linux/arch/powerpc/kvm/book3s_hv.c
<<
>>
Prefs
   1/*
   2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
   4 *
   5 * Authors:
   6 *    Paul Mackerras <paulus@au1.ibm.com>
   7 *    Alexander Graf <agraf@suse.de>
   8 *    Kevin Wolf <mail@kevin-wolf.de>
   9 *
  10 * Description: KVM functions specific to running on Book 3S
  11 * processors in hypervisor mode (specifically POWER7 and later).
  12 *
  13 * This file is derived from arch/powerpc/kvm/book3s.c,
  14 * by Alexander Graf <agraf@suse.de>.
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License, version 2, as
  18 * published by the Free Software Foundation.
  19 */
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kernel.h>
  23#include <linux/err.h>
  24#include <linux/slab.h>
  25#include <linux/preempt.h>
  26#include <linux/sched/signal.h>
  27#include <linux/sched/stat.h>
  28#include <linux/delay.h>
  29#include <linux/export.h>
  30#include <linux/fs.h>
  31#include <linux/anon_inodes.h>
  32#include <linux/cpu.h>
  33#include <linux/cpumask.h>
  34#include <linux/spinlock.h>
  35#include <linux/page-flags.h>
  36#include <linux/srcu.h>
  37#include <linux/miscdevice.h>
  38#include <linux/debugfs.h>
  39#include <linux/gfp.h>
  40#include <linux/vmalloc.h>
  41#include <linux/highmem.h>
  42#include <linux/hugetlb.h>
  43#include <linux/kvm_irqfd.h>
  44#include <linux/irqbypass.h>
  45#include <linux/module.h>
  46#include <linux/compiler.h>
  47#include <linux/of.h>
  48
  49#include <asm/reg.h>
  50#include <asm/ppc-opcode.h>
  51#include <asm/asm-prototypes.h>
  52#include <asm/disassemble.h>
  53#include <asm/cputable.h>
  54#include <asm/cacheflush.h>
  55#include <asm/tlbflush.h>
  56#include <linux/uaccess.h>
  57#include <asm/io.h>
  58#include <asm/kvm_ppc.h>
  59#include <asm/kvm_book3s.h>
  60#include <asm/mmu_context.h>
  61#include <asm/lppaca.h>
  62#include <asm/processor.h>
  63#include <asm/cputhreads.h>
  64#include <asm/page.h>
  65#include <asm/hvcall.h>
  66#include <asm/switch_to.h>
  67#include <asm/smp.h>
  68#include <asm/dbell.h>
  69#include <asm/hmi.h>
  70#include <asm/pnv-pci.h>
  71#include <asm/mmu.h>
  72#include <asm/opal.h>
  73#include <asm/xics.h>
  74#include <asm/xive.h>
  75
  76#include "book3s.h"
  77
  78#define CREATE_TRACE_POINTS
  79#include "trace_hv.h"
  80
  81/* #define EXIT_DEBUG */
  82/* #define EXIT_DEBUG_SIMPLE */
  83/* #define EXIT_DEBUG_INT */
  84
  85/* Used to indicate that a guest page fault needs to be handled */
  86#define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
  87/* Used to indicate that a guest passthrough interrupt needs to be handled */
  88#define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
  89
  90/* Used as a "null" value for timebase values */
  91#define TB_NIL  (~(u64)0)
  92
  93static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
  94
  95static int dynamic_mt_modes = 6;
  96module_param(dynamic_mt_modes, int, 0644);
  97MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
  98static int target_smt_mode;
  99module_param(target_smt_mode, int, 0644);
 100MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 101
 102static bool indep_threads_mode = true;
 103module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
 104MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
 105
 106#ifdef CONFIG_KVM_XICS
 107static struct kernel_param_ops module_param_ops = {
 108        .set = param_set_int,
 109        .get = param_get_int,
 110};
 111
 112module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
 113MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
 114
 115module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
 116MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
 117#endif
 118
 119/* If set, the threads on each CPU core have to be in the same MMU mode */
 120static bool no_mixing_hpt_and_radix;
 121
 122static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
 123static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 124
 125static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
 126                int *ip)
 127{
 128        int i = *ip;
 129        struct kvm_vcpu *vcpu;
 130
 131        while (++i < MAX_SMT_THREADS) {
 132                vcpu = READ_ONCE(vc->runnable_threads[i]);
 133                if (vcpu) {
 134                        *ip = i;
 135                        return vcpu;
 136                }
 137        }
 138        return NULL;
 139}
 140
 141/* Used to traverse the list of runnable threads for a given vcore */
 142#define for_each_runnable_thread(i, vcpu, vc) \
 143        for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
 144
 145static bool kvmppc_ipi_thread(int cpu)
 146{
 147        unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 148
 149        /* On POWER9 we can use msgsnd to IPI any cpu */
 150        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 151                msg |= get_hard_smp_processor_id(cpu);
 152                smp_mb();
 153                __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 154                return true;
 155        }
 156
 157        /* On POWER8 for IPIs to threads in the same core, use msgsnd */
 158        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 159                preempt_disable();
 160                if (cpu_first_thread_sibling(cpu) ==
 161                    cpu_first_thread_sibling(smp_processor_id())) {
 162                        msg |= cpu_thread_in_core(cpu);
 163                        smp_mb();
 164                        __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 165                        preempt_enable();
 166                        return true;
 167                }
 168                preempt_enable();
 169        }
 170
 171#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
 172        if (cpu >= 0 && cpu < nr_cpu_ids) {
 173                if (paca[cpu].kvm_hstate.xics_phys) {
 174                        xics_wake_cpu(cpu);
 175                        return true;
 176                }
 177                opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
 178                return true;
 179        }
 180#endif
 181
 182        return false;
 183}
 184
 185static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
 186{
 187        int cpu;
 188        struct swait_queue_head *wqp;
 189
 190        wqp = kvm_arch_vcpu_wq(vcpu);
 191        if (swq_has_sleeper(wqp)) {
 192                swake_up(wqp);
 193                ++vcpu->stat.halt_wakeup;
 194        }
 195
 196        cpu = READ_ONCE(vcpu->arch.thread_cpu);
 197        if (cpu >= 0 && kvmppc_ipi_thread(cpu))
 198                return;
 199
 200        /* CPU points to the first thread of the core */
 201        cpu = vcpu->cpu;
 202        if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
 203                smp_send_reschedule(cpu);
 204}
 205
 206/*
 207 * We use the vcpu_load/put functions to measure stolen time.
 208 * Stolen time is counted as time when either the vcpu is able to
 209 * run as part of a virtual core, but the task running the vcore
 210 * is preempted or sleeping, or when the vcpu needs something done
 211 * in the kernel by the task running the vcpu, but that task is
 212 * preempted or sleeping.  Those two things have to be counted
 213 * separately, since one of the vcpu tasks will take on the job
 214 * of running the core, and the other vcpu tasks in the vcore will
 215 * sleep waiting for it to do that, but that sleep shouldn't count
 216 * as stolen time.
 217 *
 218 * Hence we accumulate stolen time when the vcpu can run as part of
 219 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 220 * needs its task to do other things in the kernel (for example,
 221 * service a page fault) in busy_stolen.  We don't accumulate
 222 * stolen time for a vcore when it is inactive, or for a vcpu
 223 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 224 * a misnomer; it means that the vcpu task is not executing in
 225 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 226 * the kernel.  We don't have any way of dividing up that time
 227 * between time that the vcpu is genuinely stopped, time that
 228 * the task is actively working on behalf of the vcpu, and time
 229 * that the task is preempted, so we don't count any of it as
 230 * stolen.
 231 *
 232 * Updates to busy_stolen are protected by arch.tbacct_lock;
 233 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 234 * lock.  The stolen times are measured in units of timebase ticks.
 235 * (Note that the != TB_NIL checks below are purely defensive;
 236 * they should never fail.)
 237 */
 238
 239static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
 240{
 241        unsigned long flags;
 242
 243        spin_lock_irqsave(&vc->stoltb_lock, flags);
 244        vc->preempt_tb = mftb();
 245        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 246}
 247
 248static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
 249{
 250        unsigned long flags;
 251
 252        spin_lock_irqsave(&vc->stoltb_lock, flags);
 253        if (vc->preempt_tb != TB_NIL) {
 254                vc->stolen_tb += mftb() - vc->preempt_tb;
 255                vc->preempt_tb = TB_NIL;
 256        }
 257        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 258}
 259
 260static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
 261{
 262        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 263        unsigned long flags;
 264
 265        /*
 266         * We can test vc->runner without taking the vcore lock,
 267         * because only this task ever sets vc->runner to this
 268         * vcpu, and once it is set to this vcpu, only this task
 269         * ever sets it to NULL.
 270         */
 271        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 272                kvmppc_core_end_stolen(vc);
 273
 274        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 275        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
 276            vcpu->arch.busy_preempt != TB_NIL) {
 277                vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
 278                vcpu->arch.busy_preempt = TB_NIL;
 279        }
 280        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 281}
 282
 283static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
 284{
 285        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 286        unsigned long flags;
 287
 288        if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
 289                kvmppc_core_start_stolen(vc);
 290
 291        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 292        if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
 293                vcpu->arch.busy_preempt = mftb();
 294        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 295}
 296
 297static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
 298{
 299        /*
 300         * Check for illegal transactional state bit combination
 301         * and if we find it, force the TS field to a safe state.
 302         */
 303        if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
 304                msr &= ~MSR_TS_MASK;
 305        vcpu->arch.shregs.msr = msr;
 306        kvmppc_end_cede(vcpu);
 307}
 308
 309static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
 310{
 311        vcpu->arch.pvr = pvr;
 312}
 313
 314/* Dummy value used in computing PCR value below */
 315#define PCR_ARCH_300    (PCR_ARCH_207 << 1)
 316
 317static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
 318{
 319        unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
 320        struct kvmppc_vcore *vc = vcpu->arch.vcore;
 321
 322        /* We can (emulate) our own architecture version and anything older */
 323        if (cpu_has_feature(CPU_FTR_ARCH_300))
 324                host_pcr_bit = PCR_ARCH_300;
 325        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
 326                host_pcr_bit = PCR_ARCH_207;
 327        else if (cpu_has_feature(CPU_FTR_ARCH_206))
 328                host_pcr_bit = PCR_ARCH_206;
 329        else
 330                host_pcr_bit = PCR_ARCH_205;
 331
 332        /* Determine lowest PCR bit needed to run guest in given PVR level */
 333        guest_pcr_bit = host_pcr_bit;
 334        if (arch_compat) {
 335                switch (arch_compat) {
 336                case PVR_ARCH_205:
 337                        guest_pcr_bit = PCR_ARCH_205;
 338                        break;
 339                case PVR_ARCH_206:
 340                case PVR_ARCH_206p:
 341                        guest_pcr_bit = PCR_ARCH_206;
 342                        break;
 343                case PVR_ARCH_207:
 344                        guest_pcr_bit = PCR_ARCH_207;
 345                        break;
 346                case PVR_ARCH_300:
 347                        guest_pcr_bit = PCR_ARCH_300;
 348                        break;
 349                default:
 350                        return -EINVAL;
 351                }
 352        }
 353
 354        /* Check requested PCR bits don't exceed our capabilities */
 355        if (guest_pcr_bit > host_pcr_bit)
 356                return -EINVAL;
 357
 358        spin_lock(&vc->lock);
 359        vc->arch_compat = arch_compat;
 360        /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
 361        vc->pcr = host_pcr_bit - guest_pcr_bit;
 362        spin_unlock(&vc->lock);
 363
 364        return 0;
 365}
 366
 367static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
 368{
 369        int r;
 370
 371        pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
 372        pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
 373               vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
 374        for (r = 0; r < 16; ++r)
 375                pr_err("r%2d = %.16lx  r%d = %.16lx\n",
 376                       r, kvmppc_get_gpr(vcpu, r),
 377                       r+16, kvmppc_get_gpr(vcpu, r+16));
 378        pr_err("ctr = %.16lx  lr  = %.16lx\n",
 379               vcpu->arch.ctr, vcpu->arch.lr);
 380        pr_err("srr0 = %.16llx srr1 = %.16llx\n",
 381               vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
 382        pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
 383               vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
 384        pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
 385               vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
 386        pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
 387               vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
 388        pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
 389        pr_err("fault dar = %.16lx dsisr = %.8x\n",
 390               vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
 391        pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
 392        for (r = 0; r < vcpu->arch.slb_max; ++r)
 393                pr_err("  ESID = %.16llx VSID = %.16llx\n",
 394                       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
 395        pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
 396               vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
 397               vcpu->arch.last_inst);
 398}
 399
 400static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
 401{
 402        struct kvm_vcpu *ret;
 403
 404        mutex_lock(&kvm->lock);
 405        ret = kvm_get_vcpu_by_id(kvm, id);
 406        mutex_unlock(&kvm->lock);
 407        return ret;
 408}
 409
 410static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
 411{
 412        vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
 413        vpa->yield_count = cpu_to_be32(1);
 414}
 415
 416static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
 417                   unsigned long addr, unsigned long len)
 418{
 419        /* check address is cacheline aligned */
 420        if (addr & (L1_CACHE_BYTES - 1))
 421                return -EINVAL;
 422        spin_lock(&vcpu->arch.vpa_update_lock);
 423        if (v->next_gpa != addr || v->len != len) {
 424                v->next_gpa = addr;
 425                v->len = addr ? len : 0;
 426                v->update_pending = 1;
 427        }
 428        spin_unlock(&vcpu->arch.vpa_update_lock);
 429        return 0;
 430}
 431
 432/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
 433struct reg_vpa {
 434        u32 dummy;
 435        union {
 436                __be16 hword;
 437                __be32 word;
 438        } length;
 439};
 440
 441static int vpa_is_registered(struct kvmppc_vpa *vpap)
 442{
 443        if (vpap->update_pending)
 444                return vpap->next_gpa != 0;
 445        return vpap->pinned_addr != NULL;
 446}
 447
 448static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
 449                                       unsigned long flags,
 450                                       unsigned long vcpuid, unsigned long vpa)
 451{
 452        struct kvm *kvm = vcpu->kvm;
 453        unsigned long len, nb;
 454        void *va;
 455        struct kvm_vcpu *tvcpu;
 456        int err;
 457        int subfunc;
 458        struct kvmppc_vpa *vpap;
 459
 460        tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
 461        if (!tvcpu)
 462                return H_PARAMETER;
 463
 464        subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
 465        if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
 466            subfunc == H_VPA_REG_SLB) {
 467                /* Registering new area - address must be cache-line aligned */
 468                if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
 469                        return H_PARAMETER;
 470
 471                /* convert logical addr to kernel addr and read length */
 472                va = kvmppc_pin_guest_page(kvm, vpa, &nb);
 473                if (va == NULL)
 474                        return H_PARAMETER;
 475                if (subfunc == H_VPA_REG_VPA)
 476                        len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
 477                else
 478                        len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
 479                kvmppc_unpin_guest_page(kvm, va, vpa, false);
 480
 481                /* Check length */
 482                if (len > nb || len < sizeof(struct reg_vpa))
 483                        return H_PARAMETER;
 484        } else {
 485                vpa = 0;
 486                len = 0;
 487        }
 488
 489        err = H_PARAMETER;
 490        vpap = NULL;
 491        spin_lock(&tvcpu->arch.vpa_update_lock);
 492
 493        switch (subfunc) {
 494        case H_VPA_REG_VPA:             /* register VPA */
 495                /*
 496                 * The size of our lppaca is 1kB because of the way we align
 497                 * it for the guest to avoid crossing a 4kB boundary. We only
 498                 * use 640 bytes of the structure though, so we should accept
 499                 * clients that set a size of 640.
 500                 */
 501                if (len < 640)
 502                        break;
 503                vpap = &tvcpu->arch.vpa;
 504                err = 0;
 505                break;
 506
 507        case H_VPA_REG_DTL:             /* register DTL */
 508                if (len < sizeof(struct dtl_entry))
 509                        break;
 510                len -= len % sizeof(struct dtl_entry);
 511
 512                /* Check that they have previously registered a VPA */
 513                err = H_RESOURCE;
 514                if (!vpa_is_registered(&tvcpu->arch.vpa))
 515                        break;
 516
 517                vpap = &tvcpu->arch.dtl;
 518                err = 0;
 519                break;
 520
 521        case H_VPA_REG_SLB:             /* register SLB shadow buffer */
 522                /* Check that they have previously registered a VPA */
 523                err = H_RESOURCE;
 524                if (!vpa_is_registered(&tvcpu->arch.vpa))
 525                        break;
 526
 527                vpap = &tvcpu->arch.slb_shadow;
 528                err = 0;
 529                break;
 530
 531        case H_VPA_DEREG_VPA:           /* deregister VPA */
 532                /* Check they don't still have a DTL or SLB buf registered */
 533                err = H_RESOURCE;
 534                if (vpa_is_registered(&tvcpu->arch.dtl) ||
 535                    vpa_is_registered(&tvcpu->arch.slb_shadow))
 536                        break;
 537
 538                vpap = &tvcpu->arch.vpa;
 539                err = 0;
 540                break;
 541
 542        case H_VPA_DEREG_DTL:           /* deregister DTL */
 543                vpap = &tvcpu->arch.dtl;
 544                err = 0;
 545                break;
 546
 547        case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
 548                vpap = &tvcpu->arch.slb_shadow;
 549                err = 0;
 550                break;
 551        }
 552
 553        if (vpap) {
 554                vpap->next_gpa = vpa;
 555                vpap->len = len;
 556                vpap->update_pending = 1;
 557        }
 558
 559        spin_unlock(&tvcpu->arch.vpa_update_lock);
 560
 561        return err;
 562}
 563
 564static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
 565{
 566        struct kvm *kvm = vcpu->kvm;
 567        void *va;
 568        unsigned long nb;
 569        unsigned long gpa;
 570
 571        /*
 572         * We need to pin the page pointed to by vpap->next_gpa,
 573         * but we can't call kvmppc_pin_guest_page under the lock
 574         * as it does get_user_pages() and down_read().  So we
 575         * have to drop the lock, pin the page, then get the lock
 576         * again and check that a new area didn't get registered
 577         * in the meantime.
