linux/arch/powerpc/include/asm/book3s/64/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   3#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   4
   5#include <asm-generic/5level-fixup.h>
   6
   7#ifndef __ASSEMBLY__
   8#include <linux/mmdebug.h>
   9#include <linux/bug.h>
  10#endif
  11
  12/*
  13 * Common bits between hash and Radix page table
  14 */
  15#define _PAGE_BIT_SWAP_TYPE     0
  16
  17#define _PAGE_NA                0
  18#define _PAGE_RO                0
  19#define _PAGE_USER              0
  20
  21#define _PAGE_EXEC              0x00001 /* execute permission */
  22#define _PAGE_WRITE             0x00002 /* write access allowed */
  23#define _PAGE_READ              0x00004 /* read access allowed */
  24#define _PAGE_RW                (_PAGE_READ | _PAGE_WRITE)
  25#define _PAGE_RWX               (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
  26#define _PAGE_PRIVILEGED        0x00008 /* kernel access only */
  27#define _PAGE_SAO               0x00010 /* Strong access order */
  28#define _PAGE_NON_IDEMPOTENT    0x00020 /* non idempotent memory */
  29#define _PAGE_TOLERANT          0x00030 /* tolerant memory, cache inhibited */
  30#define _PAGE_DIRTY             0x00080 /* C: page changed */
  31#define _PAGE_ACCESSED          0x00100 /* R: page referenced */
  32/*
  33 * Software bits
  34 */
  35#define _RPAGE_SW0              0x2000000000000000UL
  36#define _RPAGE_SW1              0x00800
  37#define _RPAGE_SW2              0x00400
  38#define _RPAGE_SW3              0x00200
  39#define _RPAGE_RSV1             0x1000000000000000UL
  40#define _RPAGE_RSV2             0x0800000000000000UL
  41#define _RPAGE_RSV3             0x0400000000000000UL
  42#define _RPAGE_RSV4             0x0200000000000000UL
  43#define _RPAGE_RSV5             0x00040UL
  44
  45#define _PAGE_PTE               0x4000000000000000UL    /* distinguishes PTEs from pointers */
  46#define _PAGE_PRESENT           0x8000000000000000UL    /* pte contains a translation */
  47
  48/*
  49 * Top and bottom bits of RPN which can be used by hash
  50 * translation mode, because we expect them to be zero
  51 * otherwise.
  52 */
  53#define _RPAGE_RPN0             0x01000
  54#define _RPAGE_RPN1             0x02000
  55#define _RPAGE_RPN44            0x0100000000000000UL
  56#define _RPAGE_RPN43            0x0080000000000000UL
  57#define _RPAGE_RPN42            0x0040000000000000UL
  58#define _RPAGE_RPN41            0x0020000000000000UL
  59
  60/* Max physical address bit as per radix table */
  61#define _RPAGE_PA_MAX           57
  62
  63#ifdef CONFIG_PPC_MEM_KEYS
  64#ifdef CONFIG_PPC_64K_PAGES
  65#define H_PTE_PKEY_BIT0 _RPAGE_RSV1
  66#define H_PTE_PKEY_BIT1 _RPAGE_RSV2
  67#else /* CONFIG_PPC_64K_PAGES */
  68#define H_PTE_PKEY_BIT0 0 /* _RPAGE_RSV1 is not available */
  69#define H_PTE_PKEY_BIT1 0 /* _RPAGE_RSV2 is not available */
  70#endif /* CONFIG_PPC_64K_PAGES */
  71#define H_PTE_PKEY_BIT2 _RPAGE_RSV3
  72#define H_PTE_PKEY_BIT3 _RPAGE_RSV4
  73#define H_PTE_PKEY_BIT4 _RPAGE_RSV5
  74#else /*  CONFIG_PPC_MEM_KEYS */
  75#define H_PTE_PKEY_BIT0 0
  76#define H_PTE_PKEY_BIT1 0
  77#define H_PTE_PKEY_BIT2 0
  78#define H_PTE_PKEY_BIT3 0
  79#define H_PTE_PKEY_BIT4 0
  80#endif /*  CONFIG_PPC_MEM_KEYS */
  81
  82/*
  83 * Max physical address bit we will use for now.
  84 *
  85 * This is mostly a hardware limitation and for now Power9 has
  86 * a 51 bit limit.
  87 *
  88 * This is different from the number of physical bit required to address
  89 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
  90 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
  91 * number of sections we can support (SECTIONS_SHIFT).
  92 *
  93 * This is different from Radix page table limitation above and
  94 * should always be less than that. The limit is done such that
  95 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
  96 * for hash linux page table specific bits.
  97 *
  98 * In order to be compatible with future hardware generations we keep
  99 * some offsets and limit this for now to 53
 100 */
 101#define _PAGE_PA_MAX            53
 102
 103#define _PAGE_SOFT_DIRTY        _RPAGE_SW3 /* software: software dirty tracking */
 104#define _PAGE_SPECIAL           _RPAGE_SW2 /* software: special page */
 105#define _PAGE_DEVMAP            _RPAGE_SW1 /* software: ZONE_DEVICE page */
 106#define __HAVE_ARCH_PTE_DEVMAP
 107
 108/*
 109 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
 110 * Instead of fixing all of them, add an alternate define which
 111 * maps CI pte mapping.
