linux/arch/mips/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/export.h>
  16#include <linux/screen_info.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/initrd.h>
  20#include <linux/root_dev.h>
  21#include <linux/highmem.h>
  22#include <linux/console.h>
  23#include <linux/pfn.h>
  24#include <linux/debugfs.h>
  25#include <linux/kexec.h>
  26#include <linux/sizes.h>
  27#include <linux/device.h>
  28#include <linux/dma-contiguous.h>
  29#include <linux/decompress/generic.h>
  30#include <linux/of_fdt.h>
  31
  32#include <asm/addrspace.h>
  33#include <asm/bootinfo.h>
  34#include <asm/bugs.h>
  35#include <asm/cache.h>
  36#include <asm/cdmm.h>
  37#include <asm/cpu.h>
  38#include <asm/debug.h>
  39#include <asm/sections.h>
  40#include <asm/setup.h>
  41#include <asm/smp-ops.h>
  42#include <asm/prom.h>
  43
  44#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
  45const char __section(.appended_dtb) __appended_dtb[0x100000];
  46#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
  47
  48struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  49
  50EXPORT_SYMBOL(cpu_data);
  51
  52#ifdef CONFIG_VT
  53struct screen_info screen_info;
  54#endif
  55
  56/*
  57 * Setup information
  58 *
  59 * These are initialized so they are in the .data section
  60 */
  61unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  62
  63EXPORT_SYMBOL(mips_machtype);
  64
  65struct boot_mem_map boot_mem_map;
  66
  67static char __initdata command_line[COMMAND_LINE_SIZE];
  68char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  69
  70#ifdef CONFIG_CMDLINE_BOOL
  71static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  72#endif
  73
  74/*
  75 * mips_io_port_base is the begin of the address space to which x86 style
  76 * I/O ports are mapped.
  77 */
  78const unsigned long mips_io_port_base = -1;
  79EXPORT_SYMBOL(mips_io_port_base);
  80
  81static struct resource code_resource = { .name = "Kernel code", };
  82static struct resource data_resource = { .name = "Kernel data", };
  83static struct resource bss_resource = { .name = "Kernel bss", };
  84
  85static void *detect_magic __initdata = detect_memory_region;
  86
  87void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
  88{
  89        int x = boot_mem_map.nr_map;
  90        int i;
  91
  92        /*
  93         * If the region reaches the top of the physical address space, adjust
  94         * the size slightly so that (start + size) doesn't overflow
  95         */
  96        if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
  97                --size;
  98
  99        /* Sanity check */
 100        if (start + size < start) {
 101                pr_warn("Trying to add an invalid memory region, skipped\n");
 102                return;
 103        }
 104
 105        /*
 106         * Try to merge with existing entry, if any.
 107         */
 108        for (i = 0; i < boot_mem_map.nr_map; i++) {
 109                struct boot_mem_map_entry *entry = boot_mem_map.map + i;
 110                unsigned long top;
 111
 112                if (entry->type != type)
 113                        continue;
 114
 115                if (start + size < entry->addr)
 116                        continue;                       /* no overlap */
 117
 118                if (entry->addr + entry->size < start)
 119                        continue;                       /* no overlap */
 120
 121                top = max(entry->addr + entry->size, start + size);
 122                entry->addr = min(entry->addr, start);
 123                entry->size = top - entry->addr;
 124
 125                return;
 126        }
 127
 128        if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
 129                pr_err("Ooops! Too many entries in the memory map!\n");
 130                return;
 131        }
 132
 133        boot_mem_map.map[x].addr = start;
 134        boot_mem_map.map[x].size = size;
 135        boot_mem_map.map[x].type = type;
 136        boot_mem_map.nr_map++;
 137}
 138
 139void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
 140{
 141        void *dm = &detect_magic;
 142        phys_addr_t size;
 143
 144        for (size = sz_min; size < sz_max; size <<= 1) {
 145                if (!memcmp(dm, dm + size, sizeof(detect_magic)))
 146                        break;
 147        }
 148
 149        pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
