linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Initialize MMU support.
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      David Mosberger-Tang <davidm@hpl.hp.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/init.h>
  10
  11#include <linux/bootmem.h>
  12#include <linux/efi.h>
  13#include <linux/elf.h>
  14#include <linux/memblock.h>
  15#include <linux/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/mmzone.h>
  18#include <linux/module.h>
  19#include <linux/personality.h>
  20#include <linux/reboot.h>
  21#include <linux/slab.h>
  22#include <linux/swap.h>
  23#include <linux/proc_fs.h>
  24#include <linux/bitops.h>
  25#include <linux/kexec.h>
  26
  27#include <asm/dma.h>
  28#include <asm/io.h>
  29#include <asm/machvec.h>
  30#include <asm/numa.h>
  31#include <asm/patch.h>
  32#include <asm/pgalloc.h>
  33#include <asm/sal.h>
  34#include <asm/sections.h>
  35#include <asm/tlb.h>
  36#include <linux/uaccess.h>
  37#include <asm/unistd.h>
  38#include <asm/mca.h>
  39
  40extern void ia64_tlb_init (void);
  41
  42unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  43
  44#ifdef CONFIG_VIRTUAL_MEM_MAP
  45unsigned long VMALLOC_END = VMALLOC_END_INIT;
  46EXPORT_SYMBOL(VMALLOC_END);
  47struct page *vmem_map;
  48EXPORT_SYMBOL(vmem_map);
  49#endif
  50
  51struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  52EXPORT_SYMBOL(zero_page_memmap_ptr);
  53
  54void
  55__ia64_sync_icache_dcache (pte_t pte)
  56{
  57        unsigned long addr;
  58        struct page *page;
  59
  60        page = pte_page(pte);
  61        addr = (unsigned long) page_address(page);
  62
  63        if (test_bit(PG_arch_1, &page->flags))
  64                return;                         /* i-cache is already coherent with d-cache */
  65
  66        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  67        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  68}
  69
  70/*
  71 * Since DMA is i-cache coherent, any (complete) pages that were written via
  72 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  73 * flush them when they get mapped into an executable vm-area.
  74 */
  75void
  76dma_mark_clean(void *addr, size_t size)
  77{
  78        unsigned long pg_addr, end;
  79
  80        pg_addr = PAGE_ALIGN((unsigned long) addr);
  81        end = (unsigned long) addr + size;
  82        while (pg_addr + PAGE_SIZE <= end) {
  83                struct page *page = virt_to_page(pg_addr);
  84                set_bit(PG_arch_1, &page->flags);
  85                pg_addr += PAGE_SIZE;
  86        }
  87}
  88
  89inline void
  90ia64_set_rbs_bot (void)
  91{
  92        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  93
  94        if (stack_size > MAX_USER_STACK_SIZE)
  95                stack_size = MAX_USER_STACK_SIZE;
  96        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  97}
  98
  99/*
 100 * This performs some platform-dependent address space initialization.
 101 * On IA-64, we want to setup the VM area for the register backing
 102 * store (which grows upwards) and install the gateway page which is
 103 * used for signal trampolines, etc.
 104 */
 105void
 106ia64_init_addr_space (void)
 107{
 108        struct vm_area_struct *vma;
 109
 110        ia64_set_rbs_bot();
 111
 112        /*
 113         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 114         * the problem.  When the process attempts to write to the register backing store
 115         * for the first time, it will get a SEGFAULT in this case.