 112 */
 113#define _PAGE_NO_CACHE          _PAGE_TOLERANT
 114/*
 115 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
 116 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
 117 * and every thing below PAGE_SHIFT;
 118 */
 119#define PTE_RPN_MASK    (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
 120/*
 121 * set of bits not changed in pmd_modify. Even though we have hash specific bits
 122 * in here, on radix we expect them to be zero.
 123 */
 124#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
 125                         _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
 126                         _PAGE_SOFT_DIRTY)
 127/*
 128 * user access blocked by key
 129 */
 130#define _PAGE_KERNEL_RW         (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
 131#define _PAGE_KERNEL_RO          (_PAGE_PRIVILEGED | _PAGE_READ)
 132#define _PAGE_KERNEL_RWX        (_PAGE_PRIVILEGED | _PAGE_DIRTY |       \
 133                                 _PAGE_RW | _PAGE_EXEC)
 134/*
 135 * No page size encoding in the linux PTE
 136 */
 137#define _PAGE_PSIZE             0
 138/*
 139 * _PAGE_CHG_MASK masks of bits that are to be preserved across
 140 * pgprot changes
 141 */
 142#define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
 143                         _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |   \
 144                         _PAGE_SOFT_DIRTY)
 145
 146#define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
 147                     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
 148/*
 149 * Mask of bits returned by pte_pgprot()
 150 */
 151#define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
 152                         H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
 153                         _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
 154                         _PAGE_SOFT_DIRTY | H_PTE_PKEY)
 155/*
 156 * We define 2 sets of base prot bits, one for basic pages (ie,
 157 * cacheable kernel and user pages) and one for non cacheable
 158 * pages. We always set _PAGE_COHERENT when SMP is enabled or
 159 * the processor might need it for DMA coherency.
 160 */
 161#define _PAGE_BASE_NC   (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
 162#define _PAGE_BASE      (_PAGE_BASE_NC)
 163
 164/* Permission masks used to generate the __P and __S table,
 165 *
 166 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
 167 *
 168 * Write permissions imply read permissions for now (we could make write-only
 169 * pages on BookE but we don't bother for now). Execute permission control is
 170 * possible on platforms that define _PAGE_EXEC
 171 *
 172 * Note due to the way vm flags are laid out, the bits are XWR
 173 */
 174#define PAGE_NONE       __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
 175#define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_RW)
 176#define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
 177#define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_READ)
 178#define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 179#define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_READ)
 180#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 181
 182#define __P000  PAGE_NONE
 183#define __P001  PAGE_READONLY
 184#define __P010  PAGE_COPY
 185#define __P011  PAGE_COPY
 186#define __P100  PAGE_READONLY_X
 187#define __P101  PAGE_READONLY_X
 188#define __P110  PAGE_COPY_X
 189#define __P111  PAGE_COPY_X
 190
 191#define __S000  PAGE_NONE
 192#define __S001  PAGE_READONLY
 193#define __S010  PAGE_SHARED
 194#define __S011  PAGE_SHARED
 195#define __S100  PAGE_READONLY_X
 196#define __S101  PAGE_READONLY_X
 197#define __S110  PAGE_SHARED_X
 198#define __S111  PAGE_SHARED_X
 199
 200/* Permission masks used for kernel mappings */
 201#define PAGE_KERNEL     __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
 202#define PAGE_KERNEL_NC  __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 203                                 _PAGE_TOLERANT)
 204#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 205                                 _PAGE_NON_IDEMPOTENT)
 206#define PAGE_KERNEL_X   __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
 207#define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
 208#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
 209
 210/*
 211 * Protection used for kernel text. We want the debuggers to be able to
 212 * set breakpoints anywhere, so don't write protect the kernel text
 213 * on platforms where such control is possible.
 214 */
 215#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
 216        defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
 217#define PAGE_KERNEL_TEXT        PAGE_KERNEL_X
 218#else
 219#define PAGE_KERNEL_TEXT        PAGE_KERNEL_ROX
 220#endif
 221
 222/* Make modules code happy. We don't set RO yet */
 223#define PAGE_KERNEL_EXEC        PAGE_KERNEL_X
 224#define PAGE_AGP                (PAGE_KERNEL_NC)
 225
 226#ifndef __ASSEMBLY__
 227/*
 228 * page table defines
 229 */
 230extern unsigned long __pte_index_size;
 231extern unsigned long __pmd_index_size;
 232extern unsigned long __pud_index_size;
 233extern unsigned long __pgd_index_size;
 234extern unsigned long __pmd_cache_index;
 235extern unsigned long __pud_cache_index;
 236#define PTE_INDEX_SIZE  __pte_index_size
 237#define PMD_INDEX_SIZE  __pmd_index_size
 238#define PUD_INDEX_SIZE  __pud_index_size
 239#define PGD_INDEX_SIZE  __pgd_index_size
 240#define PMD_CACHE_INDEX __pmd_cache_index
 241#define PUD_CACHE_INDEX __pud_cache_index
 242/*
 243 * Because of use of pte fragments and THP, size of page table
 244 * are not always derived out of index size above.
