linux/net/bluetooth/hci_request.c
<<
>>
Prefs
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3
   4   Copyright (C) 2014 Intel Corporation
   5
   6   This program is free software; you can redistribute it and/or modify
   7   it under the terms of the GNU General Public License version 2 as
   8   published by the Free Software Foundation;
   9
  10   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  11   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  12   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  13   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  14   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  15   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18
  19   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  20   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  21   SOFTWARE IS DISCLAIMED.
  22*/
  23
  24#include <linux/sched/signal.h>
  25
  26#include <net/bluetooth/bluetooth.h>
  27#include <net/bluetooth/hci_core.h>
  28#include <net/bluetooth/mgmt.h>
  29
  30#include "smp.h"
  31#include "hci_request.h"
  32
  33#define HCI_REQ_DONE      0
  34#define HCI_REQ_PEND      1
  35#define HCI_REQ_CANCELED  2
  36
  37void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
  38{
  39        skb_queue_head_init(&req->cmd_q);
  40        req->hdev = hdev;
  41        req->err = 0;
  42}
  43
  44void hci_req_purge(struct hci_request *req)
  45{
  46        skb_queue_purge(&req->cmd_q);
  47}
  48
  49static int req_run(struct hci_request *req, hci_req_complete_t complete,
  50                   hci_req_complete_skb_t complete_skb)
  51{
  52        struct hci_dev *hdev = req->hdev;
  53        struct sk_buff *skb;
  54        unsigned long flags;
  55
  56        BT_DBG("length %u", skb_queue_len(&req->cmd_q));
  57
  58        /* If an error occurred during request building, remove all HCI
  59         * commands queued on the HCI request queue.
  60         */
  61        if (req->err) {
  62                skb_queue_purge(&req->cmd_q);
  63                return req->err;
  64        }
  65
  66        /* Do not allow empty requests */
  67        if (skb_queue_empty(&req->cmd_q))
  68                return -ENODATA;
  69
  70        skb = skb_peek_tail(&req->cmd_q);
  71        if (complete) {
  72                bt_cb(skb)->hci.req_complete = complete;
  73        } else if (complete_skb) {
  74                bt_cb(skb)->hci.req_complete_skb = complete_skb;
  75                bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
  76        }
  77
  78        spin_lock_irqsave(&hdev->cmd_q.lock, flags);
  79        skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
  80        spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
  81
  82        queue_work(hdev->workqueue, &hdev->cmd_work);
  83
  84        return 0;
  85}
  86
  87int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
  88{
  89        return req_run(req, complete, NULL);
  90}
  91
  92int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
  93{
  94        return req_run(req, NULL, complete);
  95}
  96
  97static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
  98                                  struct sk_buff *skb)
  99{
 100        BT_DBG("%s result 0x%2.2x", hdev->name, result);
 101
 102        if (hdev->req_status == HCI_REQ_PEND) {
 103                hdev->req_result = result;
 104                hdev->req_status = HCI_REQ_DONE;
 105                if (skb)
 106                        hdev->req_skb = skb_get(skb);
 107                wake_up_interruptible(&hdev->req_wait_q);
 108        }
 109}
 110
 111void hci_req_sync_cancel(struct hci_dev *hdev, int err)
 112{
 113        BT_DBG("%s err 0x%2.2x", hdev->name, err);
 114
 115        if (hdev->req_status == HCI_REQ_PEND) {
 116                hdev->req_result = err;
 117                hdev->req_status = HCI_REQ_CANCELED;
 118                wake_up_interruptible(&hdev->req_wait_q);
 119        }
 120}
 121
 122struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
 123                                  const void *param, u8 event, u32 timeout)
 124{
 125        DECLARE_WAITQUEUE(wait, current);
 126        struct hci_request req;
 127        struct sk_buff *skb;
 128        int err = 0;
 129
 130        BT_DBG("%s", hdev->name);
 131
 132        hci_req_init(&req, hdev);
 133
 134        hci_req_add_ev(&req, opcode, plen, param, event);
 135
 136        hdev->req_status = HCI_REQ_PEND;
 137
 138        add_wait_queue(&hdev->req_wait_q, &wait);
 139        set_current_state(TASK_INTERRUPTIBLE);
 140
 141        err = hci_req_run_skb(&req, hci_req_sync_complete);
 142        if (err < 0) {
 143                remove_wait_queue(&hdev->req_wait_q, &wait);
 144                set_current_state(TASK_RUNNING);
 145                return ERR_PTR(err);
 146        }
 147
 148        schedule_timeout(timeout);
 149
 150        remove_wait_queue(&hdev->req_wait_q, &wait);
 151
 152        if (signal_pending(current))
 153                return ERR_PTR(-EINTR);
 154
 155        switch (hdev->req_status) {
 156        case HCI_REQ_DONE:
 157                err = -bt_to_errno(hdev->req_result);
 158                break;
 159
 160        case HCI_REQ_CANCELED:
 161                err = -hdev->req_result;
 162                break;
 163
 164        default:
 165                err = -ETIMEDOUT;
 166                break;
 167        }
 168
 169        hdev->req_status = hdev->req_result = 0;
 170        skb = hdev->req_skb;
 171        hdev->req_skb = NULL;
 172
 173        BT_DBG("%s end: err %d", hdev->name, err);
 174
 175        if (err < 0) {
 176                kfree_skb(skb);
 177                return ERR_PTR(err);
 178        }
 179
 180        if (!skb)
 181                return ERR_PTR(-ENODATA);
 182
 183        return skb;
 184}
 185EXPORT_SYMBOL(__hci_cmd_sync_ev);
 186
 187struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
 188                               const void *param, u32 timeout)
 189{
 190        return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
 191}
 192EXPORT_SYMBOL(__hci_cmd_sync);
 193
 194/* Execute request and wait for completion. */
 195int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
 196                                                     unsigned long opt),
 197                   unsigned long opt, u32 timeout, u8 *hci_status)
 198{
 199        struct hci_request req;
 200        DECLARE_WAITQUEUE(wait, current);
 201        int err = 0;
 202
 203        BT_DBG("%s start", hdev->name);
 204
 205        hci_req_init(&req, hdev);
 206
 207        hdev->req_status = HCI_REQ_PEND;
 208
 209        err = func(&req, opt);
 210        if (err) {
 211                if (hci_status)
 212                        *hci_status = HCI_ERROR_UNSPECIFIED;
 213                return err;
 214        }
 215
 216        add_wait_queue(&hdev->req_wait_q, &wait);
 217        set_current_state(TASK_INTERRUPTIBLE);
 218
 219        err = hci_req_run_skb(&req, hci_req_sync_complete);
 220        if (err < 0) {
 221                hdev->req_status = 0;
 222
 223                remove_wait_queue(&hdev->req_wait_q, &wait);
 224                set_current_state(TASK_RUNNING);
 225
 226                /* ENODATA means the HCI request command queue is empty.
 227                 * This can happen when a request with conditionals doesn't
 228                 * trigger any commands to be sent. This is normal behavior
 229                 * and should not trigger an error return.
 230                 */
 231                if (err == -ENODATA) {
 232                        if (hci_status)
 233                                *hci_status = 0;
 234                        return 0;
 235                }
 236
 237                if (hci_status)
 238                        *hci_status = HCI_ERROR_UNSPECIFIED;
 239
 240                return err;
 241        }
 242
 243        schedule_timeout(timeout);
 244
 245        remove_wait_queue(&hdev->req_wait_q, &wait);
 246
 247        if (signal_pending(current))
 248                return -EINTR;
 249
 250        switch (hdev->req_status) {
 251        case HCI_REQ_DONE:
 252                err = -bt_to_errno(hdev->req_result);
 253                if (hci_status)
 254                        *hci_status = hdev->req_result;
 255                break;
 256
 257        case HCI_REQ_CANCELED:
 258                err = -hdev->req_result;
 259                if (hci_status)
 260                        *hci_status = HCI_ERROR_UNSPECIFIED;
 261                break;
 262
 263        default:
 264                err = -ETIMEDOUT;
 265                if (hci_status)
 266                        *hci_status = HCI_ERROR_UNSPECIFIED;
 267                break;
 268        }
 269
 270        kfree_skb(hdev->req_skb);
 271        hdev->req_skb = NULL;
 272        hdev->req_status = hdev->req_result = 0;
 273
 274        BT_DBG("%s end: err %d", hdev->name, err);
 275
 276        return err;
 277}
 278
 279int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
 280                                                  unsigned long opt),
 281                 unsigned long opt, u32 timeout, u8 *hci_status)
 282{
 283        int ret;
 284
 285        if (!test_bit(HCI_UP, &hdev->flags))
 286                return -ENETDOWN;
 287
 288        /* Serialize all requests */
 289        hci_req_sync_lock(hdev);
 290        ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
 291        hci_req_sync_unlock(hdev);
 292
 293        return ret;
 294}
 295
 296struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
 297                                const void *param)
 298{
 299        int len = HCI_COMMAND_HDR_SIZE + plen;
 300        struct hci_command_hdr *hdr;
 301        struct sk_buff *skb;
 302
 303        skb = bt_skb_alloc(len, GFP_ATOMIC);
 304        if (!skb)
 305                return NULL;
 306
 307        hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
 308        hdr->opcode = cpu_to_le16(opcode);
 309        hdr->plen   = plen;
 310
 311        if (plen)
 312                skb_put_data(skb, param, plen);
 313
 314        BT_DBG("skb len %d", skb->len);
 315
 316        hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
 317        hci_skb_opcode(skb) = opcode;
 318
 319        return skb;
 320}
 321
 322/* Queue a command to an asynchronous HCI request */
 323void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
 324                    const void *param, u8 event)
 325{
 326        struct hci_dev *hdev = req->hdev;
 327        struct sk_buff *skb;
 328
 329        BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
 330
 331        /* If an error occurred during request building, there is no point in
 332         * queueing the HCI command. We can simply return.