 578         */
 579        for (;;) {
 580                gpa = vpap->next_gpa;
 581                spin_unlock(&vcpu->arch.vpa_update_lock);
 582                va = NULL;
 583                nb = 0;
 584                if (gpa)
 585                        va = kvmppc_pin_guest_page(kvm, gpa, &nb);
 586                spin_lock(&vcpu->arch.vpa_update_lock);
 587                if (gpa == vpap->next_gpa)
 588                        break;
 589                /* sigh... unpin that one and try again */
 590                if (va)
 591                        kvmppc_unpin_guest_page(kvm, va, gpa, false);
 592        }
 593
 594        vpap->update_pending = 0;
 595        if (va && nb < vpap->len) {
 596                /*
 597                 * If it's now too short, it must be that userspace
 598                 * has changed the mappings underlying guest memory,
 599                 * so unregister the region.
 600                 */
 601                kvmppc_unpin_guest_page(kvm, va, gpa, false);
 602                va = NULL;
 603        }
 604        if (vpap->pinned_addr)
 605                kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
 606                                        vpap->dirty);
 607        vpap->gpa = gpa;
 608        vpap->pinned_addr = va;
 609        vpap->dirty = false;
 610        if (va)
 611                vpap->pinned_end = va + vpap->len;
 612}
 613
 614static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
 615{
 616        if (!(vcpu->arch.vpa.update_pending ||
 617              vcpu->arch.slb_shadow.update_pending ||
 618              vcpu->arch.dtl.update_pending))
 619                return;
 620
 621        spin_lock(&vcpu->arch.vpa_update_lock);
 622        if (vcpu->arch.vpa.update_pending) {
 623                kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
 624                if (vcpu->arch.vpa.pinned_addr)
 625                        init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
 626        }
 627        if (vcpu->arch.dtl.update_pending) {
 628                kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
 629                vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
 630                vcpu->arch.dtl_index = 0;
 631        }
 632        if (vcpu->arch.slb_shadow.update_pending)
 633                kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
 634        spin_unlock(&vcpu->arch.vpa_update_lock);
 635}
 636
 637/*
 638 * Return the accumulated stolen time for the vcore up until `now'.
 639 * The caller should hold the vcore lock.
 640 */
 641static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
 642{
 643        u64 p;
 644        unsigned long flags;
 645
 646        spin_lock_irqsave(&vc->stoltb_lock, flags);
 647        p = vc->stolen_tb;
 648        if (vc->vcore_state != VCORE_INACTIVE &&
 649            vc->preempt_tb != TB_NIL)
 650                p += now - vc->preempt_tb;
 651        spin_unlock_irqrestore(&vc->stoltb_lock, flags);
 652        return p;
 653}
 654
 655static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
 656                                    struct kvmppc_vcore *vc)
 657{
 658        struct dtl_entry *dt;
 659        struct lppaca *vpa;
 660        unsigned long stolen;
 661        unsigned long core_stolen;
 662        u64 now;
 663        unsigned long flags;
 664
 665        dt = vcpu->arch.dtl_ptr;
 666        vpa = vcpu->arch.vpa.pinned_addr;
 667        now = mftb();
 668        core_stolen = vcore_stolen_time(vc, now);
 669        stolen = core_stolen - vcpu->arch.stolen_logged;
 670        vcpu->arch.stolen_logged = core_stolen;
 671        spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
 672        stolen += vcpu->arch.busy_stolen;
 673        vcpu->arch.busy_stolen = 0;
 674        spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
 675        if (!dt || !vpa)
 676                return;
 677        memset(dt, 0, sizeof(struct dtl_entry));
 678        dt->dispatch_reason = 7;
 679        dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
 680        dt->timebase = cpu_to_be64(now + vc->tb_offset);
 681        dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
 682        dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
 683        dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
 684        ++dt;
 685        if (dt == vcpu->arch.dtl.pinned_end)
 686                dt = vcpu->arch.dtl.pinned_addr;
 687        vcpu->arch.dtl_ptr = dt;
 688        /* order writing *dt vs. writing vpa->dtl_idx */
 689        smp_wmb();
 690        vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
 691        vcpu->arch.dtl.dirty = true;
 692}
 693
 694/* See if there is a doorbell interrupt pending for a vcpu */
 695static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
 696{
 697        int thr;
 698        struct kvmppc_vcore *vc;
 699
 700        if (vcpu->arch.doorbell_request)
 701                return true;
 702        /*
 703         * Ensure that the read of vcore->dpdes comes after the read
 704         * of vcpu->doorbell_request.  This barrier matches the
 705         * lwsync in book3s_hv_rmhandlers.S just before the
 706         * fast_guest_return label.
 707         */
 708        smp_rmb();
 709        vc = vcpu->arch.vcore;
 710        thr = vcpu->vcpu_id - vc->first_vcpuid;
 711        return !!(vc->dpdes & (1 << thr));
 712}
 713
 714static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
 715{
 716        if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
 717                return true;
 718        if ((!vcpu->arch.vcore->arch_compat) &&
 719            cpu_has_feature(CPU_FTR_ARCH_207S))
 720                return true;
 721        return false;
 722}
 723
 724static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
 725                             unsigned long resource, unsigned long value1,
 726                             unsigned long value2)
 727{
 728        switch (resource) {
 729        case H_SET_MODE_RESOURCE_SET_CIABR:
 730                if (!kvmppc_power8_compatible(vcpu))
 731                        return H_P2;
 732                if (value2)
 733                        return H_P4;
 734                if (mflags)
 735                        return H_UNSUPPORTED_FLAG_START;
 736                /* Guests can't breakpoint the hypervisor */
 737                if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
 738                        return H_P3;
 739                vcpu->arch.ciabr  = value1;
 740                return H_SUCCESS;
 741        case H_SET_MODE_RESOURCE_SET_DAWR:
 742                if (!kvmppc_power8_compatible(vcpu))
 743                        return H_P2;
 744                if (mflags)
 745                        return H_UNSUPPORTED_FLAG_START;
 746                if (value2 & DABRX_HYP)
 747                        return H_P4;
 748                vcpu->arch.dawr  = value1;
 749                vcpu->arch.dawrx = value2;
 750                return H_SUCCESS;
 751        default:
 752                return H_TOO_HARD;
 753        }
 754}
 755
 756static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
 757{
 758        struct kvmppc_vcore *vcore = target->arch.vcore;
 759
 760        /*
 761         * We expect to have been called by the real mode handler
 762         * (kvmppc_rm_h_confer()) which would have directly returned
 763         * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
 764         * have useful work to do and should not confer) so we don't
 765         * recheck that here.
 766         */
 767
 768        spin_lock(&vcore->lock);
 769        if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
 770            vcore->vcore_state != VCORE_INACTIVE &&
 771            vcore->runner)
 772                target = vcore->runner;
 773        spin_unlock(&vcore->lock);
 774
 775        return kvm_vcpu_yield_to(target);
 776}
 777
 778static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
 779{
 780        int yield_count = 0;
 781        struct lppaca *lppaca;
 782
 783        spin_lock(&vcpu->arch.vpa_update_lock);
 784        lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
 785        if (lppaca)
 786                yield_count = be32_to_cpu(lppaca->yield_count);
 787        spin_unlock(&vcpu->arch.vpa_update_lock);
 788        return yield_count;
 789}
 790
 791int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
 792{
 793        unsigned long req = kvmppc_get_gpr(vcpu, 3);
 794        unsigned long target, ret = H_SUCCESS;
 795        int yield_count;
 796        struct kvm_vcpu *tvcpu;
 797        int idx, rc;
 798
 799        if (req <= MAX_HCALL_OPCODE &&
 800            !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
 801                return RESUME_HOST;
 802
 803        switch (req) {
 804        case H_CEDE:
 805                break;
 806        case H_PROD:
 807                target = kvmppc_get_gpr(vcpu, 4);
 808                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 809                if (!tvcpu) {
 810                        ret = H_PARAMETER;
 811                        break;
 812                }
 813                tvcpu->arch.prodded = 1;
 814                smp_mb();
 815                if (tvcpu->arch.ceded)
 816                        kvmppc_fast_vcpu_kick_hv(tvcpu);
 817                break;
 818        case H_CONFER:
 819                target = kvmppc_get_gpr(vcpu, 4);
 820                if (target == -1)
 821                        break;
 822                tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
 823                if (!tvcpu) {
 824                        ret = H_PARAMETER;
 825                        break;
 826                }
 827                yield_count = kvmppc_get_gpr(vcpu, 5);
 828                if (kvmppc_get_yield_count(tvcpu) != yield_count)
 829                        break;
 830                kvm_arch_vcpu_yield_to(tvcpu);
 831                break;
 832        case H_REGISTER_VPA:
 833                ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
 834                                        kvmppc_get_gpr(vcpu, 5),
 835                                        kvmppc_get_gpr(vcpu, 6));
 836                break;
 837        case H_RTAS:
 838                if (list_empty(&vcpu->kvm->arch.rtas_tokens))
 839                        return RESUME_HOST;
 840
 841                idx = srcu_read_lock(&vcpu->kvm->srcu);
 842                rc = kvmppc_rtas_hcall(vcpu);
 843                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 844
 845                if (rc == -ENOENT)
 846                        return RESUME_HOST;
 847                else if (rc == 0)
 848                        break;
 849
 850                /* Send the error out to userspace via KVM_RUN */
 851                return rc;
 852        case H_LOGICAL_CI_LOAD:
 853                ret = kvmppc_h_logical_ci_load(vcpu);
 854                if (ret == H_TOO_HARD)
 855                        return RESUME_HOST;
 856                break;
 857        case H_LOGICAL_CI_STORE:
 858                ret = kvmppc_h_logical_ci_store(vcpu);
 859                if (ret == H_TOO_HARD)
 860                        return RESUME_HOST;
 861                break;
 862        case H_SET_MODE:
 863                ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
 864                                        kvmppc_get_gpr(vcpu, 5),
 865                                        kvmppc_get_gpr(vcpu, 6),
 866                                        kvmppc_get_gpr(vcpu, 7));
 867                if (ret == H_TOO_HARD)
 868                        return RESUME_HOST;
 869                break;
 870        case H_XIRR:
 871        case H_CPPR:
 872        case H_EOI:
 873        case H_IPI:
 874        case H_IPOLL:
 875        case H_XIRR_X:
 876                if (kvmppc_xics_enabled(vcpu)) {
 877                        if (xive_enabled()) {
 878                                ret = H_NOT_AVAILABLE;
 879                                return RESUME_GUEST;
 880                        }
 881                        ret = kvmppc_xics_hcall(vcpu, req);
 882                        break;
 883                }
 884                return RESUME_HOST;
 885        case H_PUT_TCE:
 886                ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 887                                                kvmppc_get_gpr(vcpu, 5),
 888                                                kvmppc_get_gpr(vcpu, 6));
 889                if (ret == H_TOO_HARD)
 890                        return RESUME_HOST;
 891                break;
 892        case H_PUT_TCE_INDIRECT:
 893                ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
 894                                                kvmppc_get_gpr(vcpu, 5),
 895                                                kvmppc_get_gpr(vcpu, 6),
 896                                                kvmppc_get_gpr(vcpu, 7));
 897                if (ret == H_TOO_HARD)
 898                        return RESUME_HOST;
 899                break;
 900        case H_STUFF_TCE:
 901                ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
 902                                                kvmppc_get_gpr(vcpu, 5),
 903                                                kvmppc_get_gpr(vcpu, 6),
 904                                                kvmppc_get_gpr(vcpu, 7));
 905                if (ret == H_TOO_HARD)
 906                        return RESUME_HOST;
 907                break;
 908        default:
 909                return RESUME_HOST;
 910        }
 911        kvmppc_set_gpr(vcpu, 3, ret);
 912        vcpu->arch.hcall_needed = 0;
 913        return RESUME_GUEST;
 914}
 915
 916static int kvmppc_hcall_impl_hv(unsigned long cmd)
 917{
 918        switch (cmd) {
 919        case H_CEDE:
 920        case H_PROD:
 921        case H_CONFER:
 922        case H_REGISTER_VPA:
 923        case H_SET_MODE:
 924        case H_LOGICAL_CI_LOAD:
 925        case H_LOGICAL_CI_STORE:
 926#ifdef CONFIG_KVM_XICS
 927        case H_XIRR:
 928        case H_CPPR:
 929        case H_EOI:
 930        case H_IPI:
 931        case H_IPOLL:
 932        case H_XIRR_X:
 933#endif
 934                return 1;
 935        }
 936
 937        /* See if it's in the real-mode table */
 938        return kvmppc_hcall_impl_hv_realmode(cmd);
 939}
 940
 941static int kvmppc_emulate_debug_inst(struct kvm_run *run,
 942                                        struct kvm_vcpu *vcpu)
 943{
 944        u32 last_inst;
 945
 946        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 947                                        EMULATE_DONE) {
 948                /*
 949                 * Fetch failed, so return to guest and
 950                 * try executing it again.
 951                 */
 952                return RESUME_GUEST;
 953        }
 954
 955        if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
 956                run->exit_reason = KVM_EXIT_DEBUG;
 957                run->debug.arch.address = kvmppc_get_pc(vcpu);
 958                return RESUME_HOST;
 959        } else {
 960                kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
 961                return RESUME_GUEST;
 962        }
 963}
 964
 965static void do_nothing(void *x)
 966{
 967}
 968
 969static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
 970{
 971        int thr, cpu, pcpu, nthreads;
 972        struct kvm_vcpu *v;
 973        unsigned long dpdes;
 974
 975        nthreads = vcpu->kvm->arch.emul_smt_mode;
 976        dpdes = 0;
 977        cpu = vcpu->vcpu_id & ~(nthreads - 1);
 978        for (thr = 0; thr < nthreads; ++thr, ++cpu) {
 979                v = kvmppc_find_vcpu(vcpu->kvm, cpu);
 980                if (!v)
 981                        continue;
 982                /*
 983                 * If the vcpu is currently running on a physical cpu thread,
 984                 * interrupt it in order to pull it out of the guest briefly,
 985                 * which will update its vcore->dpdes value.
 986                 */
 987                pcpu = READ_ONCE(v->cpu);
 988                if (pcpu >= 0)
 989                        smp_call_function_single(pcpu, do_nothing, NULL, 1);
 990                if (kvmppc_doorbell_pending(v))
 991                        dpdes |= 1 << thr;
 992        }
 993        return dpdes;
 994}
 995
 996/*
 997 * On POWER9, emulate doorbell-related instructions in order to
 998 * give the guest the illusion of running on a multi-threaded core.
 999 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1000 * and mfspr DPDES.
1001 */
1002static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1003{
1004        u32 inst, rb, thr;
1005        unsigned long arg;
1006        struct kvm *kvm = vcpu->kvm;
1007        struct kvm_vcpu *tvcpu;
1008
1009        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1010                return RESUME_GUEST;
1011        if (get_op(inst) != 31)
1012                return EMULATE_FAIL;
1013        rb = get_rb(inst);
1014        thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1015        switch (get_xop(inst)) {
1016        case OP_31_XOP_MSGSNDP:
1017                arg = kvmppc_get_gpr(vcpu, rb);
1018                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1019                        break;
1020                arg &= 0x3f;
1021                if (arg >= kvm->arch.emul_smt_mode)
1022                        break;
1023                tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1024                if (!tvcpu)
1025                        break;
1026                if (!tvcpu->arch.doorbell_request) {
1027                        tvcpu->arch.doorbell_request = 1;
1028                        kvmppc_fast_vcpu_kick_hv(tvcpu);
1029                }
1030                break;
1031        case OP_31_XOP_MSGCLRP:
1032                arg = kvmppc_get_gpr(vcpu, rb);
1033                if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1034                        break;
1035                vcpu->arch.vcore->dpdes = 0;
1036                vcpu->arch.doorbell_request = 0;
1037                break;
1038        case OP_31_XOP_MFSPR:
1039                switch (get_sprn(inst)) {
1040                case SPRN_TIR:
1041                        arg = thr;
1042                        break;
1043                case SPRN_DPDES:
1044                        arg = kvmppc_read_dpdes(vcpu);
1045                        break;
1046                default:
1047                        return EMULATE_FAIL;
1048                }
1049                kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1050                break;
1051        default:
1052                return EMULATE_FAIL;
1053        }
1054        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1055        return RESUME_GUEST;
1056}
1057
1058/* Called with vcpu->arch.vcore->lock held */
1059static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060                                 struct task_struct *tsk)
1061{
1062        int r = RESUME_HOST;
1063
1064        vcpu->stat.sum_exits++;
1065
1066        /*
1067         * This can happen if an interrupt occurs in the last stages
1068         * of guest entry or the first stages of guest exit (i.e. after
1069         * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1070         * and before setting it to KVM_GUEST_MODE_HOST_HV).
1071         * That can happen due to a bug, or due to a machine check
1072         * occurring at just the wrong time.
1073         */
1074        if (vcpu->arch.shregs.msr & MSR_HV) {
1075                printk(KERN_EMERG "KVM trap in HV mode!\n");
1076                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1077                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1078                        vcpu->arch.shregs.msr);
1079                kvmppc_dump_regs(vcpu);
1080                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1081                run->hw.hardware_exit_reason = vcpu->arch.trap;
1082                return RESUME_HOST;
1083        }
1084        run->exit_reason = KVM_EXIT_UNKNOWN;
1085        run->ready_for_interrupt_injection = 1;
1086        switch (vcpu->arch.trap) {
1087        /* We're good on these - the host merely wanted to get our attention */
1088        case BOOK3S_INTERRUPT_HV_DECREMENTER:
1089                vcpu->stat.dec_exits++;
1090                r = RESUME_GUEST;
1091                break;
1092        case BOOK3S_INTERRUPT_EXTERNAL:
1093        case BOOK3S_INTERRUPT_H_DOORBELL:
1094        case BOOK3S_INTERRUPT_H_VIRT:
1095                vcpu->stat.ext_intr_exits++;
1096                r = RESUME_GUEST;
1097                break;
1098        /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099        case BOOK3S_INTERRUPT_HMI:
1100        case BOOK3S_INTERRUPT_PERFMON:
1101        case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102                r = RESUME_GUEST;
1103                break;
1104        case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105                /* Exit to guest with KVM_EXIT_NMI as exit reason */
1106                run->exit_reason = KVM_EXIT_NMI;
1107                run->hw.hardware_exit_reason = vcpu->arch.trap;
1108                /* Clear out the old NMI status from run->flags */
1109                run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1110                /* Now set the NMI status */
1111                if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1112                        run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1113                else
1114                        run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1115
1116                r = RESUME_HOST;
1117                /* Print the MCE event to host console. */
1118                machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119                break;
1120        case BOOK3S_INTERRUPT_PROGRAM:
1121        {
1122                ulong flags;
1123                /*
1124                 * Normally program interrupts are delivered directly
1125                 * to the guest by the hardware, but we can get here
1126                 * as a result of a hypervisor emulation interrupt
1127                 * (e40) getting turned into a 700 by BML RTAS.
