linux/net/sctp/auth.c
<<
>>
Prefs
   1/* SCTP kernel implementation
   2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
   3 *
   4 * This file is part of the SCTP kernel implementation
   5 *
   6 * This SCTP implementation is free software;
   7 * you can redistribute it and/or modify it under the terms of
   8 * the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2, or (at your option)
  10 * any later version.
  11 *
  12 * This SCTP implementation is distributed in the hope that it
  13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14 *                 ************************
  15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16 * See the GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with GNU CC; see the file COPYING.  If not, see
  20 * <http://www.gnu.org/licenses/>.
  21 *
  22 * Please send any bug reports or fixes you make to the
  23 * email address(es):
  24 *    lksctp developers <linux-sctp@vger.kernel.org>
  25 *
  26 * Written or modified by:
  27 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
  28 */
  29
  30#include <crypto/hash.h>
  31#include <linux/slab.h>
  32#include <linux/types.h>
  33#include <linux/scatterlist.h>
  34#include <net/sctp/sctp.h>
  35#include <net/sctp/auth.h>
  36
  37static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  38        {
  39                /* id 0 is reserved.  as all 0 */
  40                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  41        },
  42        {
  43                .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  44                .hmac_name = "hmac(sha1)",
  45                .hmac_len = SCTP_SHA1_SIG_SIZE,
  46        },
  47        {
  48                /* id 2 is reserved as well */
  49                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  50        },
  51#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
  52        {
  53                .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  54                .hmac_name = "hmac(sha256)",
  55                .hmac_len = SCTP_SHA256_SIG_SIZE,
  56        }
  57#endif
  58};
  59
  60
  61void sctp_auth_key_put(struct sctp_auth_bytes *key)
  62{
  63        if (!key)
  64                return;
  65
  66        if (refcount_dec_and_test(&key->refcnt)) {
  67                kzfree(key);
  68                SCTP_DBG_OBJCNT_DEC(keys);
  69        }
  70}
  71
  72/* Create a new key structure of a given length */
  73static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  74{
  75        struct sctp_auth_bytes *key;
  76
  77        /* Verify that we are not going to overflow INT_MAX */
  78        if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  79                return NULL;
  80
  81        /* Allocate the shared key */
  82        key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  83        if (!key)
  84                return NULL;
  85
  86        key->len = key_len;
  87        refcount_set(&key->refcnt, 1);
  88        SCTP_DBG_OBJCNT_INC(keys);
  89
  90        return key;
  91}
  92
  93/* Create a new shared key container with a give key id */
  94struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  95{
  96        struct sctp_shared_key *new;
  97
  98        /* Allocate the shared key container */
  99        new = kzalloc(sizeof(struct sctp_shared_key), gfp);
 100        if (!new)
 101                return NULL;
 102
 103        INIT_LIST_HEAD(&new->key_list);
 104        new->key_id = key_id;
 105
 106        return new;
 107}
 108
 109/* Free the shared key structure */
 110static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
 111{
 112        BUG_ON(!list_empty(&sh_key->key_list));
 113        sctp_auth_key_put(sh_key->key);
 114        sh_key->key = NULL;
 115        kfree(sh_key);
 116}
 117
 118/* Destroy the entire key list.  This is done during the
 119 * associon and endpoint free process.
 120 */
 121void sctp_auth_destroy_keys(struct list_head *keys)
 122{
 123        struct sctp_shared_key *ep_key;
 124        struct sctp_shared_key *tmp;
 125
 126        if (list_empty(keys))
 127                return;
 128
 129        key_for_each_safe(ep_key, tmp, keys) {
 130                list_del_init(&ep_key->key_list);
 131                sctp_auth_shkey_free(ep_key);
 132        }
 133}
 134
 135/* Compare two byte vectors as numbers.  Return values
 136 * are:
 137 *        0 - vectors are equal
 138 *      < 0 - vector 1 is smaller than vector2
 139 *      > 0 - vector 1 is greater than vector2
 140 *
 141 * Algorithm is:
 142 *      This is performed by selecting the numerically smaller key vector...
 143 *      If the key vectors are equal as numbers but differ in length ...