 116         */
 117        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 118        if (vma) {
 119                INIT_LIST_HEAD(&vma->anon_vma_chain);
 120                vma->vm_mm = current->mm;
 121                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 122                vma->vm_end = vma->vm_start + PAGE_SIZE;
 123                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 124                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 125                down_write(&current->mm->mmap_sem);
 126                if (insert_vm_struct(current->mm, vma)) {
 127                        up_write(&current->mm->mmap_sem);
 128                        kmem_cache_free(vm_area_cachep, vma);
 129                        return;
 130                }
 131                up_write(&current->mm->mmap_sem);
 132        }
 133
 134        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 135        if (!(current->personality & MMAP_PAGE_ZERO)) {
 136                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 137                if (vma) {
 138                        INIT_LIST_HEAD(&vma->anon_vma_chain);
 139                        vma->vm_mm = current->mm;
 140                        vma->vm_end = PAGE_SIZE;
 141                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 142                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
 143                                        VM_DONTEXPAND | VM_DONTDUMP;
 144                        down_write(&current->mm->mmap_sem);
 145                        if (insert_vm_struct(current->mm, vma)) {
 146                                up_write(&current->mm->mmap_sem);
 147                                kmem_cache_free(vm_area_cachep, vma);
 148                                return;
 149                        }
 150                        up_write(&current->mm->mmap_sem);
 151                }
 152        }
 153}
 154
 155void
 156free_initmem (void)
 157{
 158        free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
 159                           -1, "unused kernel");
 160}
 161
 162void __init
 163free_initrd_mem (unsigned long start, unsigned long end)
 164{
 165        /*
 166         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 167         * Thus EFI and the kernel may have different page sizes. It is
 168         * therefore possible to have the initrd share the same page as
 169         * the end of the kernel (given current setup).
 170         *
 171         * To avoid freeing/using the wrong page (kernel sized) we:
 172         *      - align up the beginning of initrd
 173         *      - align down the end of initrd
 174         *
 175         *  |             |
 176         *  |=============| a000
 177         *  |             |
 178         *  |             |
 179         *  |             | 9000
 180         *  |/////////////|
 181         *  |/////////////|
 182         *  |=============| 8000
 183         *  |///INITRD////|
 184         *  |/////////////|
 185         *  |/////////////| 7000
 186         *  |             |
 187         *  |KKKKKKKKKKKKK|
 188         *  |=============| 6000
 189         *  |KKKKKKKKKKKKK|
 190         *  |KKKKKKKKKKKKK|
 191         *  K=kernel using 8KB pages
 192         *
 193         * In this example, we must free page 8000 ONLY. So we must align up
 194         * initrd_start and keep initrd_end as is.
 195         */
 196        start = PAGE_ALIGN(start);
 197        end = end & PAGE_MASK;
 198
 199        if (start < end)
 200                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 201
 202        for (; start < end; start += PAGE_SIZE) {
 203                if (!virt_addr_valid(start))
 204                        continue;
 205                free_reserved_page(virt_to_page(start));
 206        }
 207}
 208
 209/*
 210 * This installs a clean page in the kernel's page table.
 211 */
 212static struct page * __init
 213put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 214{
 215        pgd_t *pgd;
 216        pud_t *pud;
 217        pmd_t *pmd;
 218        pte_t *pte;
 219
 220        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 221
 222        {
 223                pud = pud_alloc(&init_mm, pgd, address);
 224                if (!pud)
 225                        goto out;
 226                pmd = pmd_alloc(&init_mm, pud, address);
 227                if (!pmd)
 228                        goto out;
 229                pte = pte_alloc_kernel(pmd, address);
 230                if (!pte)
 231                        goto out;
 232                if (!pte_none(*pte))
 233                        goto out;
 234                set_pte(pte, mk_pte(page, pgprot));
 235        }
 236  out:
 237        /* no need for flush_tlb */
 238        return page;
 239}
 240
 241static void __init
 242setup_gate (void)
 243{
 244        struct page *page;
 245
 246        /*
