linux/arch/powerpc/kernel/fadump.c
<<
>>
Prefs
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/seq_file.h>
  34#include <linux/crash_dump.h>
  35#include <linux/kobject.h>
  36#include <linux/sysfs.h>
  37
  38#include <asm/debugfs.h>
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
  43#include <asm/setup.h>
  44
  45static struct fw_dump fw_dump;
  46static struct fadump_mem_struct fdm;
  47static const struct fadump_mem_struct *fdm_active;
  48
  49static DEFINE_MUTEX(fadump_mutex);
  50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  51int crash_mem_ranges;
  52
  53/* Scan the Firmware Assisted dump configuration details. */
  54int __init early_init_dt_scan_fw_dump(unsigned long node,
  55                        const char *uname, int depth, void *data)
  56{
  57        const __be32 *sections;
  58        int i, num_sections;
  59        int size;
  60        const __be32 *token;
  61
  62        if (depth != 1 || strcmp(uname, "rtas") != 0)
  63                return 0;
  64
  65        /*
  66         * Check if Firmware Assisted dump is supported. if yes, check
  67         * if dump has been initiated on last reboot.
  68         */
  69        token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  70        if (!token)
  71                return 1;
  72
  73        fw_dump.fadump_supported = 1;
  74        fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
  75
  76        /*
  77         * The 'ibm,kernel-dump' rtas node is present only if there is
  78         * dump data waiting for us.
  79         */
  80        fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  81        if (fdm_active)
  82                fw_dump.dump_active = 1;
  83
  84        /* Get the sizes required to store dump data for the firmware provided
  85         * dump sections.
  86         * For each dump section type supported, a 32bit cell which defines
  87         * the ID of a supported section followed by two 32 bit cells which
  88         * gives teh size of the section in bytes.
  89         */
  90        sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  91                                        &size);
  92
  93        if (!sections)
  94                return 1;
  95
  96        num_sections = size / (3 * sizeof(u32));
  97
  98        for (i = 0; i < num_sections; i++, sections += 3) {
  99                u32 type = (u32)of_read_number(sections, 1);
 100
 101                switch (type) {
 102                case FADUMP_CPU_STATE_DATA:
 103                        fw_dump.cpu_state_data_size =
 104                                        of_read_ulong(&sections[1], 2);
 105                        break;
 106                case FADUMP_HPTE_REGION:
 107                        fw_dump.hpte_region_size =
 108                                        of_read_ulong(&sections[1], 2);
 109                        break;
 110                }
 111        }
 112
 113        return 1;
 114}
 115
 116/*
 117 * If fadump is registered, check if the memory provided
 118 * falls within boot memory area.
 119 */
 120int is_fadump_boot_memory_area(u64 addr, ulong size)
 121{
 122        if (!fw_dump.dump_registered)
 123                return 0;
 124
 125        return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 126}
 127
 128int should_fadump_crash(void)
 129{
 130        if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 131                return 0;
 132        return 1;
 133}
 134
 135int is_fadump_active(void)
 136{
 137        return fw_dump.dump_active;
 138}
 139
 140/*
 141 * Returns 1, if there are no holes in boot memory area,
 142 * 0 otherwise.
 143 */
 144static int is_boot_memory_area_contiguous(void)
 145{
 146        struct memblock_region *reg;
 147        unsigned long tstart, tend;
 148        unsigned long start_pfn = PHYS_PFN(RMA_START);
 149        unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 150        unsigned int ret = 0;
 151
 152        for_each_memblock(memory, reg) {
 153                tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 154                tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 155                if (tstart < tend) {
 156                        /* Memory hole from start_pfn to tstart */
 157                        if (tstart > start_pfn)
 158                                break;
 159
 160                        if (tend == end_pfn) {
 161                                ret = 1;
 162                                break;
 163                        }
 164
 165                        start_pfn = tend + 1;
 166                }
 167        }
 168
 169        return ret;
 170}
 171
 172/* Print firmware assisted dump configurations for debugging purpose. */
 173static void fadump_show_config(void)
 174{
 175        pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 176                        (fw_dump.fadump_supported ? "present" : "no support"));
 177
 178        if (!fw_dump.fadump_supported)
 179                return;
 180
 181        pr_debug("Fadump enabled    : %s\n",
 182                                (fw_dump.fadump_enabled ? "yes" : "no"));
 183        pr_debug("Dump Active       : %s\n",
 184                                (fw_dump.dump_active ? "yes" : "no"));
 185        pr_debug("Dump section sizes:\n");
 186        pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 187        pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 188        pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 189}
 190
 191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 192                                unsigned long addr)
 193{
 194        if (!fdm)
 195                return 0;
 196
 197        memset(fdm, 0, sizeof(struct fadump_mem_struct));
 198        addr = addr & PAGE_MASK;
 199
 200        fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 201        fdm->header.dump_num_sections = cpu_to_be16(3);
 202        fdm->header.dump_status_flag = 0;
 203        fdm->header.offset_first_dump_section =
 204                cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 205
 206        /*
 207         * Fields for disk dump option.
 208         * We are not using disk dump option, hence set these fields to 0.
 209         */
 210        fdm->header.dd_block_size = 0;
 211        fdm->header.dd_block_offset = 0;
 212        fdm->header.dd_num_blocks = 0;
 213        fdm->header.dd_offset_disk_path = 0;
 214
 215        /* set 0 to disable an automatic dump-reboot. */
 216        fdm->header.max_time_auto = 0;
 217
 218        /* Kernel dump sections */
 219        /* cpu state data section. */
 220        fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 221        fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 222        fdm->cpu_state_data.source_address = 0;
 223        fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 224        fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 225        addr += fw_dump.cpu_state_data_size;
 226
 227        /* hpte region section */
 228        fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 229        fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 230        fdm->hpte_region.source_address = 0;
 231        fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 232        fdm->hpte_region.destination_address = cpu_to_be64(addr);
 233        addr += fw_dump.hpte_region_size;
 234
 235        /* RMA region section */
 236        fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 237        fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 238        fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 239        fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 240        fdm->rmr_region.destination_address = cpu_to_be64(addr);
 241        addr += fw_dump.boot_memory_size;
 242
 243        return addr;
 244}
 245
 246/**
 247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 248 *
 249 * Function to find the largest memory size we need to reserve during early
 250 * boot process. This will be the size of the memory that is required for a
 251 * kernel to boot successfully.