 333         */
 334        if (req->err)
 335                return;
 336
 337        skb = hci_prepare_cmd(hdev, opcode, plen, param);
 338        if (!skb) {
 339                bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
 340                           opcode);
 341                req->err = -ENOMEM;
 342                return;
 343        }
 344
 345        if (skb_queue_empty(&req->cmd_q))
 346                bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
 347
 348        bt_cb(skb)->hci.req_event = event;
 349
 350        skb_queue_tail(&req->cmd_q, skb);
 351}
 352
 353void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
 354                 const void *param)
 355{
 356        hci_req_add_ev(req, opcode, plen, param, 0);
 357}
 358
 359void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
 360{
 361        struct hci_dev *hdev = req->hdev;
 362        struct hci_cp_write_page_scan_activity acp;
 363        u8 type;
 364
 365        if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
 366                return;
 367
 368        if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 369                return;
 370
 371        if (enable) {
 372                type = PAGE_SCAN_TYPE_INTERLACED;
 373
 374                /* 160 msec page scan interval */
 375                acp.interval = cpu_to_le16(0x0100);
 376        } else {
 377                type = PAGE_SCAN_TYPE_STANDARD; /* default */
 378
 379                /* default 1.28 sec page scan */
 380                acp.interval = cpu_to_le16(0x0800);
 381        }
 382
 383        acp.window = cpu_to_le16(0x0012);
 384
 385        if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
 386            __cpu_to_le16(hdev->page_scan_window) != acp.window)
 387                hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
 388                            sizeof(acp), &acp);
 389
 390        if (hdev->page_scan_type != type)
 391                hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
 392}
 393
 394/* This function controls the background scanning based on hdev->pend_le_conns
 395 * list. If there are pending LE connection we start the background scanning,
 396 * otherwise we stop it.
 397 *
 398 * This function requires the caller holds hdev->lock.
 399 */
 400static void __hci_update_background_scan(struct hci_request *req)
 401{
 402        struct hci_dev *hdev = req->hdev;
 403
 404        if (!test_bit(HCI_UP, &hdev->flags) ||
 405            test_bit(HCI_INIT, &hdev->flags) ||
 406            hci_dev_test_flag(hdev, HCI_SETUP) ||
 407            hci_dev_test_flag(hdev, HCI_CONFIG) ||
 408            hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
 409            hci_dev_test_flag(hdev, HCI_UNREGISTER))
 410                return;
 411
 412        /* No point in doing scanning if LE support hasn't been enabled */
 413        if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 414                return;
 415
 416        /* If discovery is active don't interfere with it */
 417        if (hdev->discovery.state != DISCOVERY_STOPPED)
 418                return;
 419
 420        /* Reset RSSI and UUID filters when starting background scanning
 421         * since these filters are meant for service discovery only.
 422         *
 423         * The Start Discovery and Start Service Discovery operations
 424         * ensure to set proper values for RSSI threshold and UUID
 425         * filter list. So it is safe to just reset them here.
 426         */
 427        hci_discovery_filter_clear(hdev);
 428
 429        if (list_empty(&hdev->pend_le_conns) &&
 430            list_empty(&hdev->pend_le_reports)) {
 431                /* If there is no pending LE connections or devices
 432                 * to be scanned for, we should stop the background
 433                 * scanning.
 434                 */
 435
 436                /* If controller is not scanning we are done. */
 437                if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
 438                        return;
 439
 440                hci_req_add_le_scan_disable(req);
 441
 442                BT_DBG("%s stopping background scanning", hdev->name);
 443        } else {
 444                /* If there is at least one pending LE connection, we should
 445                 * keep the background scan running.
 446                 */
 447
 448                /* If controller is connecting, we should not start scanning
 449                 * since some controllers are not able to scan and connect at
 450                 * the same time.
 451                 */
 452                if (hci_lookup_le_connect(hdev))
 453                        return;
 454
 455                /* If controller is currently scanning, we stop it to ensure we
 456                 * don't miss any advertising (due to duplicates filter).
 457                 */
 458                if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
 459                        hci_req_add_le_scan_disable(req);
 460
 461                hci_req_add_le_passive_scan(req);
 462
 463                BT_DBG("%s starting background scanning", hdev->name);
 464        }
 465}
 466
 467void __hci_req_update_name(struct hci_request *req)
 468{
 469        struct hci_dev *hdev = req->hdev;
 470        struct hci_cp_write_local_name cp;
 471
 472        memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
 473
 474        hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
 475}
 476
 477#define PNP_INFO_SVCLASS_ID             0x1200
 478
 479static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 480{
 481        u8 *ptr = data, *uuids_start = NULL;
 482        struct bt_uuid *uuid;
 483
 484        if (len < 4)
 485                return ptr;
 486
 487        list_for_each_entry(uuid, &hdev->uuids, list) {
 488                u16 uuid16;
 489
 490                if (uuid->size != 16)
 491                        continue;
 492
 493                uuid16 = get_unaligned_le16(&uuid->uuid[12]);
 494                if (uuid16 < 0x1100)
 495                        continue;
 496
 497                if (uuid16 == PNP_INFO_SVCLASS_ID)
 498                        continue;
 499
 500                if (!uuids_start) {
 501                        uuids_start = ptr;
 502                        uuids_start[0] = 1;
 503                        uuids_start[1] = EIR_UUID16_ALL;
 504                        ptr += 2;
 505                }
 506
 507                /* Stop if not enough space to put next UUID */
 508                if ((ptr - data) + sizeof(u16) > len) {
 509                        uuids_start[1] = EIR_UUID16_SOME;
 510                        break;
 511                }
 512
 513                *ptr++ = (uuid16 & 0x00ff);
 514                *ptr++ = (uuid16 & 0xff00) >> 8;
 515                uuids_start[0] += sizeof(uuid16);
 516        }
 517
 518        return ptr;
 519}
 520
 521static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 522{
 523        u8 *ptr = data, *uuids_start = NULL;
 524        struct bt_uuid *uuid;
 525
 526        if (len < 6)
 527                return ptr;
 528
 529        list_for_each_entry(uuid, &hdev->uuids, list) {
 530                if (uuid->size != 32)
 531                        continue;
 532
 533                if (!uuids_start) {
 534                        uuids_start = ptr;
 535                        uuids_start[0] = 1;
 536                        uuids_start[1] = EIR_UUID32_ALL;
 537                        ptr += 2;
 538                }
 539
 540                /* Stop if not enough space to put next UUID */
 541                if ((ptr - data) + sizeof(u32) > len) {
 542                        uuids_start[1] = EIR_UUID32_SOME;
 543                        break;
 544                }
 545
 546                memcpy(ptr, &uuid->uuid[12], sizeof(u32));
 547                ptr += sizeof(u32);
 548                uuids_start[0] += sizeof(u32);
 549        }
 550
 551        return ptr;
 552}
 553
 554static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
 555{
 556        u8 *ptr = data, *uuids_start = NULL;
 557        struct bt_uuid *uuid;
 558
 559        if (len < 18)
 560                return ptr;
 561
 562        list_for_each_entry(uuid, &hdev->uuids, list) {
 563                if (uuid->size != 128)
 564                        continue;
 565
 566                if (!uuids_start) {
 567                        uuids_start = ptr;
 568                        uuids_start[0] = 1;
 569                        uuids_start[1] = EIR_UUID128_ALL;
 570                        ptr += 2;
 571                }
 572
 573                /* Stop if not enough space to put next UUID */
 574                if ((ptr - data) + 16 > len) {
 575                        uuids_start[1] = EIR_UUID128_SOME;
 576                        break;
 577                }
 578
 579                memcpy(ptr, uuid->uuid, 16);
 580                ptr += 16;
 581                uuids_start[0] += 16;
 582        }
 583
 584        return ptr;
 585}
 586
 587static void create_eir(struct hci_dev *hdev, u8 *data)
 588{
 589        u8 *ptr = data;
 590        size_t name_len;
 591
 592        name_len = strlen(hdev->dev_name);
 593
 594        if (name_len > 0) {
 595                /* EIR Data type */
 596                if (name_len > 48) {
 597                        name_len = 48;
 598                        ptr[1] = EIR_NAME_SHORT;
 599                } else
 600                        ptr[1] = EIR_NAME_COMPLETE;
 601
 602                /* EIR Data length */
 603                ptr[0] = name_len + 1;
 604
 605                memcpy(ptr + 2, hdev->dev_name, name_len);
 606
 607                ptr += (name_len + 2);
 608        }
 609
 610        if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
