linux/arch/powerpc/kernel/smp.c
<<
>>
Prefs
   1/*
   2 * SMP support for ppc.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   5 * deal of code from the sparc and intel versions.
   6 *
   7 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   8 *
   9 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  10 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  11 *
  12 *      This program is free software; you can redistribute it and/or
  13 *      modify it under the terms of the GNU General Public License
  14 *      as published by the Free Software Foundation; either version
  15 *      2 of the License, or (at your option) any later version.
  16 */
  17
  18#undef DEBUG
  19
  20#include <linux/kernel.h>
  21#include <linux/export.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/topology.h>
  24#include <linux/smp.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/spinlock.h>
  29#include <linux/cache.h>
  30#include <linux/err.h>
  31#include <linux/device.h>
  32#include <linux/cpu.h>
  33#include <linux/notifier.h>
  34#include <linux/topology.h>
  35#include <linux/profile.h>
  36#include <linux/processor.h>
  37
  38#include <asm/ptrace.h>
  39#include <linux/atomic.h>
  40#include <asm/irq.h>
  41#include <asm/hw_irq.h>
  42#include <asm/kvm_ppc.h>
  43#include <asm/dbell.h>
  44#include <asm/page.h>
  45#include <asm/pgtable.h>
  46#include <asm/prom.h>
  47#include <asm/smp.h>
  48#include <asm/time.h>
  49#include <asm/machdep.h>
  50#include <asm/cputhreads.h>
  51#include <asm/cputable.h>
  52#include <asm/mpic.h>
  53#include <asm/vdso_datapage.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/paca.h>
  56#endif
  57#include <asm/vdso.h>
  58#include <asm/debug.h>
  59#include <asm/kexec.h>
  60#include <asm/asm-prototypes.h>
  61#include <asm/cpu_has_feature.h>
  62
  63#ifdef DEBUG
  64#include <asm/udbg.h>
  65#define DBG(fmt...) udbg_printf(fmt)
  66#else
  67#define DBG(fmt...)
  68#endif
  69
  70#ifdef CONFIG_HOTPLUG_CPU
  71/* State of each CPU during hotplug phases */
  72static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  73#endif
  74
  75struct thread_info *secondary_ti;
  76
  77DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  78DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  79DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  80
  81EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  82EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  83EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  84
  85/* SMP operations for this machine */
  86struct smp_ops_t *smp_ops;
  87
  88/* Can't be static due to PowerMac hackery */
  89volatile unsigned int cpu_callin_map[NR_CPUS];
  90
  91int smt_enabled_at_boot = 1;
  92
  93/*
  94 * Returns 1 if the specified cpu should be brought up during boot.
  95 * Used to inhibit booting threads if they've been disabled or
  96 * limited on the command line
  97 */
  98int smp_generic_cpu_bootable(unsigned int nr)
  99{
 100        /* Special case - we inhibit secondary thread startup
 101         * during boot if the user requests it.
 102         */
 103        if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 104                if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 105                        return 0;
 106                if (smt_enabled_at_boot
 107                    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 108                        return 0;
 109        }
 110
 111        return 1;
 112}
 113
 114
 115#ifdef CONFIG_PPC64
 116int smp_generic_kick_cpu(int nr)
 117{
 118        if (nr < 0 || nr >= nr_cpu_ids)
 119                return -EINVAL;
 120
 121        /*
 122         * The processor is currently spinning, waiting for the
 123         * cpu_start field to become non-zero After we set cpu_start,
 124         * the processor will continue on to secondary_start
 125         */
 126        if (!paca[nr].cpu_start) {
 127                paca[nr].cpu_start = 1;
 128                smp_mb();
 129                return 0;
 130        }
 131
 132#ifdef CONFIG_HOTPLUG_CPU
 133        /*
 134         * Ok it's not there, so it might be soft-unplugged, let's
 135         * try to bring it back
 136         */
 137        generic_set_cpu_up(nr);
 138        smp_wmb();
 139        smp_send_reschedule(nr);
 140#endif /* CONFIG_HOTPLUG_CPU */
 141
 142        return 0;
 143}
 144#endif /* CONFIG_PPC64 */
 145
 146static irqreturn_t call_function_action(int irq, void *data)
 147{
 148        generic_smp_call_function_interrupt();
 149        return IRQ_HANDLED;
 150}
 151
 152static irqreturn_t reschedule_action(int irq, void *data)
 153{
 154        scheduler_ipi();
 155        return IRQ_HANDLED;
 156}
 157
 158static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 159{
 160        tick_broadcast_ipi_handler();
 161        return IRQ_HANDLED;
 162}
 163
 164#ifdef CONFIG_NMI_IPI
 165static irqreturn_t nmi_ipi_action(int irq, void *data)
 166{
 167        smp_handle_nmi_ipi(get_irq_regs());
 168        return IRQ_HANDLED;
 169}
 170#endif
 171
 172static irq_handler_t smp_ipi_action[] = {
 173        [PPC_MSG_CALL_FUNCTION] =  call_function_action,
 174        [PPC_MSG_RESCHEDULE] = reschedule_action,
 175        [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 176#ifdef CONFIG_NMI_IPI
 177        [PPC_MSG_NMI_IPI] = nmi_ipi_action,
 178#endif
 179};
 180
 181/*
 182 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 183 * than going through the call function infrastructure, and strongly
 184 * serialized, so it is more appropriate for debugging.