 252 *
 253 * This function has been taken from phyp-assisted dump feature implementation.
 254 *
 255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 256 *
 257 * TODO: Come up with better approach to find out more accurate memory size
 258 * that is required for a kernel to boot successfully.
 259 *
 260 */
 261static inline unsigned long fadump_calculate_reserve_size(void)
 262{
 263        int ret;
 264        unsigned long long base, size;
 265
 266        if (fw_dump.reserve_bootvar)
 267                pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 268
 269        /*
 270         * Check if the size is specified through crashkernel= cmdline
 271         * option. If yes, then use that but ignore base as fadump reserves
 272         * memory at a predefined offset.
 273         */
 274        ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 275                                &size, &base);
 276        if (ret == 0 && size > 0) {
 277                unsigned long max_size;
 278
 279                if (fw_dump.reserve_bootvar)
 280                        pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 281
 282                fw_dump.reserve_bootvar = (unsigned long)size;
 283
 284                /*
 285                 * Adjust if the boot memory size specified is above
 286                 * the upper limit.
 287                 */
 288                max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 289                if (fw_dump.reserve_bootvar > max_size) {
 290                        fw_dump.reserve_bootvar = max_size;
 291                        pr_info("Adjusted boot memory size to %luMB\n",
 292                                (fw_dump.reserve_bootvar >> 20));
 293                }
 294
 295                return fw_dump.reserve_bootvar;
 296        } else if (fw_dump.reserve_bootvar) {
 297                /*
 298                 * 'fadump_reserve_mem=' is being used to reserve memory
 299                 * for firmware-assisted dump.
 300                 */
 301                return fw_dump.reserve_bootvar;
 302        }
 303
 304        /* divide by 20 to get 5% of value */
 305        size = memblock_phys_mem_size() / 20;
 306
 307        /* round it down in multiples of 256 */
 308        size = size & ~0x0FFFFFFFUL;
 309
 310        /* Truncate to memory_limit. We don't want to over reserve the memory.*/
 311        if (memory_limit && size > memory_limit)
 312                size = memory_limit;
 313
 314        return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 315}
 316
 317/*
 318 * Calculate the total memory size required to be reserved for
 319 * firmware-assisted dump registration.
 320 */
 321static unsigned long get_fadump_area_size(void)
 322{
 323        unsigned long size = 0;
 324
 325        size += fw_dump.cpu_state_data_size;
 326        size += fw_dump.hpte_region_size;
 327        size += fw_dump.boot_memory_size;
 328        size += sizeof(struct fadump_crash_info_header);
 329        size += sizeof(struct elfhdr); /* ELF core header.*/
 330        size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 331        /* Program headers for crash memory regions. */
 332        size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 333
 334        size = PAGE_ALIGN(size);
 335        return size;
 336}
 337
 338int __init fadump_reserve_mem(void)
 339{
 340        unsigned long base, size, memory_boundary;
 341
 342        if (!fw_dump.fadump_enabled)
 343                return 0;
 344
 345        if (!fw_dump.fadump_supported) {
 346                printk(KERN_INFO "Firmware-assisted dump is not supported on"
 347                                " this hardware\n");
 348                fw_dump.fadump_enabled = 0;
 349                return 0;
 350        }
 351        /*
 352         * Initialize boot memory size
 353         * If dump is active then we have already calculated the size during
 354         * first kernel.
 355         */
 356        if (fdm_active)
 357                fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 358        else
 359                fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 360
 361        /*
 362         * Calculate the memory boundary.
 363         * If memory_limit is less than actual memory boundary then reserve
 364         * the memory for fadump beyond the memory_limit and adjust the
 365         * memory_limit accordingly, so that the running kernel can run with
 366         * specified memory_limit.
 367         */
 368        if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 369                size = get_fadump_area_size();
 370                if ((memory_limit + size) < memblock_end_of_DRAM())
 371                        memory_limit += size;
 372                else
 373                        memory_limit = memblock_end_of_DRAM();
 374                printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 375                                " dump, now %#016llx\n", memory_limit);
 376        }
 377        if (memory_limit)
 378                memory_boundary = memory_limit;
 379        else
 380                memory_boundary = memblock_end_of_DRAM();
 381
 382        if (fw_dump.dump_active) {
 383                printk(KERN_INFO "Firmware-assisted dump is active.\n");
 384                /*
 385                 * If last boot has crashed then reserve all the memory
 386                 * above boot_memory_size so that we don't touch it until
 387                 * dump is written to disk by userspace tool. This memory
 388                 * will be released for general use once the dump is saved.
 389                 */
 390                base = fw_dump.boot_memory_size;
 391                size = memory_boundary - base;
 392                memblock_reserve(base, size);
 393                printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 394                                "for saving crash dump\n",
 395                                (unsigned long)(size >> 20),
 396                                (unsigned long)(base >> 20));
 397
 398                fw_dump.fadumphdr_addr =
 399                                be64_to_cpu(fdm_active->rmr_region.destination_address) +
 400                                be64_to_cpu(fdm_active->rmr_region.source_len);
 401                pr_debug("fadumphdr_addr = %p\n",
 402                                (void *) fw_dump.fadumphdr_addr);
 403        } else {
 404                size = get_fadump_area_size();
 405
 406                /*
 407                 * Reserve memory at an offset closer to bottom of the RAM to
 408                 * minimize the impact of memory hot-remove operation. We can't
 409                 * use memblock_find_in_range() here since it doesn't allocate
 410                 * from bottom to top.