 150                ((unsigned long long) size) / SZ_1M,
 151                (unsigned long long) start,
 152                ((unsigned long long) sz_min) / SZ_1M,
 153                ((unsigned long long) sz_max) / SZ_1M);
 154
 155        add_memory_region(start, size, BOOT_MEM_RAM);
 156}
 157
 158bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
 159{
 160        int i;
 161        bool in_ram = false, free = true;
 162
 163        for (i = 0; i < boot_mem_map.nr_map; i++) {
 164                phys_addr_t start_, end_;
 165
 166                start_ = boot_mem_map.map[i].addr;
 167                end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
 168
 169                switch (boot_mem_map.map[i].type) {
 170                case BOOT_MEM_RAM:
 171                        if (start >= start_ && start + size <= end_)
 172                                in_ram = true;
 173                        break;
 174                case BOOT_MEM_RESERVED:
 175                        if ((start >= start_ && start < end_) ||
 176                            (start < start_ && start + size >= start_))
 177                                free = false;
 178                        break;
 179                default:
 180                        continue;
 181                }
 182        }
 183
 184        return in_ram && free;
 185}
 186
 187static void __init print_memory_map(void)
 188{
 189        int i;
 190        const int field = 2 * sizeof(unsigned long);
 191
 192        for (i = 0; i < boot_mem_map.nr_map; i++) {
 193                printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
 194                       field, (unsigned long long) boot_mem_map.map[i].size,
 195                       field, (unsigned long long) boot_mem_map.map[i].addr);
 196
 197                switch (boot_mem_map.map[i].type) {
 198                case BOOT_MEM_RAM:
 199                        printk(KERN_CONT "(usable)\n");
 200                        break;
 201                case BOOT_MEM_INIT_RAM:
 202                        printk(KERN_CONT "(usable after init)\n");
 203                        break;
 204                case BOOT_MEM_ROM_DATA:
 205                        printk(KERN_CONT "(ROM data)\n");
 206                        break;
 207                case BOOT_MEM_RESERVED:
 208                        printk(KERN_CONT "(reserved)\n");
 209                        break;
 210                default:
 211                        printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
 212                        break;
 213                }
 214        }
 215}
 216
 217/*
 218 * Manage initrd
 219 */
 220#ifdef CONFIG_BLK_DEV_INITRD
 221
 222static int __init rd_start_early(char *p)
 223{
 224        unsigned long start = memparse(p, &p);
 225
 226#ifdef CONFIG_64BIT
 227        /* Guess if the sign extension was forgotten by bootloader */
 228        if (start < XKPHYS)
 229                start = (int)start;
 230#endif
 231        initrd_start = start;
 232        initrd_end += start;
 233        return 0;
 234}
 235early_param("rd_start", rd_start_early);
 236
 237static int __init rd_size_early(char *p)
 238{
 239        initrd_end += memparse(p, &p);
 240        return 0;
 241}
 242early_param("rd_size", rd_size_early);
 243
 244/* it returns the next free pfn after initrd */
 245static unsigned long __init init_initrd(void)
 246{
 247        unsigned long end;
 248
 249        /*
 250         * Board specific code or command line parser should have
 251         * already set up initrd_start and initrd_end. In these cases
 252         * perfom sanity checks and use them if all looks good.
 253         */
 254        if (!initrd_start || initrd_end <= initrd_start)
 255                goto disable;
 256
 257        if (initrd_start & ~PAGE_MASK) {
 258                pr_err("initrd start must be page aligned\n");
 259                goto disable;
 260        }
 261        if (initrd_start < PAGE_OFFSET) {
 262                pr_err("initrd start < PAGE_OFFSET\n");
 263                goto disable;
 264        }
 265
 266        /*
 267         * Sanitize initrd addresses. For example firmware
 268         * can't guess if they need to pass them through
 269         * 64-bits values if the kernel has been built in pure
 270         * 32-bit. We need also to switch from KSEG0 to XKPHYS
 271         * addresses now, so the code can now safely use __pa().