 185 */
 186const char *smp_ipi_name[] = {
 187        [PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 188        [PPC_MSG_RESCHEDULE] = "ipi reschedule",
 189        [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 190        [PPC_MSG_NMI_IPI] = "nmi ipi",
 191};
 192
 193/* optional function to request ipi, for controllers with >= 4 ipis */
 194int smp_request_message_ipi(int virq, int msg)
 195{
 196        int err;
 197
 198        if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 199                return -EINVAL;
 200#ifndef CONFIG_NMI_IPI
 201        if (msg == PPC_MSG_NMI_IPI)
 202                return 1;
 203#endif
 204
 205        err = request_irq(virq, smp_ipi_action[msg],
 206                          IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 207                          smp_ipi_name[msg], NULL);
 208        WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 209                virq, smp_ipi_name[msg], err);
 210
 211        return err;
 212}
 213
 214#ifdef CONFIG_PPC_SMP_MUXED_IPI
 215struct cpu_messages {
 216        long messages;                  /* current messages */
 217};
 218static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 219
 220void smp_muxed_ipi_set_message(int cpu, int msg)
 221{
 222        struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 223        char *message = (char *)&info->messages;
 224
 225        /*
 226         * Order previous accesses before accesses in the IPI handler.
 227         */
 228        smp_mb();
 229        message[msg] = 1;
 230}
 231
 232void smp_muxed_ipi_message_pass(int cpu, int msg)
 233{
 234        smp_muxed_ipi_set_message(cpu, msg);
 235
 236        /*
 237         * cause_ipi functions are required to include a full barrier
 238         * before doing whatever causes the IPI.
 239         */
 240        smp_ops->cause_ipi(cpu);
 241}
 242
 243#ifdef __BIG_ENDIAN__
 244#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 245#else
 246#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 247#endif
 248
 249irqreturn_t smp_ipi_demux(void)
 250{
 251        mb();   /* order any irq clear */
 252
 253        return smp_ipi_demux_relaxed();
 254}
 255
 256/* sync-free variant. Callers should ensure synchronization */
 257irqreturn_t smp_ipi_demux_relaxed(void)
 258{
 259        struct cpu_messages *info;
 260        unsigned long all;
 261
 262        info = this_cpu_ptr(&ipi_message);
 263        do {
 264                all = xchg(&info->messages, 0);
 265#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 266                /*
 267                 * Must check for PPC_MSG_RM_HOST_ACTION messages
 268                 * before PPC_MSG_CALL_FUNCTION messages because when
 269                 * a VM is destroyed, we call kick_all_cpus_sync()
 270                 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 271                 * messages have completed before we free any VCPUs.