 144 *      the shorter vector is considered smaller
 145 *
 146 * Examples (with small values):
 147 *      000123456789 > 123456789 (first number is longer)
 148 *      000123456789 < 234567891 (second number is larger numerically)
 149 *      123456789 > 2345678      (first number is both larger & longer)
 150 */
 151static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 152                              struct sctp_auth_bytes *vector2)
 153{
 154        int diff;
 155        int i;
 156        const __u8 *longer;
 157
 158        diff = vector1->len - vector2->len;
 159        if (diff) {
 160                longer = (diff > 0) ? vector1->data : vector2->data;
 161
 162                /* Check to see if the longer number is
 163                 * lead-zero padded.  If it is not, it
 164                 * is automatically larger numerically.
 165                 */
 166                for (i = 0; i < abs(diff); i++) {
 167                        if (longer[i] != 0)
 168                                return diff;
 169                }
 170        }
 171
 172        /* lengths are the same, compare numbers */
 173        return memcmp(vector1->data, vector2->data, vector1->len);
 174}
 175
 176/*
 177 * Create a key vector as described in SCTP-AUTH, Section 6.1
 178 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 179 *    parameter sent by each endpoint are concatenated as byte vectors.
 180 *    These parameters include the parameter type, parameter length, and
 181 *    the parameter value, but padding is omitted; all padding MUST be
 182 *    removed from this concatenation before proceeding with further
 183 *    computation of keys.  Parameters which were not sent are simply
 184 *    omitted from the concatenation process.  The resulting two vectors
 185 *    are called the two key vectors.
 186 */
 187static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 188                        struct sctp_random_param *random,
 189                        struct sctp_chunks_param *chunks,
 190                        struct sctp_hmac_algo_param *hmacs,
 191                        gfp_t gfp)
 192{
 193        struct sctp_auth_bytes *new;
 194        __u32   len;
 195        __u32   offset = 0;
 196        __u16   random_len, hmacs_len, chunks_len = 0;
 197
 198        random_len = ntohs(random->param_hdr.length);
 199        hmacs_len = ntohs(hmacs->param_hdr.length);
 200        if (chunks)
 201                chunks_len = ntohs(chunks->param_hdr.length);
 202
 203        len = random_len + hmacs_len + chunks_len;
 204
 205        new = sctp_auth_create_key(len, gfp);
 206        if (!new)
 207                return NULL;
 208
 209        memcpy(new->data, random, random_len);
 210        offset += random_len;
 211
 212        if (chunks) {
 213                memcpy(new->data + offset, chunks, chunks_len);
 214                offset += chunks_len;
 215        }
 216
 217        memcpy(new->data + offset, hmacs, hmacs_len);
 218
 219        return new;
 220}
 221
 222
 223/* Make a key vector based on our local parameters */
 224static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 225                                    const struct sctp_association *asoc,
 226                                    gfp_t gfp)
 227{
 228        return sctp_auth_make_key_vector(
 229                        (struct sctp_random_param *)asoc->c.auth_random,
 230                        (struct sctp_chunks_param *)asoc->c.auth_chunks,
 231                        (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
 232}
 233
 234/* Make a key vector based on peer's parameters */
 235static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 236                                    const struct sctp_association *asoc,
 237                                    gfp_t gfp)
 238{
 239        return sctp_auth_make_key_vector(asoc->peer.peer_random,
 240                                         asoc->peer.peer_chunks,
 241                                         asoc->peer.peer_hmacs,
 242                                         gfp);
 243}
 244
 245
 246/* Set the value of the association shared key base on the parameters
 247 * given.  The algorithm is:
 248 *    From the endpoint pair shared keys and the key vectors the
 249 *    association shared keys are computed.  This is performed by selecting
 250 *    the numerically smaller key vector and concatenating it to the
 251 *    endpoint pair shared key, and then concatenating the numerically
 252 *    larger key vector to that.  The result of the concatenation is the
 253 *    association shared key.