 272         */
 273        end = __pa(initrd_end);
 274        initrd_end = (unsigned long)__va(end);
 275        initrd_start = (unsigned long)__va(__pa(initrd_start));
 276
 277        ROOT_DEV = Root_RAM0;
 278        return PFN_UP(end);
 279disable:
 280        initrd_start = 0;
 281        initrd_end = 0;
 282        return 0;
 283}
 284
 285/* In some conditions (e.g. big endian bootloader with a little endian
 286   kernel), the initrd might appear byte swapped.  Try to detect this and
 287   byte swap it if needed.  */
 288static void __init maybe_bswap_initrd(void)
 289{
 290#if defined(CONFIG_CPU_CAVIUM_OCTEON)
 291        u64 buf;
 292
 293        /* Check for CPIO signature */
 294        if (!memcmp((void *)initrd_start, "070701", 6))
 295                return;
 296
 297        /* Check for compressed initrd */
 298        if (decompress_method((unsigned char *)initrd_start, 8, NULL))
 299                return;
 300
 301        /* Try again with a byte swapped header */
 302        buf = swab64p((u64 *)initrd_start);
 303        if (!memcmp(&buf, "070701", 6) ||
 304            decompress_method((unsigned char *)(&buf), 8, NULL)) {
 305                unsigned long i;
 306
 307                pr_info("Byteswapped initrd detected\n");
 308                for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
 309                        swab64s((u64 *)i);
 310        }
 311#endif
 312}
 313
 314static void __init finalize_initrd(void)
 315{
 316        unsigned long size = initrd_end - initrd_start;
 317
 318        if (size == 0) {
 319                printk(KERN_INFO "Initrd not found or empty");
 320                goto disable;
 321        }
 322        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 323                printk(KERN_ERR "Initrd extends beyond end of memory");
 324                goto disable;
 325        }
 326
 327        maybe_bswap_initrd();
 328
 329        reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 330        initrd_below_start_ok = 1;
 331
 332        pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
 333                initrd_start, size);
 334        return;
 335disable:
 336        printk(KERN_CONT " - disabling initrd\n");
 337        initrd_start = 0;
 338        initrd_end = 0;
 339}
 340
 341#else  /* !CONFIG_BLK_DEV_INITRD */
 342
 343static unsigned long __init init_initrd(void)
 344{
 345        return 0;
 346}
 347
 348#define finalize_initrd()       do {} while (0)
 349
 350#endif
 351
 352/*
 353 * Initialize the bootmem allocator. It also setup initrd related data
 354 * if needed.
 355 */
 356#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
 357
 358static void __init bootmem_init(void)
 359{
 360        init_initrd();
 361        finalize_initrd();
 362}
 363
 364#else  /* !CONFIG_SGI_IP27 */
 365
 366static unsigned long __init bootmap_bytes(unsigned long pages)
 367{
 368        unsigned long bytes = DIV_ROUND_UP(pages, 8);
 369
 370        return ALIGN(bytes, sizeof(long));
 371}
 372
 373static void __init bootmem_init(void)
 374{
 375        unsigned long reserved_end;
 376        unsigned long mapstart = ~0UL;
 377        unsigned long bootmap_size;
 378        phys_addr_t ramstart = (phys_addr_t)ULLONG_MAX;
 379        bool bootmap_valid = false;
 380        int i;
 381
 382        /*
 383         * Sanity check any INITRD first. We don't take it into account
 384         * for bootmem setup initially, rely on the end-of-kernel-code
 385         * as our memory range starting point. Once bootmem is inited we
 386         * will reserve the area used for the initrd.
 387         */
 388        init_initrd();
 389        reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
 390
 391        /*
 392         * max_low_pfn is not a number of pages. The number of pages
 393         * of the system is given by 'max_low_pfn - min_low_pfn'.