 272                 */
 273                if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 274                        kvmppc_xics_ipi_action();
 275#endif
 276                if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 277                        generic_smp_call_function_interrupt();
 278                if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 279                        scheduler_ipi();
 280                if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 281                        tick_broadcast_ipi_handler();
 282#ifdef CONFIG_NMI_IPI
 283                if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 284                        nmi_ipi_action(0, NULL);
 285#endif
 286        } while (info->messages);
 287
 288        return IRQ_HANDLED;
 289}
 290#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 291
 292static inline void do_message_pass(int cpu, int msg)
 293{
 294        if (smp_ops->message_pass)
 295                smp_ops->message_pass(cpu, msg);
 296#ifdef CONFIG_PPC_SMP_MUXED_IPI
 297        else
 298                smp_muxed_ipi_message_pass(cpu, msg);
 299#endif
 300}
 301
 302void smp_send_reschedule(int cpu)
 303{
 304        if (likely(smp_ops))
 305                do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 306}
 307EXPORT_SYMBOL_GPL(smp_send_reschedule);
 308
 309void arch_send_call_function_single_ipi(int cpu)
 310{
 311        do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 312}
 313
 314void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 315{
 316        unsigned int cpu;
 317
 318        for_each_cpu(cpu, mask)
 319                do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 320}
 321
 322#ifdef CONFIG_NMI_IPI
 323
 324/*
 325 * "NMI IPI" system.
 326 *
 327 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 328 * a running system. They can be used for crash, debug, halt/reboot, etc.
 329 *
 330 * NMI IPIs are globally single threaded. No more than one in progress at
 331 * any time.
 332 *
 333 * The IPI call waits with interrupts disabled until all targets enter the
 334 * NMI handler, then the call returns.
 335 *
 336 * No new NMI can be initiated until targets exit the handler.
 337 *
 338 * The IPI call may time out without all targets entering the NMI handler.
 339 * In that case, there is some logic to recover (and ignore subsequent
 340 * NMI interrupts that may eventually be raised), but the platform interrupt
 341 * handler may not be able to distinguish this from other exception causes,
 342 * which may cause a crash.
 343 */
 344
 345static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 346static struct cpumask nmi_ipi_pending_mask;
 347static int nmi_ipi_busy_count = 0;
 348static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 349
 350static void nmi_ipi_lock_start(unsigned long *flags)
 351{
 352        raw_local_irq_save(*flags);
 353        hard_irq_disable();
 354        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 355                raw_local_irq_restore(*flags);
 356                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 357                raw_local_irq_save(*flags);
 358                hard_irq_disable();
 359        }
 360}
 361
 362static void nmi_ipi_lock(void)
 363{
 364        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 365                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 366}
 367
 368static void nmi_ipi_unlock(void)
 369{
 370        smp_mb();
 371        WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
 372        atomic_set(&__nmi_ipi_lock, 0);
 373}
 374
 375static void nmi_ipi_unlock_end(unsigned long *flags)
 376{
 377        nmi_ipi_unlock();
 378        raw_local_irq_restore(*flags);
 379}
 380
 381/*
 382 * Platform NMI handler calls this to ack
 383 */
 384int smp_handle_nmi_ipi(struct pt_regs *regs)
 385{
 386        void (*fn)(struct pt_regs *);
 387        unsigned long flags;
 388        int me = raw_smp_processor_id();
 389        int ret = 0;
 390
 391        /*
 392         * Unexpected NMIs are possible here because the interrupt may not
 393         * be able to distinguish NMI IPIs from other types of NMIs, or
 394         * because the caller may have timed out.
 395         */
 396        nmi_ipi_lock_start(&flags);
 397        if (!nmi_ipi_busy_count)
 398                goto out;
 399        if (!cpumask_test_cpu(me, &nmi_ipi_pending_mask))
 400                goto out;
 401
 402        fn = nmi_ipi_function;
 403        if (!fn)
 404                goto out;
 405
 406        cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 407        nmi_ipi_busy_count++;
 408        nmi_ipi_unlock();
 409
 410        ret = 1;
 411
 412        fn(regs);
 413
 414        nmi_ipi_lock();
 415        nmi_ipi_busy_count--;
 416out:
 417        nmi_ipi_unlock_end(&flags);
 418
 419        return ret;
 420}
 421
 422static void do_smp_send_nmi_ipi(int cpu)
 423{
 424        if (smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 425                return;
 426
 427        if (cpu >= 0) {
 428                do_message_pass(cpu, PPC_MSG_NMI_IPI);
 429        } else {
 430                int c;
 431
 432                for_each_online_cpu(c) {
 433                        if (c == raw_smp_processor_id())
 434                                continue;
 435                        do_message_pass(c, PPC_MSG_NMI_IPI);
 436                }
 437        }
 438}
 439
 440void smp_flush_nmi_ipi(u64 delay_us)
 441{
 442        unsigned long flags;
 443
 444        nmi_ipi_lock_start(&flags);
 445        while (nmi_ipi_busy_count) {
 446                nmi_ipi_unlock_end(&flags);
 447                udelay(1);
 448                if (delay_us) {
 449                        delay_us--;
 450                        if (!delay_us)
 451                                return;
 452                }
 453                nmi_ipi_lock_start(&flags);
 454        }
 455        nmi_ipi_unlock_end(&flags);
 456}
 457
 458/*
 459 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 460 * - fn is the target callback function.