 254 */
 255static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 256                        struct sctp_shared_key *ep_key,
 257                        struct sctp_auth_bytes *first_vector,
 258                        struct sctp_auth_bytes *last_vector,
 259                        gfp_t gfp)
 260{
 261        struct sctp_auth_bytes *secret;
 262        __u32 offset = 0;
 263        __u32 auth_len;
 264
 265        auth_len = first_vector->len + last_vector->len;
 266        if (ep_key->key)
 267                auth_len += ep_key->key->len;
 268
 269        secret = sctp_auth_create_key(auth_len, gfp);
 270        if (!secret)
 271                return NULL;
 272
 273        if (ep_key->key) {
 274                memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 275                offset += ep_key->key->len;
 276        }
 277
 278        memcpy(secret->data + offset, first_vector->data, first_vector->len);
 279        offset += first_vector->len;
 280
 281        memcpy(secret->data + offset, last_vector->data, last_vector->len);
 282
 283        return secret;
 284}
 285
 286/* Create an association shared key.  Follow the algorithm
 287 * described in SCTP-AUTH, Section 6.1
 288 */
 289static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 290                                 const struct sctp_association *asoc,
 291                                 struct sctp_shared_key *ep_key,
 292                                 gfp_t gfp)
 293{
 294        struct sctp_auth_bytes *local_key_vector;
 295        struct sctp_auth_bytes *peer_key_vector;
 296        struct sctp_auth_bytes  *first_vector,
 297                                *last_vector;
 298        struct sctp_auth_bytes  *secret = NULL;
 299        int     cmp;
 300
 301
 302        /* Now we need to build the key vectors
 303         * SCTP-AUTH , Section 6.1
 304         *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 305         *    parameter sent by each endpoint are concatenated as byte vectors.
 306         *    These parameters include the parameter type, parameter length, and
 307         *    the parameter value, but padding is omitted; all padding MUST be
 308         *    removed from this concatenation before proceeding with further
 309         *    computation of keys.  Parameters which were not sent are simply
 310         *    omitted from the concatenation process.  The resulting two vectors
 311         *    are called the two key vectors.
 312         */
 313
 314        local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 315        peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 316
 317        if (!peer_key_vector || !local_key_vector)
 318                goto out;
 319
 320        /* Figure out the order in which the key_vectors will be
 321         * added to the endpoint shared key.
 322         * SCTP-AUTH, Section 6.1:
 323         *   This is performed by selecting the numerically smaller key
 324         *   vector and concatenating it to the endpoint pair shared
 325         *   key, and then concatenating the numerically larger key
 326         *   vector to that.  If the key vectors are equal as numbers
 327         *   but differ in length, then the concatenation order is the
 328         *   endpoint shared key, followed by the shorter key vector,
 329         *   followed by the longer key vector.  Otherwise, the key
 330         *   vectors are identical, and may be concatenated to the
 331         *   endpoint pair key in any order.
 332         */
 333        cmp = sctp_auth_compare_vectors(local_key_vector,
 334                                        peer_key_vector);
 335        if (cmp < 0) {
 336                first_vector = local_key_vector;
 337                last_vector = peer_key_vector;
 338        } else {
 339                first_vector = peer_key_vector;
 340                last_vector = local_key_vector;
 341        }
 342
 343        secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 344                                            gfp);
 345out:
 346        sctp_auth_key_put(local_key_vector);
 347        sctp_auth_key_put(peer_key_vector);
 348
 349        return secret;
 350}
 351
 352/*
 353 * Populate the association overlay list with the list
 354 * from the endpoint.
 355 */
 356int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 357                                struct sctp_association *asoc,
 358                                gfp_t gfp)
 359{
 360        struct sctp_shared_key *sh_key;
 361        struct sctp_shared_key *new;
 362
 363        BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 364
 365        key_for_each(sh_key, &ep->endpoint_shared_keys) {
 366                new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 367                if (!new)
 368                        goto nomem;
 369
 370                new->key = sh_key->key;
 371                sctp_auth_key_hold(new->key);
 372                list_add(&new->key_list, &asoc->endpoint_shared_keys);
 373        }
 374
 375        return 0;
 376
 377nomem:
 378        sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 379        return -ENOMEM;
 380}
 381
 382
 383/* Public interface to create the association shared key.
 384 * See code above for the algorithm.
 385 */
 386int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 387{
 388        struct sctp_auth_bytes  *secret;
 389        struct sctp_shared_key *ep_key;
 390        struct sctp_chunk *chunk;
 391
 392        /* If we don't support AUTH, or peer is not capable
 393         * we don't need to do anything.