 611                ptr[0] = 2;
 612                ptr[1] = EIR_TX_POWER;
 613                ptr[2] = (u8) hdev->inq_tx_power;
 614
 615                ptr += 3;
 616        }
 617
 618        if (hdev->devid_source > 0) {
 619                ptr[0] = 9;
 620                ptr[1] = EIR_DEVICE_ID;
 621
 622                put_unaligned_le16(hdev->devid_source, ptr + 2);
 623                put_unaligned_le16(hdev->devid_vendor, ptr + 4);
 624                put_unaligned_le16(hdev->devid_product, ptr + 6);
 625                put_unaligned_le16(hdev->devid_version, ptr + 8);
 626
 627                ptr += 10;
 628        }
 629
 630        ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 631        ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 632        ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
 633}
 634
 635void __hci_req_update_eir(struct hci_request *req)
 636{
 637        struct hci_dev *hdev = req->hdev;
 638        struct hci_cp_write_eir cp;
 639
 640        if (!hdev_is_powered(hdev))
 641                return;
 642
 643        if (!lmp_ext_inq_capable(hdev))
 644                return;
 645
 646        if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
 647                return;
 648
 649        if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
 650                return;
 651
 652        memset(&cp, 0, sizeof(cp));
 653
 654        create_eir(hdev, cp.data);
 655
 656        if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
 657                return;
 658
 659        memcpy(hdev->eir, cp.data, sizeof(cp.data));
 660
 661        hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 662}
 663
 664void hci_req_add_le_scan_disable(struct hci_request *req)
 665{
 666        struct hci_cp_le_set_scan_enable cp;
 667
 668        memset(&cp, 0, sizeof(cp));
 669        cp.enable = LE_SCAN_DISABLE;
 670        hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
 671}
 672
 673static void add_to_white_list(struct hci_request *req,
 674                              struct hci_conn_params *params)
 675{
 676        struct hci_cp_le_add_to_white_list cp;
 677
 678        cp.bdaddr_type = params->addr_type;
 679        bacpy(&cp.bdaddr, &params->addr);
 680
 681        hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
 682}
 683
 684static u8 update_white_list(struct hci_request *req)
 685{
 686        struct hci_dev *hdev = req->hdev;
 687        struct hci_conn_params *params;
 688        struct bdaddr_list *b;
 689        uint8_t white_list_entries = 0;
 690
 691        /* Go through the current white list programmed into the
 692         * controller one by one and check if that address is still
 693         * in the list of pending connections or list of devices to
 694         * report. If not present in either list, then queue the
 695         * command to remove it from the controller.
 696         */
 697        list_for_each_entry(b, &hdev->le_white_list, list) {
 698                /* If the device is neither in pend_le_conns nor
 699                 * pend_le_reports then remove it from the whitelist.
 700                 */
 701                if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
 702                                               &b->bdaddr, b->bdaddr_type) &&
 703                    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
 704                                               &b->bdaddr, b->bdaddr_type)) {
 705                        struct hci_cp_le_del_from_white_list cp;
 706
 707                        cp.bdaddr_type = b->bdaddr_type;
 708                        bacpy(&cp.bdaddr, &b->bdaddr);
 709
 710                        hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
 711                                    sizeof(cp), &cp);
 712                        continue;
 713                }
 714
 715                if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
 716                        /* White list can not be used with RPAs */
 717                        return 0x00;
 718                }
 719
 720                white_list_entries++;
 721        }
 722
 723        /* Since all no longer valid white list entries have been
 724         * removed, walk through the list of pending connections
 725         * and ensure that any new device gets programmed into
 726         * the controller.
 727         *
 728         * If the list of the devices is larger than the list of
 729         * available white list entries in the controller, then
 730         * just abort and return filer policy value to not use the
 731         * white list.
 732         */
 733        list_for_each_entry(params, &hdev->pend_le_conns, action) {
 734                if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 735                                           &params->addr, params->addr_type))
 736                        continue;
 737
 738                if (white_list_entries >= hdev->le_white_list_size) {
 739                        /* Select filter policy to accept all advertising */
 740                        return 0x00;
 741                }
 742
 743                if (hci_find_irk_by_addr(hdev, &params->addr,
 744                                         params->addr_type)) {
 745                        /* White list can not be used with RPAs */
 746                        return 0x00;
 747                }
 748
 749                white_list_entries++;
 750                add_to_white_list(req, params);
 751        }
 752
 753        /* After adding all new pending connections, walk through
 754         * the list of pending reports and also add these to the
 755         * white list if there is still space.
 756         */
 757        list_for_each_entry(params, &hdev->pend_le_reports, action) {
 758                if (hci_bdaddr_list_lookup(&hdev->le_white_list,
 759                                           &params->addr, params->addr_type))
 760                        continue;
 761
 762                if (white_list_entries >= hdev->le_white_list_size) {
 763                        /* Select filter policy to accept all advertising */
 764                        return 0x00;
 765                }
 766
 767                if (hci_find_irk_by_addr(hdev, &params->addr,
 768                                         params->addr_type)) {
 769                        /* White list can not be used with RPAs */
 770                        return 0x00;
 771                }
 772
 773                white_list_entries++;
 774                add_to_white_list(req, params);
 775        }
 776
 777        /* Select filter policy to use white list */
 778        return 0x01;
 779}
 780
 781static bool scan_use_rpa(struct hci_dev *hdev)
 782{
 783        return hci_dev_test_flag(hdev, HCI_PRIVACY);
 784}
 785
 786void hci_req_add_le_passive_scan(struct hci_request *req)
 787{
 788        struct hci_cp_le_set_scan_param param_cp;
 789        struct hci_cp_le_set_scan_enable enable_cp;
 790        struct hci_dev *hdev = req->hdev;
 791        u8 own_addr_type;
 792        u8 filter_policy;
 793
 794        /* Set require_privacy to false since no SCAN_REQ are send
 795         * during passive scanning. Not using an non-resolvable address
 796         * here is important so that peer devices using direct
 797         * advertising with our address will be correctly reported
 798         * by the controller.
 799         */
 800        if (hci_update_random_address(req, false, scan_use_rpa(hdev),
 801                                      &own_addr_type))
 802                return;
 803
 804        /* Adding or removing entries from the white list must
 805         * happen before enabling scanning. The controller does
 806         * not allow white list modification while scanning.
 807         */
 808        filter_policy = update_white_list(req);
 809
 810        /* When the controller is using random resolvable addresses and
 811         * with that having LE privacy enabled, then controllers with
 812         * Extended Scanner Filter Policies support can now enable support
 813         * for handling directed advertising.
 814         *
 815         * So instead of using filter polices 0x00 (no whitelist)
 816         * and 0x01 (whitelist enabled) use the new filter policies
 817         * 0x02 (no whitelist) and 0x03 (whitelist enabled).
 818         */
 819        if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
 820            (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
 821                filter_policy |= 0x02;
 822
 823        memset(&param_cp, 0, sizeof(param_cp));
 824        param_cp.type = LE_SCAN_PASSIVE;
 825        param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
 826        param_cp.window = cpu_to_le16(hdev->le_scan_window);
 827        param_cp.own_address_type = own_addr_type;
 828        param_cp.filter_policy = filter_policy;
 829        hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
 830                    &param_cp);
 831
 832        memset(&enable_cp, 0, sizeof(enable_cp));
 833        enable_cp.enable = LE_SCAN_ENABLE;
 834        enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
 835        hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
 836                    &enable_cp);
 837}
 838
 839static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
 840{
 841        u8 instance = hdev->cur_adv_instance;
 842        struct adv_info *adv_instance;
 843
 844        /* Ignore instance 0 */
 845        if (instance == 0x00)
 846                return 0;
 847
 848        adv_instance = hci_find_adv_instance(hdev, instance);
 849        if (!adv_instance)
 850                return 0;
 851
 852        /* TODO: Take into account the "appearance" and "local-name" flags here.