 411                 */
 412                for (base = fw_dump.boot_memory_size;
 413                     base <= (memory_boundary - size);
 414                     base += size) {
 415                        if (memblock_is_region_memory(base, size) &&
 416                            !memblock_is_region_reserved(base, size))
 417                                break;
 418                }
 419                if ((base > (memory_boundary - size)) ||
 420                    memblock_reserve(base, size)) {
 421                        pr_err("Failed to reserve memory\n");
 422                        return 0;
 423                }
 424
 425                pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 426                        "assisted dump (System RAM: %ldMB)\n",
 427                        (unsigned long)(size >> 20),
 428                        (unsigned long)(base >> 20),
 429                        (unsigned long)(memblock_phys_mem_size() >> 20));
 430        }
 431
 432        fw_dump.reserve_dump_area_start = base;
 433        fw_dump.reserve_dump_area_size = size;
 434        return 1;
 435}
 436
 437unsigned long __init arch_reserved_kernel_pages(void)
 438{
 439        return memblock_reserved_size() / PAGE_SIZE;
 440}
 441
 442/* Look for fadump= cmdline option. */
 443static int __init early_fadump_param(char *p)
 444{
 445        if (!p)
 446                return 1;
 447
 448        if (strncmp(p, "on", 2) == 0)
 449                fw_dump.fadump_enabled = 1;
 450        else if (strncmp(p, "off", 3) == 0)
 451                fw_dump.fadump_enabled = 0;
 452
 453        return 0;
 454}
 455early_param("fadump", early_fadump_param);
 456
 457/*
 458 * Look for fadump_reserve_mem= cmdline option
 459 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 460 *       the sooner 'crashkernel=' parameter is accustomed to.
 461 */
 462static int __init early_fadump_reserve_mem(char *p)
 463{
 464        if (p)
 465                fw_dump.reserve_bootvar = memparse(p, &p);
 466        return 0;
 467}
 468early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 469
 470static int register_fw_dump(struct fadump_mem_struct *fdm)
 471{
 472        int rc, err;
 473        unsigned int wait_time;
 474
 475        pr_debug("Registering for firmware-assisted kernel dump...\n");
 476
 477        /* TODO: Add upper time limit for the delay */
 478        do {
 479                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 480                        FADUMP_REGISTER, fdm,
 481                        sizeof(struct fadump_mem_struct));
 482
 483                wait_time = rtas_busy_delay_time(rc);
 484                if (wait_time)
 485                        mdelay(wait_time);
 486
 487        } while (wait_time);
 488
 489        err = -EIO;
 490        switch (rc) {
 491        default:
 492                pr_err("Failed to register. Unknown Error(%d).\n", rc);
 493                break;
 494        case -1:
 495                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 496                        " dump. Hardware Error(%d).\n", rc);
 497                break;
 498        case -3:
 499                if (!is_boot_memory_area_contiguous())
 500                        pr_err("Can't have holes in boot memory area while "
 501                               "registering fadump\n");
 502
 503                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 504                        " dump. Parameter Error(%d).\n", rc);
 505                err = -EINVAL;
 506                break;
 507        case -9:
 508                printk(KERN_ERR "firmware-assisted kernel dump is already "
 509                        " registered.");
 510                fw_dump.dump_registered = 1;
 511                err = -EEXIST;
 512                break;
 513        case 0:
 514                printk(KERN_INFO "firmware-assisted kernel dump registration"
 515                        " is successful\n");
 516                fw_dump.dump_registered = 1;
 517                err = 0;
 518                break;
 519        }
 520        return err;
 521}
 522
 523void crash_fadump(struct pt_regs *regs, const char *str)
 524{
 525        struct fadump_crash_info_header *fdh = NULL;
 526        int old_cpu, this_cpu;
 527
 528        if (!should_fadump_crash())
 529                return;
 530
 531        /*
 532         * old_cpu == -1 means this is the first CPU which has come here,
 533         * go ahead and trigger fadump.
 534         *
 535         * old_cpu != -1 means some other CPU has already on it's way
 536         * to trigger fadump, just keep looping here.
 537         */
 538        this_cpu = smp_processor_id();
 539        old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 540
 541        if (old_cpu != -1) {
 542                /*
 543                 * We can't loop here indefinitely. Wait as long as fadump
 544                 * is in force. If we race with fadump un-registration this
 545                 * loop will break and then we go down to normal panic path
 546                 * and reboot. If fadump is in force the first crashing
 547                 * cpu will definitely trigger fadump.