 394         */
 395        if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
 396                return 0;
 397
 398        /* If the key_id is non-zero and we couldn't find an
 399         * endpoint pair shared key, we can't compute the
 400         * secret.
 401         * For key_id 0, endpoint pair shared key is a NULL key.
 402         */
 403        ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 404        BUG_ON(!ep_key);
 405
 406        secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 407        if (!secret)
 408                return -ENOMEM;
 409
 410        sctp_auth_key_put(asoc->asoc_shared_key);
 411        asoc->asoc_shared_key = secret;
 412
 413        /* Update send queue in case any chunk already in there now
 414         * needs authenticating
 415         */
 416        list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
 417                if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
 418                        chunk->auth = 1;
 419        }
 420
 421        return 0;
 422}
 423
 424
 425/* Find the endpoint pair shared key based on the key_id */
 426struct sctp_shared_key *sctp_auth_get_shkey(
 427                                const struct sctp_association *asoc,
 428                                __u16 key_id)
 429{
 430        struct sctp_shared_key *key;
 431
 432        /* First search associations set of endpoint pair shared keys */
 433        key_for_each(key, &asoc->endpoint_shared_keys) {
 434                if (key->key_id == key_id)
 435                        return key;
 436        }
 437
 438        return NULL;
 439}
 440
 441/*
 442 * Initialize all the possible digest transforms that we can use.  Right now
 443 * now, the supported digests are SHA1 and SHA256.  We do this here once
 444 * because of the restrictiong that transforms may only be allocated in
 445 * user context.  This forces us to pre-allocated all possible transforms
 446 * at the endpoint init time.
 447 */
 448int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 449{
 450        struct crypto_shash *tfm = NULL;
 451        __u16   id;
 452
 453        /* If AUTH extension is disabled, we are done */
 454        if (!ep->auth_enable) {
 455                ep->auth_hmacs = NULL;
 456                return 0;
 457        }
 458
 459        /* If the transforms are already allocated, we are done */
 460        if (ep->auth_hmacs)
 461                return 0;
 462
 463        /* Allocated the array of pointers to transorms */
 464        ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
 465                                 SCTP_AUTH_NUM_HMACS, gfp);
 466        if (!ep->auth_hmacs)
 467                return -ENOMEM;
 468
 469        for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 470
 471                /* See is we support the id.  Supported IDs have name and
 472                 * length fields set, so that we can allocated and use
 473                 * them.  We can safely just check for name, for without the
 474                 * name, we can't allocate the TFM.
 475                 */
 476                if (!sctp_hmac_list[id].hmac_name)
 477                        continue;
 478
 479                /* If this TFM has been allocated, we are all set */
 480                if (ep->auth_hmacs[id])
 481                        continue;
 482
 483                /* Allocate the ID */
 484                tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
 485                if (IS_ERR(tfm))
 486                        goto out_err;
 487
 488                ep->auth_hmacs[id] = tfm;
 489        }
 490
 491        return 0;
 492
 493out_err:
 494        /* Clean up any successful allocations */
 495        sctp_auth_destroy_hmacs(ep->auth_hmacs);
 496        return -ENOMEM;
 497}
 498
 499/* Destroy the hmac tfm array */
 500void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
 501{
 502        int i;
 503
 504        if (!auth_hmacs)
 505                return;
 506
 507        for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
 508                crypto_free_shash(auth_hmacs[i]);
 509        }
 510        kfree(auth_hmacs);
 511}
 512
 513
 514struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 515{
 516        return &sctp_hmac_list[hmac_id];
 517}
 518
 519/* Get an hmac description information that we can use to build
 520 * the AUTH chunk
 521 */
 522struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 523{
 524        struct sctp_hmac_algo_param *hmacs;
 525        __u16 n_elt;
 526        __u16 id = 0;
 527        int i;
 528
 529        /* If we have a default entry, use it */
 530        if (asoc->default_hmac_id)
 531                return &sctp_hmac_list[asoc->default_hmac_id];
 532
 533        /* Since we do not have a default entry, find the first entry
 534         * we support and return that.  Do not cache that id.