 394         */
 395        min_low_pfn = ~0UL;
 396        max_low_pfn = 0;
 397
 398        /*
 399         * Find the highest page frame number we have available
 400         * and the lowest used RAM address
 401         */
 402        for (i = 0; i < boot_mem_map.nr_map; i++) {
 403                unsigned long start, end;
 404
 405                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 406                        continue;
 407
 408                start = PFN_UP(boot_mem_map.map[i].addr);
 409                end = PFN_DOWN(boot_mem_map.map[i].addr
 410                                + boot_mem_map.map[i].size);
 411
 412                ramstart = min(ramstart, boot_mem_map.map[i].addr);
 413
 414#ifndef CONFIG_HIGHMEM
 415                /*
 416                 * Skip highmem here so we get an accurate max_low_pfn if low
 417                 * memory stops short of high memory.
 418                 * If the region overlaps HIGHMEM_START, end is clipped so
 419                 * max_pfn excludes the highmem portion.
 420                 */
 421                if (start >= PFN_DOWN(HIGHMEM_START))
 422                        continue;
 423                if (end > PFN_DOWN(HIGHMEM_START))
 424                        end = PFN_DOWN(HIGHMEM_START);
 425#endif
 426
 427                if (end > max_low_pfn)
 428                        max_low_pfn = end;
 429                if (start < min_low_pfn)
 430                        min_low_pfn = start;
 431                if (end <= reserved_end)
 432                        continue;
 433#ifdef CONFIG_BLK_DEV_INITRD
 434                /* Skip zones before initrd and initrd itself */
 435                if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
 436                        continue;
 437#endif
 438                if (start >= mapstart)
 439                        continue;
 440                mapstart = max(reserved_end, start);
 441        }
 442
 443        /*
 444         * Reserve any memory between the start of RAM and PHYS_OFFSET
 445         */
 446        if (ramstart > PHYS_OFFSET)
 447                add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
 448                                  BOOT_MEM_RESERVED);
 449
 450        if (min_low_pfn >= max_low_pfn)
 451                panic("Incorrect memory mapping !!!");
 452        if (min_low_pfn > ARCH_PFN_OFFSET) {
 453                pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
 454                        (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 455                        min_low_pfn - ARCH_PFN_OFFSET);
 456        } else if (min_low_pfn < ARCH_PFN_OFFSET) {
 457                pr_info("%lu free pages won't be used\n",
 458                        ARCH_PFN_OFFSET - min_low_pfn);
 459        }
 460        min_low_pfn = ARCH_PFN_OFFSET;
 461
 462        /*
 463         * Determine low and high memory ranges
 464         */
 465        max_pfn = max_low_pfn;
 466        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 467#ifdef CONFIG_HIGHMEM
 468                highstart_pfn = PFN_DOWN(HIGHMEM_START);
 469                highend_pfn = max_low_pfn;
 470#endif
 471                max_low_pfn = PFN_DOWN(HIGHMEM_START);
 472        }
 473
 474#ifdef CONFIG_BLK_DEV_INITRD
 475        /*
 476         * mapstart should be after initrd_end
 477         */
 478        if (initrd_end)
 479                mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
 480#endif
 481
 482        /*
 483         * check that mapstart doesn't overlap with any of
 484         * memory regions that have been reserved through eg. DTB
 485         */
 486        bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
 487
 488        bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
 489                                                bootmap_size);
 490        for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
 491                unsigned long mapstart_addr;
 492
 493                switch (boot_mem_map.map[i].type) {
 494                case BOOT_MEM_RESERVED:
 495                        mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
 496                                                boot_mem_map.map[i].size);
 497                        if (PHYS_PFN(mapstart_addr) < mapstart)
 498                                break;
 499
 500                        bootmap_valid = memory_region_available(mapstart_addr,
 501                                                                bootmap_size);
 502                        if (bootmap_valid)
 503                                mapstart = PHYS_PFN(mapstart_addr);
 504                        break;
 505                default:
 506                        break;
 507                }
 508        }
 509
 510        if (!bootmap_valid)
 511                panic("No memory area to place a bootmap bitmap");
 512
 513        /*
 514         * Initialize the boot-time allocator with low memory only.