 548                 */
 549                while (fw_dump.dump_registered)
 550                        cpu_relax();
 551                return;
 552        }
 553
 554        fdh = __va(fw_dump.fadumphdr_addr);
 555        fdh->crashing_cpu = crashing_cpu;
 556        crash_save_vmcoreinfo();
 557
 558        if (regs)
 559                fdh->regs = *regs;
 560        else
 561                ppc_save_regs(&fdh->regs);
 562
 563        fdh->online_mask = *cpu_online_mask;
 564
 565        /* Call ibm,os-term rtas call to trigger firmware assisted dump */
 566        rtas_os_term((char *)str);
 567}
 568
 569#define GPR_MASK        0xffffff0000000000
 570static inline int fadump_gpr_index(u64 id)
 571{
 572        int i = -1;
 573        char str[3];
 574
 575        if ((id & GPR_MASK) == REG_ID("GPR")) {
 576                /* get the digits at the end */
 577                id &= ~GPR_MASK;
 578                id >>= 24;
 579                str[2] = '\0';
 580                str[1] = id & 0xff;
 581                str[0] = (id >> 8) & 0xff;
 582                sscanf(str, "%d", &i);
 583                if (i > 31)
 584                        i = -1;
 585        }
 586        return i;
 587}
 588
 589static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 590                                                                u64 reg_val)
 591{
 592        int i;
 593
 594        i = fadump_gpr_index(reg_id);
 595        if (i >= 0)
 596                regs->gpr[i] = (unsigned long)reg_val;
 597        else if (reg_id == REG_ID("NIA"))
 598                regs->nip = (unsigned long)reg_val;
 599        else if (reg_id == REG_ID("MSR"))
 600                regs->msr = (unsigned long)reg_val;
 601        else if (reg_id == REG_ID("CTR"))
 602                regs->ctr = (unsigned long)reg_val;
 603        else if (reg_id == REG_ID("LR"))
 604                regs->link = (unsigned long)reg_val;
 605        else if (reg_id == REG_ID("XER"))
 606                regs->xer = (unsigned long)reg_val;
 607        else if (reg_id == REG_ID("CR"))
 608                regs->ccr = (unsigned long)reg_val;
 609        else if (reg_id == REG_ID("DAR"))
 610                regs->dar = (unsigned long)reg_val;
 611        else if (reg_id == REG_ID("DSISR"))
 612                regs->dsisr = (unsigned long)reg_val;
 613}
 614
 615static struct fadump_reg_entry*
 616fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 617{
 618        memset(regs, 0, sizeof(struct pt_regs));
 619
 620        while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 621                fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 622                                        be64_to_cpu(reg_entry->reg_value));
 623                reg_entry++;
 624        }
 625        reg_entry++;
 626        return reg_entry;
 627}
 628
 629static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 630{
 631        struct elf_prstatus prstatus;
 632
 633        memset(&prstatus, 0, sizeof(prstatus));
 634        /*
 635         * FIXME: How do i get PID? Do I really need it?
 636         * prstatus.pr_pid = ????
 637         */
 638        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 639        buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 640                              &prstatus, sizeof(prstatus));
 641        return buf;
 642}
 643
 644static void fadump_update_elfcore_header(char *bufp)
 645{
 646        struct elfhdr *elf;
 647        struct elf_phdr *phdr;
 648
 649        elf = (struct elfhdr *)bufp;
 650        bufp += sizeof(struct elfhdr);
 651
 652        /* First note is a place holder for cpu notes info. */
 653        phdr = (struct elf_phdr *)bufp;
 654
 655        if (phdr->p_type == PT_NOTE) {
 656                phdr->p_paddr = fw_dump.cpu_notes_buf;
 657                phdr->p_offset  = phdr->p_paddr;
 658                phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
 659                phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 660        }
 661        return;
 662}
 663
 664static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 665{
 666        void *vaddr;
 667        struct page *page;
 668        unsigned long order, count, i;
 669
 670        order = get_order(size);
 671        vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 672        if (!vaddr)
 673                return NULL;
 674
 675        count = 1 << order;
 676        page = virt_to_page(vaddr);
 677        for (i = 0; i < count; i++)
 678                SetPageReserved(page + i);
 679        return vaddr;
 680}
 681
 682static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 683{
 684        struct page *page;
 685        unsigned long order, count, i;
 686
 687        order = get_order(size);
 688        count = 1 << order;
 689        page = virt_to_page(vaddr);
 690        for (i = 0; i < count; i++)
 691                ClearPageReserved(page + i);
 692        __free_pages(page, order);
 693}
 694
 695/*
 696 * Read CPU state dump data and convert it into ELF notes.
 697 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 698 * used to access the data to allow for additional fields to be added without
 699 * affecting compatibility. Each list of registers for a CPU starts with
 700 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 701 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 702 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 703 * of register value. For more details refer to PAPR document.
 704 *
 705 * Only for the crashing cpu we ignore the CPU dump data and get exact
 706 * state from fadump crash info structure populated by first kernel at the
 707 * time of crash.
 708 */
 709static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 710{
 711        struct fadump_reg_save_area_header *reg_header;
 712        struct fadump_reg_entry *reg_entry;
 713        struct fadump_crash_info_header *fdh = NULL;
 714        void *vaddr;
 715        unsigned long addr;
 716        u32 num_cpus, *note_buf;
 717        struct pt_regs regs;
 718        int i, rc = 0, cpu = 0;
 719
 720        if (!fdm->cpu_state_data.bytes_dumped)
 721                return -EINVAL;
 722
 723        addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 724        vaddr = __va(addr);
 725
 726        reg_header = vaddr;
 727        if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 728                printk(KERN_ERR "Unable to read register save area.\n");
 729                return -ENOENT;
 730        }
 731        pr_debug("--------CPU State Data------------\n");
 732        pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 733        pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 734
 735        vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 736        num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 737        pr_debug("NumCpus     : %u\n", num_cpus);
 738        vaddr += sizeof(u32);
 739        reg_entry = (struct fadump_reg_entry *)vaddr;
 740
 741        /* Allocate buffer to hold cpu crash notes. */
 742        fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 743        fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 744        note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 745        if (!note_buf) {
 746                printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 747                        "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 748                return -ENOMEM;
 749        }
 750        fw_dump.cpu_notes_buf = __pa(note_buf);
 751
 752        pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 753                        (num_cpus * sizeof(note_buf_t)), note_buf);
 754
 755        if (fw_dump.fadumphdr_addr)
 756                fdh = __va(fw_dump.fadumphdr_addr);
 757
 758        for (i = 0; i < num_cpus; i++) {
 759                if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 760                        printk(KERN_ERR "Unable to read CPU state data\n");
 761                        rc = -ENOENT;
 762                        goto error_out;
 763                }
 764                /* Lower 4 bytes of reg_value contains logical cpu id */
 765                cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 766                if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
 767                        SKIP_TO_NEXT_CPU(reg_entry);
 768                        continue;
 769                }
 770                pr_debug("Reading register data for cpu %d...\n", cpu);
 771                if (fdh && fdh->crashing_cpu == cpu) {
 772                        regs = fdh->regs;
 773                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 774                        SKIP_TO_NEXT_CPU(reg_entry);
 775                } else {
 776                        reg_entry++;
 777                        reg_entry = fadump_read_registers(reg_entry, &regs);
 778                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 779                }
 780        }
 781        final_note(note_buf);
 782
 783        if (fdh) {
 784                pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 785                                                        fdh->elfcorehdr_addr);
 786                fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 787        }
 788        return 0;
 789
 790error_out:
 791        fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 792                                        fw_dump.cpu_notes_buf_size);
 793        fw_dump.cpu_notes_buf = 0;
 794        fw_dump.cpu_notes_buf_size = 0;
 795        return rc;
 796
 797}
 798
 799/*
 800 * Validate and process the dump data stored by firmware before exporting
 801 * it through '/proc/vmcore'.
