linux/arch/powerpc/mm/init_64.c
<<
>>
Prefs
   1/*
   2 *  PowerPC version
   3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   4 *
   5 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
   6 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
   7 *    Copyright (C) 1996 Paul Mackerras
   8 *
   9 *  Derived from "arch/i386/mm/init.c"
  10 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  11 *
  12 *  Dave Engebretsen <engebret@us.ibm.com>
  13 *      Rework for PPC64 port.
  14 *
  15 *  This program is free software; you can redistribute it and/or
  16 *  modify it under the terms of the GNU General Public License
  17 *  as published by the Free Software Foundation; either version
  18 *  2 of the License, or (at your option) any later version.
  19 *
  20 */
  21
  22#undef DEBUG
  23
  24#include <linux/signal.h>
  25#include <linux/sched.h>
  26#include <linux/kernel.h>
  27#include <linux/errno.h>
  28#include <linux/string.h>
  29#include <linux/types.h>
  30#include <linux/mman.h>
  31#include <linux/mm.h>
  32#include <linux/swap.h>
  33#include <linux/stddef.h>
  34#include <linux/vmalloc.h>
  35#include <linux/init.h>
  36#include <linux/delay.h>
  37#include <linux/highmem.h>
  38#include <linux/idr.h>
  39#include <linux/nodemask.h>
  40#include <linux/module.h>
  41#include <linux/poison.h>
  42#include <linux/memblock.h>
  43#include <linux/hugetlb.h>
  44#include <linux/slab.h>
  45#include <linux/of_fdt.h>
  46#include <linux/libfdt.h>
  47#include <linux/memremap.h>
  48
  49#include <asm/pgalloc.h>
  50#include <asm/page.h>
  51#include <asm/prom.h>
  52#include <asm/rtas.h>
  53#include <asm/io.h>
  54#include <asm/mmu_context.h>
  55#include <asm/pgtable.h>
  56#include <asm/mmu.h>
  57#include <linux/uaccess.h>
  58#include <asm/smp.h>
  59#include <asm/machdep.h>
  60#include <asm/tlb.h>
  61#include <asm/eeh.h>
  62#include <asm/processor.h>
  63#include <asm/mmzone.h>
  64#include <asm/cputable.h>
  65#include <asm/sections.h>
  66#include <asm/iommu.h>
  67#include <asm/vdso.h>
  68
  69#include "mmu_decl.h"
  70
  71#ifdef CONFIG_PPC_BOOK3S_64
  72#if H_PGTABLE_RANGE > USER_VSID_RANGE
  73#warning Limited user VSID range means pagetable space is wasted
  74#endif
  75#endif /* CONFIG_PPC_BOOK3S_64 */
  76
  77phys_addr_t memstart_addr = ~0;
  78EXPORT_SYMBOL_GPL(memstart_addr);
  79phys_addr_t kernstart_addr;
  80EXPORT_SYMBOL_GPL(kernstart_addr);
  81
  82#ifdef CONFIG_SPARSEMEM_VMEMMAP
  83/*
  84 * Given an address within the vmemmap, determine the pfn of the page that
  85 * represents the start of the section it is within.  Note that we have to
  86 * do this by hand as the proffered address may not be correctly aligned.
  87 * Subtraction of non-aligned pointers produces undefined results.
  88 */
  89static unsigned long __meminit vmemmap_section_start(unsigned long page)
  90{
  91        unsigned long offset = page - ((unsigned long)(vmemmap));
  92
  93        /* Return the pfn of the start of the section. */
  94        return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
  95}
  96
  97/*
  98 * Check if this vmemmap page is already initialised.  If any section
  99 * which overlaps this vmemmap page is initialised then this page is
 100 * initialised already.
 101 */
 102static int __meminit vmemmap_populated(unsigned long start, int page_size)
 103{
 104        unsigned long end = start + page_size;
 105        start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
 106
 107        for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
 108                if (pfn_valid(page_to_pfn((struct page *)start)))
 109                        return 1;
 110
 111        return 0;
 112}
 113
 114/*
 115 * vmemmap virtual address space management does not have a traditonal page
 116 * table to track which virtual struct pages are backed by physical mapping.
 117 * The virtual to physical mappings are tracked in a simple linked list
 118 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
 119 * all times where as the 'next' list maintains the available
 120 * vmemmap_backing structures which have been deleted from the
 121 * 'vmemmap_global' list during system runtime (memory hotplug remove
 122 * operation). The freed 'vmemmap_backing' structures are reused later when
 123 * new requests come in without allocating fresh memory. This pointer also
 124 * tracks the allocated 'vmemmap_backing' structures as we allocate one
 125 * full page memory at a time when we dont have any.
 126 */
 127struct vmemmap_backing *vmemmap_list;
 128static struct vmemmap_backing *next;
 129
 130/*
 131 * The same pointer 'next' tracks individual chunks inside the allocated
 132 * full page during the boot time and again tracks the freeed nodes during
 133 * runtime. It is racy but it does not happen as they are separated by the
 134 * boot process. Will create problem if some how we have memory hotplug
 135 * operation during boot !!
