                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2723                                        vmf->address, &vmf->ptl);
2724                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2725                                unlock_page(vmf->page);
2726                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2727                                put_page(vmf->page);
2728                                return 0;
2729                        }
2730                        put_page(vmf->page);
2731                }
2732                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2733                        if (total_map_swapcount == 1) {
2734                                /*
2735                                 * The page is all ours. Move it to
2736                                 * our anon_vma so the rmap code will
2737                                 * not search our parent or siblings.
2738                                 * Protected against the rmap code by
2739                                 * the page lock.
2740                                 */
2741                                page_move_anon_rmap(vmf->page, vma);
2742                        }
2743                        unlock_page(vmf->page);
2744                        wp_page_reuse(vmf);
2745                        return VM_FAULT_WRITE;
2746                }
2747                unlock_page(vmf->page);
2748        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749                                        (VM_WRITE|VM_SHARED))) {
2750                return wp_page_shared(vmf);
2751        }
2752
2753        /*
2754         * Ok, we need to copy. Oh, well..
2755         */
2756        get_page(vmf->page);
2757
2758        pte_unmap_unlock(vmf->pte, vmf->ptl);
2759        return wp_page_copy(vmf);
2760}
2761
2762static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2763                unsigned long start_addr, unsigned long end_addr,
2764                struct zap_details *details)
2765{
2766        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2767}
2768
2769static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2770                                            struct zap_details *details)
2771{
2772        struct vm_area_struct *vma;
2773        pgoff_t vba, vea, zba, zea;
2774
2775        vma_interval_tree_foreach(vma, root,
2776                        details->first_index, details->last_index) {
2777
2778                vba = vma->vm_pgoff;
2779                vea = vba + vma_pages(vma) - 1;
2780                zba = details->first_index;
2781                if (zba < vba)
2782                        zba = vba;
2783                zea = details->last_index;
2784                if (zea > vea)
2785                        zea = vea;
2786
2787                unmap_mapping_range_vma(vma,
2788                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2789                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2790                                details);
2791        }
2792}
2793
2794/**
2795 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796 * address_space corresponding to the specified page range in the underlying
2797 * file.
2798 *
2799 * @mapping: the address space containing mmaps to be unmapped.
2800 * @holebegin: byte in first page to unmap, relative to the start of
2801 * the underlying file.  This will be rounded down to a PAGE_SIZE
2802 * boundary.  Note that this is different from truncate_pagecache(), which
2803 * must keep the partial page.  In contrast, we must get rid of
2804 * partial pages.
2805 * @holelen: size of prospective hole in bytes.  This will be rounded
2806 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2807 * end of the file.
2808 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809 * but 0 when invalidating pagecache, don't throw away private data.
2810 */
2811void unmap_mapping_range(struct address_space *mapping,
2812                loff_t const holebegin, loff_t const holelen, int even_cows)
2813{
2814        struct zap_details details = { };
2815        pgoff_t hba = holebegin >> PAGE_SHIFT;
2816        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817
2818        /* Check for overflow. */
2819        if (sizeof(holelen) > sizeof(hlen)) {
2820                long long holeend =
2821                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2822                if (holeend & ~(long long)ULONG_MAX)
2823                        hlen = ULONG_MAX - hba + 1;
2824        }
2825
2826        details.check_mapping = even_cows ? NULL : mapping;
2827        details.first_index = hba;
2828        details.last_index = hba + hlen - 1;
2829        if (details.last_index < details.first_index)
2830                details.last_index = ULONG_MAX;
2831
2832        i_mmap_lock_write(mapping);
2833        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2834                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2835        i_mmap_unlock_write(mapping);
2836}
2837EXPORT_SYMBOL(unmap_mapping_range);
2838
2839/*
2840 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2841 * but allow concurrent faults), and pte mapped but not yet locked.
2842 * We return with pte unmapped and unlocked.
2843 *
2844 * We return with the mmap_sem locked or unlocked in the same cases
2845 * as does filemap_fault().
2846 */
2847int do_swap_page(struct vm_fault *vmf)
2848{
2849        struct vm_area_struct *vma = vmf->vma;
2850        struct page *page = NULL, *swapcache = NULL;
2851        struct mem_cgroup *memcg;
2852        struct vma_swap_readahead swap_ra;
2853        swp_entry_t entry;
2854        pte_t pte;
2855        int locked;
2856        int exclusive = 0;
2857        int ret = 0;
2858        bool vma_readahead = swap_use_vma_readahead();
2859
2860        if (vma_readahead) {
2861                page = swap_readahead_detect(vmf, &swap_ra);
2862                swapcache = page;
2863        }
2864
2865        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2866                if (page)
2867                        put_page(page);
2868                goto out;
2869        }
2870
2871        entry = pte_to_swp_entry(vmf->orig_pte);
2872        if (unlikely(non_swap_entry(entry))) {
2873                if (is_migration_entry(entry)) {
2874                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2875                                             vmf->address);
2876                } else if (is_device_private_entry(entry)) {
2877                        /*
2878                         * For un-addressable device memory we call the pgmap
2879                         * fault handler callback. The callback must migrate
2880                         * the page back to some CPU accessible page.
2881                         */
2882                        ret = device_private_entry_fault(vma, vmf->address, entry,
2883                                                 vmf->flags, vmf->pmd);
2884                } else if (is_hwpoison_entry(entry)) {
2885                        ret = VM_FAULT_HWPOISON;
2886                } else {
2887                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2888                        ret = VM_FAULT_SIGBUS;
2889                }
2890                goto out;
2891        }
2892
2893
2894        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2895        if (!page) {
2896                page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2897                                         vmf->address);
2898                swapcache = page;
2899        }
2900
2901        if (!page) {
2902                struct swap_info_struct *si = swp_swap_info(entry);
2903
2904                if (si->flags & SWP_SYNCHRONOUS_IO &&
2905                                __swap_count(si, entry) == 1) {
2906                        /* skip swapcache */
2907                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2908                        if (page) {
2909                                __SetPageLocked(page);
2910                                __SetPageSwapBacked(page);
2911                                set_page_private(page, entry.val);
2912                                lru_cache_add_anon(page);
2913                                swap_readpage(page, true);
2914                        }
2915                } else {
2916                        if (vma_readahead)
2917                                page = do_swap_page_readahead(entry,
2918                                        GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2919                        else
2920                                page = swapin_readahead(entry,
2921                                       GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2922                        swapcache = page;
2923                }
2924
2925                if (!page) {
2926                        /*
2927                         * Back out if somebody else faulted in this pte
2928                         * while we released the pte lock.
2929                         */
2930                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2931                                        vmf->address, &vmf->ptl);
2932                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2933                                ret = VM_FAULT_OOM;
2934                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2935                        goto unlock;
2936                }
2937
2938                /* Had to read the page from swap area: Major fault */
2939                ret = VM_FAULT_MAJOR;
2940                count_vm_event(PGMAJFAULT);
2941                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2942        } else if (PageHWPoison(page)) {
2943                /*
2944                 * hwpoisoned dirty swapcache pages are kept for killing
2945                 * owner processes (which may be unknown at hwpoison time)
2946                 */
2947                ret = VM_FAULT_HWPOISON;
2948                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2949                swapcache = page;
2950                goto out_release;
2951        }
2952
2953        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2954
2955        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2956        if (!locked) {
2957                ret |= VM_FAULT_RETRY;
2958                goto out_release;
2959        }
2960
2961        /*
2962         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2963         * release the swapcache from under us.  The page pin, and pte_same
2964         * test below, are not enough to exclude that.  Even if it is still
2965         * swapcache, we need to check that the page's swap has not changed.