 535         */
 536        hmacs = asoc->peer.peer_hmacs;
 537        if (!hmacs)
 538                return NULL;
 539
 540        n_elt = (ntohs(hmacs->param_hdr.length) -
 541                 sizeof(struct sctp_paramhdr)) >> 1;
 542        for (i = 0; i < n_elt; i++) {
 543                id = ntohs(hmacs->hmac_ids[i]);
 544
 545                /* Check the id is in the supported range. And
 546                 * see if we support the id.  Supported IDs have name and
 547                 * length fields set, so that we can allocate and use
 548                 * them.  We can safely just check for name, for without the
 549                 * name, we can't allocate the TFM.
 550                 */
 551                if (id > SCTP_AUTH_HMAC_ID_MAX ||
 552                    !sctp_hmac_list[id].hmac_name) {
 553                        id = 0;
 554                        continue;
 555                }
 556
 557                break;
 558        }
 559
 560        if (id == 0)
 561                return NULL;
 562
 563        return &sctp_hmac_list[id];
 564}
 565
 566static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 567{
 568        int  found = 0;
 569        int  i;
 570
 571        for (i = 0; i < n_elts; i++) {
 572                if (hmac_id == hmacs[i]) {
 573                        found = 1;
 574                        break;
 575                }
 576        }
 577
 578        return found;
 579}
 580
 581/* See if the HMAC_ID is one that we claim as supported */
 582int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 583                                    __be16 hmac_id)
 584{
 585        struct sctp_hmac_algo_param *hmacs;
 586        __u16 n_elt;
 587
 588        if (!asoc)
 589                return 0;
 590
 591        hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 592        n_elt = (ntohs(hmacs->param_hdr.length) -
 593                 sizeof(struct sctp_paramhdr)) >> 1;
 594
 595        return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 596}
 597
 598
 599/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 600 * Section 6.1:
 601 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 602 *   algorithm it supports.
 603 */
 604void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 605                                     struct sctp_hmac_algo_param *hmacs)
 606{
 607        struct sctp_endpoint *ep;
 608        __u16   id;
 609        int     i;
 610        int     n_params;
 611
 612        /* if the default id is already set, use it */
 613        if (asoc->default_hmac_id)
 614                return;
 615
 616        n_params = (ntohs(hmacs->param_hdr.length) -
 617                    sizeof(struct sctp_paramhdr)) >> 1;
 618        ep = asoc->ep;
 619        for (i = 0; i < n_params; i++) {
 620                id = ntohs(hmacs->hmac_ids[i]);
 621
 622                /* Check the id is in the supported range */
 623                if (id > SCTP_AUTH_HMAC_ID_MAX)
 624                        continue;
 625
 626                /* If this TFM has been allocated, use this id */
 627                if (ep->auth_hmacs[id]) {
 628                        asoc->default_hmac_id = id;
 629                        break;
 630                }
 631        }
 632}
 633
 634
 635/* Check to see if the given chunk is supposed to be authenticated */
 636static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
 637{
 638        unsigned short len;
 639        int found = 0;
 640        int i;
 641
 642        if (!param || param->param_hdr.length == 0)
 643                return 0;
 644
 645        len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
 646
 647        /* SCTP-AUTH, Section 3.2
 648         *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 649         *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 650         *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 651         *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 652         */
 653        for (i = 0; !found && i < len; i++) {
 654                switch (param->chunks[i]) {
 655                case SCTP_CID_INIT:
 656                case SCTP_CID_INIT_ACK:
 657                case SCTP_CID_SHUTDOWN_COMPLETE:
 658                case SCTP_CID_AUTH:
 659                        break;
 660
 661                default:
 662                        if (param->chunks[i] == chunk)
 663                                found = 1;
 664                        break;
 665                }
 666        }
 667
 668        return found;
 669}
 670
 671/* Check if peer requested that this chunk is authenticated */
 672int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 673{
 674        if (!asoc)
 675                return 0;
 676
 677        if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
 678                return 0;
 679
 680        return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 681}
 682
 683/* Check if we requested that peer authenticate this chunk. */
 684int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
 685{
 686        if (!asoc)
 687                return 0;
 688
 689        if (!asoc->ep->auth_enable)
 690                return 0;
 691
 692        return __sctp_auth_cid(chunk,
 693                              (struct sctp_chunks_param *)asoc->c.auth_chunks);
 694}
 695
 696/* SCTP-AUTH: Section 6.2:
 697 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 698 *    the hash function H as described by the MAC Identifier and the shared
 699 *    association key K based on the endpoint pair shared key described by
 700 *    the shared key identifier.  The 'data' used for the computation of
 701 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 702 *    zero (as shown in Figure 6) followed by all chunks that are placed
 703 *    after the AUTH chunk in the SCTP packet.