 853         * These are currently being ignored as they are not supported.
 854         */
 855        return adv_instance->scan_rsp_len;
 856}
 857
 858void __hci_req_disable_advertising(struct hci_request *req)
 859{
 860        u8 enable = 0x00;
 861
 862        hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 863}
 864
 865static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
 866{
 867        u32 flags;
 868        struct adv_info *adv_instance;
 869
 870        if (instance == 0x00) {
 871                /* Instance 0 always manages the "Tx Power" and "Flags"
 872                 * fields
 873                 */
 874                flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
 875
 876                /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
 877                 * corresponds to the "connectable" instance flag.
 878                 */
 879                if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
 880                        flags |= MGMT_ADV_FLAG_CONNECTABLE;
 881
 882                if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
 883                        flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
 884                else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
 885                        flags |= MGMT_ADV_FLAG_DISCOV;
 886
 887                return flags;
 888        }
 889
 890        adv_instance = hci_find_adv_instance(hdev, instance);
 891
 892        /* Return 0 when we got an invalid instance identifier. */
 893        if (!adv_instance)
 894                return 0;
 895
 896        return adv_instance->flags;
 897}
 898
 899static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
 900{
 901        /* If privacy is not enabled don't use RPA */
 902        if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
 903                return false;
 904
 905        /* If basic privacy mode is enabled use RPA */
 906        if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
 907                return true;
 908
 909        /* If limited privacy mode is enabled don't use RPA if we're
 910         * both discoverable and bondable.
 911         */
 912        if ((flags & MGMT_ADV_FLAG_DISCOV) &&
 913            hci_dev_test_flag(hdev, HCI_BONDABLE))
 914                return false;
 915
 916        /* We're neither bondable nor discoverable in the limited
 917         * privacy mode, therefore use RPA.
 918         */
 919        return true;
 920}
 921
 922void __hci_req_enable_advertising(struct hci_request *req)
 923{
 924        struct hci_dev *hdev = req->hdev;
 925        struct hci_cp_le_set_adv_param cp;
 926        u8 own_addr_type, enable = 0x01;
 927        bool connectable;
 928        u32 flags;
 929
 930        if (hci_conn_num(hdev, LE_LINK) > 0)
 931                return;
 932
 933        if (hci_dev_test_flag(hdev, HCI_LE_ADV))
 934                __hci_req_disable_advertising(req);
 935
 936        /* Clear the HCI_LE_ADV bit temporarily so that the
 937         * hci_update_random_address knows that it's safe to go ahead
 938         * and write a new random address. The flag will be set back on
 939         * as soon as the SET_ADV_ENABLE HCI command completes.
 940         */
 941        hci_dev_clear_flag(hdev, HCI_LE_ADV);
 942
 943        flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
 944
 945        /* If the "connectable" instance flag was not set, then choose between
 946         * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
 947         */
 948        connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
 949                      mgmt_get_connectable(hdev);
 950
 951        /* Set require_privacy to true only when non-connectable
 952         * advertising is used. In that case it is fine to use a
 953         * non-resolvable private address.
 954         */
 955        if (hci_update_random_address(req, !connectable,
 956                                      adv_use_rpa(hdev, flags),
 957                                      &own_addr_type) < 0)
 958                return;
 959
 960        memset(&cp, 0, sizeof(cp));
 961        cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
 962        cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
 963
 964        if (connectable)
 965                cp.type = LE_ADV_IND;
 966        else if (get_cur_adv_instance_scan_rsp_len(hdev))
 967                cp.type = LE_ADV_SCAN_IND;
 968        else
 969                cp.type = LE_ADV_NONCONN_IND;
 970
 971        cp.own_address_type = own_addr_type;
 972        cp.channel_map = hdev->le_adv_channel_map;
 973
 974        hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
 975
 976        hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
 977}
 978
 979u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
 980{
 981        size_t short_len;
 982        size_t complete_len;
 983
 984        /* no space left for name (+ NULL + type + len) */
 985        if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
 986                return ad_len;
 987
 988        /* use complete name if present and fits */
 989        complete_len = strlen(hdev->dev_name);
 990        if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
 991                return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
 992                                       hdev->dev_name, complete_len + 1);
 993
 994        /* use short name if present */
 995        short_len = strlen(hdev->short_name);
 996        if (short_len)
 997                return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
 998                                       hdev->short_name, short_len + 1);
 999
1000        /* use shortened full name if present, we already know that name
1001         * is longer then HCI_MAX_SHORT_NAME_LENGTH
1002         */
1003        if (complete_len) {
1004                u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1005
1006                memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1007                name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1008
1009                return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1010                                       sizeof(name));
1011        }
1012
1013        return ad_len;
1014}
1015
1016static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1017{
1018        return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1019}
1020
1021static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1022{
1023        u8 scan_rsp_len = 0;
1024
1025        if (hdev->appearance) {
1026                scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1027        }
1028
1029        return append_local_name(hdev, ptr, scan_rsp_len);
1030}
1031
1032static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1033                                        u8 *ptr)
1034{
1035        struct adv_info *adv_instance;
1036        u32 instance_flags;
1037        u8 scan_rsp_len = 0;
1038
1039        adv_instance = hci_find_adv_instance(hdev, instance);
1040        if (!adv_instance)
1041                return 0;
1042
1043        instance_flags = adv_instance->flags;
1044
1045        if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1046                scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1047        }
1048
1049        memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1050               adv_instance->scan_rsp_len);
1051
1052        scan_rsp_len += adv_instance->scan_rsp_len;
1053
1054        if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1055                scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1056
1057        return scan_rsp_len;
1058}
1059
1060void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1061{
1062        struct hci_dev *hdev = req->hdev;
1063        struct hci_cp_le_set_scan_rsp_data cp;
1064        u8 len;
1065
1066        if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1067                return;
1068
1069        memset(&cp, 0, sizeof(cp));
1070
1071        if (instance)
1072                len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1073        else
1074                len = create_default_scan_rsp_data(hdev, cp.data);
1075
1076        if (hdev->scan_rsp_data_len == len &&
1077            !memcmp(cp.data, hdev->scan_rsp_data, len))
1078                return;
1079
1080        memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1081        hdev->scan_rsp_data_len = len;
1082
1083        cp.length = len;
1084
1085        hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1086}
1087
1088static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1089{
1090        struct adv_info *adv_instance = NULL;
1091        u8 ad_len = 0, flags = 0;
1092        u32 instance_flags;
1093
1094        /* Return 0 when the current instance identifier is invalid. */
1095        if (instance) {
1096                adv_instance = hci_find_adv_instance(hdev, instance);
1097                if (!adv_instance)
1098                        return 0;
1099        }
1100
1101        instance_flags = get_adv_instance_flags(hdev, instance);
1102
1103        /* The Add Advertising command allows userspace to set both the general
1104         * and limited discoverable flags.
1105         */
1106        if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1107                flags |= LE_AD_GENERAL;
1108
1109        if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1110                flags |= LE_AD_LIMITED;
1111
1112        if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1113                flags |= LE_AD_NO_BREDR;
1114
1115        if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1116                /* If a discovery flag wasn't provided, simply use the global
1117                 * settings.
1118                 */
1119                if (!flags)
1120                        flags |= mgmt_get_adv_discov_flags(hdev);
1121
1122                /* If flags would still be empty, then there is no need to
1123                 * include the "Flags" AD field".