2966         */
2967        if (unlikely((!PageSwapCache(page) ||
2968                        page_private(page) != entry.val)) && swapcache)
2969                goto out_page;
2970
2971        page = ksm_might_need_to_copy(page, vma, vmf->address);
2972        if (unlikely(!page)) {
2973                ret = VM_FAULT_OOM;
2974                page = swapcache;
2975                goto out_page;
2976        }
2977
2978        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2979                                &memcg, false)) {
2980                ret = VM_FAULT_OOM;
2981                goto out_page;
2982        }
2983
2984        /*
2985         * Back out if somebody else already faulted in this pte.
2986         */
2987        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2988                        &vmf->ptl);
2989        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2990                goto out_nomap;
2991
2992        if (unlikely(!PageUptodate(page))) {
2993                ret = VM_FAULT_SIGBUS;
2994                goto out_nomap;
2995        }
2996
2997        /*
2998         * The page isn't present yet, go ahead with the fault.
2999         *
3000         * Be careful about the sequence of operations here.
3001         * To get its accounting right, reuse_swap_page() must be called
3002         * while the page is counted on swap but not yet in mapcount i.e.
3003         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3004         * must be called after the swap_free(), or it will never succeed.
3005         */
3006
3007        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3008        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3009        pte = mk_pte(page, vma->vm_page_prot);
3010        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3011                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012                vmf->flags &= ~FAULT_FLAG_WRITE;
3013                ret |= VM_FAULT_WRITE;
3014                exclusive = RMAP_EXCLUSIVE;
3015        }
3016        flush_icache_page(vma, page);
3017        if (pte_swp_soft_dirty(vmf->orig_pte))
3018                pte = pte_mksoft_dirty(pte);
3019        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3020        vmf->orig_pte = pte;
3021
3022        /* ksm created a completely new copy */
3023        if (unlikely(page != swapcache && swapcache)) {
3024                page_add_new_anon_rmap(page, vma, vmf->address, false);
3025                mem_cgroup_commit_charge(page, memcg, false, false);
3026                lru_cache_add_active_or_unevictable(page, vma);
3027        } else {
3028                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3029                mem_cgroup_commit_charge(page, memcg, true, false);
3030                activate_page(page);
3031        }
3032
3033        swap_free(entry);
3034        if (mem_cgroup_swap_full(page) ||
3035            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3036                try_to_free_swap(page);
3037        unlock_page(page);
3038        if (page != swapcache && swapcache) {
3039                /*
3040                 * Hold the lock to avoid the swap entry to be reused
3041                 * until we take the PT lock for the pte_same() check
3042                 * (to avoid false positives from pte_same). For
3043                 * further safety release the lock after the swap_free
3044                 * so that the swap count won't change under a
3045                 * parallel locked swapcache.
3046                 */
3047                unlock_page(swapcache);
3048                put_page(swapcache);
3049        }
3050
3051        if (vmf->flags & FAULT_FLAG_WRITE) {
3052                ret |= do_wp_page(vmf);
3053                if (ret & VM_FAULT_ERROR)
3054                        ret &= VM_FAULT_ERROR;
3055                goto out;
3056        }
3057
3058        /* No need to invalidate - it was non-present before */
3059        update_mmu_cache(vma, vmf->address, vmf->pte);
3060unlock:
3061        pte_unmap_unlock(vmf->pte, vmf->ptl);
3062out:
3063        return ret;
3064out_nomap:
3065        mem_cgroup_cancel_charge(page, memcg, false);
3066        pte_unmap_unlock(vmf->pte, vmf->ptl);
3067out_page:
3068        unlock_page(page);
3069out_release:
3070        put_page(page);
3071        if (page != swapcache && swapcache) {
3072                unlock_page(swapcache);
3073                put_page(swapcache);
3074        }
3075        return ret;
3076}
3077
3078/*
3079 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3080 * but allow concurrent faults), and pte mapped but not yet locked.
3081 * We return with mmap_sem still held, but pte unmapped and unlocked.
3082 */
3083static int do_anonymous_page(struct vm_fault *vmf)
3084{
3085        struct vm_area_struct *vma = vmf->vma;
3086        struct mem_cgroup *memcg;
3087        struct page *page;
3088        int ret = 0;
3089        pte_t entry;
3090
3091        /* File mapping without ->vm_ops ? */
3092        if (vma->vm_flags & VM_SHARED)
3093                return VM_FAULT_SIGBUS;
3094
3095        /*
3096         * Use pte_alloc() instead of pte_alloc_map().  We can't run
3097         * pte_offset_map() on pmds where a huge pmd might be created
3098         * from a different thread.
3099         *
3100         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3101         * parallel threads are excluded by other means.
3102         *
3103         * Here we only have down_read(mmap_sem).
3104         */
3105        if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3106                return VM_FAULT_OOM;
3107
3108        /* See the comment in pte_alloc_one_map() */
3109        if (unlikely(pmd_trans_unstable(vmf->pmd)))
3110                return 0;
3111
3112        /* Use the zero-page for reads */
3113        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3114                        !mm_forbids_zeropage(vma->vm_mm)) {
3115                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3116                                                vma->vm_page_prot));
3117                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3118                                vmf->address, &vmf->ptl);
3119                if (!pte_none(*vmf->pte))
3120                        goto unlock;
3121                ret = check_stable_address_space(vma->vm_mm);
3122                if (ret)
3123                        goto unlock;
3124                /* Deliver the page fault to userland, check inside PT lock */
3125                if (userfaultfd_missing(vma)) {
3126                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3127                        return handle_userfault(vmf, VM_UFFD_MISSING);
3128                }
3129                goto setpte;
3130        }
3131
3132        /* Allocate our own private page. */
3133        if (unlikely(anon_vma_prepare(vma)))
3134                goto oom;
3135        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3136        if (!page)
3137                goto oom;
3138
3139        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3140                goto oom_free_page;
3141
3142        /*
3143         * The memory barrier inside __SetPageUptodate makes sure that
3144         * preceeding stores to the page contents become visible before
3145         * the set_pte_at() write.
3146         */
3147        __SetPageUptodate(page);
3148
3149        entry = mk_pte(page, vma->vm_page_prot);
3150        if (vma->vm_flags & VM_WRITE)
3151                entry = pte_mkwrite(pte_mkdirty(entry));
3152
3153        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3154                        &vmf->ptl);
3155        if (!pte_none(*vmf->pte))
3156                goto release;
3157
3158        ret = check_stable_address_space(vma->vm_mm);
3159        if (ret)
3160                goto release;
3161
3162        /* Deliver the page fault to userland, check inside PT lock */
3163        if (userfaultfd_missing(vma)) {
3164                pte_unmap_unlock(vmf->pte, vmf->ptl);
3165                mem_cgroup_cancel_charge(page, memcg, false);
3166                put_page(page);
3167                return handle_userfault(vmf, VM_UFFD_MISSING);
3168        }
3169
3170        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3171        page_add_new_anon_rmap(page, vma, vmf->address, false);
3172        mem_cgroup_commit_charge(page, memcg, false, false);
3173        lru_cache_add_active_or_unevictable(page, vma);
3174setpte:
3175        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3176
3177        /* No need to invalidate - it was non-present before */
3178        update_mmu_cache(vma, vmf->address, vmf->pte);
3179unlock:
3180        pte_unmap_unlock(vmf->pte, vmf->ptl);
3181        return ret;
3182release:
3183        mem_cgroup_cancel_charge(page, memcg, false);
3184        put_page(page);
3185        goto unlock;
3186oom_free_page:
3187        put_page(page);
3188oom:
3189        return VM_FAULT_OOM;
3190}
3191
3192/*
3193 * The mmap_sem must have been held on entry, and may have been
3194 * released depending on flags and vma->vm_ops->fault() return value.
3195 * See filemap_fault() and __lock_page_retry().