 704 */
 705void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 706                              struct sk_buff *skb,
 707                              struct sctp_auth_chunk *auth,
 708                              gfp_t gfp)
 709{
 710        struct crypto_shash *tfm;
 711        struct sctp_auth_bytes *asoc_key;
 712        __u16 key_id, hmac_id;
 713        __u8 *digest;
 714        unsigned char *end;
 715        int free_key = 0;
 716
 717        /* Extract the info we need:
 718         * - hmac id
 719         * - key id
 720         */
 721        key_id = ntohs(auth->auth_hdr.shkey_id);
 722        hmac_id = ntohs(auth->auth_hdr.hmac_id);
 723
 724        if (key_id == asoc->active_key_id)
 725                asoc_key = asoc->asoc_shared_key;
 726        else {
 727                struct sctp_shared_key *ep_key;
 728
 729                ep_key = sctp_auth_get_shkey(asoc, key_id);
 730                if (!ep_key)
 731                        return;
 732
 733                asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 734                if (!asoc_key)
 735                        return;
 736
 737                free_key = 1;
 738        }
 739
 740        /* set up scatter list */
 741        end = skb_tail_pointer(skb);
 742
 743        tfm = asoc->ep->auth_hmacs[hmac_id];
 744
 745        digest = auth->auth_hdr.hmac;
 746        if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
 747                goto free;
 748
 749        {
 750                SHASH_DESC_ON_STACK(desc, tfm);
 751
 752                desc->tfm = tfm;
 753                desc->flags = 0;
 754                crypto_shash_digest(desc, (u8 *)auth,
 755                                    end - (unsigned char *)auth, digest);
 756                shash_desc_zero(desc);
 757        }
 758
 759free:
 760        if (free_key)
 761                sctp_auth_key_put(asoc_key);
 762}
 763
 764/* API Helpers */
 765
 766/* Add a chunk to the endpoint authenticated chunk list */
 767int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 768{
 769        struct sctp_chunks_param *p = ep->auth_chunk_list;
 770        __u16 nchunks;
 771        __u16 param_len;
 772
 773        /* If this chunk is already specified, we are done */
 774        if (__sctp_auth_cid(chunk_id, p))
 775                return 0;
 776
 777        /* Check if we can add this chunk to the array */
 778        param_len = ntohs(p->param_hdr.length);
 779        nchunks = param_len - sizeof(struct sctp_paramhdr);
 780        if (nchunks == SCTP_NUM_CHUNK_TYPES)
 781                return -EINVAL;
 782
 783        p->chunks[nchunks] = chunk_id;
 784        p->param_hdr.length = htons(param_len + 1);
 785        return 0;
 786}
 787
 788/* Add hmac identifires to the endpoint list of supported hmac ids */
 789int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 790                           struct sctp_hmacalgo *hmacs)
 791{
 792        int has_sha1 = 0;
 793        __u16 id;
 794        int i;
 795
 796        /* Scan the list looking for unsupported id.  Also make sure that
 797         * SHA1 is specified.
 798         */
 799        for (i = 0; i < hmacs->shmac_num_idents; i++) {
 800                id = hmacs->shmac_idents[i];
 801
 802                if (id > SCTP_AUTH_HMAC_ID_MAX)
 803                        return -EOPNOTSUPP;
 804
 805                if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 806                        has_sha1 = 1;
 807
 808                if (!sctp_hmac_list[id].hmac_name)
 809                        return -EOPNOTSUPP;
 810        }
 811
 812        if (!has_sha1)
 813                return -EINVAL;
 814
 815        for (i = 0; i < hmacs->shmac_num_idents; i++)
 816                ep->auth_hmacs_list->hmac_ids[i] =
 817                                htons(hmacs->shmac_idents[i]);
 818        ep->auth_hmacs_list->param_hdr.length =
 819                        htons(sizeof(struct sctp_paramhdr) +
 820                        hmacs->shmac_num_idents * sizeof(__u16));
 821        return 0;
 822}
 823
 824/* Set a new shared key on either endpoint or association.  If the
 825 * the key with a same ID already exists, replace the key (remove the
 826 * old key and add a new one).