1128                 */
1129                flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1130                kvmppc_core_queue_program(vcpu, flags);
1131                r = RESUME_GUEST;
1132                break;
1133        }
1134        case BOOK3S_INTERRUPT_SYSCALL:
1135        {
1136                /* hcall - punt to userspace */
1137                int i;
1138
1139                /* hypercall with MSR_PR has already been handled in rmode,
1140                 * and never reaches here.
1141                 */
1142
1143                run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1144                for (i = 0; i < 9; ++i)
1145                        run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1146                run->exit_reason = KVM_EXIT_PAPR_HCALL;
1147                vcpu->arch.hcall_needed = 1;
1148                r = RESUME_HOST;
1149                break;
1150        }
1151        /*
1152         * We get these next two if the guest accesses a page which it thinks
1153         * it has mapped but which is not actually present, either because
1154         * it is for an emulated I/O device or because the corresonding
1155         * host page has been paged out.  Any other HDSI/HISI interrupts
1156         * have been handled already.
1157         */
1158        case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159                r = RESUME_PAGE_FAULT;
1160                break;
1161        case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162                vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1163                vcpu->arch.fault_dsisr = 0;
1164                r = RESUME_PAGE_FAULT;
1165                break;
1166        /*
1167         * This occurs if the guest executes an illegal instruction.
1168         * If the guest debug is disabled, generate a program interrupt
1169         * to the guest. If guest debug is enabled, we need to check
1170         * whether the instruction is a software breakpoint instruction.
1171         * Accordingly return to Guest or Host.
1172         */
1173        case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174                if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1175                        vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1176                                swab32(vcpu->arch.emul_inst) :
1177                                vcpu->arch.emul_inst;
1178                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1179                        /* Need vcore unlocked to call kvmppc_get_last_inst */
1180                        spin_unlock(&vcpu->arch.vcore->lock);
1181                        r = kvmppc_emulate_debug_inst(run, vcpu);
1182                        spin_lock(&vcpu->arch.vcore->lock);
1183                } else {
1184                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1185                        r = RESUME_GUEST;
1186                }
1187                break;
1188        /*
1189         * This occurs if the guest (kernel or userspace), does something that
1190         * is prohibited by HFSCR.
1191         * On POWER9, this could be a doorbell instruction that we need
1192         * to emulate.
1193         * Otherwise, we just generate a program interrupt to the guest.
1194         */
1195        case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1196                r = EMULATE_FAIL;
1197                if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1198                    cpu_has_feature(CPU_FTR_ARCH_300)) {
1199                        /* Need vcore unlocked to call kvmppc_get_last_inst */
1200                        spin_unlock(&vcpu->arch.vcore->lock);
1201                        r = kvmppc_emulate_doorbell_instr(vcpu);
1202                        spin_lock(&vcpu->arch.vcore->lock);
1203                }
1204                if (r == EMULATE_FAIL) {
1205                        kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1206                        r = RESUME_GUEST;
1207                }
1208                break;
1209        case BOOK3S_INTERRUPT_HV_RM_HARD:
1210                r = RESUME_PASSTHROUGH;
1211                break;
1212        default:
1213                kvmppc_dump_regs(vcpu);
1214                printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1215                        vcpu->arch.trap, kvmppc_get_pc(vcpu),
1216                        vcpu->arch.shregs.msr);
1217                run->hw.hardware_exit_reason = vcpu->arch.trap;
1218                r = RESUME_HOST;
1219                break;
1220        }
1221
1222        return r;
1223}
1224
1225static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1226                                            struct kvm_sregs *sregs)
1227{
1228        int i;
1229
1230        memset(sregs, 0, sizeof(struct kvm_sregs));
1231        sregs->pvr = vcpu->arch.pvr;
1232        for (i = 0; i < vcpu->arch.slb_max; i++) {
1233                sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1234                sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1235        }
1236
1237        return 0;
1238}
1239
1240static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1241                                            struct kvm_sregs *sregs)
1242{
1243        int i, j;
1244
1245        /* Only accept the same PVR as the host's, since we can't spoof it */
1246        if (sregs->pvr != vcpu->arch.pvr)
1247                return -EINVAL;
1248
1249        j = 0;
1250        for (i = 0; i < vcpu->arch.slb_nr; i++) {
1251                if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1252                        vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1253                        vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1254                        ++j;
1255                }
1256        }
1257        vcpu->arch.slb_max = j;
1258
1259        return 0;
1260}
1261
1262static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1263                bool preserve_top32)
1264{
1265        struct kvm *kvm = vcpu->kvm;
1266        struct kvmppc_vcore *vc = vcpu->arch.vcore;
1267        u64 mask;
1268
1269        mutex_lock(&kvm->lock);
1270        spin_lock(&vc->lock);
1271        /*
1272         * If ILE (interrupt little-endian) has changed, update the
1273         * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1274         */
1275        if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1276                struct kvm_vcpu *vcpu;
1277                int i;
1278
1279                kvm_for_each_vcpu(i, vcpu, kvm) {
1280                        if (vcpu->arch.vcore != vc)
1281                                continue;
1282                        if (new_lpcr & LPCR_ILE)
1283                                vcpu->arch.intr_msr |= MSR_LE;
1284                        else
1285                                vcpu->arch.intr_msr &= ~MSR_LE;
1286                }
1287        }
1288
1289        /*
1290         * Userspace can only modify DPFD (default prefetch depth),
1291         * ILE (interrupt little-endian) and TC (translation control).
1292         * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1293         */
1294        mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1295        if (cpu_has_feature(CPU_FTR_ARCH_207S))
1296                mask |= LPCR_AIL;
1297        /*
1298         * On POWER9, allow userspace to enable large decrementer for the
1299         * guest, whether or not the host has it enabled.
1300         */
1301        if (cpu_has_feature(CPU_FTR_ARCH_300))
1302                mask |= LPCR_LD;
1303
1304        /* Broken 32-bit version of LPCR must not clear top bits */
1305        if (preserve_top32)
1306                mask &= 0xFFFFFFFF;
1307        vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1308        spin_unlock(&vc->lock);
1309        mutex_unlock(&kvm->lock);
1310}
1311
1312static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1313                                 union kvmppc_one_reg *val)
1314{
1315        int r = 0;
1316        long int i;
1317
1318        switch (id) {
1319        case KVM_REG_PPC_DEBUG_INST:
1320                *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1321                break;
1322        case KVM_REG_PPC_HIOR:
1323                *val = get_reg_val(id, 0);
1324                break;
1325        case KVM_REG_PPC_DABR:
1326                *val = get_reg_val(id, vcpu->arch.dabr);
1327                break;
1328        case KVM_REG_PPC_DABRX:
1329                *val = get_reg_val(id, vcpu->arch.dabrx);
1330                break;
1331        case KVM_REG_PPC_DSCR:
1332                *val = get_reg_val(id, vcpu->arch.dscr);
1333                break;
1334        case KVM_REG_PPC_PURR:
1335                *val = get_reg_val(id, vcpu->arch.purr);
1336                break;
1337        case KVM_REG_PPC_SPURR:
1338                *val = get_reg_val(id, vcpu->arch.spurr);
1339                break;
1340        case KVM_REG_PPC_AMR:
1341                *val = get_reg_val(id, vcpu->arch.amr);
1342                break;
1343        case KVM_REG_PPC_UAMOR:
1344                *val = get_reg_val(id, vcpu->arch.uamor);
1345                break;
1346        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1347                i = id - KVM_REG_PPC_MMCR0;
1348                *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1349                break;
1350        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1351                i = id - KVM_REG_PPC_PMC1;
1352                *val = get_reg_val(id, vcpu->arch.pmc[i]);
1353                break;
1354        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1355                i = id - KVM_REG_PPC_SPMC1;
1356                *val = get_reg_val(id, vcpu->arch.spmc[i]);
1357                break;
1358        case KVM_REG_PPC_SIAR:
1359                *val = get_reg_val(id, vcpu->arch.siar);
1360                break;
1361        case KVM_REG_PPC_SDAR:
1362                *val = get_reg_val(id, vcpu->arch.sdar);
1363                break;
1364        case KVM_REG_PPC_SIER:
1365                *val = get_reg_val(id, vcpu->arch.sier);
1366                break;
1367        case KVM_REG_PPC_IAMR:
1368                *val = get_reg_val(id, vcpu->arch.iamr);
1369                break;
1370        case KVM_REG_PPC_PSPB:
1371                *val = get_reg_val(id, vcpu->arch.pspb);
1372                break;
1373        case KVM_REG_PPC_DPDES:
1374                *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1375                break;
1376        case KVM_REG_PPC_VTB:
1377                *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1378                break;
1379        case KVM_REG_PPC_DAWR:
1380                *val = get_reg_val(id, vcpu->arch.dawr);
1381                break;
1382        case KVM_REG_PPC_DAWRX:
1383                *val = get_reg_val(id, vcpu->arch.dawrx);
1384                break;
1385        case KVM_REG_PPC_CIABR:
1386                *val = get_reg_val(id, vcpu->arch.ciabr);
1387                break;
1388        case KVM_REG_PPC_CSIGR:
1389                *val = get_reg_val(id, vcpu->arch.csigr);
1390                break;
1391        case KVM_REG_PPC_TACR:
1392                *val = get_reg_val(id, vcpu->arch.tacr);
1393                break;
1394        case KVM_REG_PPC_TCSCR:
1395                *val = get_reg_val(id, vcpu->arch.tcscr);
1396                break;
1397        case KVM_REG_PPC_PID:
1398                *val = get_reg_val(id, vcpu->arch.pid);
1399                break;
1400        case KVM_REG_PPC_ACOP:
1401                *val = get_reg_val(id, vcpu->arch.acop);
1402                break;
1403        case KVM_REG_PPC_WORT:
1404                *val = get_reg_val(id, vcpu->arch.wort);
1405                break;
1406        case KVM_REG_PPC_TIDR:
1407                *val = get_reg_val(id, vcpu->arch.tid);
1408                break;
1409        case KVM_REG_PPC_PSSCR:
1410                *val = get_reg_val(id, vcpu->arch.psscr);
1411                break;
1412        case KVM_REG_PPC_VPA_ADDR:
1413                spin_lock(&vcpu->arch.vpa_update_lock);
1414                *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1415                spin_unlock(&vcpu->arch.vpa_update_lock);
1416                break;
1417        case KVM_REG_PPC_VPA_SLB:
1418                spin_lock(&vcpu->arch.vpa_update_lock);
1419                val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1420                val->vpaval.length = vcpu->arch.slb_shadow.len;
1421                spin_unlock(&vcpu->arch.vpa_update_lock);
1422                break;
1423        case KVM_REG_PPC_VPA_DTL:
1424                spin_lock(&vcpu->arch.vpa_update_lock);
1425                val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1426                val->vpaval.length = vcpu->arch.dtl.len;
1427                spin_unlock(&vcpu->arch.vpa_update_lock);
1428                break;
1429        case KVM_REG_PPC_TB_OFFSET:
1430                *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1431                break;
1432        case KVM_REG_PPC_LPCR:
1433        case KVM_REG_PPC_LPCR_64:
1434                *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1435                break;
1436        case KVM_REG_PPC_PPR:
1437                *val = get_reg_val(id, vcpu->arch.ppr);
1438                break;
1439#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1440        case KVM_REG_PPC_TFHAR:
1441                *val = get_reg_val(id, vcpu->arch.tfhar);
1442                break;
1443        case KVM_REG_PPC_TFIAR:
1444                *val = get_reg_val(id, vcpu->arch.tfiar);
1445                break;
1446        case KVM_REG_PPC_TEXASR:
1447                *val = get_reg_val(id, vcpu->arch.texasr);
1448                break;
1449        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1450                i = id - KVM_REG_PPC_TM_GPR0;
1451                *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1452                break;
1453        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1454        {
1455                int j;
1456                i = id - KVM_REG_PPC_TM_VSR0;
1457                if (i < 32)
1458                        for (j = 0; j < TS_FPRWIDTH; j++)
1459                                val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1460                else {
1461                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1462                                val->vval = vcpu->arch.vr_tm.vr[i-32];
1463                        else
1464                                r = -ENXIO;
1465                }
1466                break;
1467        }
1468        case KVM_REG_PPC_TM_CR:
1469                *val = get_reg_val(id, vcpu->arch.cr_tm);
1470                break;
1471        case KVM_REG_PPC_TM_XER:
1472                *val = get_reg_val(id, vcpu->arch.xer_tm);
1473                break;
1474        case KVM_REG_PPC_TM_LR:
1475                *val = get_reg_val(id, vcpu->arch.lr_tm);
1476                break;
1477        case KVM_REG_PPC_TM_CTR:
1478                *val = get_reg_val(id, vcpu->arch.ctr_tm);
1479                break;
1480        case KVM_REG_PPC_TM_FPSCR:
1481                *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1482                break;
1483        case KVM_REG_PPC_TM_AMR:
1484                *val = get_reg_val(id, vcpu->arch.amr_tm);
1485                break;
1486        case KVM_REG_PPC_TM_PPR:
1487                *val = get_reg_val(id, vcpu->arch.ppr_tm);
1488                break;
1489        case KVM_REG_PPC_TM_VRSAVE:
1490                *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1491                break;
1492        case KVM_REG_PPC_TM_VSCR:
1493                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1494                        *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1495                else
1496                        r = -ENXIO;
1497                break;
1498        case KVM_REG_PPC_TM_DSCR:
1499                *val = get_reg_val(id, vcpu->arch.dscr_tm);
1500                break;
1501        case KVM_REG_PPC_TM_TAR:
1502                *val = get_reg_val(id, vcpu->arch.tar_tm);
1503                break;
1504#endif
1505        case KVM_REG_PPC_ARCH_COMPAT:
1506                *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1507                break;
1508        case KVM_REG_PPC_DEC_EXPIRY:
1509                *val = get_reg_val(id, vcpu->arch.dec_expires +
1510                                   vcpu->arch.vcore->tb_offset);
1511                break;
1512        default:
1513                r = -EINVAL;
1514                break;
1515        }
1516
1517        return r;
1518}
1519
1520static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1521                                 union kvmppc_one_reg *val)
1522{
1523        int r = 0;
1524        long int i;
1525        unsigned long addr, len;
1526
1527        switch (id) {
1528        case KVM_REG_PPC_HIOR:
1529                /* Only allow this to be set to zero */
1530                if (set_reg_val(id, *val))
1531                        r = -EINVAL;
1532                break;
1533        case KVM_REG_PPC_DABR:
1534                vcpu->arch.dabr = set_reg_val(id, *val);
1535                break;
1536        case KVM_REG_PPC_DABRX:
1537                vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1538                break;
1539        case KVM_REG_PPC_DSCR:
1540                vcpu->arch.dscr = set_reg_val(id, *val);
1541                break;
1542        case KVM_REG_PPC_PURR:
1543                vcpu->arch.purr = set_reg_val(id, *val);
1544                break;
1545        case KVM_REG_PPC_SPURR:
1546                vcpu->arch.spurr = set_reg_val(id, *val);
1547                break;
1548        case KVM_REG_PPC_AMR:
1549                vcpu->arch.amr = set_reg_val(id, *val);
1550                break;
1551        case KVM_REG_PPC_UAMOR:
1552                vcpu->arch.uamor = set_reg_val(id, *val);
1553                break;
1554        case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1555                i = id - KVM_REG_PPC_MMCR0;
1556                vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1557                break;
1558        case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1559                i = id - KVM_REG_PPC_PMC1;
1560                vcpu->arch.pmc[i] = set_reg_val(id, *val);
1561                break;
1562        case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1563                i = id - KVM_REG_PPC_SPMC1;
1564                vcpu->arch.spmc[i] = set_reg_val(id, *val);
1565                break;
1566        case KVM_REG_PPC_SIAR:
1567                vcpu->arch.siar = set_reg_val(id, *val);
1568                break;
1569        case KVM_REG_PPC_SDAR:
1570                vcpu->arch.sdar = set_reg_val(id, *val);
1571                break;
1572        case KVM_REG_PPC_SIER:
1573                vcpu->arch.sier = set_reg_val(id, *val);
1574                break;
1575        case KVM_REG_PPC_IAMR:
1576                vcpu->arch.iamr = set_reg_val(id, *val);
1577                break;
1578        case KVM_REG_PPC_PSPB:
1579                vcpu->arch.pspb = set_reg_val(id, *val);
1580                break;
1581        case KVM_REG_PPC_DPDES:
1582                vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1583                break;
1584        case KVM_REG_PPC_VTB:
1585                vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1586                break;
1587        case KVM_REG_PPC_DAWR:
1588                vcpu->arch.dawr = set_reg_val(id, *val);
1589                break;
1590        case KVM_REG_PPC_DAWRX:
1591                vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1592                break;
1593        case KVM_REG_PPC_CIABR:
1594                vcpu->arch.ciabr = set_reg_val(id, *val);
1595                /* Don't allow setting breakpoints in hypervisor code */
1596                if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1597                        vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1598                break;
1599        case KVM_REG_PPC_CSIGR:
1600                vcpu->arch.csigr = set_reg_val(id, *val);
1601                break;
1602        case KVM_REG_PPC_TACR:
1603                vcpu->arch.tacr = set_reg_val(id, *val);
1604                break;
1605        case KVM_REG_PPC_TCSCR:
1606                vcpu->arch.tcscr = set_reg_val(id, *val);
1607                break;
1608        case KVM_REG_PPC_PID:
1609                vcpu->arch.pid = set_reg_val(id, *val);
1610                break;
1611        case KVM_REG_PPC_ACOP:
1612                vcpu->arch.acop = set_reg_val(id, *val);
1613                break;
1614        case KVM_REG_PPC_WORT:
1615                vcpu->arch.wort = set_reg_val(id, *val);
1616                break;
1617        case KVM_REG_PPC_TIDR:
1618                vcpu->arch.tid = set_reg_val(id, *val);
1619                break;
1620        case KVM_REG_PPC_PSSCR:
1621                vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1622                break;
1623        case KVM_REG_PPC_VPA_ADDR:
1624                addr = set_reg_val(id, *val);
1625                r = -EINVAL;
1626                if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1627                              vcpu->arch.dtl.next_gpa))
1628                        break;
1629                r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1630                break;
1631        case KVM_REG_PPC_VPA_SLB:
1632                addr = val->vpaval.addr;
1633                len = val->vpaval.length;
1634                r = -EINVAL;
1635                if (addr && !vcpu->arch.vpa.next_gpa)
1636                        break;
1637                r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1638                break;
1639        case KVM_REG_PPC_VPA_DTL:
1640                addr = val->vpaval.addr;
1641                len = val->vpaval.length;
1642                r = -EINVAL;
1643                if (addr && (len < sizeof(struct dtl_entry) ||
1644                             !vcpu->arch.vpa.next_gpa))
1645                        break;
1646                len -= len % sizeof(struct dtl_entry);
1647                r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1648                break;
1649        case KVM_REG_PPC_TB_OFFSET:
1650                /*
1651                 * POWER9 DD1 has an erratum where writing TBU40 causes
1652                 * the timebase to lose ticks.  So we don't let the
1653                 * timebase offset be changed on P9 DD1.  (It is
1654                 * initialized to zero.)