3196 */
3197static int __do_fault(struct vm_fault *vmf)
3198{
3199        struct vm_area_struct *vma = vmf->vma;
3200        int ret;
3201
3202        ret = vma->vm_ops->fault(vmf);
3203        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3204                            VM_FAULT_DONE_COW)))
3205                return ret;
3206
3207        if (unlikely(PageHWPoison(vmf->page))) {
3208                if (ret & VM_FAULT_LOCKED)
3209                        unlock_page(vmf->page);
3210                put_page(vmf->page);
3211                vmf->page = NULL;
3212                return VM_FAULT_HWPOISON;
3213        }
3214
3215        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3216                lock_page(vmf->page);
3217        else
3218                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3219
3220        return ret;
3221}
3222
3223/*
3224 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3225 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3226 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3227 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3228 */
3229static int pmd_devmap_trans_unstable(pmd_t *pmd)
3230{
3231        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3232}
3233
3234static int pte_alloc_one_map(struct vm_fault *vmf)
3235{
3236        struct vm_area_struct *vma = vmf->vma;
3237
3238        if (!pmd_none(*vmf->pmd))
3239                goto map_pte;
3240        if (vmf->prealloc_pte) {
3241                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3242                if (unlikely(!pmd_none(*vmf->pmd))) {
3243                        spin_unlock(vmf->ptl);
3244                        goto map_pte;
3245                }
3246
3247                mm_inc_nr_ptes(vma->vm_mm);
3248                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3249                spin_unlock(vmf->ptl);
3250                vmf->prealloc_pte = NULL;
3251        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3252                return VM_FAULT_OOM;
3253        }
3254map_pte:
3255        /*
3256         * If a huge pmd materialized under us just retry later.  Use
3257         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3258         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3259         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3260         * running immediately after a huge pmd fault in a different thread of
3261         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3262         * All we have to ensure is that it is a regular pmd that we can walk
3263         * with pte_offset_map() and we can do that through an atomic read in
3264         * C, which is what pmd_trans_unstable() provides.
3265         */
3266        if (pmd_devmap_trans_unstable(vmf->pmd))
3267                return VM_FAULT_NOPAGE;
3268
3269        /*
3270         * At this point we know that our vmf->pmd points to a page of ptes
3271         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3272         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3273         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3274         * be valid and we will re-check to make sure the vmf->pte isn't
3275         * pte_none() under vmf->ptl protection when we return to
3276         * alloc_set_pte().
3277         */
3278        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3279                        &vmf->ptl);
3280        return 0;
3281}
3282
3283#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3284
3285#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3286static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3287                unsigned long haddr)
3288{
3289        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3290                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3291                return false;
3292        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3293                return false;
3294        return true;
3295}
3296
3297static void deposit_prealloc_pte(struct vm_fault *vmf)
3298{
3299        struct vm_area_struct *vma = vmf->vma;
3300
3301        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3302        /*
3303         * We are going to consume the prealloc table,
3304         * count that as nr_ptes.
3305         */
3306        mm_inc_nr_ptes(vma->vm_mm);
3307        vmf->prealloc_pte = NULL;
3308}
3309
3310static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3311{
3312        struct vm_area_struct *vma = vmf->vma;
3313        bool write = vmf->flags & FAULT_FLAG_WRITE;
3314        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3315        pmd_t entry;
3316        int i, ret;
3317
3318        if (!transhuge_vma_suitable(vma, haddr))
3319                return VM_FAULT_FALLBACK;
3320
3321        ret = VM_FAULT_FALLBACK;
3322        page = compound_head(page);
3323
3324        /*
3325         * Archs like ppc64 need additonal space to store information
3326         * related to pte entry. Use the preallocated table for that.
3327         */
3328        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3329                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3330                if (!vmf->prealloc_pte)
3331                        return VM_FAULT_OOM;
3332                smp_wmb(); /* See comment in __pte_alloc() */
3333        }
3334
3335        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3336        if (unlikely(!pmd_none(*vmf->pmd)))
3337                goto out;
3338
3339        for (i = 0; i < HPAGE_PMD_NR; i++)
3340                flush_icache_page(vma, page + i);
3341
3342        entry = mk_huge_pmd(page, vma->vm_page_prot);
3343        if (write)
3344                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3345
3346        add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3347        page_add_file_rmap(page, true);
3348        /*
3349         * deposit and withdraw with pmd lock held
3350         */
3351        if (arch_needs_pgtable_deposit())
3352                deposit_prealloc_pte(vmf);
3353
3354        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3355
3356        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3357
3358        /* fault is handled */
3359        ret = 0;
3360        count_vm_event(THP_FILE_MAPPED);
3361out:
3362        spin_unlock(vmf->ptl);
3363        return ret;
3364}
3365#else
3366static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3367{
3368        BUILD_BUG();
3369        return 0;
3370}
3371#endif
3372
3373/**
3374 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3375 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3376 *
3377 * @vmf: fault environment
3378 * @memcg: memcg to charge page (only for private mappings)
3379 * @page: page to map
3380 *
3381 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3382 * return.
3383 *
3384 * Target users are page handler itself and implementations of
3385 * vm_ops->map_pages.
3386 */
3387int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3388                struct page *page)
3389{
3390        struct vm_area_struct *vma = vmf->vma;
3391        bool write = vmf->flags & FAULT_FLAG_WRITE;
3392        pte_t entry;
3393        int ret;
3394
3395        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3396                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3397                /* THP on COW? */
3398                VM_BUG_ON_PAGE(memcg, page);
3399
3400                ret = do_set_pmd(vmf, page);
3401                if (ret != VM_FAULT_FALLBACK)
3402                        return ret;
3403        }
3404
3405        if (!vmf->pte) {
3406                ret = pte_alloc_one_map(vmf);
3407                if (ret)
3408                        return ret;
3409        }
3410
3411        /* Re-check under ptl */
3412        if (unlikely(!pte_none(*vmf->pte)))
3413                return VM_FAULT_NOPAGE;
3414
3415        flush_icache_page(vma, page);
3416        entry = mk_pte(page, vma->vm_page_prot);
3417        if (write)
3418                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419        /* copy-on-write page */
3420        if (write && !(vma->vm_flags & VM_SHARED)) {
3421                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3422                page_add_new_anon_rmap(page, vma, vmf->address, false);
3423                mem_cgroup_commit_charge(page, memcg, false, false);
3424                lru_cache_add_active_or_unevictable(page, vma);
3425        } else {
3426                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3427                page_add_file_rmap(page, false);
3428        }
3429        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3430
3431        /* no need to invalidate: a not-present page won't be cached */
3432        update_mmu_cache(vma, vmf->address, vmf->pte);
3433
3434        return 0;
3435}
3436
3437
3438/**
3439 * finish_fault - finish page fault once we have prepared the page to fault
3440 *
3441 * @vmf: structure describing the fault
3442 *
3443 * This function handles all that is needed to finish a page fault once the
3444 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3445 * given page, adds reverse page mapping, handles memcg charges and LRU
3446 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3447 * error.
3448 *
3449 * The function expects the page to be locked and on success it consumes a
3450 * reference of a page being mapped (for the PTE which maps it).
3451 */
3452int finish_fault(struct vm_fault *vmf)
3453{
3454        struct page *page;
3455        int ret = 0;
3456
3457        /* Did we COW the page? */
3458        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3459            !(vmf->vma->vm_flags & VM_SHARED))
3460                page = vmf->cow_page;
3461        else
3462                page = vmf->page;
3463
3464        /*
3465         * check even for read faults because we might have lost our CoWed
3466         * page
3467         */
3468        if (!(vmf->vma->vm_flags & VM_SHARED))
3469                ret = check_stable_address_space(vmf->vma->vm_mm);
3470        if (!ret)
3471                ret = alloc_set_pte(vmf, vmf->memcg, page);
3472        if (vmf->pte)
3473                pte_unmap_unlock(vmf->pte, vmf->ptl);
3474        return ret;
3475}
3476
3477static unsigned long fault_around_bytes __read_mostly =
3478        rounddown_pow_of_two(65536);
3479
3480#ifdef CONFIG_DEBUG_FS
3481static int fault_around_bytes_get(void *data, u64 *val)
3482{
3483        *val = fault_around_bytes;
3484        return 0;
3485}
3486
3487/*
3488 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3489 * rounded down to nearest page order. It's what do_fault_around() expects to
3490 * see.