 802 */
 803static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 804{
 805        struct fadump_crash_info_header *fdh;
 806        int rc = 0;
 807
 808        if (!fdm_active || !fw_dump.fadumphdr_addr)
 809                return -EINVAL;
 810
 811        /* Check if the dump data is valid. */
 812        if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 813                        (fdm_active->cpu_state_data.error_flags != 0) ||
 814                        (fdm_active->rmr_region.error_flags != 0)) {
 815                printk(KERN_ERR "Dump taken by platform is not valid\n");
 816                return -EINVAL;
 817        }
 818        if ((fdm_active->rmr_region.bytes_dumped !=
 819                        fdm_active->rmr_region.source_len) ||
 820                        !fdm_active->cpu_state_data.bytes_dumped) {
 821                printk(KERN_ERR "Dump taken by platform is incomplete\n");
 822                return -EINVAL;
 823        }
 824
 825        /* Validate the fadump crash info header */
 826        fdh = __va(fw_dump.fadumphdr_addr);
 827        if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 828                printk(KERN_ERR "Crash info header is not valid.\n");
 829                return -EINVAL;
 830        }
 831
 832        rc = fadump_build_cpu_notes(fdm_active);
 833        if (rc)
 834                return rc;
 835
 836        /*
 837         * We are done validating dump info and elfcore header is now ready
 838         * to be exported. set elfcorehdr_addr so that vmcore module will
 839         * export the elfcore header through '/proc/vmcore'.
 840         */
 841        elfcorehdr_addr = fdh->elfcorehdr_addr;
 842
 843        return 0;
 844}
 845
 846static inline void fadump_add_crash_memory(unsigned long long base,
 847                                        unsigned long long end)
 848{
 849        if (base == end)
 850                return;
 851
 852        pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 853                crash_mem_ranges, base, end - 1, (end - base));
 854        crash_memory_ranges[crash_mem_ranges].base = base;
 855        crash_memory_ranges[crash_mem_ranges].size = end - base;
 856        crash_mem_ranges++;
 857}
 858
 859static void fadump_exclude_reserved_area(unsigned long long start,
 860                                        unsigned long long end)
 861{
 862        unsigned long long ra_start, ra_end;
 863
 864        ra_start = fw_dump.reserve_dump_area_start;
 865        ra_end = ra_start + fw_dump.reserve_dump_area_size;
 866
 867        if ((ra_start < end) && (ra_end > start)) {
 868                if ((start < ra_start) && (end > ra_end)) {
 869                        fadump_add_crash_memory(start, ra_start);
 870                        fadump_add_crash_memory(ra_end, end);
 871                } else if (start < ra_start) {
 872                        fadump_add_crash_memory(start, ra_start);
 873                } else if (ra_end < end) {
 874                        fadump_add_crash_memory(ra_end, end);
 875                }
 876        } else
 877                fadump_add_crash_memory(start, end);
 878}
 879
 880static int fadump_init_elfcore_header(char *bufp)
 881{
 882        struct elfhdr *elf;
 883
 884        elf = (struct elfhdr *) bufp;
 885        bufp += sizeof(struct elfhdr);
 886        memcpy(elf->e_ident, ELFMAG, SELFMAG);
 887        elf->e_ident[EI_CLASS] = ELF_CLASS;
 888        elf->e_ident[EI_DATA] = ELF_DATA;
 889        elf->e_ident[EI_VERSION] = EV_CURRENT;
 890        elf->e_ident[EI_OSABI] = ELF_OSABI;
 891        memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 892        elf->e_type = ET_CORE;
 893        elf->e_machine = ELF_ARCH;
 894        elf->e_version = EV_CURRENT;
 895        elf->e_entry = 0;
 896        elf->e_phoff = sizeof(struct elfhdr);
 897        elf->e_shoff = 0;
 898#if defined(_CALL_ELF)
 899        elf->e_flags = _CALL_ELF;
 900#else
 901        elf->e_flags = 0;
 902#endif
 903        elf->e_ehsize = sizeof(struct elfhdr);
 904        elf->e_phentsize = sizeof(struct elf_phdr);
 905        elf->e_phnum = 0;
 906        elf->e_shentsize = 0;
 907        elf->e_shnum = 0;
 908        elf->e_shstrndx = 0;
 909
 910        return 0;
 911}
 912
 913/*
 914 * Traverse through memblock structure and setup crash memory ranges. These
 915 * ranges will be used create PT_LOAD program headers in elfcore header.
 916 */
 917static void fadump_setup_crash_memory_ranges(void)
 918{
 919        struct memblock_region *reg;
 920        unsigned long long start, end;
 921
 922        pr_debug("Setup crash memory ranges.\n");
 923        crash_mem_ranges = 0;
 924        /*
 925         * add the first memory chunk (RMA_START through boot_memory_size) as
 926         * a separate memory chunk. The reason is, at the time crash firmware
 927         * will move the content of this memory chunk to different location
 928         * specified during fadump registration. We need to create a separate
 929         * program header for this chunk with the correct offset.
 930         */
 931        fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 932
 933        for_each_memblock(memory, reg) {
 934                start = (unsigned long long)reg->base;
 935                end = start + (unsigned long long)reg->size;
 936
 937                /*
 938                 * skip the first memory chunk that is already added (RMA_START
 939                 * through boot_memory_size). This logic needs a relook if and
 940                 * when RMA_START changes to a non-zero value.