 245 */
 246extern unsigned long __pte_table_size;
 247extern unsigned long __pmd_table_size;
 248extern unsigned long __pud_table_size;
 249extern unsigned long __pgd_table_size;
 250#define PTE_TABLE_SIZE  __pte_table_size
 251#define PMD_TABLE_SIZE  __pmd_table_size
 252#define PUD_TABLE_SIZE  __pud_table_size
 253#define PGD_TABLE_SIZE  __pgd_table_size
 254
 255extern unsigned long __pmd_val_bits;
 256extern unsigned long __pud_val_bits;
 257extern unsigned long __pgd_val_bits;
 258#define PMD_VAL_BITS    __pmd_val_bits
 259#define PUD_VAL_BITS    __pud_val_bits
 260#define PGD_VAL_BITS    __pgd_val_bits
 261
 262extern unsigned long __pte_frag_nr;
 263#define PTE_FRAG_NR __pte_frag_nr
 264extern unsigned long __pte_frag_size_shift;
 265#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
 266#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
 267
 268#define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
 269#define PTRS_PER_PMD    (1 << PMD_INDEX_SIZE)
 270#define PTRS_PER_PUD    (1 << PUD_INDEX_SIZE)
 271#define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
 272
 273/* PMD_SHIFT determines what a second-level page table entry can map */
 274#define PMD_SHIFT       (PAGE_SHIFT + PTE_INDEX_SIZE)
 275#define PMD_SIZE        (1UL << PMD_SHIFT)
 276#define PMD_MASK        (~(PMD_SIZE-1))
 277
 278/* PUD_SHIFT determines what a third-level page table entry can map */
 279#define PUD_SHIFT       (PMD_SHIFT + PMD_INDEX_SIZE)
 280#define PUD_SIZE        (1UL << PUD_SHIFT)
 281#define PUD_MASK        (~(PUD_SIZE-1))
 282
 283/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
 284#define PGDIR_SHIFT     (PUD_SHIFT + PUD_INDEX_SIZE)
 285#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 286#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 287
 288/* Bits to mask out from a PMD to get to the PTE page */
 289#define PMD_MASKED_BITS         0xc0000000000000ffUL
 290/* Bits to mask out from a PUD to get to the PMD page */
 291#define PUD_MASKED_BITS         0xc0000000000000ffUL
 292/* Bits to mask out from a PGD to get to the PUD page */
 293#define PGD_MASKED_BITS         0xc0000000000000ffUL
 294
 295extern unsigned long __vmalloc_start;
 296extern unsigned long __vmalloc_end;
 297#define VMALLOC_START   __vmalloc_start
 298#define VMALLOC_END     __vmalloc_end
 299
 300extern unsigned long __kernel_virt_start;
 301extern unsigned long __kernel_virt_size;
 302extern unsigned long __kernel_io_start;
 303#define KERN_VIRT_START __kernel_virt_start
 304#define KERN_VIRT_SIZE  __kernel_virt_size
 305#define KERN_IO_START  __kernel_io_start
 306extern struct page *vmemmap;
 307extern unsigned long ioremap_bot;
 308extern unsigned long pci_io_base;
 309#endif /* __ASSEMBLY__ */
 310
 311#include <asm/book3s/64/hash.h>
 312#include <asm/book3s/64/radix.h>
 313
 314#ifdef CONFIG_PPC_64K_PAGES
 315#include <asm/book3s/64/pgtable-64k.h>
 316#else
 317#include <asm/book3s/64/pgtable-4k.h>
 318#endif
 319
 320#include <asm/barrier.h>
 321/*
 322 * The second half of the kernel virtual space is used for IO mappings,
 323 * it's itself carved into the PIO region (ISA and PHB IO space) and
 324 * the ioremap space
 325 *
 326 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 327 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 328 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 329 */
 330#define FULL_IO_SIZE    0x80000000ul
 331#define  ISA_IO_BASE    (KERN_IO_START)
 332#define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
 333#define  PHB_IO_BASE    (ISA_IO_END)
 334#define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
 335#define IOREMAP_BASE    (PHB_IO_END)
 336#define IOREMAP_END     (KERN_VIRT_START + KERN_VIRT_SIZE)
 337
 338/* Advertise special mapping type for AGP */
 339#define HAVE_PAGE_AGP
 340
 341/* Advertise support for _PAGE_SPECIAL */
 342#define __HAVE_ARCH_PTE_SPECIAL
 343
 344#ifndef __ASSEMBLY__
 345
 346/*
 347 * This is the default implementation of various PTE accessors, it's
 348 * used in all cases except Book3S with 64K pages where we have a
 349 * concept of sub-pages
 350 */
 351#ifndef __real_pte
 352
 353#define __real_pte(e, p, o)             ((real_pte_t){(e)})
 354#define __rpte_to_pte(r)        ((r).pte)
 355#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
 356
 357#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
 358        do {                                                             \
 359                index = 0;                                               \
 360                shift = mmu_psize_defs[psize].shift;                     \
 361
 362#define pte_iterate_hashed_end() } while(0)
 363
 364/*
 365 * We expect this to be called only for user addresses or kernel virtual
 366 * addresses other than the linear mapping.