 136 */
 137static int num_left;
 138static int num_freed;
 139
 140static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
 141{
 142        struct vmemmap_backing *vmem_back;
 143        /* get from freed entries first */
 144        if (num_freed) {
 145                num_freed--;
 146                vmem_back = next;
 147                next = next->list;
 148
 149                return vmem_back;
 150        }
 151
 152        /* allocate a page when required and hand out chunks */
 153        if (!num_left) {
 154                next = vmemmap_alloc_block(PAGE_SIZE, node);
 155                if (unlikely(!next)) {
 156                        WARN_ON(1);
 157                        return NULL;
 158                }
 159                num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
 160        }
 161
 162        num_left--;
 163
 164        return next++;
 165}
 166
 167static __meminit void vmemmap_list_populate(unsigned long phys,
 168                                            unsigned long start,
 169                                            int node)
 170{
 171        struct vmemmap_backing *vmem_back;
 172
 173        vmem_back = vmemmap_list_alloc(node);
 174        if (unlikely(!vmem_back)) {
 175                WARN_ON(1);
 176                return;
 177        }
 178
 179        vmem_back->phys = phys;
 180        vmem_back->virt_addr = start;
 181        vmem_back->list = vmemmap_list;
 182
 183        vmemmap_list = vmem_back;
 184}
 185
 186int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
 187                struct vmem_altmap *altmap)
 188{
 189        unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 190
 191        /* Align to the page size of the linear mapping. */
 192        start = _ALIGN_DOWN(start, page_size);
 193
 194        pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
 195
 196        for (; start < end; start += page_size) {
 197                void *p;
 198                int rc;
 199
 200                if (vmemmap_populated(start, page_size))
 201                        continue;
 202
 203                if (altmap)
 204                        p = altmap_alloc_block_buf(page_size, altmap);
 205                else
 206                        p = vmemmap_alloc_block_buf(page_size, node);
 207                if (!p)
 208                        return -ENOMEM;
 209
 210                vmemmap_list_populate(__pa(p), start, node);
 211
 212                pr_debug("      * %016lx..%016lx allocated at %p\n",
 213                         start, start + page_size, p);
 214
 215                rc = vmemmap_create_mapping(start, page_size, __pa(p));
 216                if (rc < 0) {
 217                        pr_warn("%s: Unable to create vmemmap mapping: %d\n",
 218                                __func__, rc);
 219                        return -EFAULT;
 220                }
 221        }
 222
 223        return 0;
 224}
 225
 226#ifdef CONFIG_MEMORY_HOTPLUG
 227static unsigned long vmemmap_list_free(unsigned long start)
 228{
 229        struct vmemmap_backing *vmem_back, *vmem_back_prev;
 230
 231        vmem_back_prev = vmem_back = vmemmap_list;
 232
 233        /* look for it with prev pointer recorded */
 234        for (; vmem_back; vmem_back = vmem_back->list) {
 235                if (vmem_back->virt_addr == start)
 236                        break;
 237                vmem_back_prev = vmem_back;
 238        }
 239
 240        if (unlikely(!vmem_back)) {
 241                WARN_ON(1);
 242                return 0;
 243        }
 244
 245        /* remove it from vmemmap_list */
 246        if (vmem_back == vmemmap_list) /* remove head */
 247                vmemmap_list = vmem_back->list;
 248        else
 249                vmem_back_prev->list = vmem_back->list;
 250
 251        /* next point to this freed entry */
 252        vmem_back->list = next;
 253        next = vmem_back;
 254        num_freed++;
 255
 256        return vmem_back->phys;
 257}
 258
 259void __ref vmemmap_free(unsigned long start, unsigned long end,
 260                struct vmem_altmap *altmap)
 261{
 262        unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 263        unsigned long page_order = get_order(page_size);
 264
 265        start = _ALIGN_DOWN(start, page_size);
 266
 267        pr_debug("vmemmap_free %lx...%lx\n", start, end);
 268
 269        for (; start < end; start += page_size) {
 270                unsigned long nr_pages, addr;
 271                struct page *section_base;
 272                struct page *page;
 273
 274                /*
 275                 * the section has already be marked as invalid, so
 276                 * vmemmap_populated() true means some other sections still
 277                 * in this page, so skip it.