 941                 */
 942                BUILD_BUG_ON(RMA_START != 0);
 943                if (start < fw_dump.boot_memory_size) {
 944                        if (end > fw_dump.boot_memory_size)
 945                                start = fw_dump.boot_memory_size;
 946                        else
 947                                continue;
 948                }
 949
 950                /* add this range excluding the reserved dump area. */
 951                fadump_exclude_reserved_area(start, end);
 952        }
 953}
 954
 955/*
 956 * If the given physical address falls within the boot memory region then
 957 * return the relocated address that points to the dump region reserved
 958 * for saving initial boot memory contents.
 959 */
 960static inline unsigned long fadump_relocate(unsigned long paddr)
 961{
 962        if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 963                return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 964        else
 965                return paddr;
 966}
 967
 968static int fadump_create_elfcore_headers(char *bufp)
 969{
 970        struct elfhdr *elf;
 971        struct elf_phdr *phdr;
 972        int i;
 973
 974        fadump_init_elfcore_header(bufp);
 975        elf = (struct elfhdr *)bufp;
 976        bufp += sizeof(struct elfhdr);
 977
 978        /*
 979         * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 980         * will be populated during second kernel boot after crash. Hence
 981         * this PT_NOTE will always be the first elf note.
 982         *
 983         * NOTE: Any new ELF note addition should be placed after this note.
 984         */
 985        phdr = (struct elf_phdr *)bufp;
 986        bufp += sizeof(struct elf_phdr);
 987        phdr->p_type = PT_NOTE;
 988        phdr->p_flags = 0;
 989        phdr->p_vaddr = 0;
 990        phdr->p_align = 0;
 991
 992        phdr->p_offset = 0;
 993        phdr->p_paddr = 0;
 994        phdr->p_filesz = 0;
 995        phdr->p_memsz = 0;
 996
 997        (elf->e_phnum)++;
 998
 999        /* setup ELF PT_NOTE for vmcoreinfo */
1000        phdr = (struct elf_phdr *)bufp;
1001        bufp += sizeof(struct elf_phdr);
1002        phdr->p_type    = PT_NOTE;
1003        phdr->p_flags   = 0;
1004        phdr->p_vaddr   = 0;
1005        phdr->p_align   = 0;
1006
1007        phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
1008        phdr->p_offset  = phdr->p_paddr;
1009        phdr->p_memsz   = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1010
1011        /* Increment number of program headers. */
1012        (elf->e_phnum)++;
1013
1014        /* setup PT_LOAD sections. */
1015
1016        for (i = 0; i < crash_mem_ranges; i++) {
1017                unsigned long long mbase, msize;
1018                mbase = crash_memory_ranges[i].base;
1019                msize = crash_memory_ranges[i].size;
1020
1021                if (!msize)
1022                        continue;
1023
1024                phdr = (struct elf_phdr *)bufp;
1025                bufp += sizeof(struct elf_phdr);
1026                phdr->p_type    = PT_LOAD;
1027                phdr->p_flags   = PF_R|PF_W|PF_X;
1028                phdr->p_offset  = mbase;
1029
1030                if (mbase == RMA_START) {
1031                        /*
1032                         * The entire RMA region will be moved by firmware
1033                         * to the specified destination_address. Hence set
1034                         * the correct offset.
1035                         */
1036                        phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1037                }
1038
1039                phdr->p_paddr = mbase;
1040                phdr->p_vaddr = (unsigned long)__va(mbase);
1041                phdr->p_filesz = msize;
1042                phdr->p_memsz = msize;
1043                phdr->p_align = 0;
1044
1045                /* Increment number of program headers. */
1046                (elf->e_phnum)++;
1047        }
1048        return 0;
1049}
1050
1051static unsigned long init_fadump_header(unsigned long addr)
1052{
1053        struct fadump_crash_info_header *fdh;
1054
1055        if (!addr)
1056                return 0;
1057
1058        fw_dump.fadumphdr_addr = addr;
1059        fdh = __va(addr);
1060        addr += sizeof(struct fadump_crash_info_header);
1061
1062        memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1063        fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1064        fdh->elfcorehdr_addr = addr;
1065        /* We will set the crashing cpu id in crash_fadump() during crash. */
1066        fdh->crashing_cpu = CPU_UNKNOWN;
1067
1068        return addr;
1069}
1070
1071static int register_fadump(void)
1072{
1073        unsigned long addr;
1074        void *vaddr;
1075
1076        /*
1077         * If no memory is reserved then we can not register for firmware-
1078         * assisted dump.