 367 */
 368#define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
 369
 370#endif /* __real_pte */
 371
 372static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
 373                                       pte_t *ptep, unsigned long clr,
 374                                       unsigned long set, int huge)
 375{
 376        if (radix_enabled())
 377                return radix__pte_update(mm, addr, ptep, clr, set, huge);
 378        return hash__pte_update(mm, addr, ptep, clr, set, huge);
 379}
 380/*
 381 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
 382 * We currently remove entries from the hashtable regardless of whether
 383 * the entry was young or dirty.
 384 *
 385 * We should be more intelligent about this but for the moment we override
 386 * these functions and force a tlb flush unconditionally
 387 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
 388 * function for both hash and radix.
 389 */
 390static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 391                                              unsigned long addr, pte_t *ptep)
 392{
 393        unsigned long old;
 394
 395        if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
 396                return 0;
 397        old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 398        return (old & _PAGE_ACCESSED) != 0;
 399}
 400
 401#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 402#define ptep_test_and_clear_young(__vma, __addr, __ptep)        \
 403({                                                              \
 404        int __r;                                                \
 405        __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 406        __r;                                                    \
 407})
 408
 409static inline int __pte_write(pte_t pte)
 410{
 411        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
 412}
 413
 414#ifdef CONFIG_NUMA_BALANCING
 415#define pte_savedwrite pte_savedwrite
 416static inline bool pte_savedwrite(pte_t pte)
 417{
 418        /*
 419         * Saved write ptes are prot none ptes that doesn't have
 420         * privileged bit sit. We mark prot none as one which has
 421         * present and pviliged bit set and RWX cleared. To mark
 422         * protnone which used to have _PAGE_WRITE set we clear
 423         * the privileged bit.
 424         */
 425        return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
 426}
 427#else
 428#define pte_savedwrite pte_savedwrite
 429static inline bool pte_savedwrite(pte_t pte)
 430{
 431        return false;
 432}
 433#endif
 434
 435static inline int pte_write(pte_t pte)
 436{
 437        return __pte_write(pte) || pte_savedwrite(pte);
 438}
 439
 440static inline int pte_read(pte_t pte)
 441{
 442        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
 443}
 444
 445#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 446static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 447                                      pte_t *ptep)
 448{
 449        if (__pte_write(*ptep))
 450                pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
 451        else if (unlikely(pte_savedwrite(*ptep)))
 452                pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
 453}
 454
 455static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 456                                           unsigned long addr, pte_t *ptep)
 457{
 458        /*
 459         * We should not find protnone for hugetlb, but this complete the
 460         * interface.
 461         */
 462        if (__pte_write(*ptep))
 463                pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
 464        else if (unlikely(pte_savedwrite(*ptep)))
 465                pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
 466}
 467
 468#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 469static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 470                                       unsigned long addr, pte_t *ptep)
 471{
 472        unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
 473        return __pte(old);
 474}
 475
 476#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 477static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 478                                            unsigned long addr,
 479                                            pte_t *ptep, int full)
 480{
 481        if (full && radix_enabled()) {
 482                /*
 483                 * Let's skip the DD1 style pte update here. We know that
 484                 * this is a full mm pte clear and hence can be sure there is
 485                 * no parallel set_pte.
 486                 */
 487                return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
 488        }
 489        return ptep_get_and_clear(mm, addr, ptep);
 490}
 491
 492
 493static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 494                             pte_t * ptep)
 495{
 496        pte_update(mm, addr, ptep, ~0UL, 0, 0);
 497}
 498
 499static inline int pte_dirty(pte_t pte)
 500{
 501        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
 502}
 503
 504static inline int pte_young(pte_t pte)
 505{
 506        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
 507}
 508
 509static inline int pte_special(pte_t pte)
 510{
 511        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
 512}
 513
 514static inline pgprot_t pte_pgprot(pte_t pte)    { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
 515
 516#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 517static inline bool pte_soft_dirty(pte_t pte)
 518{
 519        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
 520}
 521
 522static inline pte_t pte_mksoft_dirty(pte_t pte)
 523{
 524        return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
 525}
 526
 527static inline pte_t pte_clear_soft_dirty(pte_t pte)
 528{
 529        return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
 530}
 531#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 532
 533#ifdef CONFIG_NUMA_BALANCING
 534static inline int pte_protnone(pte_t pte)
 535{
 536        return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
 537                cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
 538}
 539
 540#define pte_mk_savedwrite pte_mk_savedwrite
 541static inline pte_t pte_mk_savedwrite(pte_t pte)
 542{
 543        /*
 544         * Used by Autonuma subsystem to preserve the write bit
 545         * while marking the pte PROT_NONE. Only allow this
 546         * on PROT_NONE pte
 547         */
 548        VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
 549                  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
 550        return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
 551}
 552
 553#define pte_clear_savedwrite pte_clear_savedwrite
 554static inline pte_t pte_clear_savedwrite(pte_t pte)
 555{
 556        /*
 557         * Used by KSM subsystem to make a protnone pte readonly.