 515         */
 516        if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
 517                                         min_low_pfn, max_low_pfn))
 518                panic("Unexpected memory size required for bootmap");
 519
 520        for (i = 0; i < boot_mem_map.nr_map; i++) {
 521                unsigned long start, end;
 522
 523                start = PFN_UP(boot_mem_map.map[i].addr);
 524                end = PFN_DOWN(boot_mem_map.map[i].addr
 525                                + boot_mem_map.map[i].size);
 526
 527                if (start <= min_low_pfn)
 528                        start = min_low_pfn;
 529                if (start >= end)
 530                        continue;
 531
 532#ifndef CONFIG_HIGHMEM
 533                if (end > max_low_pfn)
 534                        end = max_low_pfn;
 535
 536                /*
 537                 * ... finally, is the area going away?
 538                 */
 539                if (end <= start)
 540                        continue;
 541#endif
 542
 543                memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
 544        }
 545
 546        /*
 547         * Register fully available low RAM pages with the bootmem allocator.
 548         */
 549        for (i = 0; i < boot_mem_map.nr_map; i++) {
 550                unsigned long start, end, size;
 551
 552                start = PFN_UP(boot_mem_map.map[i].addr);
 553                end   = PFN_DOWN(boot_mem_map.map[i].addr
 554                                    + boot_mem_map.map[i].size);
 555
 556                /*
 557                 * Reserve usable memory.
 558                 */
 559                switch (boot_mem_map.map[i].type) {
 560                case BOOT_MEM_RAM:
 561                        break;
 562                case BOOT_MEM_INIT_RAM:
 563                        memory_present(0, start, end);
 564                        continue;
 565                default:
 566                        /* Not usable memory */
 567                        if (start > min_low_pfn && end < max_low_pfn)
 568                                reserve_bootmem(boot_mem_map.map[i].addr,
 569                                                boot_mem_map.map[i].size,
 570                                                BOOTMEM_DEFAULT);
 571                        continue;
 572                }
 573
 574                /*
 575                 * We are rounding up the start address of usable memory
 576                 * and at the end of the usable range downwards.
 577                 */
 578                if (start >= max_low_pfn)
 579                        continue;
 580                if (start < reserved_end)
 581                        start = reserved_end;
 582                if (end > max_low_pfn)
 583                        end = max_low_pfn;
 584
 585                /*
 586                 * ... finally, is the area going away?
 587                 */
 588                if (end <= start)
 589                        continue;
 590                size = end - start;
 591
 592                /* Register lowmem ranges */
 593                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 594                memory_present(0, start, end);
 595        }
 596
 597        /*
 598         * Reserve the bootmap memory.
 599         */
 600        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
 601
 602#ifdef CONFIG_RELOCATABLE
 603        /*
 604         * The kernel reserves all memory below its _end symbol as bootmem,
 605         * but the kernel may now be at a much higher address. The memory
 606         * between the original and new locations may be returned to the system.
 607         */
 608        if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
 609                unsigned long offset;
 610                extern void show_kernel_relocation(const char *level);
 611
 612                offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
 613                free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
 614
 615#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
 616                /*
 617                 * This information is necessary when debugging the kernel
 618                 * But is a security vulnerability otherwise!
 619                 */
 620                show_kernel_relocation(KERN_INFO);
 621#endif
 622        }
 623#endif
 624
 625        /*
 626         * Reserve initrd memory if needed.
 627         */
 628        finalize_initrd();
 629}
 630
 631#endif  /* CONFIG_SGI_IP27 */
 632
 633/*
 634 * arch_mem_init - initialize memory management subsystem
 635 *
 636 *  o plat_mem_setup() detects the memory configuration and will record detected
 637 *    memory areas using add_memory_region.
 638 *
 639 * At this stage the memory configuration of the system is known to the
 640 * kernel but generic memory management system is still entirely uninitialized.
 641 *
 642 *  o bootmem_init()
 643 *  o sparse_init()
 644 *  o paging_init()
 645 *  o dma_contiguous_reserve()
 646 *
 647 * At this stage the bootmem allocator is ready to use.
 648 *
 649 * NOTE: historically plat_mem_setup did the entire platform initialization.
 650 *       This was rather impractical because it meant plat_mem_setup had to
 651 * get away without any kind of memory allocator.  To keep old code from
 652 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
 653 * initialization hook for anything else was introduced.