1655                 */
1656                if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1657                        break;
1658                /* round up to multiple of 2^24 */
1659                vcpu->arch.vcore->tb_offset =
1660                        ALIGN(set_reg_val(id, *val), 1UL << 24);
1661                break;
1662        case KVM_REG_PPC_LPCR:
1663                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1664                break;
1665        case KVM_REG_PPC_LPCR_64:
1666                kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1667                break;
1668        case KVM_REG_PPC_PPR:
1669                vcpu->arch.ppr = set_reg_val(id, *val);
1670                break;
1671#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1672        case KVM_REG_PPC_TFHAR:
1673                vcpu->arch.tfhar = set_reg_val(id, *val);
1674                break;
1675        case KVM_REG_PPC_TFIAR:
1676                vcpu->arch.tfiar = set_reg_val(id, *val);
1677                break;
1678        case KVM_REG_PPC_TEXASR:
1679                vcpu->arch.texasr = set_reg_val(id, *val);
1680                break;
1681        case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1682                i = id - KVM_REG_PPC_TM_GPR0;
1683                vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1684                break;
1685        case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1686        {
1687                int j;
1688                i = id - KVM_REG_PPC_TM_VSR0;
1689                if (i < 32)
1690                        for (j = 0; j < TS_FPRWIDTH; j++)
1691                                vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1692                else
1693                        if (cpu_has_feature(CPU_FTR_ALTIVEC))
1694                                vcpu->arch.vr_tm.vr[i-32] = val->vval;
1695                        else
1696                                r = -ENXIO;
1697                break;
1698        }
1699        case KVM_REG_PPC_TM_CR:
1700                vcpu->arch.cr_tm = set_reg_val(id, *val);
1701                break;
1702        case KVM_REG_PPC_TM_XER:
1703                vcpu->arch.xer_tm = set_reg_val(id, *val);
1704                break;
1705        case KVM_REG_PPC_TM_LR:
1706                vcpu->arch.lr_tm = set_reg_val(id, *val);
1707                break;
1708        case KVM_REG_PPC_TM_CTR:
1709                vcpu->arch.ctr_tm = set_reg_val(id, *val);
1710                break;
1711        case KVM_REG_PPC_TM_FPSCR:
1712                vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1713                break;
1714        case KVM_REG_PPC_TM_AMR:
1715                vcpu->arch.amr_tm = set_reg_val(id, *val);
1716                break;
1717        case KVM_REG_PPC_TM_PPR:
1718                vcpu->arch.ppr_tm = set_reg_val(id, *val);
1719                break;
1720        case KVM_REG_PPC_TM_VRSAVE:
1721                vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1722                break;
1723        case KVM_REG_PPC_TM_VSCR:
1724                if (cpu_has_feature(CPU_FTR_ALTIVEC))
1725                        vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1726                else
1727                        r = - ENXIO;
1728                break;
1729        case KVM_REG_PPC_TM_DSCR:
1730                vcpu->arch.dscr_tm = set_reg_val(id, *val);
1731                break;
1732        case KVM_REG_PPC_TM_TAR:
1733                vcpu->arch.tar_tm = set_reg_val(id, *val);
1734                break;
1735#endif
1736        case KVM_REG_PPC_ARCH_COMPAT:
1737                r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1738                break;
1739        case KVM_REG_PPC_DEC_EXPIRY:
1740                vcpu->arch.dec_expires = set_reg_val(id, *val) -
1741                        vcpu->arch.vcore->tb_offset;
1742                break;
1743        default:
1744                r = -EINVAL;
1745                break;
1746        }
1747
1748        return r;
1749}
1750
1751/*
1752 * On POWER9, threads are independent and can be in different partitions.
1753 * Therefore we consider each thread to be a subcore.
1754 * There is a restriction that all threads have to be in the same
1755 * MMU mode (radix or HPT), unfortunately, but since we only support
1756 * HPT guests on a HPT host so far, that isn't an impediment yet.
1757 */
1758static int threads_per_vcore(struct kvm *kvm)
1759{
1760        if (kvm->arch.threads_indep)
1761                return 1;
1762        return threads_per_subcore;
1763}
1764
1765static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1766{
1767        struct kvmppc_vcore *vcore;
1768
1769        vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1770
1771        if (vcore == NULL)
1772                return NULL;
1773
1774        spin_lock_init(&vcore->lock);
1775        spin_lock_init(&vcore->stoltb_lock);
1776        init_swait_queue_head(&vcore->wq);
1777        vcore->preempt_tb = TB_NIL;
1778        vcore->lpcr = kvm->arch.lpcr;
1779        vcore->first_vcpuid = core * kvm->arch.smt_mode;
1780        vcore->kvm = kvm;
1781        INIT_LIST_HEAD(&vcore->preempt_list);
1782
1783        return vcore;
1784}
1785
1786#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1787static struct debugfs_timings_element {
1788        const char *name;
1789        size_t offset;
1790} timings[] = {
1791        {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1792        {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1793        {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1794        {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1795        {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1796};
1797
1798#define N_TIMINGS       (ARRAY_SIZE(timings))
1799
1800struct debugfs_timings_state {
1801        struct kvm_vcpu *vcpu;
1802        unsigned int    buflen;
1803        char            buf[N_TIMINGS * 100];
1804};
1805
1806static int debugfs_timings_open(struct inode *inode, struct file *file)
1807{
1808        struct kvm_vcpu *vcpu = inode->i_private;
1809        struct debugfs_timings_state *p;
1810
1811        p = kzalloc(sizeof(*p), GFP_KERNEL);
1812        if (!p)
1813                return -ENOMEM;
1814
1815        kvm_get_kvm(vcpu->kvm);
1816        p->vcpu = vcpu;
1817        file->private_data = p;
1818
1819        return nonseekable_open(inode, file);
1820}
1821
1822static int debugfs_timings_release(struct inode *inode, struct file *file)
1823{
1824        struct debugfs_timings_state *p = file->private_data;
1825
1826        kvm_put_kvm(p->vcpu->kvm);
1827        kfree(p);
1828        return 0;
1829}
1830
1831static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1832                                    size_t len, loff_t *ppos)
1833{
1834        struct debugfs_timings_state *p = file->private_data;
1835        struct kvm_vcpu *vcpu = p->vcpu;
1836        char *s, *buf_end;
1837        struct kvmhv_tb_accumulator tb;
1838        u64 count;
1839        loff_t pos;
1840        ssize_t n;
1841        int i, loops;
1842        bool ok;
1843
1844        if (!p->buflen) {
1845                s = p->buf;
1846                buf_end = s + sizeof(p->buf);
1847                for (i = 0; i < N_TIMINGS; ++i) {
1848                        struct kvmhv_tb_accumulator *acc;
1849
1850                        acc = (struct kvmhv_tb_accumulator *)
1851                                ((unsigned long)vcpu + timings[i].offset);
1852                        ok = false;
1853                        for (loops = 0; loops < 1000; ++loops) {
1854                                count = acc->seqcount;
1855                                if (!(count & 1)) {
1856                                        smp_rmb();
1857                                        tb = *acc;
1858                                        smp_rmb();
1859                                        if (count == acc->seqcount) {
1860                                                ok = true;
1861                                                break;
1862                                        }
1863                                }
1864                                udelay(1);
1865                        }
1866                        if (!ok)
1867                                snprintf(s, buf_end - s, "%s: stuck\n",
1868                                        timings[i].name);
1869                        else
1870                                snprintf(s, buf_end - s,
1871                                        "%s: %llu %llu %llu %llu\n",
1872                                        timings[i].name, count / 2,
1873                                        tb_to_ns(tb.tb_total),
1874                                        tb_to_ns(tb.tb_min),
1875                                        tb_to_ns(tb.tb_max));
1876                        s += strlen(s);
1877                }
1878                p->buflen = s - p->buf;
1879        }
1880
1881        pos = *ppos;
1882        if (pos >= p->buflen)
1883                return 0;
1884        if (len > p->buflen - pos)
1885                len = p->buflen - pos;
1886        n = copy_to_user(buf, p->buf + pos, len);
1887        if (n) {
1888                if (n == len)
1889                        return -EFAULT;
1890                len -= n;
1891        }
1892        *ppos = pos + len;
1893        return len;
1894}
1895
1896static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1897                                     size_t len, loff_t *ppos)
1898{
1899        return -EACCES;
1900}
1901
1902static const struct file_operations debugfs_timings_ops = {
1903        .owner   = THIS_MODULE,
1904        .open    = debugfs_timings_open,
1905        .release = debugfs_timings_release,
1906        .read    = debugfs_timings_read,
1907        .write   = debugfs_timings_write,
1908        .llseek  = generic_file_llseek,
1909};
1910
1911/* Create a debugfs directory for the vcpu */
1912static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1913{
1914        char buf[16];
1915        struct kvm *kvm = vcpu->kvm;
1916
1917        snprintf(buf, sizeof(buf), "vcpu%u", id);
1918        if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1919                return;
1920        vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1921        if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1922                return;
1923        vcpu->arch.debugfs_timings =
1924                debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1925                                    vcpu, &debugfs_timings_ops);
1926}
1927
1928#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1929static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1930{
1931}
1932#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1933
1934static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1935                                                   unsigned int id)
1936{
1937        struct kvm_vcpu *vcpu;
1938        int err;
1939        int core;
1940        struct kvmppc_vcore *vcore;
1941
1942        err = -ENOMEM;
1943        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1944        if (!vcpu)
1945                goto out;
1946
1947        err = kvm_vcpu_init(vcpu, kvm, id);
1948        if (err)
1949                goto free_vcpu;
1950
1951        vcpu->arch.shared = &vcpu->arch.shregs;
1952#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1953        /*
1954         * The shared struct is never shared on HV,
1955         * so we can always use host endianness
1956         */
1957#ifdef __BIG_ENDIAN__
1958        vcpu->arch.shared_big_endian = true;
1959#else
1960        vcpu->arch.shared_big_endian = false;
1961#endif
1962#endif
1963        vcpu->arch.mmcr[0] = MMCR0_FC;
1964        vcpu->arch.ctrl = CTRL_RUNLATCH;
1965        /* default to host PVR, since we can't spoof it */
1966        kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1967        spin_lock_init(&vcpu->arch.vpa_update_lock);
1968        spin_lock_init(&vcpu->arch.tbacct_lock);
1969        vcpu->arch.busy_preempt = TB_NIL;
1970        vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1971
1972        /*
1973         * Set the default HFSCR for the guest from the host value.
1974         * This value is only used on POWER9.
1975         * On POWER9 DD1, TM doesn't work, so we make sure to
1976         * prevent the guest from using it.
1977         * On POWER9, we want to virtualize the doorbell facility, so we
1978         * turn off the HFSCR bit, which causes those instructions to trap.
1979         */
1980        vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1981        if (!cpu_has_feature(CPU_FTR_TM))
1982                vcpu->arch.hfscr &= ~HFSCR_TM;
1983        if (cpu_has_feature(CPU_FTR_ARCH_300))
1984                vcpu->arch.hfscr &= ~HFSCR_MSGP;
1985
1986        kvmppc_mmu_book3s_hv_init(vcpu);
1987
1988        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1989
1990        init_waitqueue_head(&vcpu->arch.cpu_run);
1991
1992        mutex_lock(&kvm->lock);
1993        vcore = NULL;
1994        err = -EINVAL;
1995        core = id / kvm->arch.smt_mode;
1996        if (core < KVM_MAX_VCORES) {
1997                vcore = kvm->arch.vcores[core];
1998                if (!vcore) {
1999                        err = -ENOMEM;
2000                        vcore = kvmppc_vcore_create(kvm, core);
2001                        kvm->arch.vcores[core] = vcore;
2002                        kvm->arch.online_vcores++;
2003                }
2004        }
2005        mutex_unlock(&kvm->lock);
2006
2007        if (!vcore)
2008                goto free_vcpu;
2009
2010        spin_lock(&vcore->lock);
2011        ++vcore->num_threads;
2012        spin_unlock(&vcore->lock);
2013        vcpu->arch.vcore = vcore;
2014        vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2015        vcpu->arch.thread_cpu = -1;
2016        vcpu->arch.prev_cpu = -1;
2017
2018        vcpu->arch.cpu_type = KVM_CPU_3S_64;
2019        kvmppc_sanity_check(vcpu);
2020
2021        debugfs_vcpu_init(vcpu, id);
2022
2023        return vcpu;
2024
2025free_vcpu:
2026        kmem_cache_free(kvm_vcpu_cache, vcpu);
2027out:
2028        return ERR_PTR(err);
2029}
2030
2031static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2032                              unsigned long flags)
2033{
2034        int err;
2035        int esmt = 0;
2036
2037        if (flags)
2038                return -EINVAL;
2039        if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2040                return -EINVAL;
2041        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2042                /*
2043                 * On POWER8 (or POWER7), the threading mode is "strict",
2044                 * so we pack smt_mode vcpus per vcore.
2045                 */
2046                if (smt_mode > threads_per_subcore)
2047                        return -EINVAL;
2048        } else {
2049                /*
2050                 * On POWER9, the threading mode is "loose",
2051                 * so each vcpu gets its own vcore.
2052                 */
2053                esmt = smt_mode;
2054                smt_mode = 1;
2055        }
2056        mutex_lock(&kvm->lock);
2057        err = -EBUSY;
2058        if (!kvm->arch.online_vcores) {
2059                kvm->arch.smt_mode = smt_mode;
2060                kvm->arch.emul_smt_mode = esmt;
2061                err = 0;
2062        }
2063        mutex_unlock(&kvm->lock);
2064
2065        return err;
2066}
2067
2068static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2069{
2070        if (vpa->pinned_addr)
2071                kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2072                                        vpa->dirty);
2073}
2074
2075static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2076{
2077        spin_lock(&vcpu->arch.vpa_update_lock);
2078        unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2079        unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2080        unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2081        spin_unlock(&vcpu->arch.vpa_update_lock);
2082        kvm_vcpu_uninit(vcpu);
2083        kmem_cache_free(kvm_vcpu_cache, vcpu);
2084}
2085
2086static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2087{
2088        /* Indicate we want to get back into the guest */
2089        return 1;
2090}
2091
2092static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2093{
2094        unsigned long dec_nsec, now;
2095
2096        now = get_tb();
2097        if (now > vcpu->arch.dec_expires) {
2098                /* decrementer has already gone negative */
2099                kvmppc_core_queue_dec(vcpu);
2100                kvmppc_core_prepare_to_enter(vcpu);
2101                return;
2102        }
2103        dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2104                   / tb_ticks_per_sec;
2105        hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2106        vcpu->arch.timer_running = 1;
2107}
2108
2109static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2110{
2111        vcpu->arch.ceded = 0;
2112        if (vcpu->arch.timer_running) {
2113                hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2114                vcpu->arch.timer_running = 0;
2115        }
2116}
2117
2118extern int __kvmppc_vcore_entry(void);
2119
2120static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2121                                   struct kvm_vcpu *vcpu)
2122{
2123        u64 now;
2124
2125        if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2126                return;
2127        spin_lock_irq(&vcpu->arch.tbacct_lock);
2128        now = mftb();
2129        vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2130                vcpu->arch.stolen_logged;
2131        vcpu->arch.busy_preempt = now;
2132        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2133        spin_unlock_irq(&vcpu->arch.tbacct_lock);
2134        --vc->n_runnable;
2135        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2136}
2137
2138static int kvmppc_grab_hwthread(int cpu)
2139{
2140        struct paca_struct *tpaca;
2141        long timeout = 10000;
2142
2143        tpaca = &paca[cpu];
2144
2145        /* Ensure the thread won't go into the kernel if it wakes */
2146        tpaca->kvm_hstate.kvm_vcpu = NULL;
2147        tpaca->kvm_hstate.kvm_vcore = NULL;
2148        tpaca->kvm_hstate.napping = 0;
2149        smp_wmb();
2150        tpaca->kvm_hstate.hwthread_req = 1;
2151
2152        /*
2153         * If the thread is already executing in the kernel (e.g. handling
2154         * a stray interrupt), wait for it to get back to nap mode.
2155         * The smp_mb() is to ensure that our setting of hwthread_req
2156         * is visible before we look at hwthread_state, so if this
2157         * races with the code at system_reset_pSeries and the thread
2158         * misses our setting of hwthread_req, we are sure to see its
2159         * setting of hwthread_state, and vice versa.
2160         */
2161        smp_mb();
2162        while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2163                if (--timeout <= 0) {
2164                        pr_err("KVM: couldn't grab cpu %d\n", cpu);
2165                        return -EBUSY;
2166                }
2167                udelay(1);
2168        }
2169        return 0;
2170}
2171
2172static void kvmppc_release_hwthread(int cpu)
2173{
2174        struct paca_struct *tpaca;
2175
2176        tpaca = &paca[cpu];
2177        tpaca->kvm_hstate.hwthread_req = 0;
2178        tpaca->kvm_hstate.kvm_vcpu = NULL;
2179        tpaca->kvm_hstate.kvm_vcore = NULL;
2180        tpaca->kvm_hstate.kvm_split_mode = NULL;
2181}
2182
2183static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2184{
2185        int i;
2186
2187        cpu = cpu_first_thread_sibling(cpu);
2188        cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2189        /*
2190         * Make sure setting of bit in need_tlb_flush precedes
2191         * testing of cpu_in_guest bits.  The matching barrier on
2192         * the other side is the first smp_mb() in kvmppc_run_core().