1079         */
1080        if (!fw_dump.reserve_dump_area_size)
1081                return -ENODEV;
1082
1083        fadump_setup_crash_memory_ranges();
1084
1085        addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1086        /* Initialize fadump crash info header. */
1087        addr = init_fadump_header(addr);
1088        vaddr = __va(addr);
1089
1090        pr_debug("Creating ELF core headers at %#016lx\n", addr);
1091        fadump_create_elfcore_headers(vaddr);
1092
1093        /* register the future kernel dump with firmware. */
1094        return register_fw_dump(&fdm);
1095}
1096
1097static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1098{
1099        int rc = 0;
1100        unsigned int wait_time;
1101
1102        pr_debug("Un-register firmware-assisted dump\n");
1103
1104        /* TODO: Add upper time limit for the delay */
1105        do {
1106                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1107                        FADUMP_UNREGISTER, fdm,
1108                        sizeof(struct fadump_mem_struct));
1109
1110                wait_time = rtas_busy_delay_time(rc);
1111                if (wait_time)
1112                        mdelay(wait_time);
1113        } while (wait_time);
1114
1115        if (rc) {
1116                printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1117                        " unexpected error(%d).\n", rc);
1118                return rc;
1119        }
1120        fw_dump.dump_registered = 0;
1121        return 0;
1122}
1123
1124static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1125{
1126        int rc = 0;
1127        unsigned int wait_time;
1128
1129        pr_debug("Invalidating firmware-assisted dump registration\n");
1130
1131        /* TODO: Add upper time limit for the delay */
1132        do {
1133                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1134                        FADUMP_INVALIDATE, fdm,
1135                        sizeof(struct fadump_mem_struct));
1136
1137                wait_time = rtas_busy_delay_time(rc);
1138                if (wait_time)
1139                        mdelay(wait_time);
1140        } while (wait_time);
1141
1142        if (rc) {
1143                pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1144                return rc;
1145        }
1146        fw_dump.dump_active = 0;
1147        fdm_active = NULL;
1148        return 0;
1149}
1150
1151void fadump_cleanup(void)
1152{
1153        /* Invalidate the registration only if dump is active. */
1154        if (fw_dump.dump_active) {
1155                init_fadump_mem_struct(&fdm,
1156                        be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1157                fadump_invalidate_dump(&fdm);
1158        }
1159}
1160
1161static void fadump_free_reserved_memory(unsigned long start_pfn,
1162                                        unsigned long end_pfn)
1163{
1164        unsigned long pfn;
1165        unsigned long time_limit = jiffies + HZ;
1166
1167        pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1168                PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1169
1170        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1171                free_reserved_page(pfn_to_page(pfn));
1172
1173                if (time_after(jiffies, time_limit)) {
1174                        cond_resched();
1175                        time_limit = jiffies + HZ;
1176                }
1177        }
1178}
1179
1180/*
1181 * Skip memory holes and free memory that was actually reserved.
1182 */
1183static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1184{
1185        struct memblock_region *reg;
1186        unsigned long tstart, tend;
1187        unsigned long start_pfn = PHYS_PFN(start);
1188        unsigned long end_pfn = PHYS_PFN(end);
1189
1190        for_each_memblock(memory, reg) {
1191                tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1192                tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1193                if (tstart < tend) {
1194                        fadump_free_reserved_memory(tstart, tend);
1195
1196                        if (tend == end_pfn)
1197                                break;
1198
1199                        start_pfn = tend + 1;
1200                }
1201        }
1202}
1203
1204/*
1205 * Release the memory that was reserved in early boot to preserve the memory
1206 * contents. The released memory will be available for general use.
1207 */
1208static void fadump_release_memory(unsigned long begin, unsigned long end)
1209{
1210        unsigned long ra_start, ra_end;
1211
1212        ra_start = fw_dump.reserve_dump_area_start;
1213        ra_end = ra_start + fw_dump.reserve_dump_area_size;
1214
1215        /*
1216         * exclude the dump reserve area. Will reuse it for next
1217         * fadump registration.
1218         */
1219        if (begin < ra_end && end > ra_start) {
1220                if (begin < ra_start)
1221                        fadump_release_reserved_area(begin, ra_start);
1222                if (end > ra_end)
1223                        fadump_release_reserved_area(ra_end, end);
1224        } else
1225                fadump_release_reserved_area(begin, end);
1226}
1227
1228static void fadump_invalidate_release_mem(void)
1229{
1230        unsigned long reserved_area_start, reserved_area_end;
1231        unsigned long destination_address;
1232
1233        mutex_lock(&fadump_mutex);
1234        if (!fw_dump.dump_active) {
1235                mutex_unlock(&fadump_mutex);
1236                return;
1237        }
1238
1239        destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1240        fadump_cleanup();
1241        mutex_unlock(&fadump_mutex);
1242
1243        /*
1244         * Save the current reserved memory bounds we will require them
1245         * later for releasing the memory for general use.
1246         */
1247        reserved_area_start = fw_dump.reserve_dump_area_start;
1248        reserved_area_end = reserved_area_start +
1249                        fw_dump.reserve_dump_area_size;
1250        /*
1251         * Setup reserve_dump_area_start and its size so that we can
1252         * reuse this reserved memory for Re-registration.
1253         */
1254        fw_dump.reserve_dump_area_start = destination_address;
1255        fw_dump.reserve_dump_area_size = get_fadump_area_size();
1256
1257        fadump_release_memory(reserved_area_start, reserved_area_end);
1258        if (fw_dump.cpu_notes_buf) {
1259                fadump_cpu_notes_buf_free(
1260                                (unsigned long)__va(fw_dump.cpu_notes_buf),
1261                                fw_dump.cpu_notes_buf_size);
1262                fw_dump.cpu_notes_buf = 0;
1263                fw_dump.cpu_notes_buf_size = 0;
1264        }
1265        /* Initialize the kernel dump memory structure for FAD registration. */
1266        init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1267}
1268
1269static ssize_t fadump_release_memory_store(struct kobject *kobj,
1270                                        struct kobj_attribute *attr,
1271                                        const char *buf, size_t count)
1272{
1273        int input = -1;
1274
1275        if (!fw_dump.dump_active)
1276                return -EPERM;
1277
1278        if (kstrtoint(buf, 0, &input))
1279                return -EINVAL;
1280
1281        if (input == 1) {
1282                /*
1283                 * Take away the '/proc/vmcore'. We are releasing the dump
1284                 * memory, hence it will not be valid anymore.