3491 */
3492static int fault_around_bytes_set(void *data, u64 val)
3493{
3494        if (val / PAGE_SIZE > PTRS_PER_PTE)
3495                return -EINVAL;
3496        if (val > PAGE_SIZE)
3497                fault_around_bytes = rounddown_pow_of_two(val);
3498        else
3499                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3500        return 0;
3501}
3502DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3503                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3504
3505static int __init fault_around_debugfs(void)
3506{
3507        void *ret;
3508
3509        ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3510                        &fault_around_bytes_fops);
3511        if (!ret)
3512                pr_warn("Failed to create fault_around_bytes in debugfs");
3513        return 0;
3514}
3515late_initcall(fault_around_debugfs);
3516#endif
3517
3518/*
3519 * do_fault_around() tries to map few pages around the fault address. The hope
3520 * is that the pages will be needed soon and this will lower the number of
3521 * faults to handle.
3522 *
3523 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3524 * not ready to be mapped: not up-to-date, locked, etc.
3525 *
3526 * This function is called with the page table lock taken. In the split ptlock
3527 * case the page table lock only protects only those entries which belong to
3528 * the page table corresponding to the fault address.
3529 *
3530 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3531 * only once.
3532 *
3533 * fault_around_pages() defines how many pages we'll try to map.
3534 * do_fault_around() expects it to return a power of two less than or equal to
3535 * PTRS_PER_PTE.
3536 *
3537 * The virtual address of the area that we map is naturally aligned to the
3538 * fault_around_pages() value (and therefore to page order).  This way it's
3539 * easier to guarantee that we don't cross page table boundaries.
3540 */
3541static int do_fault_around(struct vm_fault *vmf)
3542{
3543        unsigned long address = vmf->address, nr_pages, mask;
3544        pgoff_t start_pgoff = vmf->pgoff;
3545        pgoff_t end_pgoff;
3546        int off, ret = 0;
3547
3548        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3549        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3550
3551        vmf->address = max(address & mask, vmf->vma->vm_start);
3552        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3553        start_pgoff -= off;
3554
3555        /*
3556         *  end_pgoff is either end of page table or end of vma
3557         *  or fault_around_pages() from start_pgoff, depending what is nearest.
3558         */
3559        end_pgoff = start_pgoff -
3560                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3561                PTRS_PER_PTE - 1;
3562        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3563                        start_pgoff + nr_pages - 1);
3564
3565        if (pmd_none(*vmf->pmd)) {
3566                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3567                                                  vmf->address);
3568                if (!vmf->prealloc_pte)
3569                        goto out;
3570                smp_wmb(); /* See comment in __pte_alloc() */
3571        }
3572
3573        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3574
3575        /* Huge page is mapped? Page fault is solved */
3576        if (pmd_trans_huge(*vmf->pmd)) {
3577                ret = VM_FAULT_NOPAGE;
3578                goto out;
3579        }
3580
3581        /* ->map_pages() haven't done anything useful. Cold page cache? */
3582        if (!vmf->pte)
3583                goto out;
3584
3585        /* check if the page fault is solved */
3586        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3587        if (!pte_none(*vmf->pte))
3588                ret = VM_FAULT_NOPAGE;
3589        pte_unmap_unlock(vmf->pte, vmf->ptl);
3590out:
3591        vmf->address = address;
3592        vmf->pte = NULL;
3593        return ret;
3594}
3595
3596static int do_read_fault(struct vm_fault *vmf)
3597{
3598        struct vm_area_struct *vma = vmf->vma;
3599        int ret = 0;
3600
3601        /*
3602         * Let's call ->map_pages() first and use ->fault() as fallback
3603         * if page by the offset is not ready to be mapped (cold cache or
3604         * something).
3605         */
3606        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3607                ret = do_fault_around(vmf);
3608                if (ret)
3609                        return ret;
3610        }
3611
3612        ret = __do_fault(vmf);
3613        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3614                return ret;
3615
3616        ret |= finish_fault(vmf);
3617        unlock_page(vmf->page);
3618        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3619                put_page(vmf->page);
3620        return ret;
3621}
3622
3623static int do_cow_fault(struct vm_fault *vmf)
3624{
3625        struct vm_area_struct *vma = vmf->vma;
3626        int ret;
3627
3628        if (unlikely(anon_vma_prepare(vma)))
3629                return VM_FAULT_OOM;
3630
3631        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3632        if (!vmf->cow_page)
3633                return VM_FAULT_OOM;
3634
3635        if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3636                                &vmf->memcg, false)) {
3637                put_page(vmf->cow_page);
3638                return VM_FAULT_OOM;
3639        }
3640
3641        ret = __do_fault(vmf);
3642        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3643                goto uncharge_out;
3644        if (ret & VM_FAULT_DONE_COW)
3645                return ret;
3646
3647        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3648        __SetPageUptodate(vmf->cow_page);
3649
3650        ret |= finish_fault(vmf);
3651        unlock_page(vmf->page);
3652        put_page(vmf->page);
3653        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654                goto uncharge_out;
3655        return ret;
3656uncharge_out:
3657        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3658        put_page(vmf->cow_page);
3659        return ret;
3660}
3661
3662static int do_shared_fault(struct vm_fault *vmf)
3663{
3664        struct vm_area_struct *vma = vmf->vma;
3665        int ret, tmp;
3666
3667        ret = __do_fault(vmf);
3668        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3669                return ret;
3670
3671        /*
3672         * Check if the backing address space wants to know that the page is
3673         * about to become writable
3674         */
3675        if (vma->vm_ops->page_mkwrite) {
3676                unlock_page(vmf->page);
3677                tmp = do_page_mkwrite(vmf);
3678                if (unlikely(!tmp ||
3679                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3680                        put_page(vmf->page);
3681                        return tmp;
3682                }
3683        }
3684
3685        ret |= finish_fault(vmf);
3686        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3687                                        VM_FAULT_RETRY))) {
3688                unlock_page(vmf->page);
3689                put_page(vmf->page);
3690                return ret;
3691        }
3692
3693        fault_dirty_shared_page(vma, vmf->page);
3694        return ret;
3695}
3696
3697/*
3698 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3699 * but allow concurrent faults).
3700 * The mmap_sem may have been released depending on flags and our
3701 * return value.  See filemap_fault() and __lock_page_or_retry().