 654 */
 655
 656static int usermem __initdata;
 657
 658static int __init early_parse_mem(char *p)
 659{
 660        phys_addr_t start, size;
 661
 662        /*
 663         * If a user specifies memory size, we
 664         * blow away any automatically generated
 665         * size.
 666         */
 667        if (usermem == 0) {
 668                boot_mem_map.nr_map = 0;
 669                usermem = 1;
 670        }
 671        start = 0;
 672        size = memparse(p, &p);
 673        if (*p == '@')
 674                start = memparse(p + 1, &p);
 675
 676        add_memory_region(start, size, BOOT_MEM_RAM);
 677
 678        return 0;
 679}
 680early_param("mem", early_parse_mem);
 681
 682static int __init early_parse_memmap(char *p)
 683{
 684        char *oldp;
 685        u64 start_at, mem_size;
 686
 687        if (!p)
 688                return -EINVAL;
 689
 690        if (!strncmp(p, "exactmap", 8)) {
 691                pr_err("\"memmap=exactmap\" invalid on MIPS\n");
 692                return 0;
 693        }
 694
 695        oldp = p;
 696        mem_size = memparse(p, &p);
 697        if (p == oldp)
 698                return -EINVAL;
 699
 700        if (*p == '@') {
 701                start_at = memparse(p+1, &p);
 702                add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
 703        } else if (*p == '#') {
 704                pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
 705                return -EINVAL;
 706        } else if (*p == '$') {
 707                start_at = memparse(p+1, &p);
 708                add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
 709        } else {
 710                pr_err("\"memmap\" invalid format!\n");
 711                return -EINVAL;
 712        }
 713
 714        if (*p == '\0') {
 715                usermem = 1;
 716                return 0;
 717        } else
 718                return -EINVAL;
 719}
 720early_param("memmap", early_parse_memmap);
 721
 722#ifdef CONFIG_PROC_VMCORE
 723unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
 724static int __init early_parse_elfcorehdr(char *p)
 725{
 726        int i;
 727
 728        setup_elfcorehdr = memparse(p, &p);
 729
 730        for (i = 0; i < boot_mem_map.nr_map; i++) {
 731                unsigned long start = boot_mem_map.map[i].addr;
 732                unsigned long end = (boot_mem_map.map[i].addr +
 733                                     boot_mem_map.map[i].size);
 734                if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
 735                        /*
 736                         * Reserve from the elf core header to the end of
 737                         * the memory segment, that should all be kdump
 738                         * reserved memory.
 739                         */
 740                        setup_elfcorehdr_size = end - setup_elfcorehdr;
 741                        break;
 742                }
 743        }
 744        /*
 745         * If we don't find it in the memory map, then we shouldn't
 746         * have to worry about it, as the new kernel won't use it.
 747         */
 748        return 0;
 749}
 750early_param("elfcorehdr", early_parse_elfcorehdr);
 751#endif
 752
 753static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
 754{
 755        phys_addr_t size;
 756        int i;
 757
 758        size = end - mem;
 759        if (!size)
 760                return;
 761
 762        /* Make sure it is in the boot_mem_map */
 763        for (i = 0; i < boot_mem_map.nr_map; i++) {
 764                if (mem >= boot_mem_map.map[i].addr &&
 765                    mem < (boot_mem_map.map[i].addr +
 766                           boot_mem_map.map[i].size))
 767                        return;
 768        }
 769        add_memory_region(mem, size, type);
 770}
 771
 772#ifdef CONFIG_KEXEC
 773static inline unsigned long long get_total_mem(void)
 774{
 775        unsigned long long total;
 776
 777        total = max_pfn - min_low_pfn;
 778        return total << PAGE_SHIFT;
 779}
 780
 781static void __init mips_parse_crashkernel(void)
 782{
 783        unsigned long long total_mem;
 784        unsigned long long crash_size, crash_base;
 785        int ret;
 786
 787        total_mem = get_total_mem();
 788        ret = parse_crashkernel(boot_command_line, total_mem,
 789                                &crash_size, &crash_base);
 790        if (ret != 0 || crash_size <= 0)
 791                return;
 792
 793        if (!memory_region_available(crash_base, crash_size)) {
 794                pr_warn("Invalid memory region reserved for crash kernel\n");