 461 * - delay_us > 0 is the delay before giving up waiting for targets to
 462 *   enter the handler, == 0 specifies indefinite delay.
 463 */
 464int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 465{
 466        unsigned long flags;
 467        int me = raw_smp_processor_id();
 468        int ret = 1;
 469
 470        BUG_ON(cpu == me);
 471        BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 472
 473        if (unlikely(!smp_ops))
 474                return 0;
 475
 476        /* Take the nmi_ipi_busy count/lock with interrupts hard disabled */
 477        nmi_ipi_lock_start(&flags);
 478        while (nmi_ipi_busy_count) {
 479                nmi_ipi_unlock_end(&flags);
 480                spin_until_cond(nmi_ipi_busy_count == 0);
 481                nmi_ipi_lock_start(&flags);
 482        }
 483
 484        nmi_ipi_function = fn;
 485
 486        if (cpu < 0) {
 487                /* ALL_OTHERS */
 488                cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 489                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 490        } else {
 491                /* cpumask starts clear */
 492                cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 493        }
 494        nmi_ipi_busy_count++;
 495        nmi_ipi_unlock();
 496
 497        do_smp_send_nmi_ipi(cpu);
 498
 499        while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 500                udelay(1);
 501                if (delay_us) {
 502                        delay_us--;
 503                        if (!delay_us)
 504                                break;
 505                }
 506        }
 507
 508        nmi_ipi_lock();
 509        if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 510                /* Could not gather all CPUs */
 511                ret = 0;
 512                cpumask_clear(&nmi_ipi_pending_mask);
 513        }
 514        nmi_ipi_busy_count--;
 515        nmi_ipi_unlock_end(&flags);
 516
 517        return ret;
 518}
 519#endif /* CONFIG_NMI_IPI */
 520
 521#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 522void tick_broadcast(const struct cpumask *mask)
 523{
 524        unsigned int cpu;
 525
 526        for_each_cpu(cpu, mask)
 527                do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 528}
 529#endif
 530
 531#ifdef CONFIG_DEBUGGER
 532void debugger_ipi_callback(struct pt_regs *regs)
 533{
 534        debugger_ipi(regs);
 535}
 536
 537void smp_send_debugger_break(void)
 538{
 539        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 540}
 541#endif
 542
 543#ifdef CONFIG_KEXEC_CORE
 544void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 545{
 546        int cpu;
 547
 548        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 549        if (kdump_in_progress() && crash_wake_offline) {
 550                for_each_present_cpu(cpu) {
 551                        if (cpu_online(cpu))
 552                                continue;
 553                        /*
 554                         * crash_ipi_callback will wait for
 555                         * all cpus, including offline CPUs.
 556                         * We don't care about nmi_ipi_function.
 557                         * Offline cpus will jump straight into
 558                         * crash_ipi_callback, we can skip the
 559                         * entire NMI dance and waiting for
 560                         * cpus to clear pending mask, etc.
 561                         */
 562                        do_smp_send_nmi_ipi(cpu);
 563                }
 564        }
 565}
 566#endif
 567
 568static void stop_this_cpu(void *dummy)
 569{
 570        /* Remove this CPU */
 571        set_cpu_online(smp_processor_id(), false);
 572
 573        local_irq_disable();
 574        while (1)
 575                ;
 576}
 577
 578void smp_send_stop(void)
 579{
 580        smp_call_function(stop_this_cpu, NULL, 0);
 581}
 582
 583struct thread_info *current_set[NR_CPUS];
 584
 585static void smp_store_cpu_info(int id)
 586{
 587        per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 588#ifdef CONFIG_PPC_FSL_BOOK3E
 589        per_cpu(next_tlbcam_idx, id)
 590                = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 591#endif
 592}
 593
 594/*
 595 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 596 * rather than just passing around the cpumask we pass around a function that
 597 * returns the that cpumask for the given CPU.