 247         * Map the gate page twice: once read-only to export the ELF
 248         * headers etc. and once execute-only page to enable
 249         * privilege-promotion via "epc":
 250         */
 251        page = virt_to_page(ia64_imva(__start_gate_section));
 252        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 253#ifdef HAVE_BUGGY_SEGREL
 254        page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
 255        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 256#else
 257        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 258        /* Fill in the holes (if any) with read-only zero pages: */
 259        {
 260                unsigned long addr;
 261
 262                for (addr = GATE_ADDR + PAGE_SIZE;
 263                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 264                     addr += PAGE_SIZE)
 265                {
 266                        put_kernel_page(ZERO_PAGE(0), addr,
 267                                        PAGE_READONLY);
 268                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 269                                        PAGE_READONLY);
 270                }
 271        }
 272#endif
 273        ia64_patch_gate();
 274}
 275
 276static struct vm_area_struct gate_vma;
 277
 278static int __init gate_vma_init(void)
 279{
 280        gate_vma.vm_mm = NULL;
 281        gate_vma.vm_start = FIXADDR_USER_START;
 282        gate_vma.vm_end = FIXADDR_USER_END;
 283        gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
 284        gate_vma.vm_page_prot = __P101;
 285
 286        return 0;
 287}
 288__initcall(gate_vma_init);
 289
 290struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 291{
 292        return &gate_vma;
 293}
 294
 295int in_gate_area_no_mm(unsigned long addr)
 296{
 297        if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
 298                return 1;
 299        return 0;
 300}
 301
 302int in_gate_area(struct mm_struct *mm, unsigned long addr)
 303{
 304        return in_gate_area_no_mm(addr);
 305}
 306
 307void ia64_mmu_init(void *my_cpu_data)
 308{
 309        unsigned long pta, impl_va_bits;
 310        extern void tlb_init(void);
 311
 312#ifdef CONFIG_DISABLE_VHPT
 313#       define VHPT_ENABLE_BIT  0
 314#else
 315#       define VHPT_ENABLE_BIT  1
 316#endif
 317
 318        /*
 319         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 320         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 321         * virtual address space are implemented but if we pick a large enough page size
 322         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 323         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 324         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 325         * problem in practice.  Alternatively, we could truncate the top of the mapped
 326         * address space to not permit mappings that would overlap with the VMLPT.
 327         * --davidm 00/12/06
 328         */
 329#       define pte_bits                 3
 330#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 331        /*
 332         * The virtual page table has to cover the entire implemented address space within
 333         * a region even though not all of this space may be mappable.  The reason for
 334         * this is that the Access bit and Dirty bit fault handlers perform
 335         * non-speculative accesses to the virtual page table, so the address range of the
 336         * virtual page table itself needs to be covered by virtual page table.
 337         */
 338#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 339#       define POW2(n)                  (1ULL << (n))
 340
 341        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 342
 343        if (impl_va_bits < 51 || impl_va_bits > 61)
 344                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 345        /*
 346         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 347         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 348         * the test makes sure that our mapped space doesn't overlap the
 349         * unimplemented hole in the middle of the region.
 350         */
 351        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 352            (mapped_space_bits > impl_va_bits - 1))
 353                panic("Cannot build a big enough virtual-linear page table"
 354                      " to cover mapped address space.\n"
 355                      " Try using a smaller page size.\n");
 356
 357
 358        /* place the VMLPT at the end of each page-table mapped region: */
 359        pta = POW2(61) - POW2(vmlpt_bits);
 360
 361        /*
 362         * Set the (virtually mapped linear) page table address.  Bit
 363         * 8 selects between the short and long format, bits 2-7 the
 364         * size of the table, and bit 0 whether the VHPT walker is
 365         * enabled.