 795                return;
 796        }
 797
 798        crashk_res.start = crash_base;
 799        crashk_res.end   = crash_base + crash_size - 1;
 800}
 801
 802static void __init request_crashkernel(struct resource *res)
 803{
 804        int ret;
 805
 806        if (crashk_res.start == crashk_res.end)
 807                return;
 808
 809        ret = request_resource(res, &crashk_res);
 810        if (!ret)
 811                pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
 812                        (unsigned long)((crashk_res.end -
 813                                         crashk_res.start + 1) >> 20),
 814                        (unsigned long)(crashk_res.start  >> 20));
 815}
 816#else /* !defined(CONFIG_KEXEC)         */
 817static void __init mips_parse_crashkernel(void)
 818{
 819}
 820
 821static void __init request_crashkernel(struct resource *res)
 822{
 823}
 824#endif /* !defined(CONFIG_KEXEC)  */
 825
 826#define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
 827#define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
 828#define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
 829#define BUILTIN_EXTEND_WITH_PROM        \
 830        IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
 831
 832static void __init arch_mem_init(char **cmdline_p)
 833{
 834        struct memblock_region *reg;
 835        extern void plat_mem_setup(void);
 836
 837#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
 838        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 839#else
 840        if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
 841            (USE_DTB_CMDLINE && !boot_command_line[0]))
 842                strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 843
 844        if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
 845                if (boot_command_line[0])
 846                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 847                strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 848        }
 849
 850#if defined(CONFIG_CMDLINE_BOOL)
 851        if (builtin_cmdline[0]) {
 852                if (boot_command_line[0])
 853                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 854                strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 855        }
 856
 857        if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
 858                if (boot_command_line[0])
 859                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 860                strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 861        }
 862#endif
 863#endif
 864
 865        /* call board setup routine */
 866        plat_mem_setup();
 867
 868        /*
 869         * Make sure all kernel memory is in the maps.  The "UP" and
 870         * "DOWN" are opposite for initdata since if it crosses over
 871         * into another memory section you don't want that to be
 872         * freed when the initdata is freed.
 873         */
 874        arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
 875                         PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
 876                         BOOT_MEM_RAM);
 877        arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
 878                         PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
 879                         BOOT_MEM_INIT_RAM);
 880
 881        pr_info("Determined physical RAM map:\n");
 882        print_memory_map();
 883
 884        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 885
 886        *cmdline_p = command_line;
 887
 888        parse_early_param();
 889
 890        if (usermem) {
 891                pr_info("User-defined physical RAM map:\n");
 892                print_memory_map();
 893        }
 894
 895        early_init_fdt_reserve_self();
 896        early_init_fdt_scan_reserved_mem();
 897
 898        bootmem_init();
 899#ifdef CONFIG_PROC_VMCORE
 900        if (setup_elfcorehdr && setup_elfcorehdr_size) {
 901                printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
 902                       setup_elfcorehdr, setup_elfcorehdr_size);
 903                reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
 904                                BOOTMEM_DEFAULT);
 905        }
 906#endif
 907
 908        mips_parse_crashkernel();
 909#ifdef CONFIG_KEXEC
 910        if (crashk_res.start != crashk_res.end)
 911                reserve_bootmem(crashk_res.start,
 912                                crashk_res.end - crashk_res.start + 1,