 598 */
 599static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 600{
 601        cpumask_set_cpu(i, get_cpumask(j));
 602        cpumask_set_cpu(j, get_cpumask(i));
 603}
 604
 605#ifdef CONFIG_HOTPLUG_CPU
 606static void set_cpus_unrelated(int i, int j,
 607                struct cpumask *(*get_cpumask)(int))
 608{
 609        cpumask_clear_cpu(i, get_cpumask(j));
 610        cpumask_clear_cpu(j, get_cpumask(i));
 611}
 612#endif
 613
 614void __init smp_prepare_cpus(unsigned int max_cpus)
 615{
 616        unsigned int cpu;
 617
 618        DBG("smp_prepare_cpus\n");
 619
 620        /* 
 621         * setup_cpu may need to be called on the boot cpu. We havent
 622         * spun any cpus up but lets be paranoid.
 623         */
 624        BUG_ON(boot_cpuid != smp_processor_id());
 625
 626        /* Fixup boot cpu */
 627        smp_store_cpu_info(boot_cpuid);
 628        cpu_callin_map[boot_cpuid] = 1;
 629
 630        for_each_possible_cpu(cpu) {
 631                zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
 632                                        GFP_KERNEL, cpu_to_node(cpu));
 633                zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
 634                                        GFP_KERNEL, cpu_to_node(cpu));
 635                zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
 636                                        GFP_KERNEL, cpu_to_node(cpu));
 637                /*
 638                 * numa_node_id() works after this.
 639                 */
 640                if (cpu_present(cpu)) {
 641                        set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
 642                        set_cpu_numa_mem(cpu,
 643                                local_memory_node(numa_cpu_lookup_table[cpu]));
 644                }
 645        }
 646
 647        /* Init the cpumasks so the boot CPU is related to itself */
 648        cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 649        cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
 650        cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
 651
 652        if (smp_ops && smp_ops->probe)
 653                smp_ops->probe();
 654}
 655
 656void smp_prepare_boot_cpu(void)
 657{
 658        BUG_ON(smp_processor_id() != boot_cpuid);
 659#ifdef CONFIG_PPC64
 660        paca[boot_cpuid].__current = current;
 661#endif
 662        set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
 663        current_set[boot_cpuid] = task_thread_info(current);
 664}
 665
 666#ifdef CONFIG_HOTPLUG_CPU
 667
 668int generic_cpu_disable(void)
 669{
 670        unsigned int cpu = smp_processor_id();
 671
 672        if (cpu == boot_cpuid)
 673                return -EBUSY;
 674
 675        set_cpu_online(cpu, false);
 676#ifdef CONFIG_PPC64
 677        vdso_data->processorCount--;
 678#endif
 679        /* Update affinity of all IRQs previously aimed at this CPU */
 680        irq_migrate_all_off_this_cpu();
 681
 682        /*
 683         * Depending on the details of the interrupt controller, it's possible
 684         * that one of the interrupts we just migrated away from this CPU is
 685         * actually already pending on this CPU. If we leave it in that state
 686         * the interrupt will never be EOI'ed, and will never fire again. So
 687         * temporarily enable interrupts here, to allow any pending interrupt to
 688         * be received (and EOI'ed), before we take this CPU offline.
 689         */
 690        local_irq_enable();
 691        mdelay(1);
 692        local_irq_disable();
 693
 694        return 0;
 695}
 696
 697void generic_cpu_die(unsigned int cpu)
 698{
 699        int i;
 700
 701        for (i = 0; i < 100; i++) {
 702                smp_rmb();
 703                if (is_cpu_dead(cpu))
 704                        return;
 705                msleep(100);
 706        }
 707        printk(KERN_ERR "CPU%d didn't die...\n", cpu);
 708}
 709
 710void generic_set_cpu_dead(unsigned int cpu)
 711{
 712        per_cpu(cpu_state, cpu) = CPU_DEAD;
 713}
 714
 715/*
 716 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 717 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 718 * which makes the delay in generic_cpu_die() not happen.