1124                 */
1125                if (flags) {
1126                        ptr[0] = 0x02;
1127                        ptr[1] = EIR_FLAGS;
1128                        ptr[2] = flags;
1129
1130                        ad_len += 3;
1131                        ptr += 3;
1132                }
1133        }
1134
1135        if (adv_instance) {
1136                memcpy(ptr, adv_instance->adv_data,
1137                       adv_instance->adv_data_len);
1138                ad_len += adv_instance->adv_data_len;
1139                ptr += adv_instance->adv_data_len;
1140        }
1141
1142        /* Provide Tx Power only if we can provide a valid value for it */
1143        if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1144            (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1145                ptr[0] = 0x02;
1146                ptr[1] = EIR_TX_POWER;
1147                ptr[2] = (u8)hdev->adv_tx_power;
1148
1149                ad_len += 3;
1150                ptr += 3;
1151        }
1152
1153        return ad_len;
1154}
1155
1156void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1157{
1158        struct hci_dev *hdev = req->hdev;
1159        struct hci_cp_le_set_adv_data cp;
1160        u8 len;
1161
1162        if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1163                return;
1164
1165        memset(&cp, 0, sizeof(cp));
1166
1167        len = create_instance_adv_data(hdev, instance, cp.data);
1168
1169        /* There's nothing to do if the data hasn't changed */
1170        if (hdev->adv_data_len == len &&
1171            memcmp(cp.data, hdev->adv_data, len) == 0)
1172                return;
1173
1174        memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1175        hdev->adv_data_len = len;
1176
1177        cp.length = len;
1178
1179        hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1180}
1181
1182int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1183{
1184        struct hci_request req;
1185
1186        hci_req_init(&req, hdev);
1187        __hci_req_update_adv_data(&req, instance);
1188
1189        return hci_req_run(&req, NULL);
1190}
1191
1192static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1193{
1194        BT_DBG("%s status %u", hdev->name, status);
1195}
1196
1197void hci_req_reenable_advertising(struct hci_dev *hdev)
1198{
1199        struct hci_request req;
1200
1201        if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1202            list_empty(&hdev->adv_instances))
1203                return;
1204
1205        hci_req_init(&req, hdev);
1206
1207        if (hdev->cur_adv_instance) {
1208                __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1209                                                true);
1210        } else {
1211                __hci_req_update_adv_data(&req, 0x00);
1212                __hci_req_update_scan_rsp_data(&req, 0x00);
1213                __hci_req_enable_advertising(&req);
1214        }
1215
1216        hci_req_run(&req, adv_enable_complete);
1217}
1218
1219static void adv_timeout_expire(struct work_struct *work)
1220{
1221        struct hci_dev *hdev = container_of(work, struct hci_dev,
1222                                            adv_instance_expire.work);
1223
1224        struct hci_request req;
1225        u8 instance;
1226
1227        BT_DBG("%s", hdev->name);
1228
1229        hci_dev_lock(hdev);
1230
1231        hdev->adv_instance_timeout = 0;
1232
1233        instance = hdev->cur_adv_instance;
1234        if (instance == 0x00)
1235                goto unlock;
1236
1237        hci_req_init(&req, hdev);
1238
1239        hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1240
1241        if (list_empty(&hdev->adv_instances))
1242                __hci_req_disable_advertising(&req);
1243
1244        hci_req_run(&req, NULL);
1245
1246unlock:
1247        hci_dev_unlock(hdev);
1248}
1249
1250int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1251                                    bool force)
1252{
1253        struct hci_dev *hdev = req->hdev;
1254        struct adv_info *adv_instance = NULL;
1255        u16 timeout;
1256
1257        if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1258            list_empty(&hdev->adv_instances))
1259                return -EPERM;
1260
1261        if (hdev->adv_instance_timeout)
1262                return -EBUSY;
1263
1264        adv_instance = hci_find_adv_instance(hdev, instance);
1265        if (!adv_instance)
1266                return -ENOENT;
1267
1268        /* A zero timeout means unlimited advertising. As long as there is
1269         * only one instance, duration should be ignored. We still set a timeout
1270         * in case further instances are being added later on.
1271         *
1272         * If the remaining lifetime of the instance is more than the duration
1273         * then the timeout corresponds to the duration, otherwise it will be
1274         * reduced to the remaining instance lifetime.
1275         */
1276        if (adv_instance->timeout == 0 ||
1277            adv_instance->duration <= adv_instance->remaining_time)
1278                timeout = adv_instance->duration;
1279        else
1280                timeout = adv_instance->remaining_time;
1281
1282        /* The remaining time is being reduced unless the instance is being
1283         * advertised without time limit.
1284         */
1285        if (adv_instance->timeout)
1286                adv_instance->remaining_time =
1287                                adv_instance->remaining_time - timeout;
1288
1289        hdev->adv_instance_timeout = timeout;
1290        queue_delayed_work(hdev->req_workqueue,
1291                           &hdev->adv_instance_expire,
1292                           msecs_to_jiffies(timeout * 1000));
1293
1294        /* If we're just re-scheduling the same instance again then do not
1295         * execute any HCI commands. This happens when a single instance is
1296         * being advertised.
1297         */
1298        if (!force && hdev->cur_adv_instance == instance &&
1299            hci_dev_test_flag(hdev, HCI_LE_ADV))
1300                return 0;
1301
1302        hdev->cur_adv_instance = instance;
1303        __hci_req_update_adv_data(req, instance);
1304        __hci_req_update_scan_rsp_data(req, instance);
1305        __hci_req_enable_advertising(req);
1306
1307        return 0;
1308}
1309
1310static void cancel_adv_timeout(struct hci_dev *hdev)
1311{
1312        if (hdev->adv_instance_timeout) {
1313                hdev->adv_instance_timeout = 0;
1314                cancel_delayed_work(&hdev->adv_instance_expire);
1315        }
1316}
1317
1318/* For a single instance:
1319 * - force == true: The instance will be removed even when its remaining
1320 *   lifetime is not zero.
1321 * - force == false: the instance will be deactivated but kept stored unless
1322 *   the remaining lifetime is zero.
1323 *
1324 * For instance == 0x00:
1325 * - force == true: All instances will be removed regardless of their timeout
1326 *   setting.
1327 * - force == false: Only instances that have a timeout will be removed.
1328 */
1329void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1330                                struct hci_request *req, u8 instance,
1331                                bool force)
1332{
1333        struct adv_info *adv_instance, *n, *next_instance = NULL;
1334        int err;
1335        u8 rem_inst;
1336
1337        /* Cancel any timeout concerning the removed instance(s). */
1338        if (!instance || hdev->cur_adv_instance == instance)
1339                cancel_adv_timeout(hdev);
1340
1341        /* Get the next instance to advertise BEFORE we remove
1342         * the current one. This can be the same instance again
1343         * if there is only one instance.
1344         */
1345        if (instance && hdev->cur_adv_instance == instance)
1346                next_instance = hci_get_next_instance(hdev, instance);
1347
1348        if (instance == 0x00) {
1349                list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1350                                         list) {
1351                        if (!(force || adv_instance->timeout))
1352                                continue;
1353
1354                        rem_inst = adv_instance->instance;
1355                        err = hci_remove_adv_instance(hdev, rem_inst);
1356                        if (!err)
1357                                mgmt_advertising_removed(sk, hdev, rem_inst);
1358                }
1359        } else {
1360                adv_instance = hci_find_adv_instance(hdev, instance);
1361
1362                if (force || (adv_instance && adv_instance->timeout &&
1363                              !adv_instance->remaining_time)) {
1364                        /* Don't advertise a removed instance. */
1365                        if (next_instance &&
1366                            next_instance->instance == instance)
1367                                next_instance = NULL;
1368
1369                        err = hci_remove_adv_instance(hdev, instance);
1370                        if (!err)
1371                                mgmt_advertising_removed(sk, hdev, instance);
1372                }
1373        }
1374
1375        if (!req || !hdev_is_powered(hdev) ||
1376            hci_dev_test_flag(hdev, HCI_ADVERTISING))
1377                return;
1378
1379        if (next_instance)
1380                __hci_req_schedule_adv_instance(req, next_instance->instance,
1381                                                false);
1382}
1383
1384static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1385{
1386        struct hci_dev *hdev = req->hdev;
1387
1388        /* If we're advertising or initiating an LE connection we can't
1389         * go ahead and change the random address at this time. This is
1390         * because the eventual initiator address used for the
1391         * subsequently created connection will be undefined (some
1392         * controllers use the new address and others the one we had
1393         * when the operation started).
1394         *
1395         * In this kind of scenario skip the update and let the random
1396         * address be updated at the next cycle.
1397         */
1398        if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1399            hci_lookup_le_connect(hdev)) {
1400                BT_DBG("Deferring random address update");
1401                hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1402                return;
1403        }
1404
1405        hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1406}
1407
1408int hci_update_random_address(struct hci_request *req, bool require_privacy,
1409                              bool use_rpa, u8 *own_addr_type)
1410{
1411        struct hci_dev *hdev = req->hdev;
1412        int err;
1413
1414        /* If privacy is enabled use a resolvable private address. If
1415         * current RPA has expired or there is something else than
1416         * the current RPA in use, then generate a new one.
1417         */
1418        if (use_rpa) {
1419                int to;
1420
1421                *own_addr_type = ADDR_LE_DEV_RANDOM;
1422
1423                if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1424                    !bacmp(&hdev->random_addr, &hdev->rpa))
1425                        return 0;
1426
1427                err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1428                if (err < 0) {
1429                        bt_dev_err(hdev, "failed to generate new RPA");
1430                        return err;
1431                }
1432
1433                set_random_addr(req, &hdev->rpa);
1434
1435                to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1436                queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1437
1438                return 0;
1439        }
1440
1441        /* In case of required privacy without resolvable private address,
1442         * use an non-resolvable private address. This is useful for active
1443         * scanning and non-connectable advertising.
1444         */
1445        if (require_privacy) {
1446                bdaddr_t nrpa;
1447
1448                while (true) {
1449                        /* The non-resolvable private address is generated
1450                         * from random six bytes with the two most significant
1451                         * bits cleared.