 558         */
 559        VM_BUG_ON(!pte_protnone(pte));
 560        return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
 561}
 562#else
 563#define pte_clear_savedwrite pte_clear_savedwrite
 564static inline pte_t pte_clear_savedwrite(pte_t pte)
 565{
 566        VM_WARN_ON(1);
 567        return __pte(pte_val(pte) & ~_PAGE_WRITE);
 568}
 569#endif /* CONFIG_NUMA_BALANCING */
 570
 571static inline int pte_present(pte_t pte)
 572{
 573        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
 574}
 575
 576#ifdef CONFIG_PPC_MEM_KEYS
 577extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
 578#else
 579static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
 580{
 581        return true;
 582}
 583#endif /* CONFIG_PPC_MEM_KEYS */
 584
 585#define pte_access_permitted pte_access_permitted
 586static inline bool pte_access_permitted(pte_t pte, bool write)
 587{
 588        unsigned long pteval = pte_val(pte);
 589        /* Also check for pte_user */
 590        unsigned long clear_pte_bits = _PAGE_PRIVILEGED;
 591        /*
 592         * _PAGE_READ is needed for any access and will be
 593         * cleared for PROT_NONE
 594         */
 595        unsigned long need_pte_bits = _PAGE_PRESENT | _PAGE_READ;
 596
 597        if (write)
 598                need_pte_bits |= _PAGE_WRITE;
 599
 600        if ((pteval & need_pte_bits) != need_pte_bits)
 601                return false;
 602
 603        if ((pteval & clear_pte_bits) == clear_pte_bits)
 604                return false;
 605
 606        return arch_pte_access_permitted(pte_val(pte), write, 0);
 607}
 608
 609/*
 610 * Conversion functions: convert a page and protection to a page entry,
 611 * and a page entry and page directory to the page they refer to.
 612 *
 613 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 614 * long for now.
 615 */
 616static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 617{
 618        return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
 619                     pgprot_val(pgprot));
 620}
 621
 622static inline unsigned long pte_pfn(pte_t pte)
 623{
 624        return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
 625}
 626
 627/* Generic modifiers for PTE bits */
 628static inline pte_t pte_wrprotect(pte_t pte)
 629{
 630        if (unlikely(pte_savedwrite(pte)))
 631                return pte_clear_savedwrite(pte);
 632        return __pte(pte_val(pte) & ~_PAGE_WRITE);
 633}
 634
 635static inline pte_t pte_mkclean(pte_t pte)
 636{
 637        return __pte(pte_val(pte) & ~_PAGE_DIRTY);
 638}
 639
 640static inline pte_t pte_mkold(pte_t pte)
 641{
 642        return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
 643}
 644
 645static inline pte_t pte_mkwrite(pte_t pte)
 646{
 647        /*
 648         * write implies read, hence set both
 649         */
 650        return __pte(pte_val(pte) | _PAGE_RW);
 651}
 652
 653static inline pte_t pte_mkdirty(pte_t pte)
 654{
 655        return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
 656}
 657
 658static inline pte_t pte_mkyoung(pte_t pte)
 659{
 660        return __pte(pte_val(pte) | _PAGE_ACCESSED);
 661}
 662
 663static inline pte_t pte_mkspecial(pte_t pte)
 664{
 665        return __pte(pte_val(pte) | _PAGE_SPECIAL);
 666}
 667
 668static inline pte_t pte_mkhuge(pte_t pte)
 669{
 670        return pte;
 671}
 672
 673static inline pte_t pte_mkdevmap(pte_t pte)
 674{
 675        return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP);
 676}
 677
 678/*
 679 * This is potentially called with a pmd as the argument, in which case it's not
 680 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
 681 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
 682 * use in page directory entries (ie. non-ptes).
 683 */
 684static inline int pte_devmap(pte_t pte)
 685{
 686        u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
 687
 688        return (pte_raw(pte) & mask) == mask;
 689}
 690
 691static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 692{
 693        /* FIXME!! check whether this need to be a conditional */
 694        return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 695}
 696
 697static inline bool pte_user(pte_t pte)
 698{
 699        return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
 700}
 701
 702/* Encode and de-code a swap entry */
 703#define MAX_SWAPFILES_CHECK() do { \
 704        BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
 705        /*                                                      \
 706         * Don't have overlapping bits with _PAGE_HPTEFLAGS     \
 707         * We filter HPTEFLAGS on set_pte.                      \
 708         */                                                     \
 709        BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
 710        BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);   \
 711        } while (0)
 712/*
 713 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
 714 */
 715#define SWP_TYPE_BITS 5
 716#define __swp_type(x)           (((x).val >> _PAGE_BIT_SWAP_TYPE) \
 717                                & ((1UL << SWP_TYPE_BITS) - 1))
 718#define __swp_offset(x)         (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
 719#define __swp_entry(type, offset)       ((swp_entry_t) { \
 720                                ((type) << _PAGE_BIT_SWAP_TYPE) \
 721                                | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
 722/*
 723 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
 724 * swap type and offset we get from swap and convert that to pte to find a
 725 * matching pte in linux page table.
 726 * Clear bits not found in swap entries here.