 719 */
 720void generic_set_cpu_up(unsigned int cpu)
 721{
 722        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 723}
 724
 725int generic_check_cpu_restart(unsigned int cpu)
 726{
 727        return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
 728}
 729
 730int is_cpu_dead(unsigned int cpu)
 731{
 732        return per_cpu(cpu_state, cpu) == CPU_DEAD;
 733}
 734
 735static bool secondaries_inhibited(void)
 736{
 737        return kvm_hv_mode_active();
 738}
 739
 740#else /* HOTPLUG_CPU */
 741
 742#define secondaries_inhibited()         0
 743
 744#endif
 745
 746static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
 747{
 748        struct thread_info *ti = task_thread_info(idle);
 749
 750#ifdef CONFIG_PPC64
 751        paca[cpu].__current = idle;
 752        paca[cpu].kstack = (unsigned long)ti + THREAD_SIZE - STACK_FRAME_OVERHEAD;
 753#endif
 754        ti->cpu = cpu;
 755        secondary_ti = current_set[cpu] = ti;
 756}
 757
 758int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 759{
 760        int rc, c;
 761
 762        /*
 763         * Don't allow secondary threads to come online if inhibited
 764         */
 765        if (threads_per_core > 1 && secondaries_inhibited() &&
 766            cpu_thread_in_subcore(cpu))
 767                return -EBUSY;
 768
 769        if (smp_ops == NULL ||
 770            (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
 771                return -EINVAL;
 772
 773        cpu_idle_thread_init(cpu, tidle);
 774
 775        /*
 776         * The platform might need to allocate resources prior to bringing
 777         * up the CPU
 778         */
 779        if (smp_ops->prepare_cpu) {
 780                rc = smp_ops->prepare_cpu(cpu);
 781                if (rc)
 782                        return rc;
 783        }
 784
 785        /* Make sure callin-map entry is 0 (can be leftover a CPU
 786         * hotplug
 787         */
 788        cpu_callin_map[cpu] = 0;
 789
 790        /* The information for processor bringup must
 791         * be written out to main store before we release
 792         * the processor.
 793         */
 794        smp_mb();
 795
 796        /* wake up cpus */
 797        DBG("smp: kicking cpu %d\n", cpu);
 798        rc = smp_ops->kick_cpu(cpu);
 799        if (rc) {
 800                pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
 801                return rc;
 802        }
 803
 804        /*
 805         * wait to see if the cpu made a callin (is actually up).
 806         * use this value that I found through experimentation.
 807         * -- Cort
 808         */
 809        if (system_state < SYSTEM_RUNNING)
 810                for (c = 50000; c && !cpu_callin_map[cpu]; c--)
 811                        udelay(100);
 812#ifdef CONFIG_HOTPLUG_CPU
 813        else
 814                /*
 815                 * CPUs can take much longer to come up in the
 816                 * hotplug case.  Wait five seconds.
 817                 */
 818                for (c = 5000; c && !cpu_callin_map[cpu]; c--)
 819                        msleep(1);
 820#endif
 821
 822        if (!cpu_callin_map[cpu]) {
 823                printk(KERN_ERR "Processor %u is stuck.\n", cpu);
 824                return -ENOENT;
 825        }
 826
 827        DBG("Processor %u found.\n", cpu);
 828
 829        if (smp_ops->give_timebase)
 830                smp_ops->give_timebase();
 831
 832        /* Wait until cpu puts itself in the online & active maps */
 833        spin_until_cond(cpu_online(cpu));
 834
 835        return 0;
 836}
 837
 838/* Return the value of the reg property corresponding to the given
 839 * logical cpu.
 840 */
 841int cpu_to_core_id(int cpu)
 842{
 843        struct device_node *np;
 844        const __be32 *reg;
 845        int id = -1;
 846
 847        np = of_get_cpu_node(cpu, NULL);
 848        if (!np)
 849                goto out;
 850
 851        reg = of_get_property(np, "reg", NULL);
 852        if (!reg)
 853                goto out;
 854
 855        id = be32_to_cpup(reg);
 856out:
 857        of_node_put(np);
 858        return id;
 859}
 860EXPORT_SYMBOL_GPL(cpu_to_core_id);
 861
 862/* Helper routines for cpu to core mapping */
 863int cpu_core_index_of_thread(int cpu)
 864{
 865        return cpu >> threads_shift;
 866}
 867EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
 868
 869int cpu_first_thread_of_core(int core)
 870{
 871        return core << threads_shift;
 872}
 873EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
 874
 875/* Must be called when no change can occur to cpu_present_mask,
 876 * i.e. during cpu online or offline.