2193         */
2194        smp_mb();
2195        for (i = 0; i < threads_per_core; ++i)
2196                if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2197                        smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2198}
2199
2200static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2201{
2202        struct kvm *kvm = vcpu->kvm;
2203
2204        /*
2205         * With radix, the guest can do TLB invalidations itself,
2206         * and it could choose to use the local form (tlbiel) if
2207         * it is invalidating a translation that has only ever been
2208         * used on one vcpu.  However, that doesn't mean it has
2209         * only ever been used on one physical cpu, since vcpus
2210         * can move around between pcpus.  To cope with this, when
2211         * a vcpu moves from one pcpu to another, we need to tell
2212         * any vcpus running on the same core as this vcpu previously
2213         * ran to flush the TLB.  The TLB is shared between threads,
2214         * so we use a single bit in .need_tlb_flush for all 4 threads.
2215         */
2216        if (vcpu->arch.prev_cpu != pcpu) {
2217                if (vcpu->arch.prev_cpu >= 0 &&
2218                    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2219                    cpu_first_thread_sibling(pcpu))
2220                        radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2221                vcpu->arch.prev_cpu = pcpu;
2222        }
2223}
2224
2225static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2226{
2227        int cpu;
2228        struct paca_struct *tpaca;
2229        struct kvm *kvm = vc->kvm;
2230
2231        cpu = vc->pcpu;
2232        if (vcpu) {
2233                if (vcpu->arch.timer_running) {
2234                        hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2235                        vcpu->arch.timer_running = 0;
2236                }
2237                cpu += vcpu->arch.ptid;
2238                vcpu->cpu = vc->pcpu;
2239                vcpu->arch.thread_cpu = cpu;
2240                cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2241        }
2242        tpaca = &paca[cpu];
2243        tpaca->kvm_hstate.kvm_vcpu = vcpu;
2244        tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2245        /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2246        smp_wmb();
2247        tpaca->kvm_hstate.kvm_vcore = vc;
2248        if (cpu != smp_processor_id())
2249                kvmppc_ipi_thread(cpu);
2250}
2251
2252static void kvmppc_wait_for_nap(int n_threads)
2253{
2254        int cpu = smp_processor_id();
2255        int i, loops;
2256
2257        if (n_threads <= 1)
2258                return;
2259        for (loops = 0; loops < 1000000; ++loops) {
2260                /*
2261                 * Check if all threads are finished.
2262                 * We set the vcore pointer when starting a thread
2263                 * and the thread clears it when finished, so we look
2264                 * for any threads that still have a non-NULL vcore ptr.
2265                 */
2266                for (i = 1; i < n_threads; ++i)
2267                        if (paca[cpu + i].kvm_hstate.kvm_vcore)
2268                                break;
2269                if (i == n_threads) {
2270                        HMT_medium();
2271                        return;
2272                }
2273                HMT_low();
2274        }
2275        HMT_medium();
2276        for (i = 1; i < n_threads; ++i)
2277                if (paca[cpu + i].kvm_hstate.kvm_vcore)
2278                        pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2279}
2280
2281/*
2282 * Check that we are on thread 0 and that any other threads in
2283 * this core are off-line.  Then grab the threads so they can't
2284 * enter the kernel.
2285 */
2286static int on_primary_thread(void)
2287{
2288        int cpu = smp_processor_id();
2289        int thr;
2290
2291        /* Are we on a primary subcore? */
2292        if (cpu_thread_in_subcore(cpu))
2293                return 0;
2294
2295        thr = 0;
2296        while (++thr < threads_per_subcore)
2297                if (cpu_online(cpu + thr))
2298                        return 0;
2299
2300        /* Grab all hw threads so they can't go into the kernel */
2301        for (thr = 1; thr < threads_per_subcore; ++thr) {
2302                if (kvmppc_grab_hwthread(cpu + thr)) {
2303                        /* Couldn't grab one; let the others go */
2304                        do {
2305                                kvmppc_release_hwthread(cpu + thr);
2306                        } while (--thr > 0);
2307                        return 0;
2308                }
2309        }
2310        return 1;
2311}
2312
2313/*
2314 * A list of virtual cores for each physical CPU.
2315 * These are vcores that could run but their runner VCPU tasks are
2316 * (or may be) preempted.
2317 */
2318struct preempted_vcore_list {
2319        struct list_head        list;
2320        spinlock_t              lock;
2321};
2322
2323static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2324
2325static void init_vcore_lists(void)
2326{
2327        int cpu;
2328
2329        for_each_possible_cpu(cpu) {
2330                struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2331                spin_lock_init(&lp->lock);
2332                INIT_LIST_HEAD(&lp->list);
2333        }
2334}
2335
2336static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2337{
2338        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2339
2340        vc->vcore_state = VCORE_PREEMPT;
2341        vc->pcpu = smp_processor_id();
2342        if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2343                spin_lock(&lp->lock);
2344                list_add_tail(&vc->preempt_list, &lp->list);
2345                spin_unlock(&lp->lock);
2346        }
2347
2348        /* Start accumulating stolen time */
2349        kvmppc_core_start_stolen(vc);
2350}
2351
2352static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2353{
2354        struct preempted_vcore_list *lp;
2355
2356        kvmppc_core_end_stolen(vc);
2357        if (!list_empty(&vc->preempt_list)) {
2358                lp = &per_cpu(preempted_vcores, vc->pcpu);
2359                spin_lock(&lp->lock);
2360                list_del_init(&vc->preempt_list);
2361                spin_unlock(&lp->lock);
2362        }
2363        vc->vcore_state = VCORE_INACTIVE;
2364}
2365
2366/*
2367 * This stores information about the virtual cores currently
2368 * assigned to a physical core.
2369 */
2370struct core_info {
2371        int             n_subcores;
2372        int             max_subcore_threads;
2373        int             total_threads;
2374        int             subcore_threads[MAX_SUBCORES];
2375        struct kvmppc_vcore *vc[MAX_SUBCORES];
2376};
2377
2378/*
2379 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2380 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2381 */
2382static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2383
2384static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2385{
2386        memset(cip, 0, sizeof(*cip));
2387        cip->n_subcores = 1;
2388        cip->max_subcore_threads = vc->num_threads;
2389        cip->total_threads = vc->num_threads;
2390        cip->subcore_threads[0] = vc->num_threads;
2391        cip->vc[0] = vc;
2392}
2393
2394static bool subcore_config_ok(int n_subcores, int n_threads)
2395{
2396        /*
2397         * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2398         * split-core mode, with one thread per subcore.
2399         */
2400        if (cpu_has_feature(CPU_FTR_ARCH_300))
2401                return n_subcores <= 4 && n_threads == 1;
2402
2403        /* On POWER8, can only dynamically split if unsplit to begin with */
2404        if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2405                return false;
2406        if (n_subcores > MAX_SUBCORES)
2407                return false;
2408        if (n_subcores > 1) {
2409                if (!(dynamic_mt_modes & 2))
2410                        n_subcores = 4;
2411                if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2412                        return false;
2413        }
2414
2415        return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2416}
2417
2418static void init_vcore_to_run(struct kvmppc_vcore *vc)
2419{
2420        vc->entry_exit_map = 0;
2421        vc->in_guest = 0;
2422        vc->napping_threads = 0;
2423        vc->conferring_threads = 0;
2424}
2425
2426static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2427{
2428        int n_threads = vc->num_threads;
2429        int sub;
2430
2431        if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2432                return false;
2433
2434        /* Some POWER9 chips require all threads to be in the same MMU mode */
2435        if (no_mixing_hpt_and_radix &&
2436            kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2437                return false;
2438
2439        if (n_threads < cip->max_subcore_threads)
2440                n_threads = cip->max_subcore_threads;
2441        if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2442                return false;
2443        cip->max_subcore_threads = n_threads;
2444
2445        sub = cip->n_subcores;
2446        ++cip->n_subcores;
2447        cip->total_threads += vc->num_threads;
2448        cip->subcore_threads[sub] = vc->num_threads;
2449        cip->vc[sub] = vc;
2450        init_vcore_to_run(vc);
2451        list_del_init(&vc->preempt_list);
2452
2453        return true;
2454}
2455
2456/*
2457 * Work out whether it is possible to piggyback the execution of
2458 * vcore *pvc onto the execution of the other vcores described in *cip.
2459 */
2460static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2461                          int target_threads)
2462{
2463        if (cip->total_threads + pvc->num_threads > target_threads)
2464                return false;
2465
2466        return can_dynamic_split(pvc, cip);
2467}
2468
2469static void prepare_threads(struct kvmppc_vcore *vc)
2470{
2471        int i;
2472        struct kvm_vcpu *vcpu;
2473
2474        for_each_runnable_thread(i, vcpu, vc) {
2475                if (signal_pending(vcpu->arch.run_task))
2476                        vcpu->arch.ret = -EINTR;
2477                else if (vcpu->arch.vpa.update_pending ||
2478                         vcpu->arch.slb_shadow.update_pending ||
2479                         vcpu->arch.dtl.update_pending)
2480                        vcpu->arch.ret = RESUME_GUEST;
2481                else
2482                        continue;
2483                kvmppc_remove_runnable(vc, vcpu);
2484                wake_up(&vcpu->arch.cpu_run);
2485        }
2486}
2487
2488static void collect_piggybacks(struct core_info *cip, int target_threads)
2489{
2490        struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2491        struct kvmppc_vcore *pvc, *vcnext;
2492
2493        spin_lock(&lp->lock);
2494        list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2495                if (!spin_trylock(&pvc->lock))
2496                        continue;
2497                prepare_threads(pvc);
2498                if (!pvc->n_runnable) {
2499                        list_del_init(&pvc->preempt_list);
2500                        if (pvc->runner == NULL) {
2501                                pvc->vcore_state = VCORE_INACTIVE;
2502                                kvmppc_core_end_stolen(pvc);
2503                        }
2504                        spin_unlock(&pvc->lock);
2505                        continue;
2506                }
2507                if (!can_piggyback(pvc, cip, target_threads)) {
2508                        spin_unlock(&pvc->lock);
2509                        continue;
2510                }
2511                kvmppc_core_end_stolen(pvc);
2512                pvc->vcore_state = VCORE_PIGGYBACK;
2513                if (cip->total_threads >= target_threads)
2514                        break;
2515        }
2516        spin_unlock(&lp->lock);
2517}
2518
2519static bool recheck_signals(struct core_info *cip)
2520{
2521        int sub, i;
2522        struct kvm_vcpu *vcpu;
2523
2524        for (sub = 0; sub < cip->n_subcores; ++sub)
2525                for_each_runnable_thread(i, vcpu, cip->vc[sub])
2526                        if (signal_pending(vcpu->arch.run_task))
2527                                return true;
2528        return false;
2529}
2530
2531static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2532{
2533        int still_running = 0, i;
2534        u64 now;
2535        long ret;
2536        struct kvm_vcpu *vcpu;
2537
2538        spin_lock(&vc->lock);
2539        now = get_tb();
2540        for_each_runnable_thread(i, vcpu, vc) {
2541                /* cancel pending dec exception if dec is positive */
2542                if (now < vcpu->arch.dec_expires &&
2543                    kvmppc_core_pending_dec(vcpu))
2544                        kvmppc_core_dequeue_dec(vcpu);
2545
2546                trace_kvm_guest_exit(vcpu);
2547
2548                ret = RESUME_GUEST;
2549                if (vcpu->arch.trap)
2550                        ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2551                                                    vcpu->arch.run_task);
2552
2553                vcpu->arch.ret = ret;
2554                vcpu->arch.trap = 0;
2555
2556                if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2557                        if (vcpu->arch.pending_exceptions)
2558                                kvmppc_core_prepare_to_enter(vcpu);
2559                        if (vcpu->arch.ceded)
2560                                kvmppc_set_timer(vcpu);
2561                        else
2562                                ++still_running;
2563                } else {
2564                        kvmppc_remove_runnable(vc, vcpu);
2565                        wake_up(&vcpu->arch.cpu_run);
2566                }
2567        }
2568        if (!is_master) {
2569                if (still_running > 0) {
2570                        kvmppc_vcore_preempt(vc);
2571                } else if (vc->runner) {
2572                        vc->vcore_state = VCORE_PREEMPT;
2573                        kvmppc_core_start_stolen(vc);
2574                } else {
2575                        vc->vcore_state = VCORE_INACTIVE;
2576                }
2577                if (vc->n_runnable > 0 && vc->runner == NULL) {
2578                        /* make sure there's a candidate runner awake */
2579                        i = -1;
2580                        vcpu = next_runnable_thread(vc, &i);
2581                        wake_up(&vcpu->arch.cpu_run);
2582                }
2583        }
2584        spin_unlock(&vc->lock);
2585}
2586
2587/*
2588 * Clear core from the list of active host cores as we are about to
2589 * enter the guest. Only do this if it is the primary thread of the
2590 * core (not if a subcore) that is entering the guest.
2591 */
2592static inline int kvmppc_clear_host_core(unsigned int cpu)
2593{
2594        int core;
2595
2596        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2597                return 0;
2598        /*
2599         * Memory barrier can be omitted here as we will do a smp_wmb()
2600         * later in kvmppc_start_thread and we need ensure that state is
2601         * visible to other CPUs only after we enter guest.
2602         */
2603        core = cpu >> threads_shift;
2604        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2605        return 0;
2606}
2607
2608/*
2609 * Advertise this core as an active host core since we exited the guest
2610 * Only need to do this if it is the primary thread of the core that is
2611 * exiting.
2612 */
2613static inline int kvmppc_set_host_core(unsigned int cpu)
2614{
2615        int core;
2616
2617        if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2618                return 0;
2619
2620        /*
2621         * Memory barrier can be omitted here because we do a spin_unlock
2622         * immediately after this which provides the memory barrier.
2623         */
2624        core = cpu >> threads_shift;
2625        kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2626        return 0;
2627}
2628
2629static void set_irq_happened(int trap)
2630{
2631        switch (trap) {
2632        case BOOK3S_INTERRUPT_EXTERNAL:
2633                local_paca->irq_happened |= PACA_IRQ_EE;
2634                break;
2635        case BOOK3S_INTERRUPT_H_DOORBELL:
2636                local_paca->irq_happened |= PACA_IRQ_DBELL;
2637                break;
2638        case BOOK3S_INTERRUPT_HMI:
2639                local_paca->irq_happened |= PACA_IRQ_HMI;
2640                break;
2641        case BOOK3S_INTERRUPT_SYSTEM_RESET:
2642                replay_system_reset();
2643                break;
2644        }
2645}
2646
2647/*
2648 * Run a set of guest threads on a physical core.
2649 * Called with vc->lock held.
2650 */
2651static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2652{
2653        struct kvm_vcpu *vcpu;
2654        int i;
2655        int srcu_idx;
2656        struct core_info core_info;
2657        struct kvmppc_vcore *pvc;
2658        struct kvm_split_mode split_info, *sip;
2659        int split, subcore_size, active;
2660        int sub;
2661        bool thr0_done;
2662        unsigned long cmd_bit, stat_bit;
2663        int pcpu, thr;
2664        int target_threads;
2665        int controlled_threads;
2666        int trap;
2667        bool is_power8;
2668        bool hpt_on_radix;
2669
2670        /*
2671         * Remove from the list any threads that have a signal pending
2672         * or need a VPA update done
2673         */
2674        prepare_threads(vc);
2675
2676        /* if the runner is no longer runnable, let the caller pick a new one */
2677        if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2678                return;
2679
2680        /*
2681         * Initialize *vc.
2682         */
2683        init_vcore_to_run(vc);
2684        vc->preempt_tb = TB_NIL;
2685
2686        /*
2687         * Number of threads that we will be controlling: the same as
2688         * the number of threads per subcore, except on POWER9,
2689         * where it's 1 because the threads are (mostly) independent.
2690         */
2691        controlled_threads = threads_per_vcore(vc->kvm);
2692
2693        /*
2694         * Make sure we are running on primary threads, and that secondary
2695         * threads are offline.  Also check if the number of threads in this
2696         * guest are greater than the current system threads per guest.
2697         * On POWER9, we need to be not in independent-threads mode if
2698         * this is a HPT guest on a radix host machine where the
2699         * CPU threads may not be in different MMU modes.
2700         */
2701        hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2702                !kvm_is_radix(vc->kvm);
2703        if (((controlled_threads > 1) &&
2704             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2705            (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2706                for_each_runnable_thread(i, vcpu, vc) {
2707                        vcpu->arch.ret = -EBUSY;
2708                        kvmppc_remove_runnable(vc, vcpu);
2709                        wake_up(&vcpu->arch.cpu_run);
2710                }
2711                goto out;
2712        }
2713
2714        /*
2715         * See if we could run any other vcores on the physical core
2716         * along with this one.
2717         */
2718        init_core_info(&core_info, vc);
2719        pcpu = smp_processor_id();
2720        target_threads = controlled_threads;
2721        if (target_smt_mode && target_smt_mode < target_threads)
2722                target_threads = target_smt_mode;
2723        if (vc->num_threads < target_threads)
2724                collect_piggybacks(&core_info, target_threads);
2725
2726        /*
2727         * On radix, arrange for TLB flushing if necessary.
2728         * This has to be done before disabling interrupts since
2729         * it uses smp_call_function().
2730         */
2731        pcpu = smp_processor_id();
2732        if (kvm_is_radix(vc->kvm)) {
2733                for (sub = 0; sub < core_info.n_subcores; ++sub)
2734                        for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2735                                kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2736        }
2737
2738        /*
2739         * Hard-disable interrupts, and check resched flag and signals.
2740         * If we need to reschedule or deliver a signal, clean up
2741         * and return without going into the guest(s).
2742         * If the mmu_ready flag has been cleared, don't go into the
2743         * guest because that means a HPT resize operation is in progress.