1452                         */
1453                        get_random_bytes(&nrpa, 6);
1454                        nrpa.b[5] &= 0x3f;
1455
1456                        /* The non-resolvable private address shall not be
1457                         * equal to the public address.
1458                         */
1459                        if (bacmp(&hdev->bdaddr, &nrpa))
1460                                break;
1461                }
1462
1463                *own_addr_type = ADDR_LE_DEV_RANDOM;
1464                set_random_addr(req, &nrpa);
1465                return 0;
1466        }
1467
1468        /* If forcing static address is in use or there is no public
1469         * address use the static address as random address (but skip
1470         * the HCI command if the current random address is already the
1471         * static one.
1472         *
1473         * In case BR/EDR has been disabled on a dual-mode controller
1474         * and a static address has been configured, then use that
1475         * address instead of the public BR/EDR address.
1476         */
1477        if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1478            !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1479            (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1480             bacmp(&hdev->static_addr, BDADDR_ANY))) {
1481                *own_addr_type = ADDR_LE_DEV_RANDOM;
1482                if (bacmp(&hdev->static_addr, &hdev->random_addr))
1483                        hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1484                                    &hdev->static_addr);
1485                return 0;
1486        }
1487
1488        /* Neither privacy nor static address is being used so use a
1489         * public address.
1490         */
1491        *own_addr_type = ADDR_LE_DEV_PUBLIC;
1492
1493        return 0;
1494}
1495
1496static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1497{
1498        struct bdaddr_list *b;
1499
1500        list_for_each_entry(b, &hdev->whitelist, list) {
1501                struct hci_conn *conn;
1502
1503                conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1504                if (!conn)
1505                        return true;
1506
1507                if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1508                        return true;
1509        }
1510
1511        return false;
1512}
1513
1514void __hci_req_update_scan(struct hci_request *req)
1515{
1516        struct hci_dev *hdev = req->hdev;
1517        u8 scan;
1518
1519        if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1520                return;
1521
1522        if (!hdev_is_powered(hdev))
1523                return;
1524
1525        if (mgmt_powering_down(hdev))
1526                return;
1527
1528        if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1529            disconnected_whitelist_entries(hdev))
1530                scan = SCAN_PAGE;
1531        else
1532                scan = SCAN_DISABLED;
1533
1534        if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1535                scan |= SCAN_INQUIRY;
1536
1537        if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1538            test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1539                return;
1540
1541        hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1542}
1543
1544static int update_scan(struct hci_request *req, unsigned long opt)
1545{
1546        hci_dev_lock(req->hdev);
1547        __hci_req_update_scan(req);
1548        hci_dev_unlock(req->hdev);
1549        return 0;
1550}
1551
1552static void scan_update_work(struct work_struct *work)
1553{
1554        struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1555
1556        hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1557}
1558
1559static int connectable_update(struct hci_request *req, unsigned long opt)
1560{
1561        struct hci_dev *hdev = req->hdev;
1562
1563        hci_dev_lock(hdev);
1564
1565        __hci_req_update_scan(req);
1566
1567        /* If BR/EDR is not enabled and we disable advertising as a
1568         * by-product of disabling connectable, we need to update the
1569         * advertising flags.
1570         */
1571        if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1572                __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1573
1574        /* Update the advertising parameters if necessary */
1575        if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1576            !list_empty(&hdev->adv_instances))
1577                __hci_req_enable_advertising(req);
1578
1579        __hci_update_background_scan(req);
1580
1581        hci_dev_unlock(hdev);
1582
1583        return 0;
1584}
1585
1586static void connectable_update_work(struct work_struct *work)
1587{
1588        struct hci_dev *hdev = container_of(work, struct hci_dev,
1589                                            connectable_update);
1590        u8 status;
1591
1592        hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1593        mgmt_set_connectable_complete(hdev, status);
1594}
1595
1596static u8 get_service_classes(struct hci_dev *hdev)
1597{
1598        struct bt_uuid *uuid;
1599        u8 val = 0;
1600
1601        list_for_each_entry(uuid, &hdev->uuids, list)
1602                val |= uuid->svc_hint;
1603
1604        return val;
1605}
1606
1607void __hci_req_update_class(struct hci_request *req)
1608{
1609        struct hci_dev *hdev = req->hdev;
1610        u8 cod[3];
1611
1612        BT_DBG("%s", hdev->name);
1613
1614        if (!hdev_is_powered(hdev))
1615                return;
1616
1617        if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1618                return;
1619
1620        if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1621                return;
1622
1623        cod[0] = hdev->minor_class;
1624        cod[1] = hdev->major_class;
1625        cod[2] = get_service_classes(hdev);
1626
1627        if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1628                cod[1] |= 0x20;
1629
1630        if (memcmp(cod, hdev->dev_class, 3) == 0)
1631                return;
1632
1633        hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1634}
1635
1636static void write_iac(struct hci_request *req)
1637{
1638        struct hci_dev *hdev = req->hdev;
1639        struct hci_cp_write_current_iac_lap cp;
1640
1641        if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1642                return;
1643
1644        if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1645                /* Limited discoverable mode */
1646                cp.num_iac = min_t(u8, hdev->num_iac, 2);
1647                cp.iac_lap[0] = 0x00;   /* LIAC */
1648                cp.iac_lap[1] = 0x8b;
1649                cp.iac_lap[2] = 0x9e;
1650                cp.iac_lap[3] = 0x33;   /* GIAC */
1651                cp.iac_lap[4] = 0x8b;
1652                cp.iac_lap[5] = 0x9e;
1653        } else {
1654                /* General discoverable mode */
1655                cp.num_iac = 1;
1656                cp.iac_lap[0] = 0x33;   /* GIAC */
1657                cp.iac_lap[1] = 0x8b;
1658                cp.iac_lap[2] = 0x9e;
1659        }
1660
1661        hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1662                    (cp.num_iac * 3) + 1, &cp);
1663}
1664
1665static int discoverable_update(struct hci_request *req, unsigned long opt)
1666{
1667        struct hci_dev *hdev = req->hdev;
1668
1669        hci_dev_lock(hdev);
1670
1671        if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1672                write_iac(req);
1673                __hci_req_update_scan(req);
1674                __hci_req_update_class(req);
1675        }
1676
1677        /* Advertising instances don't use the global discoverable setting, so
1678         * only update AD if advertising was enabled using Set Advertising.
1679         */
1680        if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1681                __hci_req_update_adv_data(req, 0x00);
1682
1683                /* Discoverable mode affects the local advertising
1684                 * address in limited privacy mode.
1685                 */
1686                if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1687                        __hci_req_enable_advertising(req);
1688        }
1689
1690        hci_dev_unlock(hdev);
1691
1692        return 0;
1693}
1694
1695static void discoverable_update_work(struct work_struct *work)
1696{
1697        struct hci_dev *hdev = container_of(work, struct hci_dev,
1698                                            discoverable_update);
1699        u8 status;
1700
1701        hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1702        mgmt_set_discoverable_complete(hdev, status);
1703}
1704
1705void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1706                      u8 reason)
1707{
1708        switch (conn->state) {
1709        case BT_CONNECTED:
1710        case BT_CONFIG:
1711                if (conn->type == AMP_LINK) {
1712                        struct hci_cp_disconn_phy_link cp;
1713
1714                        cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1715                        cp.reason = reason;
1716                        hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1717                                    &cp);
1718                } else {
1719                        struct hci_cp_disconnect dc;
1720
1721                        dc.handle = cpu_to_le16(conn->handle);
1722                        dc.reason = reason;
1723                        hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1724                }
1725
1726                conn->state = BT_DISCONN;
1727
1728                break;
1729        case BT_CONNECT:
1730                if (conn->type == LE_LINK) {
1731                        if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1732                                break;
1733                        hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1734                                    0, NULL);
1735                } else if (conn->type == ACL_LINK) {
1736                        if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1737                                break;
1738                        hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1739                                    6, &conn->dst);
1740                }
1741                break;
1742        case BT_CONNECT2:
1743                if (conn->type == ACL_LINK) {
1744                        struct hci_cp_reject_conn_req rej;
1745
1746                        bacpy(&rej.bdaddr, &conn->dst);
1747                        rej.reason = reason;
1748
1749                        hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1750                                    sizeof(rej), &rej);
1751                } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1752                        struct hci_cp_reject_sync_conn_req rej;
1753
1754                        bacpy(&rej.bdaddr, &conn->dst);
1755
1756                        /* SCO rejection has its own limited set of
1757                         * allowed error values (0x0D-0x0F) which isn't
1758                         * compatible with most values passed to this
1759                         * function. To be safe hard-code one of the
1760                         * values that's suitable for SCO.