 877 */
 878static struct device_node *cpu_to_l2cache(int cpu)
 879{
 880        struct device_node *np;
 881        struct device_node *cache;
 882
 883        if (!cpu_present(cpu))
 884                return NULL;
 885
 886        np = of_get_cpu_node(cpu, NULL);
 887        if (np == NULL)
 888                return NULL;
 889
 890        cache = of_find_next_cache_node(np);
 891
 892        of_node_put(np);
 893
 894        return cache;
 895}
 896
 897static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
 898{
 899        struct device_node *l2_cache, *np;
 900        int i;
 901
 902        l2_cache = cpu_to_l2cache(cpu);
 903        if (!l2_cache)
 904                return false;
 905
 906        for_each_cpu(i, cpu_online_mask) {
 907                /*
 908                 * when updating the marks the current CPU has not been marked
 909                 * online, but we need to update the cache masks
 910                 */
 911                np = cpu_to_l2cache(i);
 912                if (!np)
 913                        continue;
 914
 915                if (np == l2_cache)
 916                        set_cpus_related(cpu, i, mask_fn);
 917
 918                of_node_put(np);
 919        }
 920        of_node_put(l2_cache);
 921
 922        return true;
 923}
 924
 925#ifdef CONFIG_HOTPLUG_CPU
 926static void remove_cpu_from_masks(int cpu)
 927{
 928        int i;
 929
 930        /* NB: cpu_core_mask is a superset of the others */
 931        for_each_cpu(i, cpu_core_mask(cpu)) {
 932                set_cpus_unrelated(cpu, i, cpu_core_mask);
 933                set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
 934                set_cpus_unrelated(cpu, i, cpu_sibling_mask);
 935        }
 936}
 937#endif
 938
 939static void add_cpu_to_masks(int cpu)
 940{
 941        int first_thread = cpu_first_thread_sibling(cpu);
 942        int chipid = cpu_to_chip_id(cpu);
 943        int i;
 944
 945        /*
 946         * This CPU will not be in the online mask yet so we need to manually
 947         * add it to it's own thread sibling mask.
 948         */
 949        cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
 950
 951        for (i = first_thread; i < first_thread + threads_per_core; i++)
 952                if (cpu_online(i))
 953                        set_cpus_related(i, cpu, cpu_sibling_mask);
 954
 955        /*
 956         * Copy the thread sibling mask into the cache sibling mask
 957         * and mark any CPUs that share an L2 with this CPU.
 958         */
 959        for_each_cpu(i, cpu_sibling_mask(cpu))
 960                set_cpus_related(cpu, i, cpu_l2_cache_mask);
 961        update_mask_by_l2(cpu, cpu_l2_cache_mask);
 962
 963        /*
 964         * Copy the cache sibling mask into core sibling mask and mark
 965         * any CPUs on the same chip as this CPU.
 966         */
 967        for_each_cpu(i, cpu_l2_cache_mask(cpu))
 968                set_cpus_related(cpu, i, cpu_core_mask);
 969
 970        if (chipid == -1)
 971                return;
 972
 973        for_each_cpu(i, cpu_online_mask)
 974                if (cpu_to_chip_id(i) == chipid)
 975                        set_cpus_related(cpu, i, cpu_core_mask);
 976}
 977
 978static bool shared_caches;
 979
 980/* Activate a secondary processor. */
 981void start_secondary(void *unused)
 982{
 983        unsigned int cpu = smp_processor_id();
 984
 985        mmgrab(&init_mm);
 986        current->active_mm = &init_mm;
 987
 988        smp_store_cpu_info(cpu);
 989        set_dec(tb_ticks_per_jiffy);
 990        preempt_disable();
 991        cpu_callin_map[cpu] = 1;
 992
 993        if (smp_ops->setup_cpu)
 994                smp_ops->setup_cpu(cpu);
 995        if (smp_ops->take_timebase)
 996                smp_ops->take_timebase();
 997
 998        secondary_cpu_time_init();
 999
1000#ifdef CONFIG_PPC64
1001        if (system_state == SYSTEM_RUNNING)
1002                vdso_data->processorCount++;
1003
1004        vdso_getcpu_init();
1005#endif
1006        /* Update topology CPU masks */
1007        add_cpu_to_masks(cpu);
1008
1009        /*
1010         * Check for any shared caches. Note that this must be done on a
1011         * per-core basis because one core in the pair might be disabled.