 727 */
 728#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
 729#define __swp_entry_to_pte(x)   __pte((x).val | _PAGE_PTE)
 730
 731#ifdef CONFIG_MEM_SOFT_DIRTY
 732#define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
 733#else
 734#define _PAGE_SWP_SOFT_DIRTY    0UL
 735#endif /* CONFIG_MEM_SOFT_DIRTY */
 736
 737#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 738static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 739{
 740        return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
 741}
 742
 743static inline bool pte_swp_soft_dirty(pte_t pte)
 744{
 745        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
 746}
 747
 748static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 749{
 750        return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
 751}
 752#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 753
 754static inline bool check_pte_access(unsigned long access, unsigned long ptev)
 755{
 756        /*
 757         * This check for _PAGE_RWX and _PAGE_PRESENT bits
 758         */
 759        if (access & ~ptev)
 760                return false;
 761        /*
 762         * This check for access to privilege space
 763         */
 764        if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
 765                return false;
 766
 767        return true;
 768}
 769/*
 770 * Generic functions with hash/radix callbacks
 771 */
 772
 773static inline void __ptep_set_access_flags(struct mm_struct *mm,
 774                                           pte_t *ptep, pte_t entry,
 775                                           unsigned long address)
 776{
 777        if (radix_enabled())
 778                return radix__ptep_set_access_flags(mm, ptep, entry, address);
 779        return hash__ptep_set_access_flags(ptep, entry);
 780}
 781
 782#define __HAVE_ARCH_PTE_SAME
 783static inline int pte_same(pte_t pte_a, pte_t pte_b)
 784{
 785        if (radix_enabled())
 786                return radix__pte_same(pte_a, pte_b);
 787        return hash__pte_same(pte_a, pte_b);
 788}
 789
 790static inline int pte_none(pte_t pte)
 791{
 792        if (radix_enabled())
 793                return radix__pte_none(pte);
 794        return hash__pte_none(pte);
 795}
 796
 797static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 798                                pte_t *ptep, pte_t pte, int percpu)
 799{
 800        if (radix_enabled())
 801                return radix__set_pte_at(mm, addr, ptep, pte, percpu);
 802        return hash__set_pte_at(mm, addr, ptep, pte, percpu);
 803}
 804
 805#define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
 806
 807#define pgprot_noncached pgprot_noncached
 808static inline pgprot_t pgprot_noncached(pgprot_t prot)
 809{
 810        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 811                        _PAGE_NON_IDEMPOTENT);
 812}
 813
 814#define pgprot_noncached_wc pgprot_noncached_wc
 815static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
 816{
 817        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 818                        _PAGE_TOLERANT);
 819}
 820
 821#define pgprot_cached pgprot_cached
 822static inline pgprot_t pgprot_cached(pgprot_t prot)
 823{
 824        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
 825}
 826
 827#define pgprot_writecombine pgprot_writecombine
 828static inline pgprot_t pgprot_writecombine(pgprot_t prot)
 829{
 830        return pgprot_noncached_wc(prot);
 831}
 832/*
 833 * check a pte mapping have cache inhibited property
 834 */
 835static inline bool pte_ci(pte_t pte)
 836{
 837        unsigned long pte_v = pte_val(pte);
 838
 839        if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
 840            ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
 841                return true;
 842        return false;
 843}
 844
 845static inline void pmd_set(pmd_t *pmdp, unsigned long val)
 846{
 847        *pmdp = __pmd(val);
 848}
 849
 850static inline void pmd_clear(pmd_t *pmdp)
 851{
 852        *pmdp = __pmd(0);
 853}
 854
 855static inline int pmd_none(pmd_t pmd)
 856{
 857        return !pmd_raw(pmd);
 858}
 859
 860static inline int pmd_present(pmd_t pmd)
 861{
 862
 863        return !pmd_none(pmd);
 864}
 865
 866static inline int pmd_bad(pmd_t pmd)
 867{
 868        if (radix_enabled())
 869                return radix__pmd_bad(pmd);
 870        return hash__pmd_bad(pmd);
 871}
 872
 873static inline void pud_set(pud_t *pudp, unsigned long val)
 874{
 875        *pudp = __pud(val);
 876}
 877
 878static inline void pud_clear(pud_t *pudp)
 879{
 880        *pudp = __pud(0);
 881}
 882
 883static inline int pud_none(pud_t pud)
 884{
 885        return !pud_raw(pud);
 886}
 887
 888static inline int pud_present(pud_t pud)
 889{
 890        return !pud_none(pud);
 891}
 892
 893extern struct page *pud_page(pud_t pud);
 894extern struct page *pmd_page(pmd_t pmd);
 895static inline pte_t pud_pte(pud_t pud)
 896{
 897        return __pte_raw(pud_raw(pud));
 898}
 899
 900static inline pud_t pte_pud(pte_t pte)
 901{
 902        return __pud_raw(pte_raw(pte));
 903}
 904#define pud_write(pud)          pte_write(pud_pte(pud))
 905
 906static inline int pud_bad(pud_t pud)
 907{
 908        if (radix_enabled())
 909                return radix__pud_bad(pud);
 910        return hash__pud_bad(pud);
 911}
 912
 913#define pud_access_permitted pud_access_permitted
 914static inline bool pud_access_permitted(pud_t pud, bool write)
 915{
 916        return pte_access_permitted(pud_pte(pud), write);
 917}
 918
 919#define pgd_write(pgd)          pte_write(pgd_pte(pgd))
 920static inline void pgd_set(pgd_t *pgdp, unsigned long val)
 921{
 922        *pgdp = __pgd(val);
 923}
 924
 925static inline void pgd_clear(pgd_t *pgdp)
 926{
 927        *pgdp = __pgd(0);
 928}
 929
 930static inline int pgd_none(pgd_t pgd)
 931{
 932        return !pgd_raw(pgd);
 933}
 934
 935static inline int pgd_present(pgd_t pgd)
 936{
 937        return !pgd_none(pgd);
 938}
 939
 940static inline pte_t pgd_pte(pgd_t pgd)
 941{
 942        return __pte_raw(pgd_raw(pgd));
 943}
 944
 945static inline pgd_t pte_pgd(pte_t pte)
 946{
 947        return __pgd_raw(pte_raw(pte));
 948}
 949
 950static inline int pgd_bad(pgd_t pgd)
 951{