2744         */
2745        local_irq_disable();
2746        hard_irq_disable();
2747        if (lazy_irq_pending() || need_resched() ||
2748            recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2749                local_irq_enable();
2750                vc->vcore_state = VCORE_INACTIVE;
2751                /* Unlock all except the primary vcore */
2752                for (sub = 1; sub < core_info.n_subcores; ++sub) {
2753                        pvc = core_info.vc[sub];
2754                        /* Put back on to the preempted vcores list */
2755                        kvmppc_vcore_preempt(pvc);
2756                        spin_unlock(&pvc->lock);
2757                }
2758                for (i = 0; i < controlled_threads; ++i)
2759                        kvmppc_release_hwthread(pcpu + i);
2760                return;
2761        }
2762
2763        kvmppc_clear_host_core(pcpu);
2764
2765        /* Decide on micro-threading (split-core) mode */
2766        subcore_size = threads_per_subcore;
2767        cmd_bit = stat_bit = 0;
2768        split = core_info.n_subcores;
2769        sip = NULL;
2770        is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2771                && !cpu_has_feature(CPU_FTR_ARCH_300);
2772
2773        if (split > 1 || hpt_on_radix) {
2774                sip = &split_info;
2775                memset(&split_info, 0, sizeof(split_info));
2776                for (sub = 0; sub < core_info.n_subcores; ++sub)
2777                        split_info.vc[sub] = core_info.vc[sub];
2778
2779                if (is_power8) {
2780                        if (split == 2 && (dynamic_mt_modes & 2)) {
2781                                cmd_bit = HID0_POWER8_1TO2LPAR;
2782                                stat_bit = HID0_POWER8_2LPARMODE;
2783                        } else {
2784                                split = 4;
2785                                cmd_bit = HID0_POWER8_1TO4LPAR;
2786                                stat_bit = HID0_POWER8_4LPARMODE;
2787                        }
2788                        subcore_size = MAX_SMT_THREADS / split;
2789                        split_info.rpr = mfspr(SPRN_RPR);
2790                        split_info.pmmar = mfspr(SPRN_PMMAR);
2791                        split_info.ldbar = mfspr(SPRN_LDBAR);
2792                        split_info.subcore_size = subcore_size;
2793                } else {
2794                        split_info.subcore_size = 1;
2795                        if (hpt_on_radix) {
2796                                /* Use the split_info for LPCR/LPIDR changes */
2797                                split_info.lpcr_req = vc->lpcr;
2798                                split_info.lpidr_req = vc->kvm->arch.lpid;
2799                                split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2800                                split_info.do_set = 1;
2801                        }
2802                }
2803
2804                /* order writes to split_info before kvm_split_mode pointer */
2805                smp_wmb();
2806        }
2807
2808        for (thr = 0; thr < controlled_threads; ++thr) {
2809                paca[pcpu + thr].kvm_hstate.tid = thr;
2810                paca[pcpu + thr].kvm_hstate.napping = 0;
2811                paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2812        }
2813
2814        /* Initiate micro-threading (split-core) on POWER8 if required */
2815        if (cmd_bit) {
2816                unsigned long hid0 = mfspr(SPRN_HID0);
2817
2818                hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2819                mb();
2820                mtspr(SPRN_HID0, hid0);
2821                isync();
2822                for (;;) {
2823                        hid0 = mfspr(SPRN_HID0);
2824                        if (hid0 & stat_bit)
2825                                break;
2826                        cpu_relax();
2827                }
2828        }
2829
2830        /* Start all the threads */
2831        active = 0;
2832        for (sub = 0; sub < core_info.n_subcores; ++sub) {
2833                thr = is_power8 ? subcore_thread_map[sub] : sub;
2834                thr0_done = false;
2835                active |= 1 << thr;
2836                pvc = core_info.vc[sub];
2837                pvc->pcpu = pcpu + thr;
2838                for_each_runnable_thread(i, vcpu, pvc) {
2839                        kvmppc_start_thread(vcpu, pvc);
2840                        kvmppc_create_dtl_entry(vcpu, pvc);
2841                        trace_kvm_guest_enter(vcpu);
2842                        if (!vcpu->arch.ptid)
2843                                thr0_done = true;
2844                        active |= 1 << (thr + vcpu->arch.ptid);
2845                }
2846                /*
2847                 * We need to start the first thread of each subcore
2848                 * even if it doesn't have a vcpu.
2849                 */
2850                if (!thr0_done)
2851                        kvmppc_start_thread(NULL, pvc);
2852        }
2853
2854        /*
2855         * Ensure that split_info.do_nap is set after setting
2856         * the vcore pointer in the PACA of the secondaries.
2857         */
2858        smp_mb();
2859
2860        /*
2861         * When doing micro-threading, poke the inactive threads as well.
2862         * This gets them to the nap instruction after kvm_do_nap,
2863         * which reduces the time taken to unsplit later.
2864         * For POWER9 HPT guest on radix host, we need all the secondary
2865         * threads woken up so they can do the LPCR/LPIDR change.
2866         */
2867        if (cmd_bit || hpt_on_radix) {
2868                split_info.do_nap = 1;  /* ask secondaries to nap when done */
2869                for (thr = 1; thr < threads_per_subcore; ++thr)
2870                        if (!(active & (1 << thr)))
2871                                kvmppc_ipi_thread(pcpu + thr);
2872        }
2873
2874        vc->vcore_state = VCORE_RUNNING;
2875        preempt_disable();
2876
2877        trace_kvmppc_run_core(vc, 0);
2878
2879        for (sub = 0; sub < core_info.n_subcores; ++sub)
2880                spin_unlock(&core_info.vc[sub]->lock);
2881
2882        /*
2883         * Interrupts will be enabled once we get into the guest,
2884         * so tell lockdep that we're about to enable interrupts.
2885         */
2886        trace_hardirqs_on();
2887
2888        guest_enter_irqoff();
2889
2890        srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2891
2892        trap = __kvmppc_vcore_entry();
2893
2894        srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2895
2896        trace_hardirqs_off();
2897        set_irq_happened(trap);
2898
2899        spin_lock(&vc->lock);
2900        /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2901        vc->vcore_state = VCORE_EXITING;
2902
2903        /* wait for secondary threads to finish writing their state to memory */
2904        kvmppc_wait_for_nap(controlled_threads);
2905
2906        /* Return to whole-core mode if we split the core earlier */
2907        if (cmd_bit) {
2908                unsigned long hid0 = mfspr(SPRN_HID0);
2909                unsigned long loops = 0;
2910
2911                hid0 &= ~HID0_POWER8_DYNLPARDIS;
2912                stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2913                mb();
2914                mtspr(SPRN_HID0, hid0);
2915                isync();
2916                for (;;) {
2917                        hid0 = mfspr(SPRN_HID0);
2918                        if (!(hid0 & stat_bit))
2919                                break;
2920                        cpu_relax();
2921                        ++loops;
2922                }
2923        } else if (hpt_on_radix) {
2924                /* Wait for all threads to have seen final sync */
2925                for (thr = 1; thr < controlled_threads; ++thr) {
2926                        while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2927                                HMT_low();
2928                                barrier();
2929                        }
2930                        HMT_medium();
2931                }
2932        }
2933        split_info.do_nap = 0;
2934
2935        kvmppc_set_host_core(pcpu);
2936
2937        local_irq_enable();
2938        guest_exit();
2939
2940        /* Let secondaries go back to the offline loop */
2941        for (i = 0; i < controlled_threads; ++i) {
2942                kvmppc_release_hwthread(pcpu + i);
2943                if (sip && sip->napped[i])
2944                        kvmppc_ipi_thread(pcpu + i);
2945                cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2946        }
2947
2948        spin_unlock(&vc->lock);
2949
2950        /* make sure updates to secondary vcpu structs are visible now */
2951        smp_mb();
2952
2953        preempt_enable();
2954
2955        for (sub = 0; sub < core_info.n_subcores; ++sub) {
2956                pvc = core_info.vc[sub];
2957                post_guest_process(pvc, pvc == vc);
2958        }
2959
2960        spin_lock(&vc->lock);
2961
2962 out:
2963        vc->vcore_state = VCORE_INACTIVE;
2964        trace_kvmppc_run_core(vc, 1);
2965}
2966
2967/*
2968 * Wait for some other vcpu thread to execute us, and
2969 * wake us up when we need to handle something in the host.
2970 */
2971static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2972                                 struct kvm_vcpu *vcpu, int wait_state)
2973{
2974        DEFINE_WAIT(wait);
2975
2976        prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2977        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2978                spin_unlock(&vc->lock);
2979                schedule();
2980                spin_lock(&vc->lock);
2981        }
2982        finish_wait(&vcpu->arch.cpu_run, &wait);
2983}
2984
2985static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2986{
2987        /* 10us base */
2988        if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2989                vc->halt_poll_ns = 10000;
2990        else
2991                vc->halt_poll_ns *= halt_poll_ns_grow;
2992}
2993
2994static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2995{
2996        if (halt_poll_ns_shrink == 0)
2997                vc->halt_poll_ns = 0;
2998        else
2999                vc->halt_poll_ns /= halt_poll_ns_shrink;
3000}
3001
3002#ifdef CONFIG_KVM_XICS
3003static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3004{
3005        if (!xive_enabled())
3006                return false;
3007        return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3008                vcpu->arch.xive_saved_state.cppr;
3009}
3010#else
3011static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3012{
3013        return false;
3014}
3015#endif /* CONFIG_KVM_XICS */
3016
3017static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3018{
3019        if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3020            kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3021                return true;
3022
3023        return false;
3024}
3025
3026/*
3027 * Check to see if any of the runnable vcpus on the vcore have pending
3028 * exceptions or are no longer ceded
3029 */
3030static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3031{
3032        struct kvm_vcpu *vcpu;
3033        int i;
3034
3035        for_each_runnable_thread(i, vcpu, vc) {
3036                if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3037                        return 1;
3038        }
3039
3040        return 0;
3041}
3042
3043/*
3044 * All the vcpus in this vcore are idle, so wait for a decrementer
3045 * or external interrupt to one of the vcpus.  vc->lock is held.
3046 */
3047static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3048{
3049        ktime_t cur, start_poll, start_wait;
3050        int do_sleep = 1;
3051        u64 block_ns;
3052        DECLARE_SWAITQUEUE(wait);
3053
3054        /* Poll for pending exceptions and ceded state */
3055        cur = start_poll = ktime_get();
3056        if (vc->halt_poll_ns) {
3057                ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3058                ++vc->runner->stat.halt_attempted_poll;
3059
3060                vc->vcore_state = VCORE_POLLING;
3061                spin_unlock(&vc->lock);
3062
3063                do {
3064                        if (kvmppc_vcore_check_block(vc)) {
3065                                do_sleep = 0;
3066                                break;
3067                        }
3068                        cur = ktime_get();
3069                } while (single_task_running() && ktime_before(cur, stop));
3070
3071                spin_lock(&vc->lock);
3072                vc->vcore_state = VCORE_INACTIVE;
3073
3074                if (!do_sleep) {
3075                        ++vc->runner->stat.halt_successful_poll;
3076                        goto out;
3077                }
3078        }
3079
3080        prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3081
3082        if (kvmppc_vcore_check_block(vc)) {
3083                finish_swait(&vc->wq, &wait);
3084                do_sleep = 0;
3085                /* If we polled, count this as a successful poll */
3086                if (vc->halt_poll_ns)
3087                        ++vc->runner->stat.halt_successful_poll;
3088                goto out;
3089        }
3090
3091        start_wait = ktime_get();
3092
3093        vc->vcore_state = VCORE_SLEEPING;
3094        trace_kvmppc_vcore_blocked(vc, 0);
3095        spin_unlock(&vc->lock);
3096        schedule();
3097        finish_swait(&vc->wq, &wait);
3098        spin_lock(&vc->lock);
3099        vc->vcore_state = VCORE_INACTIVE;
3100        trace_kvmppc_vcore_blocked(vc, 1);
3101        ++vc->runner->stat.halt_successful_wait;
3102
3103        cur = ktime_get();
3104
3105out:
3106        block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3107
3108        /* Attribute wait time */
3109        if (do_sleep) {
3110                vc->runner->stat.halt_wait_ns +=
3111                        ktime_to_ns(cur) - ktime_to_ns(start_wait);
3112                /* Attribute failed poll time */
3113                if (vc->halt_poll_ns)
3114                        vc->runner->stat.halt_poll_fail_ns +=
3115                                ktime_to_ns(start_wait) -
3116                                ktime_to_ns(start_poll);
3117        } else {
3118                /* Attribute successful poll time */
3119                if (vc->halt_poll_ns)
3120                        vc->runner->stat.halt_poll_success_ns +=
3121                                ktime_to_ns(cur) -
3122                                ktime_to_ns(start_poll);
3123        }
3124
3125        /* Adjust poll time */
3126        if (halt_poll_ns) {
3127                if (block_ns <= vc->halt_poll_ns)
3128                        ;
3129                /* We slept and blocked for longer than the max halt time */
3130                else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3131                        shrink_halt_poll_ns(vc);
3132                /* We slept and our poll time is too small */
3133                else if (vc->halt_poll_ns < halt_poll_ns &&
3134                                block_ns < halt_poll_ns)
3135                        grow_halt_poll_ns(vc);
3136                if (vc->halt_poll_ns > halt_poll_ns)
3137                        vc->halt_poll_ns = halt_poll_ns;
3138        } else
3139                vc->halt_poll_ns = 0;
3140
3141        trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3142}
3143
3144static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3145{
3146        int r = 0;
3147        struct kvm *kvm = vcpu->kvm;
3148
3149        mutex_lock(&kvm->lock);
3150        if (!kvm->arch.mmu_ready) {
3151                if (!kvm_is_radix(kvm))
3152                        r = kvmppc_hv_setup_htab_rma(vcpu);
3153                if (!r) {
3154                        if (cpu_has_feature(CPU_FTR_ARCH_300))
3155                                kvmppc_setup_partition_table(kvm);
3156                        kvm->arch.mmu_ready = 1;
3157                }
3158        }
3159        mutex_unlock(&kvm->lock);
3160        return r;
3161}
3162
3163static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3164{
3165        int n_ceded, i, r;
3166        struct kvmppc_vcore *vc;
3167        struct kvm_vcpu *v;
3168
3169        trace_kvmppc_run_vcpu_enter(vcpu);
3170
3171        kvm_run->exit_reason = 0;
3172        vcpu->arch.ret = RESUME_GUEST;
3173        vcpu->arch.trap = 0;
3174        kvmppc_update_vpas(vcpu);
3175
3176        /*
3177         * Synchronize with other threads in this virtual core
3178         */
3179        vc = vcpu->arch.vcore;
3180        spin_lock(&vc->lock);
3181        vcpu->arch.ceded = 0;
3182        vcpu->arch.run_task = current;
3183        vcpu->arch.kvm_run = kvm_run;
3184        vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3185        vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3186        vcpu->arch.busy_preempt = TB_NIL;
3187        WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3188        ++vc->n_runnable;
3189
3190        /*
3191         * This happens the first time this is called for a vcpu.
3192         * If the vcore is already running, we may be able to start
3193         * this thread straight away and have it join in.
3194         */
3195        if (!signal_pending(current)) {
3196                if ((vc->vcore_state == VCORE_PIGGYBACK ||
3197                     vc->vcore_state == VCORE_RUNNING) &&
3198                           !VCORE_IS_EXITING(vc)) {
3199                        kvmppc_create_dtl_entry(vcpu, vc);
3200                        kvmppc_start_thread(vcpu, vc);
3201                        trace_kvm_guest_enter(vcpu);
3202                } else if (vc->vcore_state == VCORE_SLEEPING) {
3203                        swake_up(&vc->wq);
3204                }
3205
3206        }
3207
3208        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3209               !signal_pending(current)) {
3210                /* See if the MMU is ready to go */
3211                if (!vcpu->kvm->arch.mmu_ready) {
3212                        spin_unlock(&vc->lock);
3213                        r = kvmhv_setup_mmu(vcpu);
3214                        spin_lock(&vc->lock);
3215                        if (r) {
3216                                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3217                                kvm_run->fail_entry.
3218                                        hardware_entry_failure_reason = 0;
3219                                vcpu->arch.ret = r;
3220                                break;
3221                        }
3222                }
3223
3224                if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3225                        kvmppc_vcore_end_preempt(vc);
3226
3227                if (vc->vcore_state != VCORE_INACTIVE) {
3228                        kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3229                        continue;
3230                }
3231                for_each_runnable_thread(i, v, vc) {
3232                        kvmppc_core_prepare_to_enter(v);
3233                        if (signal_pending(v->arch.run_task)) {
3234                                kvmppc_remove_runnable(vc, v);
3235                                v->stat.signal_exits++;
3236                                v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3237                                v->arch.ret = -EINTR;
3238                                wake_up(&v->arch.cpu_run);
3239                        }
3240                }
3241                if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3242                        break;
3243                n_ceded = 0;
3244                for_each_runnable_thread(i, v, vc) {
3245                        if (!kvmppc_vcpu_woken(v))
3246                                n_ceded += v->arch.ceded;
3247                        else
3248                                v->arch.ceded = 0;
3249                }
3250                vc->runner = vcpu;
3251                if (n_ceded == vc->n_runnable) {
3252                        kvmppc_vcore_blocked(vc);
3253                } else if (need_resched()) {
3254                        kvmppc_vcore_preempt(vc);
3255                        /* Let something else run */
3256                        cond_resched_lock(&vc->lock);
3257                        if (vc->vcore_state == VCORE_PREEMPT)
3258                                kvmppc_vcore_end_preempt(vc);
3259                } else {
3260                        kvmppc_run_core(vc);
3261                }
3262                vc->runner = NULL;
3263        }
3264
3265        while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3266               (vc->vcore_state == VCORE_RUNNING ||
3267                vc->vcore_state == VCORE_EXITING ||
3268                vc->vcore_state == VCORE_PIGGYBACK))
3269                kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3270
3271        if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3272                kvmppc_vcore_end_preempt(vc);
3273
3274        if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3275                kvmppc_remove_runnable(vc, vcpu);
3276                vcpu->stat.signal_exits++;
3277                kvm_run->exit_reason = KVM_EXIT_INTR;
3278                vcpu->arch.ret = -EINTR;
3279        }
3280
3281        if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3282                /* Wake up some vcpu to run the core */
3283                i = -1;
3284                v = next_runnable_thread(vc, &i);
3285                wake_up(&v->arch.cpu_run);
3286        }
3287
3288        trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3289        spin_unlock(&vc->lock);
3290        return vcpu->arch.ret;
3291}
3292
3293static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3294{
3295        int r;
3296        int srcu_idx;
3297        unsigned long ebb_regs[3] = {}; /* shut up GCC */
3298        unsigned long user_tar = 0;
3299        unsigned int user_vrsave;
3300        struct kvm *kvm;
3301
3302        if (!vcpu->arch.sane) {
3303                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3304                return -EINVAL;
3305        }
3306
3307        /*
3308         * Don't allow entry with a suspended transaction, because
3309         * the guest entry/exit code will lose it.