1012         */
1013        if (!cpumask_equal(cpu_l2_cache_mask(cpu), cpu_sibling_mask(cpu)))
1014                shared_caches = true;
1015
1016        set_numa_node(numa_cpu_lookup_table[cpu]);
1017        set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1018
1019        smp_wmb();
1020        notify_cpu_starting(cpu);
1021        set_cpu_online(cpu, true);
1022
1023        local_irq_enable();
1024
1025        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1026
1027        BUG();
1028}
1029
1030int setup_profiling_timer(unsigned int multiplier)
1031{
1032        return 0;
1033}
1034
1035#ifdef CONFIG_SCHED_SMT
1036/* cpumask of CPUs with asymetric SMT dependancy */
1037static int powerpc_smt_flags(void)
1038{
1039        int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1040
1041        if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1042                printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1043                flags |= SD_ASYM_PACKING;
1044        }
1045        return flags;
1046}
1047#endif
1048
1049static struct sched_domain_topology_level powerpc_topology[] = {
1050#ifdef CONFIG_SCHED_SMT
1051        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1052#endif
1053        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1054        { NULL, },
1055};
1056
1057/*
1058 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1059 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1060 * since the migrated task remains cache hot. We want to take advantage of this
1061 * at the scheduler level so an extra topology level is required.
1062 */
1063static int powerpc_shared_cache_flags(void)
1064{
1065        return SD_SHARE_PKG_RESOURCES;
1066}
1067
1068/*
1069 * We can't just pass cpu_l2_cache_mask() directly because
1070 * returns a non-const pointer and the compiler barfs on that.
1071 */
1072static const struct cpumask *shared_cache_mask(int cpu)
1073{
1074        return cpu_l2_cache_mask(cpu);
1075}
1076
1077static struct sched_domain_topology_level power9_topology[] = {
1078#ifdef CONFIG_SCHED_SMT
1079        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1080#endif
1081        { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1082        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1083        { NULL, },
1084};
1085
1086void __init smp_cpus_done(unsigned int max_cpus)
1087{
1088        /*
1089         * We are running pinned to the boot CPU, see rest_init().
1090         */
1091        if (smp_ops && smp_ops->setup_cpu)
1092                smp_ops->setup_cpu(boot_cpuid);
1093
1094        if (smp_ops && smp_ops->bringup_done)
1095                smp_ops->bringup_done();
1096
1097        dump_numa_cpu_topology();
1098
1099        /*
1100         * If any CPU detects that it's sharing a cache with another CPU then
1101         * use the deeper topology that is aware of this sharing.
1102         */
1103        if (shared_caches) {
1104                pr_info("Using shared cache scheduler topology\n");
1105                set_sched_topology(power9_topology);
1106        } else {
1107                pr_info("Using standard scheduler topology\n");
1108                set_sched_topology(powerpc_topology);
1109        }
1110}
1111
1112#ifdef CONFIG_HOTPLUG_CPU
1113int __cpu_disable(void)
1114{
1115        int cpu = smp_processor_id();
1116        int err;
1117
1118        if (!smp_ops->cpu_disable)
1119                return -ENOSYS;
1120
1121        err = smp_ops->cpu_disable();
1122        if (err)
1123                return err;
1124
1125        /* Update sibling maps */
1126        remove_cpu_from_masks(cpu);
1127
1128        return 0;
1129}
1130
1131void __cpu_die(unsigned int cpu)
1132{
1133        if (smp_ops->cpu_die)
1134                smp_ops->cpu_die(cpu);
1135}
1136
1137void cpu_die(void)
1138{
1139        if (ppc_md.cpu_die)
1140                ppc_md.cpu_die();
1141
1142        /* If we return, we re-enter start_secondary */
1143        start_secondary_resume();
1144}
1145
1146#endif
1147