1761                         */
1762                        rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1763
1764                        hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1765                                    sizeof(rej), &rej);
1766                }
1767                break;
1768        default:
1769                conn->state = BT_CLOSED;
1770                break;
1771        }
1772}
1773
1774static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1775{
1776        if (status)
1777                BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1778}
1779
1780int hci_abort_conn(struct hci_conn *conn, u8 reason)
1781{
1782        struct hci_request req;
1783        int err;
1784
1785        hci_req_init(&req, conn->hdev);
1786
1787        __hci_abort_conn(&req, conn, reason);
1788
1789        err = hci_req_run(&req, abort_conn_complete);
1790        if (err && err != -ENODATA) {
1791                bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
1792                return err;
1793        }
1794
1795        return 0;
1796}
1797
1798static int update_bg_scan(struct hci_request *req, unsigned long opt)
1799{
1800        hci_dev_lock(req->hdev);
1801        __hci_update_background_scan(req);
1802        hci_dev_unlock(req->hdev);
1803        return 0;
1804}
1805
1806static void bg_scan_update(struct work_struct *work)
1807{
1808        struct hci_dev *hdev = container_of(work, struct hci_dev,
1809                                            bg_scan_update);
1810        struct hci_conn *conn;
1811        u8 status;
1812        int err;
1813
1814        err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1815        if (!err)
1816                return;
1817
1818        hci_dev_lock(hdev);
1819
1820        conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1821        if (conn)
1822                hci_le_conn_failed(conn, status);
1823
1824        hci_dev_unlock(hdev);
1825}
1826
1827static int le_scan_disable(struct hci_request *req, unsigned long opt)
1828{
1829        hci_req_add_le_scan_disable(req);
1830        return 0;
1831}
1832
1833static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1834{
1835        u8 length = opt;
1836        const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1837        const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1838        struct hci_cp_inquiry cp;
1839
1840        BT_DBG("%s", req->hdev->name);
1841
1842        hci_dev_lock(req->hdev);
1843        hci_inquiry_cache_flush(req->hdev);
1844        hci_dev_unlock(req->hdev);
1845
1846        memset(&cp, 0, sizeof(cp));
1847
1848        if (req->hdev->discovery.limited)
1849                memcpy(&cp.lap, liac, sizeof(cp.lap));
1850        else
1851                memcpy(&cp.lap, giac, sizeof(cp.lap));
1852
1853        cp.length = length;
1854
1855        hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1856
1857        return 0;
1858}
1859
1860static void le_scan_disable_work(struct work_struct *work)
1861{
1862        struct hci_dev *hdev = container_of(work, struct hci_dev,
1863                                            le_scan_disable.work);
1864        u8 status;
1865
1866        BT_DBG("%s", hdev->name);
1867
1868        if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1869                return;
1870
1871        cancel_delayed_work(&hdev->le_scan_restart);
1872
1873        hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1874        if (status) {
1875                bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
1876                           status);
1877                return;
1878        }
1879
1880        hdev->discovery.scan_start = 0;
1881
1882        /* If we were running LE only scan, change discovery state. If
1883         * we were running both LE and BR/EDR inquiry simultaneously,
1884         * and BR/EDR inquiry is already finished, stop discovery,
1885         * otherwise BR/EDR inquiry will stop discovery when finished.
1886         * If we will resolve remote device name, do not change
1887         * discovery state.
1888         */
1889
1890        if (hdev->discovery.type == DISCOV_TYPE_LE)
1891                goto discov_stopped;
1892
1893        if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1894                return;
1895
1896        if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1897                if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1898                    hdev->discovery.state != DISCOVERY_RESOLVING)
1899                        goto discov_stopped;
1900
1901                return;
1902        }
1903
1904        hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1905                     HCI_CMD_TIMEOUT, &status);
1906        if (status) {
1907                bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
1908                goto discov_stopped;
1909        }
1910
1911        return;
1912
1913discov_stopped:
1914        hci_dev_lock(hdev);
1915        hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1916        hci_dev_unlock(hdev);
1917}
1918
1919static int le_scan_restart(struct hci_request *req, unsigned long opt)
1920{
1921        struct hci_dev *hdev = req->hdev;
1922        struct hci_cp_le_set_scan_enable cp;
1923
1924        /* If controller is not scanning we are done. */
1925        if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1926                return 0;
1927
1928        hci_req_add_le_scan_disable(req);
1929
1930        memset(&cp, 0, sizeof(cp));
1931        cp.enable = LE_SCAN_ENABLE;
1932        cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1933        hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1934
1935        return 0;
1936}
1937
1938static void le_scan_restart_work(struct work_struct *work)
1939{
1940        struct hci_dev *hdev = container_of(work, struct hci_dev,
1941                                            le_scan_restart.work);
1942        unsigned long timeout, duration, scan_start, now;
1943        u8 status;
1944
1945        BT_DBG("%s", hdev->name);
1946
1947        hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1948        if (status) {
1949                bt_dev_err(hdev, "failed to restart LE scan: status %d",
1950                           status);
1951                return;
1952        }
1953
1954        hci_dev_lock(hdev);
1955
1956        if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1957            !hdev->discovery.scan_start)
1958                goto unlock;
1959
1960        /* When the scan was started, hdev->le_scan_disable has been queued
1961         * after duration from scan_start. During scan restart this job
1962         * has been canceled, and we need to queue it again after proper
1963         * timeout, to make sure that scan does not run indefinitely.
1964         */
1965        duration = hdev->discovery.scan_duration;
1966        scan_start = hdev->discovery.scan_start;
1967        now = jiffies;
1968        if (now - scan_start <= duration) {
1969                int elapsed;
1970
1971                if (now >= scan_start)
1972                        elapsed = now - scan_start;
1973                else
1974                        elapsed = ULONG_MAX - scan_start + now;
1975
1976                timeout = duration - elapsed;
1977        } else {
1978                timeout = 0;
1979        }
1980
1981        queue_delayed_work(hdev->req_workqueue,
1982                           &hdev->le_scan_disable, timeout);
1983
1984unlock:
1985        hci_dev_unlock(hdev);
1986}
1987
1988static void disable_advertising(struct hci_request *req)
1989{
1990        u8 enable = 0x00;
1991
1992        hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1993}
1994
1995static int active_scan(struct hci_request *req, unsigned long opt)
1996{
1997        uint16_t interval = opt;
1998        struct hci_dev *hdev = req->hdev;
1999        struct hci_cp_le_set_scan_param param_cp;
2000        struct hci_cp_le_set_scan_enable enable_cp;
2001        u8 own_addr_type;
2002        int err;
2003
2004        BT_DBG("%s", hdev->name);
2005
2006        if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2007                hci_dev_lock(hdev);
2008
2009                /* Don't let discovery abort an outgoing connection attempt
2010                 * that's using directed advertising.
2011                 */
2012                if (hci_lookup_le_connect(hdev)) {
2013                        hci_dev_unlock(hdev);
2014                        return -EBUSY;
2015                }
2016
2017                cancel_adv_timeout(hdev);
2018                hci_dev_unlock(hdev);
2019
2020                disable_advertising(req);
2021        }
2022
2023        /* If controller is scanning, it means the background scanning is
2024         * running. Thus, we should temporarily stop it in order to set the
2025         * discovery scanning parameters.
2026         */
2027        if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2028                hci_req_add_le_scan_disable(req);
2029
2030        /* All active scans will be done with either a resolvable private
2031         * address (when privacy feature has been enabled) or non-resolvable
2032         * private address.
2033         */
2034        err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2035                                        &own_addr_type);
2036        if (err < 0)
2037                own_addr_type = ADDR_LE_DEV_PUBLIC;
2038
2039        memset(&param_cp, 0, sizeof(param_cp));
2040        param_cp.type = LE_SCAN_ACTIVE;
2041        param_cp.interval = cpu_to_le16(interval);
2042        param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2043        param_cp.own_address_type = own_addr_type;
2044
2045        hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2046                    &param_cp);
2047
2048        memset(&enable_cp, 0, sizeof(enable_cp));
2049        enable_cp.enable = LE_SCAN_ENABLE;
2050        enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2051
2052        hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2053                    &enable_cp);
2054
2055        return 0;
2056}
2057
2058static int interleaved_discov(struct hci_request *req, unsigned long opt)
2059{
2060        int err;
2061
2062        BT_DBG("%s", req->hdev->name);
2063
2064        err = active_scan(req, opt);
2065        if (err)
2066                return err;
2067
2068        return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2069}
2070
2071static void start_discovery(struct hci_dev *hdev, u8 *status)
2072{
2073        unsigned long timeout;
2074
2075        BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2076
2077        switch (hdev->discovery.type) {
2078        case DISCOV_TYPE_BREDR:
2079                if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2080                        hci_req_sync(hdev, bredr_inquiry,
2081                                     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2082                                     status);
2083                return;
2084        case DISCOV_TYPE_INTERLEAVED:
2085                /* When running simultaneous discovery, the LE scanning time
2086                 * should occupy the whole discovery time sine BR/EDR inquiry
2087                 * and LE scanning are scheduled by the controller.