 366         */
 367        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 368
 369        ia64_tlb_init();
 370
 371#ifdef  CONFIG_HUGETLB_PAGE
 372        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 373        ia64_srlz_d();
 374#endif
 375}
 376
 377#ifdef CONFIG_VIRTUAL_MEM_MAP
 378int vmemmap_find_next_valid_pfn(int node, int i)
 379{
 380        unsigned long end_address, hole_next_pfn;
 381        unsigned long stop_address;
 382        pg_data_t *pgdat = NODE_DATA(node);
 383
 384        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 385        end_address = PAGE_ALIGN(end_address);
 386        stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
 387
 388        do {
 389                pgd_t *pgd;
 390                pud_t *pud;
 391                pmd_t *pmd;
 392                pte_t *pte;
 393
 394                pgd = pgd_offset_k(end_address);
 395                if (pgd_none(*pgd)) {
 396                        end_address += PGDIR_SIZE;
 397                        continue;
 398                }
 399
 400                pud = pud_offset(pgd, end_address);
 401                if (pud_none(*pud)) {
 402                        end_address += PUD_SIZE;
 403                        continue;
 404                }
 405
 406                pmd = pmd_offset(pud, end_address);
 407                if (pmd_none(*pmd)) {
 408                        end_address += PMD_SIZE;
 409                        continue;
 410                }
 411
 412                pte = pte_offset_kernel(pmd, end_address);
 413retry_pte:
 414                if (pte_none(*pte)) {
 415                        end_address += PAGE_SIZE;
 416                        pte++;
 417                        if ((end_address < stop_address) &&
 418                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 419                                goto retry_pte;
 420                        continue;
 421                }
 422                /* Found next valid vmem_map page */
 423                break;
 424        } while (end_address < stop_address);
 425
 426        end_address = min(end_address, stop_address);
 427        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 428        hole_next_pfn = end_address / sizeof(struct page);
 429        return hole_next_pfn - pgdat->node_start_pfn;
 430}
 431
 432int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 433{
 434        unsigned long address, start_page, end_page;
 435        struct page *map_start, *map_end;
 436        int node;
 437        pgd_t *pgd;
 438        pud_t *pud;
 439        pmd_t *pmd;
 440        pte_t *pte;
 441
 442        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 443        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 444
 445        start_page = (unsigned long) map_start & PAGE_MASK;
 446        end_page = PAGE_ALIGN((unsigned long) map_end);
 447        node = paddr_to_nid(__pa(start));
 448
 449        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 450                pgd = pgd_offset_k(address);
 451                if (pgd_none(*pgd))
 452                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 453                pud = pud_offset(pgd, address);
 454
 455                if (pud_none(*pud))
 456                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 457                pmd = pmd_offset(pud, address);
 458
 459                if (pmd_none(*pmd))
 460                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 461                pte = pte_offset_kernel(pmd, address);
 462
 463                if (pte_none(*pte))
 464                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 465                                             PAGE_KERNEL));
 466        }
 467        return 0;
 468}
 469
 470struct memmap_init_callback_data {
 471        struct page *start;
 472        struct page *end;
 473        int nid;
 474        unsigned long zone;
 475};
 476
 477static int __meminit
 478virtual_memmap_init(u64 start, u64 end, void *arg)
 479{
 480        struct memmap_init_callback_data *args;
 481        struct page *map_start, *map_end;
 482
 483        args = (struct memmap_init_callback_data *) arg;
 484        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 485        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 486
 487        if (map_start < args->start)
 488                map_start = args->start;
 489        if (map_end > args->end)
 490                map_end = args->end;
 491
 492        /*
 493         * We have to initialize "out of bounds" struct page elements that fit completely
 494         * on the same pages that were allocated for the "in bounds" elements because they
 495         * may be referenced later (and found to be "reserved").
 496         */
 497        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 498        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 499                    / sizeof(struct page));
 500
 501        if (map_start < map_end)
 502                memmap_init_zone((unsigned long)(map_end - map_start),
 503                                 args->nid, args->zone, page_to_pfn(map_start),
 504                                 MEMMAP_EARLY, NULL);
 505        return 0;
 506}
 507
 508void __meminit
 509memmap_init (unsigned long size, int nid, unsigned long zone,
 510             unsigned long start_pfn)
 511{
 512        if (!vmem_map) {