3310         * If the guest has TM enabled, save away their TM-related SPRs
3311         * (they will get restored by the TM unavailable interrupt).
3312         */
3313#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3314        if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3315            (current->thread.regs->msr & MSR_TM)) {
3316                if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3317                        run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3318                        run->fail_entry.hardware_entry_failure_reason = 0;
3319                        return -EINVAL;
3320                }
3321                /* Enable TM so we can read the TM SPRs */
3322                mtmsr(mfmsr() | MSR_TM);
3323                current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3324                current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3325                current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3326                current->thread.regs->msr &= ~MSR_TM;
3327        }
3328#endif
3329
3330        kvmppc_core_prepare_to_enter(vcpu);
3331
3332        /* No need to go into the guest when all we'll do is come back out */
3333        if (signal_pending(current)) {
3334                run->exit_reason = KVM_EXIT_INTR;
3335                return -EINTR;
3336        }
3337
3338        kvm = vcpu->kvm;
3339        atomic_inc(&kvm->arch.vcpus_running);
3340        /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3341        smp_mb();
3342
3343        flush_all_to_thread(current);
3344
3345        /* Save userspace EBB and other register values */
3346        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3347                ebb_regs[0] = mfspr(SPRN_EBBHR);
3348                ebb_regs[1] = mfspr(SPRN_EBBRR);
3349                ebb_regs[2] = mfspr(SPRN_BESCR);
3350                user_tar = mfspr(SPRN_TAR);
3351        }
3352        user_vrsave = mfspr(SPRN_VRSAVE);
3353
3354        vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3355        vcpu->arch.pgdir = current->mm->pgd;
3356        vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3357
3358        do {
3359                r = kvmppc_run_vcpu(run, vcpu);
3360
3361                if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3362                    !(vcpu->arch.shregs.msr & MSR_PR)) {
3363                        trace_kvm_hcall_enter(vcpu);
3364                        r = kvmppc_pseries_do_hcall(vcpu);
3365                        trace_kvm_hcall_exit(vcpu, r);
3366                        kvmppc_core_prepare_to_enter(vcpu);
3367                } else if (r == RESUME_PAGE_FAULT) {
3368                        srcu_idx = srcu_read_lock(&kvm->srcu);
3369                        r = kvmppc_book3s_hv_page_fault(run, vcpu,
3370                                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3371                        srcu_read_unlock(&kvm->srcu, srcu_idx);
3372                } else if (r == RESUME_PASSTHROUGH) {
3373                        if (WARN_ON(xive_enabled()))
3374                                r = H_SUCCESS;
3375                        else
3376                                r = kvmppc_xics_rm_complete(vcpu, 0);
3377                }
3378        } while (is_kvmppc_resume_guest(r));
3379
3380        /* Restore userspace EBB and other register values */
3381        if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3382                mtspr(SPRN_EBBHR, ebb_regs[0]);
3383                mtspr(SPRN_EBBRR, ebb_regs[1]);
3384                mtspr(SPRN_BESCR, ebb_regs[2]);
3385                mtspr(SPRN_TAR, user_tar);
3386                mtspr(SPRN_FSCR, current->thread.fscr);
3387        }
3388        mtspr(SPRN_VRSAVE, user_vrsave);
3389
3390        vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3391        atomic_dec(&kvm->arch.vcpus_running);
3392        return r;
3393}
3394
3395static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3396                                     int shift, int sllp)
3397{
3398        (*sps)->page_shift = shift;
3399        (*sps)->slb_enc = sllp;
3400        (*sps)->enc[0].page_shift = shift;
3401        (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3402        /*
3403         * Add 16MB MPSS support (may get filtered out by userspace)
3404         */
3405        if (shift != 24) {
3406                int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3407                if (penc != -1) {
3408                        (*sps)->enc[1].page_shift = 24;
3409                        (*sps)->enc[1].pte_enc = penc;
3410                }
3411        }
3412        (*sps)++;
3413}
3414
3415static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3416                                         struct kvm_ppc_smmu_info *info)
3417{
3418        struct kvm_ppc_one_seg_page_size *sps;
3419
3420        /*
3421         * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3422         * POWER7 doesn't support keys for instruction accesses,
3423         * POWER8 and POWER9 do.
3424         */
3425        info->data_keys = 32;
3426        info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3427
3428        /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3429        info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3430        info->slb_size = 32;
3431
3432        /* We only support these sizes for now, and no muti-size segments */
3433        sps = &info->sps[0];
3434        kvmppc_add_seg_page_size(&sps, 12, 0);
3435        kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3436        kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3437
3438        return 0;
3439}
3440
3441/*
3442 * Get (and clear) the dirty memory log for a memory slot.
3443 */
3444static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3445                                         struct kvm_dirty_log *log)
3446{
3447        struct kvm_memslots *slots;
3448        struct kvm_memory_slot *memslot;
3449        int i, r;
3450        unsigned long n;
3451        unsigned long *buf, *p;
3452        struct kvm_vcpu *vcpu;
3453
3454        mutex_lock(&kvm->slots_lock);
3455
3456        r = -EINVAL;
3457        if (log->slot >= KVM_USER_MEM_SLOTS)
3458                goto out;
3459
3460        slots = kvm_memslots(kvm);
3461        memslot = id_to_memslot(slots, log->slot);
3462        r = -ENOENT;
3463        if (!memslot->dirty_bitmap)
3464                goto out;
3465
3466        /*
3467         * Use second half of bitmap area because both HPT and radix
3468         * accumulate bits in the first half.
3469         */
3470        n = kvm_dirty_bitmap_bytes(memslot);
3471        buf = memslot->dirty_bitmap + n / sizeof(long);
3472        memset(buf, 0, n);
3473
3474        if (kvm_is_radix(kvm))
3475                r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3476        else
3477                r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3478        if (r)
3479                goto out;
3480
3481        /*
3482         * We accumulate dirty bits in the first half of the
3483         * memslot's dirty_bitmap area, for when pages are paged
3484         * out or modified by the host directly.  Pick up these
3485         * bits and add them to the map.
3486         */
3487        p = memslot->dirty_bitmap;
3488        for (i = 0; i < n / sizeof(long); ++i)
3489                buf[i] |= xchg(&p[i], 0);
3490
3491        /* Harvest dirty bits from VPA and DTL updates */
3492        /* Note: we never modify the SLB shadow buffer areas */
3493        kvm_for_each_vcpu(i, vcpu, kvm) {
3494                spin_lock(&vcpu->arch.vpa_update_lock);
3495                kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3496                kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3497                spin_unlock(&vcpu->arch.vpa_update_lock);
3498        }
3499
3500        r = -EFAULT;
3501        if (copy_to_user(log->dirty_bitmap, buf, n))
3502                goto out;
3503
3504        r = 0;
3505out:
3506        mutex_unlock(&kvm->slots_lock);
3507        return r;
3508}
3509
3510static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3511                                        struct kvm_memory_slot *dont)
3512{
3513        if (!dont || free->arch.rmap != dont->arch.rmap) {
3514                vfree(free->arch.rmap);
3515                free->arch.rmap = NULL;
3516        }
3517}
3518
3519static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3520                                         unsigned long npages)
3521{
3522        slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3523        if (!slot->arch.rmap)
3524                return -ENOMEM;
3525
3526        return 0;
3527}
3528
3529static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3530                                        struct kvm_memory_slot *memslot,
3531                                        const struct kvm_userspace_memory_region *mem)
3532{
3533        return 0;
3534}
3535
3536static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3537                                const struct kvm_userspace_memory_region *mem,
3538                                const struct kvm_memory_slot *old,
3539                                const struct kvm_memory_slot *new)
3540{
3541        unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3542
3543        /*
3544         * If we are making a new memslot, it might make
3545         * some address that was previously cached as emulated
3546         * MMIO be no longer emulated MMIO, so invalidate
3547         * all the caches of emulated MMIO translations.
3548         */
3549        if (npages)
3550                atomic64_inc(&kvm->arch.mmio_update);
3551}
3552
3553/*
3554 * Update LPCR values in kvm->arch and in vcores.
3555 * Caller must hold kvm->lock.
3556 */
3557void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3558{
3559        long int i;
3560        u32 cores_done = 0;
3561
3562        if ((kvm->arch.lpcr & mask) == lpcr)
3563                return;
3564
3565        kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3566
3567        for (i = 0; i < KVM_MAX_VCORES; ++i) {
3568                struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3569                if (!vc)
3570                        continue;
3571                spin_lock(&vc->lock);
3572                vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3573                spin_unlock(&vc->lock);
3574                if (++cores_done >= kvm->arch.online_vcores)
3575                        break;
3576        }
3577}
3578
3579static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3580{
3581        return;
3582}
3583
3584void kvmppc_setup_partition_table(struct kvm *kvm)
3585{
3586        unsigned long dw0, dw1;
3587
3588        if (!kvm_is_radix(kvm)) {
3589                /* PS field - page size for VRMA */
3590                dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3591                        ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3592                /* HTABSIZE and HTABORG fields */
3593                dw0 |= kvm->arch.sdr1;
3594
3595                /* Second dword as set by userspace */
3596                dw1 = kvm->arch.process_table;
3597        } else {
3598                dw0 = PATB_HR | radix__get_tree_size() |
3599                        __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3600                dw1 = PATB_GR | kvm->arch.process_table;
3601        }
3602
3603        mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3604}
3605
3606/*
3607 * Set up HPT (hashed page table) and RMA (real-mode area).
3608 * Must be called with kvm->lock held.
3609 */
3610static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3611{
3612        int err = 0;
3613        struct kvm *kvm = vcpu->kvm;
3614        unsigned long hva;
3615        struct kvm_memory_slot *memslot;
3616        struct vm_area_struct *vma;
3617        unsigned long lpcr = 0, senc;
3618        unsigned long psize, porder;
3619        int srcu_idx;
3620
3621        /* Allocate hashed page table (if not done already) and reset it */
3622        if (!kvm->arch.hpt.virt) {
3623                int order = KVM_DEFAULT_HPT_ORDER;
3624                struct kvm_hpt_info info;
3625
3626                err = kvmppc_allocate_hpt(&info, order);
3627                /* If we get here, it means userspace didn't specify a
3628                 * size explicitly.  So, try successively smaller
3629                 * sizes if the default failed. */
3630                while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3631                        err  = kvmppc_allocate_hpt(&info, order);
3632
3633                if (err < 0) {
3634                        pr_err("KVM: Couldn't alloc HPT\n");
3635                        goto out;
3636                }
3637
3638                kvmppc_set_hpt(kvm, &info);
3639        }
3640
3641        /* Look up the memslot for guest physical address 0 */
3642        srcu_idx = srcu_read_lock(&kvm->srcu);
3643        memslot = gfn_to_memslot(kvm, 0);
3644
3645        /* We must have some memory at 0 by now */
3646        err = -EINVAL;
3647        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3648                goto out_srcu;
3649
3650        /* Look up the VMA for the start of this memory slot */
3651        hva = memslot->userspace_addr;
3652        down_read(&current->mm->mmap_sem);
3653        vma = find_vma(current->mm, hva);
3654        if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3655                goto up_out;
3656
3657        psize = vma_kernel_pagesize(vma);
3658
3659        up_read(&current->mm->mmap_sem);
3660
3661        /* We can handle 4k, 64k or 16M pages in the VRMA */
3662        if (psize >= 0x1000000)
3663                psize = 0x1000000;
3664        else if (psize >= 0x10000)
3665                psize = 0x10000;
3666        else
3667                psize = 0x1000;
3668        porder = __ilog2(psize);
3669
3670        senc = slb_pgsize_encoding(psize);
3671        kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3672                (VRMA_VSID << SLB_VSID_SHIFT_1T);
3673        /* Create HPTEs in the hash page table for the VRMA */
3674        kvmppc_map_vrma(vcpu, memslot, porder);
3675
3676        /* Update VRMASD field in the LPCR */
3677        if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3678                /* the -4 is to account for senc values starting at 0x10 */
3679                lpcr = senc << (LPCR_VRMASD_SH - 4);
3680                kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3681        }
3682
3683        /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3684        smp_wmb();
3685        err = 0;
3686 out_srcu:
3687        srcu_read_unlock(&kvm->srcu, srcu_idx);
3688 out:
3689        return err;
3690
3691 up_out:
3692        up_read(&current->mm->mmap_sem);
3693        goto out_srcu;
3694}
3695
3696/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3697int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3698{
3699        kvmppc_free_radix(kvm);
3700        kvmppc_update_lpcr(kvm, LPCR_VPM1,
3701                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3702        kvmppc_rmap_reset(kvm);
3703        kvm->arch.radix = 0;
3704        kvm->arch.process_table = 0;
3705        return 0;
3706}
3707
3708/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3709int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3710{
3711        int err;
3712
3713        err = kvmppc_init_vm_radix(kvm);
3714        if (err)
3715                return err;
3716
3717        kvmppc_free_hpt(&kvm->arch.hpt);
3718        kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3719                           LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3720        kvm->arch.radix = 1;
3721        return 0;
3722}
3723
3724#ifdef CONFIG_KVM_XICS
3725/*
3726 * Allocate a per-core structure for managing state about which cores are
3727 * running in the host versus the guest and for exchanging data between
3728 * real mode KVM and CPU running in the host.
3729 * This is only done for the first VM.
3730 * The allocated structure stays even if all VMs have stopped.
3731 * It is only freed when the kvm-hv module is unloaded.
3732 * It's OK for this routine to fail, we just don't support host
3733 * core operations like redirecting H_IPI wakeups.
3734 */
3735void kvmppc_alloc_host_rm_ops(void)
3736{
3737        struct kvmppc_host_rm_ops *ops;
3738        unsigned long l_ops;
3739        int cpu, core;
3740        int size;
3741
3742        /* Not the first time here ? */
3743        if (kvmppc_host_rm_ops_hv != NULL)
3744                return;
3745
3746        ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3747        if (!ops)
3748                return;
3749
3750        size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3751        ops->rm_core = kzalloc(size, GFP_KERNEL);
3752
3753        if (!ops->rm_core) {
3754                kfree(ops);
3755                return;
3756        }
3757
3758        cpus_read_lock();
3759
3760        for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3761                if (!cpu_online(cpu))
3762                        continue;
3763
3764                core = cpu >> threads_shift;
3765                ops->rm_core[core].rm_state.in_host = 1;
3766        }
3767
3768        ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3769
3770        /*
3771         * Make the contents of the kvmppc_host_rm_ops structure visible
3772         * to other CPUs before we assign it to the global variable.
3773         * Do an atomic assignment (no locks used here), but if someone
3774         * beats us to it, just free our copy and return.
3775         */
3776        smp_wmb();
3777        l_ops = (unsigned long) ops;
3778
3779        if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3780                cpus_read_unlock();
3781                kfree(ops->rm_core);
3782                kfree(ops);
3783                return;
3784        }
3785
3786        cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3787                                             "ppc/kvm_book3s:prepare",
3788                                             kvmppc_set_host_core,
3789                                             kvmppc_clear_host_core);
3790        cpus_read_unlock();
3791}
3792
3793void kvmppc_free_host_rm_ops(void)
3794{
3795        if (kvmppc_host_rm_ops_hv) {
3796                cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3797                kfree(kvmppc_host_rm_ops_hv->rm_core);
3798                kfree(kvmppc_host_rm_ops_hv);
3799                kvmppc_host_rm_ops_hv = NULL;
3800        }
3801}
3802#endif
3803
3804static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3805{
3806        unsigned long lpcr, lpid;
3807        char buf[32];
3808        int ret;
3809
3810        /* Allocate the guest's logical partition ID */
3811
3812        lpid = kvmppc_alloc_lpid();
3813        if ((long)lpid < 0)
3814                return -ENOMEM;
3815        kvm->arch.lpid = lpid;
3816
3817        kvmppc_alloc_host_rm_ops();
3818
3819        /*
3820         * Since we don't flush the TLB when tearing down a VM,
3821         * and this lpid might have previously been used,
3822         * make sure we flush on each core before running the new VM.
3823         * On POWER9, the tlbie in mmu_partition_table_set_entry()
3824         * does this flush for us.
3825         */
3826        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3827                cpumask_setall(&kvm->arch.need_tlb_flush);
3828
3829        /* Start out with the default set of hcalls enabled */
3830        memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3831               sizeof(kvm->arch.enabled_hcalls));
3832
3833        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3834                kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3835
3836        /* Init LPCR for virtual RMA mode */
3837        kvm->arch.host_lpid = mfspr(SPRN_LPID);
3838        kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3839        lpcr &= LPCR_PECE | LPCR_LPES;
3840        lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3841                LPCR_VPM0 | LPCR_VPM1;
3842        kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3843                (VRMA_VSID << SLB_VSID_SHIFT_1T);
3844        /* On POWER8 turn on online bit to enable PURR/SPURR */
3845        if (cpu_has_feature(CPU_FTR_ARCH_207S))
3846                lpcr |= LPCR_ONL;
3847        /*
3848         * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3849         * Set HVICE bit to enable hypervisor virtualization interrupts.
3850         * Set HEIC to prevent OS interrupts to go to hypervisor (should
3851         * be unnecessary but better safe than sorry in case we re-enable
3852         * EE in HV mode with this LPCR still set)
3853         */
3854        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3855                lpcr &= ~LPCR_VPM0;
3856                lpcr |= LPCR_HVICE | LPCR_HEIC;
3857
3858                /*
3859                 * If xive is enabled, we route 0x500 interrupts directly
3860                 * to the guest.
3861                 */
3862                if (xive_enabled())
3863                        lpcr |= LPCR_LPES;
3864        }
3865
3866        /*
3867         * If the host uses radix, the guest starts out as radix.
3868         */
3869        if (radix_enabled()) {
3870                kvm->arch.radix = 1;
3871                kvm->arch.mmu_ready = 1;
3872                lpcr &= ~LPCR_VPM1;
3873                lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3874                ret = kvmppc_init_vm_radix(kvm);
3875                if (ret) {
3876                        kvmppc_free_lpid(kvm->arch.lpid);
3877                        return ret;
3878                }
3879                kvmppc_setup_partition_table(kvm);
3880        }
3881
3882        kvm->arch.lpcr = lpcr;
3883
3884        /* Initialization for future HPT resizes */
3885        kvm->arch.resize_hpt = NULL;
3886
3887        /*
3888         * Work out how many sets the TLB has, for the use of
3889         * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3890         */
3891        if (radix_enabled())
3892                kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3893        else if (cpu_has_feature(CPU_FTR_ARCH_300))
3894                kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3895        else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3896                kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3897        else
3898                kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3899
3900        /*
3901         * Track that we now have a HV mode VM active. This blocks secondary
3902         * CPU threads from coming online.