2088                 *
2089                 * For interleaving discovery in comparison, BR/EDR inquiry
2090                 * and LE scanning are done sequentially with separate
2091                 * timeouts.
2092                 */
2093                if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2094                             &hdev->quirks)) {
2095                        timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2096                        /* During simultaneous discovery, we double LE scan
2097                         * interval. We must leave some time for the controller
2098                         * to do BR/EDR inquiry.
2099                         */
2100                        hci_req_sync(hdev, interleaved_discov,
2101                                     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2102                                     status);
2103                        break;
2104                }
2105
2106                timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2107                hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2108                             HCI_CMD_TIMEOUT, status);
2109                break;
2110        case DISCOV_TYPE_LE:
2111                timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2112                hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2113                             HCI_CMD_TIMEOUT, status);
2114                break;
2115        default:
2116                *status = HCI_ERROR_UNSPECIFIED;
2117                return;
2118        }
2119
2120        if (*status)
2121                return;
2122
2123        BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2124
2125        /* When service discovery is used and the controller has a
2126         * strict duplicate filter, it is important to remember the
2127         * start and duration of the scan. This is required for
2128         * restarting scanning during the discovery phase.
2129         */
2130        if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2131                     hdev->discovery.result_filtering) {
2132                hdev->discovery.scan_start = jiffies;
2133                hdev->discovery.scan_duration = timeout;
2134        }
2135
2136        queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2137                           timeout);
2138}
2139
2140bool hci_req_stop_discovery(struct hci_request *req)
2141{
2142        struct hci_dev *hdev = req->hdev;
2143        struct discovery_state *d = &hdev->discovery;
2144        struct hci_cp_remote_name_req_cancel cp;
2145        struct inquiry_entry *e;
2146        bool ret = false;
2147
2148        BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2149
2150        if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2151                if (test_bit(HCI_INQUIRY, &hdev->flags))
2152                        hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2153
2154                if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2155                        cancel_delayed_work(&hdev->le_scan_disable);
2156                        hci_req_add_le_scan_disable(req);
2157                }
2158
2159                ret = true;
2160        } else {
2161                /* Passive scanning */
2162                if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2163                        hci_req_add_le_scan_disable(req);
2164                        ret = true;
2165                }
2166        }
2167
2168        /* No further actions needed for LE-only discovery */
2169        if (d->type == DISCOV_TYPE_LE)
2170                return ret;
2171
2172        if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2173                e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2174                                                     NAME_PENDING);
2175                if (!e)
2176                        return ret;
2177
2178                bacpy(&cp.bdaddr, &e->data.bdaddr);
2179                hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2180                            &cp);
2181                ret = true;
2182        }
2183
2184        return ret;
2185}
2186
2187static int stop_discovery(struct hci_request *req, unsigned long opt)
2188{
2189        hci_dev_lock(req->hdev);
2190        hci_req_stop_discovery(req);
2191        hci_dev_unlock(req->hdev);
2192
2193        return 0;
2194}
2195
2196static void discov_update(struct work_struct *work)
2197{
2198        struct hci_dev *hdev = container_of(work, struct hci_dev,
2199                                            discov_update);
2200        u8 status = 0;
2201
2202        switch (hdev->discovery.state) {
2203        case DISCOVERY_STARTING:
2204                start_discovery(hdev, &status);
2205                mgmt_start_discovery_complete(hdev, status);
2206                if (status)
2207                        hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2208                else
2209                        hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2210                break;
2211        case DISCOVERY_STOPPING:
2212                hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2213                mgmt_stop_discovery_complete(hdev, status);
2214                if (!status)
2215                        hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2216                break;
2217        case DISCOVERY_STOPPED:
2218        default:
2219                return;
2220        }
2221}
2222
2223static void discov_off(struct work_struct *work)
2224{
2225        struct hci_dev *hdev = container_of(work, struct hci_dev,
2226                                            discov_off.work);
2227
2228        BT_DBG("%s", hdev->name);
2229
2230        hci_dev_lock(hdev);
2231
2232        /* When discoverable timeout triggers, then just make sure
2233         * the limited discoverable flag is cleared. Even in the case
2234         * of a timeout triggered from general discoverable, it is
2235         * safe to unconditionally clear the flag.
2236         */
2237        hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2238        hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2239        hdev->discov_timeout = 0;
2240
2241        hci_dev_unlock(hdev);
2242
2243        hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2244        mgmt_new_settings(hdev);
2245}
2246
2247static int powered_update_hci(struct hci_request *req, unsigned long opt)
2248{
2249        struct hci_dev *hdev = req->hdev;
2250        u8 link_sec;
2251
2252        hci_dev_lock(hdev);
2253
2254        if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2255            !lmp_host_ssp_capable(hdev)) {
2256                u8 mode = 0x01;
2257
2258                hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2259
2260                if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2261                        u8 support = 0x01;
2262
2263                        hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2264                                    sizeof(support), &support);
2265                }
2266        }
2267
2268        if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2269            lmp_bredr_capable(hdev)) {
2270                struct hci_cp_write_le_host_supported cp;
2271
2272                cp.le = 0x01;
2273                cp.simul = 0x00;
2274
2275                /* Check first if we already have the right
2276                 * host state (host features set)
2277                 */
2278                if (cp.le != lmp_host_le_capable(hdev) ||
2279                    cp.simul != lmp_host_le_br_capable(hdev))
2280                        hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2281                                    sizeof(cp), &cp);
2282        }
2283
2284        if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2285                /* Make sure the controller has a good default for
2286                 * advertising data. This also applies to the case
2287                 * where BR/EDR was toggled during the AUTO_OFF phase.
2288                 */
2289                if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2290                    list_empty(&hdev->adv_instances)) {
2291                        __hci_req_update_adv_data(req, 0x00);
2292                        __hci_req_update_scan_rsp_data(req, 0x00);
2293
2294                        if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2295                                __hci_req_enable_advertising(req);
2296                } else if (!list_empty(&hdev->adv_instances)) {
2297                        struct adv_info *adv_instance;
2298
2299                        adv_instance = list_first_entry(&hdev->adv_instances,
2300                                                        struct adv_info, list);
2301                        __hci_req_schedule_adv_instance(req,
2302                                                        adv_instance->instance,
2303                                                        true);
2304                }
2305        }
2306
2307        link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2308        if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2309                hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2310                            sizeof(link_sec), &link_sec);
2311
2312        if (lmp_bredr_capable(hdev)) {
2313                if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2314                        __hci_req_write_fast_connectable(req, true);
2315                else
2316                        __hci_req_write_fast_connectable(req, false);
2317                __hci_req_update_scan(req);
2318                __hci_req_update_class(req);
2319                __hci_req_update_name(req);
2320                __hci_req_update_eir(req);
2321        }
2322
2323        hci_dev_unlock(hdev);
2324        return 0;
2325}
2326
2327int __hci_req_hci_power_on(struct hci_dev *hdev)
2328{
2329        /* Register the available SMP channels (BR/EDR and LE) only when
2330         * successfully powering on the controller. This late
2331         * registration is required so that LE SMP can clearly decide if
2332         * the public address or static address is used.
2333         */
2334        smp_register(hdev);
2335
2336        return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2337                              NULL);
2338}
2339
2340void hci_request_setup(struct hci_dev *hdev)
2341{
2342        INIT_WORK(&hdev->discov_update, discov_update);
2343        INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2344        INIT_WORK(&hdev->scan_update, scan_update_work);
2345        INIT_WORK(&hdev->connectable_update, connectable_update_work);
2346        INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2347        INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2348        INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2349        INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2350        INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2351}
2352
2353void hci_request_cancel_all(struct hci_dev *hdev)
2354{
2355        hci_req_sync_cancel(hdev, ENODEV);
2356
2357        cancel_work_sync(&hdev->discov_update);
2358        cancel_work_sync(&hdev->bg_scan_update);
2359        cancel_work_sync(&hdev->scan_update);
2360        cancel_work_sync(&hdev->connectable_update);
2361        cancel_work_sync(&hdev->discoverable_update);
2362        cancel_delayed_work_sync(&hdev->discov_off);
2363        cancel_delayed_work_sync(&hdev->le_scan_disable);
2364        cancel_delayed_work_sync(&hdev->le_scan_restart);
2365
2366        if (hdev->adv_instance_timeout) {
2367                cancel_delayed_work_sync(&hdev->adv_instance_expire);
2368                hdev->adv_instance_timeout = 0;
2369        }
2370}
2371