3702 */
3703static int do_fault(struct vm_fault *vmf)
3704{
3705        struct vm_area_struct *vma = vmf->vma;
3706        int ret;
3707
3708        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3709        if (!vma->vm_ops->fault)
3710                ret = VM_FAULT_SIGBUS;
3711        else if (!(vmf->flags & FAULT_FLAG_WRITE))
3712                ret = do_read_fault(vmf);
3713        else if (!(vma->vm_flags & VM_SHARED))
3714                ret = do_cow_fault(vmf);
3715        else
3716                ret = do_shared_fault(vmf);
3717
3718        /* preallocated pagetable is unused: free it */
3719        if (vmf->prealloc_pte) {
3720                pte_free(vma->vm_mm, vmf->prealloc_pte);
3721                vmf->prealloc_pte = NULL;
3722        }
3723        return ret;
3724}
3725
3726static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3727                                unsigned long addr, int page_nid,
3728                                int *flags)
3729{
3730        get_page(page);
3731
3732        count_vm_numa_event(NUMA_HINT_FAULTS);
3733        if (page_nid == numa_node_id()) {
3734                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3735                *flags |= TNF_FAULT_LOCAL;
3736        }
3737
3738        return mpol_misplaced(page, vma, addr);
3739}
3740
3741static int do_numa_page(struct vm_fault *vmf)
3742{
3743        struct vm_area_struct *vma = vmf->vma;
3744        struct page *page = NULL;
3745        int page_nid = -1;
3746        int last_cpupid;
3747        int target_nid;
3748        bool migrated = false;
3749        pte_t pte;
3750        bool was_writable = pte_savedwrite(vmf->orig_pte);
3751        int flags = 0;
3752
3753        /*
3754         * The "pte" at this point cannot be used safely without
3755         * validation through pte_unmap_same(). It's of NUMA type but
3756         * the pfn may be screwed if the read is non atomic.
3757         */
3758        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3759        spin_lock(vmf->ptl);
3760        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3761                pte_unmap_unlock(vmf->pte, vmf->ptl);
3762                goto out;
3763        }
3764
3765        /*
3766         * Make it present again, Depending on how arch implementes non
3767         * accessible ptes, some can allow access by kernel mode.
3768         */
3769        pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3770        pte = pte_modify(pte, vma->vm_page_prot);
3771        pte = pte_mkyoung(pte);
3772        if (was_writable)
3773                pte = pte_mkwrite(pte);
3774        ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3775        update_mmu_cache(vma, vmf->address, vmf->pte);
3776
3777        page = vm_normal_page(vma, vmf->address, pte);
3778        if (!page) {
3779                pte_unmap_unlock(vmf->pte, vmf->ptl);
3780                return 0;
3781        }
3782
3783        /* TODO: handle PTE-mapped THP */
3784        if (PageCompound(page)) {
3785                pte_unmap_unlock(vmf->pte, vmf->ptl);
3786                return 0;
3787        }
3788
3789        /*
3790         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3791         * much anyway since they can be in shared cache state. This misses
3792         * the case where a mapping is writable but the process never writes
3793         * to it but pte_write gets cleared during protection updates and
3794         * pte_dirty has unpredictable behaviour between PTE scan updates,
3795         * background writeback, dirty balancing and application behaviour.
3796         */
3797        if (!pte_write(pte))
3798                flags |= TNF_NO_GROUP;
3799
3800        /*
3801         * Flag if the page is shared between multiple address spaces. This
3802         * is later used when determining whether to group tasks together
3803         */
3804        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3805                flags |= TNF_SHARED;
3806
3807        last_cpupid = page_cpupid_last(page);
3808        page_nid = page_to_nid(page);
3809        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3810                        &flags);
3811        pte_unmap_unlock(vmf->pte, vmf->ptl);
3812        if (target_nid == -1) {
3813                put_page(page);
3814                goto out;
3815        }
3816
3817        /* Migrate to the requested node */
3818        migrated = migrate_misplaced_page(page, vma, target_nid);
3819        if (migrated) {
3820                page_nid = target_nid;
3821                flags |= TNF_MIGRATED;
3822        } else
3823                flags |= TNF_MIGRATE_FAIL;
3824
3825out:
3826        if (page_nid != -1)
3827                task_numa_fault(last_cpupid, page_nid, 1, flags);
3828        return 0;
3829}
3830
3831static inline int create_huge_pmd(struct vm_fault *vmf)
3832{
3833        if (vma_is_anonymous(vmf->vma))
3834                return do_huge_pmd_anonymous_page(vmf);
3835        if (vmf->vma->vm_ops->huge_fault)
3836                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3837        return VM_FAULT_FALLBACK;
3838}
3839
3840/* `inline' is required to avoid gcc 4.1.2 build error */
3841static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3842{
3843        if (vma_is_anonymous(vmf->vma))
3844                return do_huge_pmd_wp_page(vmf, orig_pmd);
3845        if (vmf->vma->vm_ops->huge_fault)
3846                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3847
3848        /* COW handled on pte level: split pmd */
3849        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3850        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3851
3852        return VM_FAULT_FALLBACK;
3853}
3854
3855static inline bool vma_is_accessible(struct vm_area_struct *vma)
3856{
3857        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3858}
3859
3860static int create_huge_pud(struct vm_fault *vmf)
3861{
3862#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3863        /* No support for anonymous transparent PUD pages yet */
3864        if (vma_is_anonymous(vmf->vma))
3865                return VM_FAULT_FALLBACK;
3866        if (vmf->vma->vm_ops->huge_fault)
3867                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3868#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3869        return VM_FAULT_FALLBACK;
3870}
3871
3872static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3873{
3874#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3875        /* No support for anonymous transparent PUD pages yet */
3876        if (vma_is_anonymous(vmf->vma))
3877                return VM_FAULT_FALLBACK;
3878        if (vmf->vma->vm_ops->huge_fault)
3879                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3880#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3881        return VM_FAULT_FALLBACK;
3882}
3883
3884/*
3885 * These routines also need to handle stuff like marking pages dirty
3886 * and/or accessed for architectures that don't do it in hardware (most
3887 * RISC architectures).  The early dirtying is also good on the i386.
3888 *
3889 * There is also a hook called "update_mmu_cache()" that architectures
3890 * with external mmu caches can use to update those (ie the Sparc or
3891 * PowerPC hashed page tables that act as extended TLBs).
3892 *
3893 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3894 * concurrent faults).
3895 *
3896 * The mmap_sem may have been released depending on flags and our return value.
3897 * See filemap_fault() and __lock_page_or_retry().
3898 */
3899static int handle_pte_fault(struct vm_fault *vmf)
3900{
3901        pte_t entry;
3902
3903        if (unlikely(pmd_none(*vmf->pmd))) {
3904                /*
3905                 * Leave __pte_alloc() until later: because vm_ops->fault may
3906                 * want to allocate huge page, and if we expose page table
3907                 * for an instant, it will be difficult to retract from
3908                 * concurrent faults and from rmap lookups.
3909                 */
3910                vmf->pte = NULL;
3911        } else {
3912                /* See comment in pte_alloc_one_map() */
3913                if (pmd_devmap_trans_unstable(vmf->pmd))
3914                        return 0;
3915                /*
3916                 * A regular pmd is established and it can't morph into a huge
3917                 * pmd from under us anymore at this point because we hold the
3918                 * mmap_sem read mode and khugepaged takes it in write mode.
3919                 * So now it's safe to run pte_offset_map().
3920                 */
3921                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3922                vmf->orig_pte = *vmf->pte;
3923
3924                /*
3925                 * some architectures can have larger ptes than wordsize,
3926                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3927                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3928                 * accesses.  The code below just needs a consistent view
3929                 * for the ifs and we later double check anyway with the
3930                 * ptl lock held. So here a barrier will do.
3931                 */
3932                barrier();
3933                if (pte_none(vmf->orig_pte)) {
3934                        pte_unmap(vmf->pte);
3935                        vmf->pte = NULL;
3936                }
3937        }
3938
3939        if (!vmf->pte) {
3940                if (vma_is_anonymous(vmf->vma))
3941                        return do_anonymous_page(vmf);
3942                else
3943                        return do_fault(vmf);
3944        }
3945
3946        if (!pte_present(vmf->orig_pte))
3947                return do_swap_page(vmf);
3948
3949        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3950                return do_numa_page(vmf);
3951
3952        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3953        spin_lock(vmf->ptl);
3954        entry = vmf->orig_pte;
3955        if (unlikely(!pte_same(*vmf->pte, entry)))
3956                goto unlock;
3957        if (vmf->flags & FAULT_FLAG_WRITE) {
3958                if (!pte_write(entry))
3959                        return do_wp_page(vmf);
3960                entry = pte_mkdirty(entry);
3961        }
3962        entry = pte_mkyoung(entry);
3963        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3964                                vmf->flags & FAULT_FLAG_WRITE)) {
3965                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3966        } else {
3967                /*
3968                 * This is needed only for protection faults but the arch code
3969                 * is not yet telling us if this is a protection fault or not.