1285                 */
1286#ifdef CONFIG_PROC_VMCORE
1287                vmcore_cleanup();
1288#endif
1289                fadump_invalidate_release_mem();
1290
1291        } else
1292                return -EINVAL;
1293        return count;
1294}
1295
1296static ssize_t fadump_enabled_show(struct kobject *kobj,
1297                                        struct kobj_attribute *attr,
1298                                        char *buf)
1299{
1300        return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1301}
1302
1303static ssize_t fadump_register_show(struct kobject *kobj,
1304                                        struct kobj_attribute *attr,
1305                                        char *buf)
1306{
1307        return sprintf(buf, "%d\n", fw_dump.dump_registered);
1308}
1309
1310static ssize_t fadump_register_store(struct kobject *kobj,
1311                                        struct kobj_attribute *attr,
1312                                        const char *buf, size_t count)
1313{
1314        int ret = 0;
1315        int input = -1;
1316
1317        if (!fw_dump.fadump_enabled || fdm_active)
1318                return -EPERM;
1319
1320        if (kstrtoint(buf, 0, &input))
1321                return -EINVAL;
1322
1323        mutex_lock(&fadump_mutex);
1324
1325        switch (input) {
1326        case 0:
1327                if (fw_dump.dump_registered == 0) {
1328                        goto unlock_out;
1329                }
1330                /* Un-register Firmware-assisted dump */
1331                fadump_unregister_dump(&fdm);
1332                break;
1333        case 1:
1334                if (fw_dump.dump_registered == 1) {
1335                        ret = -EEXIST;
1336                        goto unlock_out;
1337                }
1338                /* Register Firmware-assisted dump */
1339                ret = register_fadump();
1340                break;
1341        default:
1342                ret = -EINVAL;
1343                break;
1344        }
1345
1346unlock_out:
1347        mutex_unlock(&fadump_mutex);
1348        return ret < 0 ? ret : count;
1349}
1350
1351static int fadump_region_show(struct seq_file *m, void *private)
1352{
1353        const struct fadump_mem_struct *fdm_ptr;
1354
1355        if (!fw_dump.fadump_enabled)
1356                return 0;
1357
1358        mutex_lock(&fadump_mutex);
1359        if (fdm_active)
1360                fdm_ptr = fdm_active;
1361        else {
1362                mutex_unlock(&fadump_mutex);
1363                fdm_ptr = &fdm;
1364        }
1365
1366        seq_printf(m,
1367                        "CPU : [%#016llx-%#016llx] %#llx bytes, "
1368                        "Dumped: %#llx\n",
1369                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1370                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1371                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1372                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1373                        be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1374        seq_printf(m,
1375                        "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1376                        "Dumped: %#llx\n",
1377                        be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1378                        be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1379                        be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1380                        be64_to_cpu(fdm_ptr->hpte_region.source_len),
1381                        be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1382        seq_printf(m,
1383                        "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1384                        "Dumped: %#llx\n",
1385                        be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1386                        be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1387                        be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1388                        be64_to_cpu(fdm_ptr->rmr_region.source_len),
1389                        be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1390
1391        if (!fdm_active ||
1392                (fw_dump.reserve_dump_area_start ==
1393                be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1394                goto out;
1395
1396        /* Dump is active. Show reserved memory region. */
1397        seq_printf(m,
1398                        "    : [%#016llx-%#016llx] %#llx bytes, "
1399                        "Dumped: %#llx\n",
1400                        (unsigned long long)fw_dump.reserve_dump_area_start,
1401                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1402                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1403                        fw_dump.reserve_dump_area_start,
1404                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1405                        fw_dump.reserve_dump_area_start);
1406out:
1407        if (fdm_active)
1408                mutex_unlock(&fadump_mutex);
1409        return 0;
1410}
1411
1412static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1413                                                0200, NULL,
1414                                                fadump_release_memory_store);
1415static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1416                                                0444, fadump_enabled_show,
1417                                                NULL);
1418static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1419                                                0644, fadump_register_show,
1420                                                fadump_register_store);
1421
1422static int fadump_region_open(struct inode *inode, struct file *file)
1423{
1424        return single_open(file, fadump_region_show, inode->i_private);
1425}
1426
1427static const struct file_operations fadump_region_fops = {
1428        .open    = fadump_region_open,
1429        .read    = seq_read,
1430        .llseek  = seq_lseek,
1431        .release = single_release,
1432};
1433
1434static void fadump_init_files(void)
1435{
1436        struct dentry *debugfs_file;
1437        int rc = 0;
1438
1439        rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1440        if (rc)
1441                printk(KERN_ERR "fadump: unable to create sysfs file"
1442                        " fadump_enabled (%d)\n", rc);
1443
1444        rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1445        if (rc)
1446                printk(KERN_ERR "fadump: unable to create sysfs file"
1447                        " fadump_registered (%d)\n", rc);
1448
1449        debugfs_file = debugfs_create_file("fadump_region", 0444,
1450                                        powerpc_debugfs_root, NULL,
1451                                        &fadump_region_fops);
1452        if (!debugfs_file)
1453                printk(KERN_ERR "fadump: unable to create debugfs file"
1454                                " fadump_region\n");
1455
1456        if (fw_dump.dump_active) {
1457                rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1458                if (rc)
1459                        printk(KERN_ERR "fadump: unable to create sysfs file"
1460                                " fadump_release_mem (%d)\n", rc);
1461        }
1462        return;
1463}
1464
1465/*
1466 * Prepare for firmware-assisted dump.
1467 */
1468int __init setup_fadump(void)
1469{
1470        if (!fw_dump.fadump_enabled)
1471                return 0;
1472
1473        if (!fw_dump.fadump_supported) {
1474                printk(KERN_ERR "Firmware-assisted dump is not supported on"
1475                        " this hardware\n");
1476                return 0;
1477        }
1478
1479        fadump_show_config();
1480        /*
1481         * If dump data is available then see if it is valid and prepare for
1482         * saving it to the disk.
1483         */
1484        if (fw_dump.dump_active) {
1485                /*
1486                 * if dump process fails then invalidate the registration
1487                 * and release memory before proceeding for re-registration.
1488                 */
1489                if (process_fadump(fdm_active) < 0)
1490                        fadump_invalidate_release_mem();
1491        }
1492        /* Initialize the kernel dump memory structure for FAD registration. */
1493        else if (fw_dump.reserve_dump_area_size)
1494                init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1495        fadump_init_files();
1496
1497        return 1;
1498}
1499subsys_initcall(setup_fadump);
1500