 952        if (radix_enabled())
 953                return radix__pgd_bad(pgd);
 954        return hash__pgd_bad(pgd);
 955}
 956
 957#define pgd_access_permitted pgd_access_permitted
 958static inline bool pgd_access_permitted(pgd_t pgd, bool write)
 959{
 960        return pte_access_permitted(pgd_pte(pgd), write);
 961}
 962
 963extern struct page *pgd_page(pgd_t pgd);
 964
 965/* Pointers in the page table tree are physical addresses */
 966#define __pgtable_ptr_val(ptr)  __pa(ptr)
 967
 968#define pmd_page_vaddr(pmd)     __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
 969#define pud_page_vaddr(pud)     __va(pud_val(pud) & ~PUD_MASKED_BITS)
 970#define pgd_page_vaddr(pgd)     __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
 971
 972#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
 973#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
 974#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
 975#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
 976
 977/*
 978 * Find an entry in a page-table-directory.  We combine the address region
 979 * (the high order N bits) and the pgd portion of the address.
 980 */
 981
 982#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
 983
 984#define pud_offset(pgdp, addr)  \
 985        (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
 986#define pmd_offset(pudp,addr) \
 987        (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
 988#define pte_offset_kernel(dir,addr) \
 989        (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
 990
 991#define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
 992#define pte_unmap(pte)                  do { } while(0)
 993
 994/* to find an entry in a kernel page-table-directory */
 995/* This now only contains the vmalloc pages */
 996#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 997
 998#define pte_ERROR(e) \
 999        pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1000#define pmd_ERROR(e) \
1001        pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1002#define pud_ERROR(e) \
1003        pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1004#define pgd_ERROR(e) \
1005        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1006
1007static inline int map_kernel_page(unsigned long ea, unsigned long pa,
1008                                  unsigned long flags)
1009{
1010        if (radix_enabled()) {
1011#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1012                unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1013                WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1014#endif
1015                return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
1016        }
1017        return hash__map_kernel_page(ea, pa, flags);
1018}
1019
1020static inline int __meminit vmemmap_create_mapping(unsigned long start,
1021                                                   unsigned long page_size,
1022                                                   unsigned long phys)
1023{
1024        if (radix_enabled())
1025                return radix__vmemmap_create_mapping(start, page_size, phys);
1026        return hash__vmemmap_create_mapping(start, page_size, phys);
1027}
1028
1029#ifdef CONFIG_MEMORY_HOTPLUG
1030static inline void vmemmap_remove_mapping(unsigned long start,
1031                                          unsigned long page_size)
1032{
1033        if (radix_enabled())
1034                return radix__vmemmap_remove_mapping(start, page_size);
1035        return hash__vmemmap_remove_mapping(start, page_size);
1036}
1037#endif
1038struct page *realmode_pfn_to_page(unsigned long pfn);
1039
1040static inline pte_t pmd_pte(pmd_t pmd)
1041{
1042        return __pte_raw(pmd_raw(pmd));
1043}
1044
1045static inline pmd_t pte_pmd(pte_t pte)
1046{
1047        return __pmd_raw(pte_raw(pte));
1048}
1049
1050static inline pte_t *pmdp_ptep(pmd_t *pmd)
1051{
1052        return (pte_t *)pmd;
1053}
1054#define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
1055#define pmd_dirty(pmd)          pte_dirty(pmd_pte(pmd))
1056#define pmd_young(pmd)          pte_young(pmd_pte(pmd))
1057#define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
1058#define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1059#define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1060#define pmd_mkclean(pmd)        pte_pmd(pte_mkclean(pmd_pte(pmd)))
1061#define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1062#define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1063#define pmd_mk_savedwrite(pmd)  pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1064#define pmd_clear_savedwrite(pmd)       pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1065
1066#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1067#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1068#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1069#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1070#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1071
1072#ifdef CONFIG_NUMA_BALANCING
1073static inline int pmd_protnone(pmd_t pmd)
1074{
1075        return pte_protnone(pmd_pte(pmd));
1076}
1077#endif /* CONFIG_NUMA_BALANCING */
1078
1079#define pmd_write(pmd)          pte_write(pmd_pte(pmd))
1080#define __pmd_write(pmd)        __pte_write(pmd_pte(pmd))
1081#define pmd_savedwrite(pmd)     pte_savedwrite(pmd_pte(pmd))
1082
1083#define pmd_access_permitted pmd_access_permitted
1084static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1085{
1086        return pte_access_permitted(pmd_pte(pmd), write);
1087}
1088
1089#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1090extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1091extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1092extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1093extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1094                       pmd_t *pmdp, pmd_t pmd);
1095extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1096                                 pmd_t *pmd);
1097extern int hash__has_transparent_hugepage(void);
1098static inline int has_transparent_hugepage(void)
1099{
1100        if (radix_enabled())
1101                return radix__has_transparent_hugepage();
1102        return hash__has_transparent_hugepage();