3903         * On POWER9, we only need to do this if the "indep_threads_mode"
3904         * module parameter has been set to N.
3905         */
3906        if (cpu_has_feature(CPU_FTR_ARCH_300))
3907                kvm->arch.threads_indep = indep_threads_mode;
3908        if (!kvm->arch.threads_indep)
3909                kvm_hv_vm_activated();
3910
3911        /*
3912         * Initialize smt_mode depending on processor.
3913         * POWER8 and earlier have to use "strict" threading, where
3914         * all vCPUs in a vcore have to run on the same (sub)core,
3915         * whereas on POWER9 the threads can each run a different
3916         * guest.
3917         */
3918        if (!cpu_has_feature(CPU_FTR_ARCH_300))
3919                kvm->arch.smt_mode = threads_per_subcore;
3920        else
3921                kvm->arch.smt_mode = 1;
3922        kvm->arch.emul_smt_mode = 1;
3923
3924        /*
3925         * Create a debugfs directory for the VM
3926         */
3927        snprintf(buf, sizeof(buf), "vm%d", current->pid);
3928        kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3929        if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3930                kvmppc_mmu_debugfs_init(kvm);
3931
3932        return 0;
3933}
3934
3935static void kvmppc_free_vcores(struct kvm *kvm)
3936{
3937        long int i;
3938
3939        for (i = 0; i < KVM_MAX_VCORES; ++i)
3940                kfree(kvm->arch.vcores[i]);
3941        kvm->arch.online_vcores = 0;
3942}
3943
3944static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3945{
3946        debugfs_remove_recursive(kvm->arch.debugfs_dir);
3947
3948        if (!kvm->arch.threads_indep)
3949                kvm_hv_vm_deactivated();
3950
3951        kvmppc_free_vcores(kvm);
3952
3953        kvmppc_free_lpid(kvm->arch.lpid);
3954
3955        if (kvm_is_radix(kvm))
3956                kvmppc_free_radix(kvm);
3957        else
3958                kvmppc_free_hpt(&kvm->arch.hpt);
3959
3960        kvmppc_free_pimap(kvm);
3961}
3962
3963/* We don't need to emulate any privileged instructions or dcbz */
3964static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3965                                     unsigned int inst, int *advance)
3966{
3967        return EMULATE_FAIL;
3968}
3969
3970static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3971                                        ulong spr_val)
3972{
3973        return EMULATE_FAIL;
3974}
3975
3976static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3977                                        ulong *spr_val)
3978{
3979        return EMULATE_FAIL;
3980}
3981
3982static int kvmppc_core_check_processor_compat_hv(void)
3983{
3984        if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3985            !cpu_has_feature(CPU_FTR_ARCH_206))
3986                return -EIO;
3987
3988        return 0;
3989}
3990
3991#ifdef CONFIG_KVM_XICS
3992
3993void kvmppc_free_pimap(struct kvm *kvm)
3994{
3995        kfree(kvm->arch.pimap);
3996}
3997
3998static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3999{
4000        return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4001}
4002
4003static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4004{
4005        struct irq_desc *desc;
4006        struct kvmppc_irq_map *irq_map;
4007        struct kvmppc_passthru_irqmap *pimap;
4008        struct irq_chip *chip;
4009        int i, rc = 0;
4010
4011        if (!kvm_irq_bypass)
4012                return 1;
4013
4014        desc = irq_to_desc(host_irq);
4015        if (!desc)
4016                return -EIO;
4017
4018        mutex_lock(&kvm->lock);
4019
4020        pimap = kvm->arch.pimap;
4021        if (pimap == NULL) {
4022                /* First call, allocate structure to hold IRQ map */
4023                pimap = kvmppc_alloc_pimap();
4024                if (pimap == NULL) {
4025                        mutex_unlock(&kvm->lock);
4026                        return -ENOMEM;
4027                }
4028                kvm->arch.pimap = pimap;
4029        }
4030
4031        /*
4032         * For now, we only support interrupts for which the EOI operation
4033         * is an OPAL call followed by a write to XIRR, since that's
4034         * what our real-mode EOI code does, or a XIVE interrupt
4035         */
4036        chip = irq_data_get_irq_chip(&desc->irq_data);
4037        if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4038                pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4039                        host_irq, guest_gsi);
4040                mutex_unlock(&kvm->lock);
4041                return -ENOENT;
4042        }
4043
4044        /*
4045         * See if we already have an entry for this guest IRQ number.
4046         * If it's mapped to a hardware IRQ number, that's an error,
4047         * otherwise re-use this entry.
4048         */
4049        for (i = 0; i < pimap->n_mapped; i++) {
4050                if (guest_gsi == pimap->mapped[i].v_hwirq) {
4051                        if (pimap->mapped[i].r_hwirq) {
4052                                mutex_unlock(&kvm->lock);
4053                                return -EINVAL;
4054                        }
4055                        break;
4056                }
4057        }
4058
4059        if (i == KVMPPC_PIRQ_MAPPED) {
4060                mutex_unlock(&kvm->lock);
4061                return -EAGAIN;         /* table is full */
4062        }
4063
4064        irq_map = &pimap->mapped[i];
4065
4066        irq_map->v_hwirq = guest_gsi;
4067        irq_map->desc = desc;
4068
4069        /*
4070         * Order the above two stores before the next to serialize with
4071         * the KVM real mode handler.
4072         */
4073        smp_wmb();
4074        irq_map->r_hwirq = desc->irq_data.hwirq;
4075
4076        if (i == pimap->n_mapped)
4077                pimap->n_mapped++;
4078
4079        if (xive_enabled())
4080                rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4081        else
4082                kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4083        if (rc)
4084                irq_map->r_hwirq = 0;
4085
4086        mutex_unlock(&kvm->lock);
4087
4088        return 0;
4089}
4090
4091static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4092{
4093        struct irq_desc *desc;
4094        struct kvmppc_passthru_irqmap *pimap;
4095        int i, rc = 0;
4096
4097        if (!kvm_irq_bypass)
4098                return 0;
4099
4100        desc = irq_to_desc(host_irq);
4101        if (!desc)
4102                return -EIO;
4103
4104        mutex_lock(&kvm->lock);
4105        if (!kvm->arch.pimap)
4106                goto unlock;
4107
4108        pimap = kvm->arch.pimap;
4109
4110        for (i = 0; i < pimap->n_mapped; i++) {
4111                if (guest_gsi == pimap->mapped[i].v_hwirq)
4112                        break;
4113        }
4114
4115        if (i == pimap->n_mapped) {
4116                mutex_unlock(&kvm->lock);
4117                return -ENODEV;
4118        }
4119
4120        if (xive_enabled())
4121                rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4122        else
4123                kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4124
4125        /* invalidate the entry (what do do on error from the above ?) */
4126        pimap->mapped[i].r_hwirq = 0;
4127
4128        /*
4129         * We don't free this structure even when the count goes to
4130         * zero. The structure is freed when we destroy the VM.
4131         */
4132 unlock:
4133        mutex_unlock(&kvm->lock);
4134        return rc;
4135}
4136
4137static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4138                                             struct irq_bypass_producer *prod)
4139{
4140        int ret = 0;
4141        struct kvm_kernel_irqfd *irqfd =
4142                container_of(cons, struct kvm_kernel_irqfd, consumer);
4143
4144        irqfd->producer = prod;
4145
4146        ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4147        if (ret)
4148                pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4149                        prod->irq, irqfd->gsi, ret);
4150
4151        return ret;
4152}
4153
4154static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4155                                              struct irq_bypass_producer *prod)
4156{
4157        int ret;
4158        struct kvm_kernel_irqfd *irqfd =
4159                container_of(cons, struct kvm_kernel_irqfd, consumer);
4160
4161        irqfd->producer = NULL;
4162
4163        /*
4164         * When producer of consumer is unregistered, we change back to
4165         * default external interrupt handling mode - KVM real mode
4166         * will switch back to host.
4167         */
4168        ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4169        if (ret)
4170                pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4171                        prod->irq, irqfd->gsi, ret);
4172}
4173#endif
4174
4175static long kvm_arch_vm_ioctl_hv(struct file *filp,
4176                                 unsigned int ioctl, unsigned long arg)
4177{
4178        struct kvm *kvm __maybe_unused = filp->private_data;
4179        void __user *argp = (void __user *)arg;
4180        long r;
4181
4182        switch (ioctl) {
4183
4184        case KVM_PPC_ALLOCATE_HTAB: {
4185                u32 htab_order;
4186
4187                r = -EFAULT;
4188                if (get_user(htab_order, (u32 __user *)argp))
4189                        break;
4190                r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4191                if (r)
4192                        break;
4193                r = 0;
4194                break;
4195        }
4196
4197        case KVM_PPC_GET_HTAB_FD: {
4198                struct kvm_get_htab_fd ghf;
4199
4200                r = -EFAULT;
4201                if (copy_from_user(&ghf, argp, sizeof(ghf)))
4202                        break;
4203                r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4204                break;
4205        }
4206
4207        case KVM_PPC_RESIZE_HPT_PREPARE: {
4208                struct kvm_ppc_resize_hpt rhpt;
4209
4210                r = -EFAULT;
4211                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4212                        break;
4213
4214                r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4215                break;
4216        }
4217
4218        case KVM_PPC_RESIZE_HPT_COMMIT: {
4219                struct kvm_ppc_resize_hpt rhpt;
4220
4221                r = -EFAULT;
4222                if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4223                        break;
4224
4225                r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4226                break;
4227        }
4228
4229        default:
4230                r = -ENOTTY;
4231        }
4232
4233        return r;
4234}
4235
4236/*
4237 * List of hcall numbers to enable by default.
4238 * For compatibility with old userspace, we enable by default
4239 * all hcalls that were implemented before the hcall-enabling
4240 * facility was added.  Note this list should not include H_RTAS.
4241 */
4242static unsigned int default_hcall_list[] = {
4243        H_REMOVE,
4244        H_ENTER,
4245        H_READ,
4246        H_PROTECT,
4247        H_BULK_REMOVE,
4248        H_GET_TCE,
4249        H_PUT_TCE,
4250        H_SET_DABR,
4251        H_SET_XDABR,
4252        H_CEDE,
4253        H_PROD,
4254        H_CONFER,
4255        H_REGISTER_VPA,
4256#ifdef CONFIG_KVM_XICS
4257        H_EOI,
4258        H_CPPR,
4259        H_IPI,
4260        H_IPOLL,
4261        H_XIRR,
4262        H_XIRR_X,
4263#endif
4264        0
4265};
4266
4267static void init_default_hcalls(void)
4268{
4269        int i;
4270        unsigned int hcall;
4271
4272        for (i = 0; default_hcall_list[i]; ++i) {
4273                hcall = default_hcall_list[i];
4274                WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4275                __set_bit(hcall / 4, default_enabled_hcalls);
4276        }
4277}
4278
4279static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4280{
4281        unsigned long lpcr;
4282        int radix;
4283        int err;
4284
4285        /* If not on a POWER9, reject it */
4286        if (!cpu_has_feature(CPU_FTR_ARCH_300))
4287                return -ENODEV;
4288
4289        /* If any unknown flags set, reject it */
4290        if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4291                return -EINVAL;
4292
4293        /* GR (guest radix) bit in process_table field must match */
4294        radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4295        if (!!(cfg->process_table & PATB_GR) != radix)
4296                return -EINVAL;
4297
4298        /* Process table size field must be reasonable, i.e. <= 24 */
4299        if ((cfg->process_table & PRTS_MASK) > 24)
4300                return -EINVAL;
4301
4302        /* We can change a guest to/from radix now, if the host is radix */
4303        if (radix && !radix_enabled())
4304                return -EINVAL;
4305
4306        mutex_lock(&kvm->lock);
4307        if (radix != kvm_is_radix(kvm)) {
4308                if (kvm->arch.mmu_ready) {
4309                        kvm->arch.mmu_ready = 0;
4310                        /* order mmu_ready vs. vcpus_running */
4311                        smp_mb();
4312                        if (atomic_read(&kvm->arch.vcpus_running)) {
4313                                kvm->arch.mmu_ready = 1;
4314                                err = -EBUSY;
4315                                goto out_unlock;
4316                        }
4317                }
4318                if (radix)
4319                        err = kvmppc_switch_mmu_to_radix(kvm);
4320                else
4321                        err = kvmppc_switch_mmu_to_hpt(kvm);
4322                if (err)
4323                        goto out_unlock;
4324        }
4325
4326        kvm->arch.process_table = cfg->process_table;
4327        kvmppc_setup_partition_table(kvm);
4328
4329        lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4330        kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4331        err = 0;
4332
4333 out_unlock:
4334        mutex_unlock(&kvm->lock);
4335        return err;
4336}
4337
4338static struct kvmppc_ops kvm_ops_hv = {
4339        .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4340        .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4341        .get_one_reg = kvmppc_get_one_reg_hv,
4342        .set_one_reg = kvmppc_set_one_reg_hv,
4343        .vcpu_load   = kvmppc_core_vcpu_load_hv,
4344        .vcpu_put    = kvmppc_core_vcpu_put_hv,
4345        .set_msr     = kvmppc_set_msr_hv,
4346        .vcpu_run    = kvmppc_vcpu_run_hv,
4347        .vcpu_create = kvmppc_core_vcpu_create_hv,
4348        .vcpu_free   = kvmppc_core_vcpu_free_hv,
4349        .check_requests = kvmppc_core_check_requests_hv,
4350        .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4351        .flush_memslot  = kvmppc_core_flush_memslot_hv,
4352        .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4353        .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4354        .unmap_hva = kvm_unmap_hva_hv,
4355        .unmap_hva_range = kvm_unmap_hva_range_hv,
4356        .age_hva  = kvm_age_hva_hv,
4357        .test_age_hva = kvm_test_age_hva_hv,
4358        .set_spte_hva = kvm_set_spte_hva_hv,
4359        .mmu_destroy  = kvmppc_mmu_destroy_hv,
4360        .free_memslot = kvmppc_core_free_memslot_hv,
4361        .create_memslot = kvmppc_core_create_memslot_hv,
4362        .init_vm =  kvmppc_core_init_vm_hv,
4363        .destroy_vm = kvmppc_core_destroy_vm_hv,
4364        .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4365        .emulate_op = kvmppc_core_emulate_op_hv,
4366        .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4367        .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4368        .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4369        .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4370        .hcall_implemented = kvmppc_hcall_impl_hv,
4371#ifdef CONFIG_KVM_XICS
4372        .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4373        .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4374#endif
4375        .configure_mmu = kvmhv_configure_mmu,
4376        .get_rmmu_info = kvmhv_get_rmmu_info,
4377        .set_smt_mode = kvmhv_set_smt_mode,
4378};
4379
4380static int kvm_init_subcore_bitmap(void)
4381{
4382        int i, j;
4383        int nr_cores = cpu_nr_cores();
4384        struct sibling_subcore_state *sibling_subcore_state;
4385
4386        for (i = 0; i < nr_cores; i++) {
4387                int first_cpu = i * threads_per_core;
4388                int node = cpu_to_node(first_cpu);
4389
4390                /* Ignore if it is already allocated. */
4391                if (paca[first_cpu].sibling_subcore_state)
4392                        continue;
4393
4394                sibling_subcore_state =
4395                        kmalloc_node(sizeof(struct sibling_subcore_state),
4396                                                        GFP_KERNEL, node);
4397                if (!sibling_subcore_state)
4398                        return -ENOMEM;
4399
4400                memset(sibling_subcore_state, 0,
4401                                sizeof(struct sibling_subcore_state));
4402
4403                for (j = 0; j < threads_per_core; j++) {
4404                        int cpu = first_cpu + j;
4405
4406                        paca[cpu].sibling_subcore_state = sibling_subcore_state;
4407                }
4408        }
4409        return 0;
4410}
4411
4412static int kvmppc_radix_possible(void)
4413{
4414        return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4415}
4416
4417static int kvmppc_book3s_init_hv(void)
4418{
4419        int r;
4420        /*
4421         * FIXME!! Do we need to check on all cpus ?
4422         */
4423        r = kvmppc_core_check_processor_compat_hv();
4424        if (r < 0)
4425                return -ENODEV;
4426
4427        r = kvm_init_subcore_bitmap();
4428        if (r)
4429                return r;
4430
4431        /*
4432         * We need a way of accessing the XICS interrupt controller,
4433         * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4434         * indirectly, via OPAL.
4435         */
4436#ifdef CONFIG_SMP
4437        if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4438                struct device_node *np;
4439
4440                np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4441                if (!np) {
4442                        pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4443                        return -ENODEV;
4444                }
4445        }
4446#endif
4447
4448        kvm_ops_hv.owner = THIS_MODULE;
4449        kvmppc_hv_ops = &kvm_ops_hv;
4450
4451        init_default_hcalls();
4452
4453        init_vcore_lists();
4454
4455        r = kvmppc_mmu_hv_init();
4456        if (r)
4457                return r;
4458
4459        if (kvmppc_radix_possible())
4460                r = kvmppc_radix_init();
4461
4462        /*
4463         * POWER9 chips before version 2.02 can't have some threads in
4464         * HPT mode and some in radix mode on the same core.
4465         */
4466        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4467                unsigned int pvr = mfspr(SPRN_PVR);
4468                if ((pvr >> 16) == PVR_POWER9 &&
4469                    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4470                     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4471                        no_mixing_hpt_and_radix = true;
4472        }
4473
4474        return r;
4475}
4476
4477static void kvmppc_book3s_exit_hv(void)
4478{
4479        kvmppc_free_host_rm_ops();
4480        if (kvmppc_radix_possible())
4481                kvmppc_radix_exit();
4482        kvmppc_hv_ops = NULL;
4483}
4484
4485module_init(kvmppc_book3s_init_hv);
4486module_exit(kvmppc_book3s_exit_hv);
4487MODULE_LICENSE("GPL");
4488MODULE_ALIAS_MISCDEV(KVM_MINOR);
4489MODULE_ALIAS("devname:kvm");
4490