3970                 * This still avoids useless tlb flushes for .text page faults
3971                 * with threads.
3972                 */
3973                if (vmf->flags & FAULT_FLAG_WRITE)
3974                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3975        }
3976unlock:
3977        pte_unmap_unlock(vmf->pte, vmf->ptl);
3978        return 0;
3979}
3980
3981/*
3982 * By the time we get here, we already hold the mm semaphore
3983 *
3984 * The mmap_sem may have been released depending on flags and our
3985 * return value.  See filemap_fault() and __lock_page_or_retry().
3986 */
3987static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3988                unsigned int flags)
3989{
3990        struct vm_fault vmf = {
3991                .vma = vma,
3992                .address = address & PAGE_MASK,
3993                .flags = flags,
3994                .pgoff = linear_page_index(vma, address),
3995                .gfp_mask = __get_fault_gfp_mask(vma),
3996        };
3997        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3998        struct mm_struct *mm = vma->vm_mm;
3999        pgd_t *pgd;
4000        p4d_t *p4d;
4001        int ret;
4002
4003        pgd = pgd_offset(mm, address);
4004        p4d = p4d_alloc(mm, pgd, address);
4005        if (!p4d)
4006                return VM_FAULT_OOM;
4007
4008        vmf.pud = pud_alloc(mm, p4d, address);
4009        if (!vmf.pud)
4010                return VM_FAULT_OOM;
4011        if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4012                ret = create_huge_pud(&vmf);
4013                if (!(ret & VM_FAULT_FALLBACK))
4014                        return ret;
4015        } else {
4016                pud_t orig_pud = *vmf.pud;
4017
4018                barrier();
4019                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4020
4021                        /* NUMA case for anonymous PUDs would go here */
4022
4023                        if (dirty && !pud_write(orig_pud)) {
4024                                ret = wp_huge_pud(&vmf, orig_pud);
4025                                if (!(ret & VM_FAULT_FALLBACK))
4026                                        return ret;
4027                        } else {
4028                                huge_pud_set_accessed(&vmf, orig_pud);
4029                                return 0;
4030                        }
4031                }
4032        }
4033
4034        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4035        if (!vmf.pmd)
4036                return VM_FAULT_OOM;
4037        if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4038                ret = create_huge_pmd(&vmf);
4039                if (!(ret & VM_FAULT_FALLBACK))
4040                        return ret;
4041        } else {
4042                pmd_t orig_pmd = *vmf.pmd;
4043
4044                barrier();
4045                if (unlikely(is_swap_pmd(orig_pmd))) {
4046                        VM_BUG_ON(thp_migration_supported() &&
4047                                          !is_pmd_migration_entry(orig_pmd));
4048                        if (is_pmd_migration_entry(orig_pmd))
4049                                pmd_migration_entry_wait(mm, vmf.pmd);
4050                        return 0;
4051                }
4052                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4053                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4054                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
4055
4056                        if (dirty && !pmd_write(orig_pmd)) {
4057                                ret = wp_huge_pmd(&vmf, orig_pmd);
4058                                if (!(ret & VM_FAULT_FALLBACK))
4059                                        return ret;
4060                        } else {
4061                                huge_pmd_set_accessed(&vmf, orig_pmd);
4062                                return 0;
4063                        }
4064                }
4065        }
4066
4067        return handle_pte_fault(&vmf);
4068}
4069
4070/*
4071 * By the time we get here, we already hold the mm semaphore
4072 *
4073 * The mmap_sem may have been released depending on flags and our
4074 * return value.  See filemap_fault() and __lock_page_or_retry().
4075 */
4076int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4077                unsigned int flags)
4078{
4079        int ret;
4080
4081        __set_current_state(TASK_RUNNING);
4082
4083        count_vm_event(PGFAULT);
4084        count_memcg_event_mm(vma->vm_mm, PGFAULT);
4085
4086        /* do counter updates before entering really critical section. */
4087        check_sync_rss_stat(current);
4088
4089        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4090                                            flags & FAULT_FLAG_INSTRUCTION,
4091                                            flags & FAULT_FLAG_REMOTE))
4092                return VM_FAULT_SIGSEGV;
4093
4094        /*
4095         * Enable the memcg OOM handling for faults triggered in user
4096         * space.  Kernel faults are handled more gracefully.
4097         */
4098        if (flags & FAULT_FLAG_USER)
4099                mem_cgroup_oom_enable();
4100
4101        if (unlikely(is_vm_hugetlb_page(vma)))
4102                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4103        else
4104                ret = __handle_mm_fault(vma, address, flags);
4105
4106        if (flags & FAULT_FLAG_USER) {
4107                mem_cgroup_oom_disable();
4108                /*
4109                 * The task may have entered a memcg OOM situation but
4110                 * if the allocation error was handled gracefully (no
4111                 * VM_FAULT_OOM), there is no need to kill anything.
4112                 * Just clean up the OOM state peacefully.
4113                 */
4114                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4115                        mem_cgroup_oom_synchronize(false);
4116        }
4117
4118        return ret;
4119}
4120EXPORT_SYMBOL_GPL(handle_mm_fault);
4121
4122#ifndef __PAGETABLE_P4D_FOLDED
4123/*
4124 * Allocate p4d page table.
4125 * We've already handled the fast-path in-line.
4126 */
4127int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4128{
4129        p4d_t *new = p4d_alloc_one(mm, address);
4130        if (!new)
4131                return -ENOMEM;
4132
4133        smp_wmb(); /* See comment in __pte_alloc */
4134
4135        spin_lock(&mm->page_table_lock);
4136        if (pgd_present(*pgd))          /* Another has populated it */
4137                p4d_free(mm, new);
4138        else
4139                pgd_populate(mm, pgd, new);
4140        spin_unlock(&mm->page_table_lock);
4141        return 0;
4142}
4143#endif /* __PAGETABLE_P4D_FOLDED */
4144
4145#ifndef __PAGETABLE_PUD_FOLDED
4146/*
4147 * Allocate page upper directory.
4148 * We've already handled the fast-path in-line.
4149 */
4150int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4151{
4152        pud_t *new = pud_alloc_one(mm, address);
4153        if (!new)
4154                return -ENOMEM;
4155
4156        smp_wmb(); /* See comment in __pte_alloc */
4157
4158        spin_lock(&mm->page_table_lock);
4159#ifndef __ARCH_HAS_5LEVEL_HACK
4160        if (!p4d_present(*p4d)) {
4161                mm_inc_nr_puds(mm);
4162                p4d_populate(mm, p4d, new);
4163        } else  /* Another has populated it */
4164                pud_free(mm, new);
4165#else
4166        if (!pgd_present(*p4d)) {
4167                mm_inc_nr_puds(mm);
4168                pgd_populate(mm, p4d, new);
4169        } else  /* Another has populated it */
4170                pud_free(mm, new);
4171#endif /* __ARCH_HAS_5LEVEL_HACK */
4172        spin_unlock(&mm->page_table_lock);
4173        return 0;
4174}
4175#endif /* __PAGETABLE_PUD_FOLDED */
4176
4177#ifndef __PAGETABLE_PMD_FOLDED
4178/*
4179 * Allocate page middle directory.
4180 * We've already handled the fast-path in-line.