 827 */
 828int sctp_auth_set_key(struct sctp_endpoint *ep,
 829                      struct sctp_association *asoc,
 830                      struct sctp_authkey *auth_key)
 831{
 832        struct sctp_shared_key *cur_key = NULL;
 833        struct sctp_auth_bytes *key;
 834        struct list_head *sh_keys;
 835        int replace = 0;
 836
 837        /* Try to find the given key id to see if
 838         * we are doing a replace, or adding a new key
 839         */
 840        if (asoc)
 841                sh_keys = &asoc->endpoint_shared_keys;
 842        else
 843                sh_keys = &ep->endpoint_shared_keys;
 844
 845        key_for_each(cur_key, sh_keys) {
 846                if (cur_key->key_id == auth_key->sca_keynumber) {
 847                        replace = 1;
 848                        break;
 849                }
 850        }
 851
 852        /* If we are not replacing a key id, we need to allocate
 853         * a shared key.
 854         */
 855        if (!replace) {
 856                cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
 857                                                 GFP_KERNEL);
 858                if (!cur_key)
 859                        return -ENOMEM;
 860        }
 861
 862        /* Create a new key data based on the info passed in */
 863        key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 864        if (!key)
 865                goto nomem;
 866
 867        memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 868
 869        /* If we are replacing, remove the old keys data from the
 870         * key id.  If we are adding new key id, add it to the
 871         * list.
 872         */
 873        if (replace)
 874                sctp_auth_key_put(cur_key->key);
 875        else
 876                list_add(&cur_key->key_list, sh_keys);
 877
 878        cur_key->key = key;
 879        return 0;
 880nomem:
 881        if (!replace)
 882                sctp_auth_shkey_free(cur_key);
 883
 884        return -ENOMEM;
 885}
 886
 887int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 888                             struct sctp_association *asoc,
 889                             __u16  key_id)
 890{
 891        struct sctp_shared_key *key;
 892        struct list_head *sh_keys;
 893        int found = 0;
 894
 895        /* The key identifier MUST correst to an existing key */
 896        if (asoc)
 897                sh_keys = &asoc->endpoint_shared_keys;
 898        else
 899                sh_keys = &ep->endpoint_shared_keys;
 900
 901        key_for_each(key, sh_keys) {
 902                if (key->key_id == key_id) {
 903                        found = 1;
 904                        break;
 905                }
 906        }
 907
 908        if (!found)
 909                return -EINVAL;
 910
 911        if (asoc) {
 912                asoc->active_key_id = key_id;
 913                sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 914        } else
 915                ep->active_key_id = key_id;
 916
 917        return 0;
 918}
 919
 920int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 921                         struct sctp_association *asoc,
 922                         __u16  key_id)
 923{
 924        struct sctp_shared_key *key;
 925        struct list_head *sh_keys;
 926        int found = 0;
 927
 928        /* The key identifier MUST NOT be the current active key
 929         * The key identifier MUST correst to an existing key
 930         */
 931        if (asoc) {
 932                if (asoc->active_key_id == key_id)
 933                        return -EINVAL;
 934
 935                sh_keys = &asoc->endpoint_shared_keys;
 936        } else {
 937                if (ep->active_key_id == key_id)
 938                        return -EINVAL;
 939
 940                sh_keys = &ep->endpoint_shared_keys;
 941        }
 942
 943        key_for_each(key, sh_keys) {
 944                if (key->key_id == key_id) {
 945                        found = 1;
 946                        break;
 947                }
 948        }
 949
 950        if (!found)
 951                return -EINVAL;
 952
 953        /* Delete the shared key */
 954        list_del_init(&key->key_list);
 955        sctp_auth_shkey_free(key);
 956
 957        return 0;
 958}
 959