 278                 */
 279                if (vmemmap_populated(start, page_size))
 280                        continue;
 281
 282                addr = vmemmap_list_free(start);
 283                if (!addr)
 284                        continue;
 285
 286                page = pfn_to_page(addr >> PAGE_SHIFT);
 287                section_base = pfn_to_page(vmemmap_section_start(start));
 288                nr_pages = 1 << page_order;
 289
 290                if (altmap) {
 291                        vmem_altmap_free(altmap, nr_pages);
 292                } else if (PageReserved(page)) {
 293                        /* allocated from bootmem */
 294                        if (page_size < PAGE_SIZE) {
 295                                /*
 296                                 * this shouldn't happen, but if it is
 297                                 * the case, leave the memory there
 298                                 */
 299                                WARN_ON_ONCE(1);
 300                        } else {
 301                                while (nr_pages--)
 302                                        free_reserved_page(page++);
 303                        }
 304                } else {
 305                        free_pages((unsigned long)(__va(addr)), page_order);
 306                }
 307
 308                vmemmap_remove_mapping(start, page_size);
 309        }
 310}
 311#endif
 312void register_page_bootmem_memmap(unsigned long section_nr,
 313                                  struct page *start_page, unsigned long size)
 314{
 315}
 316
 317/*
 318 * We do not have access to the sparsemem vmemmap, so we fallback to
 319 * walking the list of sparsemem blocks which we already maintain for
 320 * the sake of crashdump. In the long run, we might want to maintain
 321 * a tree if performance of that linear walk becomes a problem.
 322 *
 323 * realmode_pfn_to_page functions can fail due to:
 324 * 1) As real sparsemem blocks do not lay in RAM continously (they
 325 * are in virtual address space which is not available in the real mode),
 326 * the requested page struct can be split between blocks so get_page/put_page
 327 * may fail.
 328 * 2) When huge pages are used, the get_page/put_page API will fail
 329 * in real mode as the linked addresses in the page struct are virtual
 330 * too.
 331 */
 332struct page *realmode_pfn_to_page(unsigned long pfn)
 333{
 334        struct vmemmap_backing *vmem_back;
 335        struct page *page;
 336        unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
 337        unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
 338
 339        for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
 340                if (pg_va < vmem_back->virt_addr)
 341                        continue;
 342
 343                /* After vmemmap_list entry free is possible, need check all */
 344                if ((pg_va + sizeof(struct page)) <=
 345                                (vmem_back->virt_addr + page_size)) {
 346                        page = (struct page *) (vmem_back->phys + pg_va -
 347                                vmem_back->virt_addr);
 348                        return page;
 349                }
 350        }
 351
 352        /* Probably that page struct is split between real pages */
 353        return NULL;
 354}
 355EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
 356
 357#else
 358
 359struct page *realmode_pfn_to_page(unsigned long pfn)
 360{
 361        struct page *page = pfn_to_page(pfn);
 362        return page;
 363}
 364EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
 365
 366#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 367
 368#ifdef CONFIG_PPC_BOOK3S_64
 369static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
 370
 371static int __init parse_disable_radix(char *p)
 372{
 373        bool val;
 374
 375        if (strlen(p) == 0)
 376                val = true;
 377        else if (kstrtobool(p, &val))
 378                return -EINVAL;
 379
 380        disable_radix = val;
 381
 382        return 0;
 383}
 384early_param("disable_radix", parse_disable_radix);
 385
 386/*
 387 * If we're running under a hypervisor, we need to check the contents of
 388 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
 389 * radix.  If not, we clear the radix feature bit so we fall back to hash.
 390 */
 391static void __init early_check_vec5(void)
 392{
 393        unsigned long root, chosen;
 394        int size;
 395        const u8 *vec5;
 396        u8 mmu_supported;
 397
 398        root = of_get_flat_dt_root();
 399        chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
 400        if (chosen == -FDT_ERR_NOTFOUND) {
 401                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 402                return;
 403        }
 404        vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
 405        if (!vec5) {
 406                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 407                return;
 408        }
 409        if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
 410                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 411                return;
 412        }
 413
 414        /* Check for supported configuration */
 415        mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
 416                        OV5_FEAT(OV5_MMU_SUPPORT);
 417        if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
 418                /* Hypervisor only supports radix - check enabled && GTSE */
 419                if (!early_radix_enabled()) {
 420                        pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
 421                }
 422                if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
 423                                                OV5_FEAT(OV5_RADIX_GTSE))) {
 424                        pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
 425                }
 426                /* Do radix anyway - the hypervisor said we had to */
 427                cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
 428        } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
 429                /* Hypervisor only supports hash - disable radix */
 430                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 431        }
 432}
 433
 434void __init mmu_early_init_devtree(void)
 435{
 436        /* Disable radix mode based on kernel command line. */
 437        if (disable_radix)
 438                cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 439
 440        /*
 441         * Check /chosen/ibm,architecture-vec-5 if running as a guest.
 442         * When running bare-metal, we can use radix if we like
 443         * even though the ibm,architecture-vec-5 property created by
 444         * skiboot doesn't have the necessary bits set.
 445         */
 446        if (!(mfmsr() & MSR_HV))
 447                early_check_vec5();
 448
 449        if (early_radix_enabled())
 450                radix__early_init_devtree();
 451        else
 452                hash__early_init_devtree();
 453}
 454#endif /* CONFIG_PPC_BOOK3S_64 */
 455