4181 */
4182int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4183{
4184        spinlock_t *ptl;
4185        pmd_t *new = pmd_alloc_one(mm, address);
4186        if (!new)
4187                return -ENOMEM;
4188
4189        smp_wmb(); /* See comment in __pte_alloc */
4190
4191        ptl = pud_lock(mm, pud);
4192#ifndef __ARCH_HAS_4LEVEL_HACK
4193        if (!pud_present(*pud)) {
4194                mm_inc_nr_pmds(mm);
4195                pud_populate(mm, pud, new);
4196        } else  /* Another has populated it */
4197                pmd_free(mm, new);
4198#else
4199        if (!pgd_present(*pud)) {
4200                mm_inc_nr_pmds(mm);
4201                pgd_populate(mm, pud, new);
4202        } else /* Another has populated it */
4203                pmd_free(mm, new);
4204#endif /* __ARCH_HAS_4LEVEL_HACK */
4205        spin_unlock(ptl);
4206        return 0;
4207}
4208#endif /* __PAGETABLE_PMD_FOLDED */
4209
4210static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4211                            unsigned long *start, unsigned long *end,
4212                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4213{
4214        pgd_t *pgd;
4215        p4d_t *p4d;
4216        pud_t *pud;
4217        pmd_t *pmd;
4218        pte_t *ptep;
4219
4220        pgd = pgd_offset(mm, address);
4221        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4222                goto out;
4223
4224        p4d = p4d_offset(pgd, address);
4225        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4226                goto out;
4227
4228        pud = pud_offset(p4d, address);
4229        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4230                goto out;
4231
4232        pmd = pmd_offset(pud, address);
4233        VM_BUG_ON(pmd_trans_huge(*pmd));
4234
4235        if (pmd_huge(*pmd)) {
4236                if (!pmdpp)
4237                        goto out;
4238
4239                if (start && end) {
4240                        *start = address & PMD_MASK;
4241                        *end = *start + PMD_SIZE;
4242                        mmu_notifier_invalidate_range_start(mm, *start, *end);
4243                }
4244                *ptlp = pmd_lock(mm, pmd);
4245                if (pmd_huge(*pmd)) {
4246                        *pmdpp = pmd;
4247                        return 0;
4248                }
4249                spin_unlock(*ptlp);
4250                if (start && end)
4251                        mmu_notifier_invalidate_range_end(mm, *start, *end);
4252        }
4253
4254        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4255                goto out;
4256
4257        if (start && end) {
4258                *start = address & PAGE_MASK;
4259                *end = *start + PAGE_SIZE;
4260                mmu_notifier_invalidate_range_start(mm, *start, *end);
4261        }
4262        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4263        if (!pte_present(*ptep))
4264                goto unlock;
4265        *ptepp = ptep;
4266        return 0;
4267unlock:
4268        pte_unmap_unlock(ptep, *ptlp);
4269        if (start && end)
4270                mmu_notifier_invalidate_range_end(mm, *start, *end);
4271out:
4272        return -EINVAL;
4273}
4274
4275static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4276                             pte_t **ptepp, spinlock_t **ptlp)
4277{
4278        int res;
4279
4280        /* (void) is needed to make gcc happy */
4281        (void) __cond_lock(*ptlp,
4282                           !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4283                                                    ptepp, NULL, ptlp)));
4284        return res;
4285}
4286
4287int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4288                             unsigned long *start, unsigned long *end,
4289                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4290{
4291        int res;
4292
4293        /* (void) is needed to make gcc happy */
4294        (void) __cond_lock(*ptlp,
4295                           !(res = __follow_pte_pmd(mm, address, start, end,
4296                                                    ptepp, pmdpp, ptlp)));
4297        return res;
4298}
4299EXPORT_SYMBOL(follow_pte_pmd);
4300
4301/**
4302 * follow_pfn - look up PFN at a user virtual address
4303 * @vma: memory mapping
4304 * @address: user virtual address
4305 * @pfn: location to store found PFN
4306 *
4307 * Only IO mappings and raw PFN mappings are allowed.
4308 *
4309 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4310 */
4311int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4312        unsigned long *pfn)
4313{
4314        int ret = -EINVAL;
4315        spinlock_t *ptl;
4316        pte_t *ptep;
4317
4318        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4319                return ret;
4320
4321        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4322        if (ret)
4323                return ret;
4324        *pfn = pte_pfn(*ptep);
4325        pte_unmap_unlock(ptep, ptl);
4326        return 0;
4327}
4328EXPORT_SYMBOL(follow_pfn);
4329
4330#ifdef CONFIG_HAVE_IOREMAP_PROT
4331int follow_phys(struct vm_area_struct *vma,
4332                unsigned long address, unsigned int flags,
4333                unsigned long *prot, resource_size_t *phys)
4334{
4335        int ret = -EINVAL;
4336        pte_t *ptep, pte;
4337        spinlock_t *ptl;
4338
4339        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4340                goto out;
4341
4342        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4343                goto out;
4344        pte = *ptep;
4345
4346        if ((flags & FOLL_WRITE) && !pte_write(pte))
4347                goto unlock;
4348
4349        *prot = pgprot_val(pte_pgprot(pte));
4350        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4351
4352        ret = 0;
4353unlock:
4354        pte_unmap_unlock(ptep, ptl);
4355out:
4356        return ret;
4357}
4358
4359int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4360                        void *buf, int len, int write)
4361{
4362        resource_size_t phys_addr;
4363        unsigned long prot = 0;
4364        void __iomem *maddr;
4365        int offset = addr & (PAGE_SIZE-1);
4366
4367        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4368                return -EINVAL;
4369
4370        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4371        if (write)
4372                memcpy_toio(maddr + offset, buf, len);
4373        else
4374                memcpy_fromio(buf, maddr + offset, len);
4375        iounmap(maddr);
4376
4377        return len;
4378}
4379EXPORT_SYMBOL_GPL(generic_access_phys);
4380#endif
4381
4382/*
4383 * Access another process' address space as given in mm.  If non-NULL, use the
4384 * given task for page fault accounting.
4385 */
4386int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4387                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4388{
4389        struct vm_area_struct *vma;
4390        void *old_buf = buf;
4391        int write = gup_flags & FOLL_WRITE;
4392
4393        down_read(&mm->mmap_sem);
4394        /* ignore errors, just check how much was successfully transferred */
4395        while (len) {
4396                int bytes, ret, offset;
4397                void *maddr;
4398                struct page *page = NULL;
4399
4400                ret = get_user_pages_remote(tsk, mm, addr, 1,
4401                                gup_flags, &page, &vma, NULL);
4402                if (ret <= 0) {
4403#ifndef CONFIG_HAVE_IOREMAP_PROT
4404                        break;
4405#else
4406                        /*
4407                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4408                         * we can access using slightly different code.
4409                         */
4410                        vma = find_vma(mm, addr);
4411                        if (!vma || vma->vm_start > addr)
4412                                break;
4413                        if (vma->vm_ops && vma->vm_ops->access)
4414                                ret = vma->vm_ops->access(vma, addr, buf,
4415                                                          len, write);
4416                        if (ret <= 0)
4417                                break;
4418                        bytes = ret;
4419#endif
4420                } else {
4421                        bytes = len;
4422                        offset = addr & (PAGE_SIZE-1);
4423                        if (bytes > PAGE_SIZE-offset)
4424                                bytes = PAGE_SIZE-offset;
4425
4426                        maddr = kmap(page);
4427                        if (write) {
4428                                copy_to_user_page(vma, page, addr,
4429                                                  maddr + offset, buf, bytes);
4430                                set_page_dirty_lock(page);
4431                        } else {
4432                                copy_from_user_page(vma, page, addr,
4433                                                    buf, maddr + offset, bytes);
4434                        }
4435                        kunmap(page);
4436                        put_page(page);
4437                }
4438                len -= bytes;
4439                buf += bytes;
4440                addr += bytes;
4441        }
4442        up_read(&mm->mmap_sem);
4443
4444        return buf - old_buf;
4445}
4446
4447/**
4448 * access_remote_vm - access another process' address space
4449 * @mm:         the mm_struct of the target address space
4450 * @addr:       start address to access
4451 * @buf:        source or destination buffer
4452 * @len:        number of bytes to transfer
4453 * @gup_flags:  flags modifying lookup behaviour
4454 *
4455 * The caller must hold a reference on @mm.