 913                                BOOTMEM_DEFAULT);
 914#endif
 915        device_tree_init();
 916        sparse_init();
 917        plat_swiotlb_setup();
 918
 919        dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
 920        /* Tell bootmem about cma reserved memblock section */
 921        for_each_memblock(reserved, reg)
 922                if (reg->size != 0)
 923                        reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
 924
 925        reserve_bootmem_region(__pa_symbol(&__nosave_begin),
 926                        __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
 927}
 928
 929static void __init resource_init(void)
 930{
 931        int i;
 932
 933        if (UNCAC_BASE != IO_BASE)
 934                return;
 935
 936        code_resource.start = __pa_symbol(&_text);
 937        code_resource.end = __pa_symbol(&_etext) - 1;
 938        data_resource.start = __pa_symbol(&_etext);
 939        data_resource.end = __pa_symbol(&_edata) - 1;
 940        bss_resource.start = __pa_symbol(&__bss_start);
 941        bss_resource.end = __pa_symbol(&__bss_stop) - 1;
 942
 943        for (i = 0; i < boot_mem_map.nr_map; i++) {
 944                struct resource *res;
 945                unsigned long start, end;
 946
 947                start = boot_mem_map.map[i].addr;
 948                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 949                if (start >= HIGHMEM_START)
 950                        continue;
 951                if (end >= HIGHMEM_START)
 952                        end = HIGHMEM_START - 1;
 953
 954                res = alloc_bootmem(sizeof(struct resource));
 955
 956                res->start = start;
 957                res->end = end;
 958                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 959
 960                switch (boot_mem_map.map[i].type) {
 961                case BOOT_MEM_RAM:
 962                case BOOT_MEM_INIT_RAM:
 963                case BOOT_MEM_ROM_DATA:
 964                        res->name = "System RAM";
 965                        res->flags |= IORESOURCE_SYSRAM;
 966                        break;
 967                case BOOT_MEM_RESERVED:
 968                default:
 969                        res->name = "reserved";
 970                }
 971
 972                request_resource(&iomem_resource, res);
 973
 974                /*
 975                 *  We don't know which RAM region contains kernel data,
 976                 *  so we try it repeatedly and let the resource manager
 977                 *  test it.
 978                 */
 979                request_resource(res, &code_resource);
 980                request_resource(res, &data_resource);
 981                request_resource(res, &bss_resource);
 982                request_crashkernel(res);
 983        }
 984}
 985
 986#ifdef CONFIG_SMP
 987static void __init prefill_possible_map(void)
 988{
 989        int i, possible = num_possible_cpus();
 990
 991        if (possible > nr_cpu_ids)
 992                possible = nr_cpu_ids;
 993
 994        for (i = 0; i < possible; i++)
 995                set_cpu_possible(i, true);
 996        for (; i < NR_CPUS; i++)
 997                set_cpu_possible(i, false);
 998
 999        nr_cpu_ids = possible;
1000}
1001#else
1002static inline void prefill_possible_map(void) {}
1003#endif
1004
1005void __init setup_arch(char **cmdline_p)
1006{
1007        cpu_probe();
1008        mips_cm_probe();
1009        prom_init();
1010
1011        setup_early_fdc_console();
1012#ifdef CONFIG_EARLY_PRINTK
1013        setup_early_printk();
1014#endif
1015        cpu_report();
1016        check_bugs_early();
1017
1018#if defined(CONFIG_VT)
1019#if defined(CONFIG_VGA_CONSOLE)
1020        conswitchp = &vga_con;
1021#elif defined(CONFIG_DUMMY_CONSOLE)
1022        conswitchp = &dummy_con;
1023#endif
1024#endif
1025
1026        arch_mem_init(cmdline_p);
1027
1028        resource_init();
1029        plat_smp_setup();
1030        prefill_possible_map();
1031
1032        cpu_cache_init();
1033        paging_init();
1034}
1035
1036unsigned long kernelsp[NR_CPUS];
1037unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1038
1039#ifdef CONFIG_USE_OF
1040unsigned long fw_passed_dtb;
1041#endif
1042
1043#ifdef CONFIG_DEBUG_FS
1044struct dentry *mips_debugfs_dir;
1045static int __init debugfs_mips(void)
1046{
1047        struct dentry *d;
1048
1049        d = debugfs_create_dir("mips", NULL);
1050        if (!d)
1051                return -ENOMEM;
1052        mips_debugfs_dir = d;
1053        return 0;
1054}
1055arch_initcall(debugfs_mips);
1056#endif
1057