1103}
1104#define has_transparent_hugepage has_transparent_hugepage
1105
1106static inline unsigned long
1107pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1108                    unsigned long clr, unsigned long set)
1109{
1110        if (radix_enabled())
1111                return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1112        return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1113}
1114
1115static inline int pmd_large(pmd_t pmd)
1116{
1117        return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1118}
1119
1120static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1121{
1122        return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1123}
1124/*
1125 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1126 * the below will work for radix too
1127 */
1128static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1129                                              unsigned long addr, pmd_t *pmdp)
1130{
1131        unsigned long old;
1132
1133        if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1134                return 0;
1135        old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1136        return ((old & _PAGE_ACCESSED) != 0);
1137}
1138
1139#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1140static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1141                                      pmd_t *pmdp)
1142{
1143        if (__pmd_write((*pmdp)))
1144                pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1145        else if (unlikely(pmd_savedwrite(*pmdp)))
1146                pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1147}
1148
1149static inline int pmd_trans_huge(pmd_t pmd)
1150{
1151        if (radix_enabled())
1152                return radix__pmd_trans_huge(pmd);
1153        return hash__pmd_trans_huge(pmd);
1154}
1155
1156#define __HAVE_ARCH_PMD_SAME
1157static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1158{
1159        if (radix_enabled())
1160                return radix__pmd_same(pmd_a, pmd_b);
1161        return hash__pmd_same(pmd_a, pmd_b);
1162}
1163
1164static inline pmd_t pmd_mkhuge(pmd_t pmd)
1165{
1166        if (radix_enabled())
1167                return radix__pmd_mkhuge(pmd);
1168        return hash__pmd_mkhuge(pmd);
1169}
1170
1171#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1172extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1173                                 unsigned long address, pmd_t *pmdp,
1174                                 pmd_t entry, int dirty);
1175
1176#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1177extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1178                                     unsigned long address, pmd_t *pmdp);
1179
1180#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1181static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1182                                            unsigned long addr, pmd_t *pmdp)
1183{
1184        if (radix_enabled())
1185                return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1186        return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1187}
1188
1189static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1190                                        unsigned long address, pmd_t *pmdp)
1191{
1192        if (radix_enabled())
1193                return radix__pmdp_collapse_flush(vma, address, pmdp);
1194        return hash__pmdp_collapse_flush(vma, address, pmdp);
1195}
1196#define pmdp_collapse_flush pmdp_collapse_flush
1197
1198#define __HAVE_ARCH_PGTABLE_DEPOSIT
1199static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1200                                              pmd_t *pmdp, pgtable_t pgtable)
1201{
1202        if (radix_enabled())
1203                return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1204        return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1205}
1206
1207#define __HAVE_ARCH_PGTABLE_WITHDRAW
1208static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1209                                                    pmd_t *pmdp)
1210{
1211        if (radix_enabled())
1212                return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1213        return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1214}
1215
1216#define __HAVE_ARCH_PMDP_INVALIDATE
1217extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1218                             pmd_t *pmdp);
1219
1220#define pmd_move_must_withdraw pmd_move_must_withdraw
1221struct spinlock;
1222static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1223                                         struct spinlock *old_pmd_ptl,
1224                                         struct vm_area_struct *vma)
1225{
1226        if (radix_enabled())
1227                return false;
1228        /*
1229         * Archs like ppc64 use pgtable to store per pmd
1230         * specific information. So when we switch the pmd,
1231         * we should also withdraw and deposit the pgtable
1232         */
1233        return true;
1234}
1235
1236
1237#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1238static inline bool arch_needs_pgtable_deposit(void)
1239{
1240        if (radix_enabled())
1241                return false;
1242        return true;
1243}
1244extern void serialize_against_pte_lookup(struct mm_struct *mm);
1245
1246
1247static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1248{
1249        return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1250}
1251
1252static inline int pmd_devmap(pmd_t pmd)
1253{
1254        return pte_devmap(pmd_pte(pmd));
1255}
1256
1257static inline int pud_devmap(pud_t pud)
1258{
1259        return 0;
1260}
1261
1262static inline int pgd_devmap(pgd_t pgd)
1263{
1264        return 0;
1265}
1266#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1267
1268static inline const int pud_pfn(pud_t pud)
1269{
1270        /*
1271         * Currently all calls to pud_pfn() are gated around a pud_devmap()
1272         * check so this should never be used. If it grows another user we
1273         * want to know about it.
1274         */
1275        BUILD_BUG();
1276        return 0;
1277}
1278
1279#endif /* __ASSEMBLY__ */
1280#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1281