 513                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
 514                                NULL);
 515        } else {
 516                struct page *start;
 517                struct memmap_init_callback_data args;
 518
 519                start = pfn_to_page(start_pfn);
 520                args.start = start;
 521                args.end = start + size;
 522                args.nid = nid;
 523                args.zone = zone;
 524
 525                efi_memmap_walk(virtual_memmap_init, &args);
 526        }
 527}
 528
 529int
 530ia64_pfn_valid (unsigned long pfn)
 531{
 532        char byte;
 533        struct page *pg = pfn_to_page(pfn);
 534
 535        return     (__get_user(byte, (char __user *) pg) == 0)
 536                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 537                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 538}
 539EXPORT_SYMBOL(ia64_pfn_valid);
 540
 541int __init find_largest_hole(u64 start, u64 end, void *arg)
 542{
 543        u64 *max_gap = arg;
 544
 545        static u64 last_end = PAGE_OFFSET;
 546
 547        /* NOTE: this algorithm assumes efi memmap table is ordered */
 548
 549        if (*max_gap < (start - last_end))
 550                *max_gap = start - last_end;
 551        last_end = end;
 552        return 0;
 553}
 554
 555#endif /* CONFIG_VIRTUAL_MEM_MAP */
 556
 557int __init register_active_ranges(u64 start, u64 len, int nid)
 558{
 559        u64 end = start + len;
 560
 561#ifdef CONFIG_KEXEC
 562        if (start > crashk_res.start && start < crashk_res.end)
 563                start = crashk_res.end;
 564        if (end > crashk_res.start && end < crashk_res.end)
 565                end = crashk_res.start;
 566#endif
 567
 568        if (start < end)
 569                memblock_add_node(__pa(start), end - start, nid);
 570        return 0;
 571}
 572
 573int
 574find_max_min_low_pfn (u64 start, u64 end, void *arg)
 575{
 576        unsigned long pfn_start, pfn_end;
 577#ifdef CONFIG_FLATMEM
 578        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 579        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 580#else
 581        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 582        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 583#endif
 584        min_low_pfn = min(min_low_pfn, pfn_start);
 585        max_low_pfn = max(max_low_pfn, pfn_end);
 586        return 0;
 587}
 588
 589/*
 590 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 591 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 592 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 593 * useful for performance testing, but conceivably could also come in handy for debugging
 594 * purposes.
 595 */
 596
 597static int nolwsys __initdata;
 598
 599static int __init
 600nolwsys_setup (char *s)
 601{
 602        nolwsys = 1;
 603        return 1;
 604}
 605
 606__setup("nolwsys", nolwsys_setup);
 607
 608void __init
 609mem_init (void)
 610{
 611        int i;
 612
 613        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 614        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 615        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 616
 617#ifdef CONFIG_PCI
 618        /*
 619         * This needs to be called _after_ the command line has been parsed but _before_
 620         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 621         * been freed.
 622         */
 623        platform_dma_init();
 624#endif
 625
 626#ifdef CONFIG_FLATMEM
 627        BUG_ON(!mem_map);
 628#endif
 629
 630        set_max_mapnr(max_low_pfn);
 631        high_memory = __va(max_low_pfn * PAGE_SIZE);
 632        free_all_bootmem();
 633        mem_init_print_info(NULL);
 634
 635        /*
 636         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 637         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 638         * code can tell them apart.
 639         */
 640        for (i = 0; i < NR_syscalls; ++i) {
 641                extern unsigned long fsyscall_table[NR_syscalls];
 642                extern unsigned long sys_call_table[NR_syscalls];
 643
 644                if (!fsyscall_table[i] || nolwsys)
 645                        fsyscall_table[i] = sys_call_table[i] | 1;
 646        }
 647        setup_gate();
 648}
 649
 650#ifdef CONFIG_MEMORY_HOTPLUG
 651int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
 652                bool want_memblock)
 653{
 654        unsigned long start_pfn = start >> PAGE_SHIFT;
 655        unsigned long nr_pages = size >> PAGE_SHIFT;
 656        int ret;
 657
 658        ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
 659        if (ret)
 660                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 661                       __func__,  ret);
 662
 663        return ret;
 664}
 665
 666#ifdef CONFIG_MEMORY_HOTREMOVE
 667int arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
 668{
 669        unsigned long start_pfn = start >> PAGE_SHIFT;
 670        unsigned long nr_pages = size >> PAGE_SHIFT;
 671        struct zone *zone;
 672        int ret;
 673
 674        zone = page_zone(pfn_to_page(start_pfn));
 675        ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
 676        if (ret)
 677                pr_warn("%s: Problem encountered in __remove_pages() as"
 678                        " ret=%d\n", __func__,  ret);
 679
 680        return ret;
 681}
 682#endif
 683#endif
 684