4456 */
4457int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4458                void *buf, int len, unsigned int gup_flags)
4459{
4460        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4461}
4462
4463/*
4464 * Access another process' address space.
4465 * Source/target buffer must be kernel space,
4466 * Do not walk the page table directly, use get_user_pages
4467 */
4468int access_process_vm(struct task_struct *tsk, unsigned long addr,
4469                void *buf, int len, unsigned int gup_flags)
4470{
4471        struct mm_struct *mm;
4472        int ret;
4473
4474        mm = get_task_mm(tsk);
4475        if (!mm)
4476                return 0;
4477
4478        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4479
4480        mmput(mm);
4481
4482        return ret;
4483}
4484EXPORT_SYMBOL_GPL(access_process_vm);
4485
4486/*
4487 * Print the name of a VMA.
4488 */
4489void print_vma_addr(char *prefix, unsigned long ip)
4490{
4491        struct mm_struct *mm = current->mm;
4492        struct vm_area_struct *vma;
4493
4494        /*
4495         * we might be running from an atomic context so we cannot sleep
4496         */
4497        if (!down_read_trylock(&mm->mmap_sem))
4498                return;
4499
4500        vma = find_vma(mm, ip);
4501        if (vma && vma->vm_file) {
4502                struct file *f = vma->vm_file;
4503                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4504                if (buf) {
4505                        char *p;
4506
4507                        p = file_path(f, buf, PAGE_SIZE);
4508                        if (IS_ERR(p))
4509                                p = "?";
4510                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4511                                        vma->vm_start,
4512                                        vma->vm_end - vma->vm_start);
4513                        free_page((unsigned long)buf);
4514                }
4515        }
4516        up_read(&mm->mmap_sem);
4517}
4518
4519#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4520void __might_fault(const char *file, int line)
4521{
4522        /*
4523         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4524         * holding the mmap_sem, this is safe because kernel memory doesn't
4525         * get paged out, therefore we'll never actually fault, and the
4526         * below annotations will generate false positives.
4527         */
4528        if (uaccess_kernel())
4529                return;
4530        if (pagefault_disabled())
4531                return;
4532        __might_sleep(file, line, 0);
4533#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4534        if (current->mm)
4535                might_lock_read(&current->mm->mmap_sem);
4536#endif
4537}
4538EXPORT_SYMBOL(__might_fault);
4539#endif
4540
4541#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4542static void clear_gigantic_page(struct page *page,
4543                                unsigned long addr,
4544                                unsigned int pages_per_huge_page)
4545{
4546        int i;
4547        struct page *p = page;
4548
4549        might_sleep();
4550        for (i = 0; i < pages_per_huge_page;
4551             i++, p = mem_map_next(p, page, i)) {
4552                cond_resched();
4553                clear_user_highpage(p, addr + i * PAGE_SIZE);
4554        }
4555}
4556void clear_huge_page(struct page *page,
4557                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4558{
4559        int i, n, base, l;
4560        unsigned long addr = addr_hint &
4561                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4562
4563        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4564                clear_gigantic_page(page, addr, pages_per_huge_page);
4565                return;
4566        }
4567
4568        /* Clear sub-page to access last to keep its cache lines hot */
4569        might_sleep();
4570        n = (addr_hint - addr) / PAGE_SIZE;
4571        if (2 * n <= pages_per_huge_page) {
4572                /* If sub-page to access in first half of huge page */
4573                base = 0;
4574                l = n;
4575                /* Clear sub-pages at the end of huge page */
4576                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4577                        cond_resched();
4578                        clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4579                }
4580        } else {
4581                /* If sub-page to access in second half of huge page */
4582                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4583                l = pages_per_huge_page - n;
4584                /* Clear sub-pages at the begin of huge page */
4585                for (i = 0; i < base; i++) {
4586                        cond_resched();
4587                        clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4588                }
4589        }
4590        /*
4591         * Clear remaining sub-pages in left-right-left-right pattern
4592         * towards the sub-page to access
4593         */
4594        for (i = 0; i < l; i++) {
4595                int left_idx = base + i;
4596                int right_idx = base + 2 * l - 1 - i;
4597
4598                cond_resched();
4599                clear_user_highpage(page + left_idx,
4600                                    addr + left_idx * PAGE_SIZE);
4601                cond_resched();
4602                clear_user_highpage(page + right_idx,
4603                                    addr + right_idx * PAGE_SIZE);
4604        }
4605}
4606
4607static void copy_user_gigantic_page(struct page *dst, struct page *src,
4608                                    unsigned long addr,
4609                                    struct vm_area_struct *vma,
4610                                    unsigned int pages_per_huge_page)
4611{
4612        int i;
4613        struct page *dst_base = dst;
4614        struct page *src_base = src;
4615
4616        for (i = 0; i < pages_per_huge_page; ) {
4617                cond_resched();
4618                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4619
4620                i++;
4621                dst = mem_map_next(dst, dst_base, i);
4622                src = mem_map_next(src, src_base, i);
4623        }
4624}
4625
4626void copy_user_huge_page(struct page *dst, struct page *src,
4627                         unsigned long addr, struct vm_area_struct *vma,
4628                         unsigned int pages_per_huge_page)
4629{
4630        int i;
4631
4632        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4633                copy_user_gigantic_page(dst, src, addr, vma,
4634                                        pages_per_huge_page);
4635                return;
4636        }
4637
4638        might_sleep();
4639        for (i = 0; i < pages_per_huge_page; i++) {
4640                cond_resched();
4641                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4642        }
4643}
4644
4645long copy_huge_page_from_user(struct page *dst_page,
4646                                const void __user *usr_src,
4647                                unsigned int pages_per_huge_page,
4648                                bool allow_pagefault)
4649{
4650        void *src = (void *)usr_src;
4651        void *page_kaddr;
4652        unsigned long i, rc = 0;
4653        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4654
4655        for (i = 0; i < pages_per_huge_page; i++) {
4656                if (allow_pagefault)
4657                        page_kaddr = kmap(dst_page + i);
4658                else
4659                        page_kaddr = kmap_atomic(dst_page + i);
4660                rc = copy_from_user(page_kaddr,
4661                                (const void __user *)(src + i * PAGE_SIZE),
4662                                PAGE_SIZE);
4663                if (allow_pagefault)
4664                        kunmap(dst_page + i);
4665                else
4666                        kunmap_atomic(page_kaddr);
4667
4668                ret_val -= (PAGE_SIZE - rc);
4669                if (rc)
4670                        break;
4671
4672                cond_resched();
4673        }
4674        return ret_val;
4675}
4676#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4677
4678#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4679
4680static struct kmem_cache *page_ptl_cachep;
4681
4682void __init ptlock_cache_init(void)
4683{
4684        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4685                        SLAB_PANIC, NULL);
4686}
4687
4688bool ptlock_alloc(struct page *page)
4689{
4690        spinlock_t *ptl;
4691
4692        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4693        if (!ptl)
4694                return false;
4695        page->ptl = ptl;
4696        return true;
4697}
4698
4699void ptlock_free(struct page *page)
4700{
4701        kmem_cache_free(page_ptl_cachep, page->ptl);
4702}
4703#endif
4704