linux/arch/s390/crypto/crc32le-vx.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
   4 *
   5 * Use the z/Architecture Vector Extension Facility to accelerate the
   6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
   7 * and Castagnoli.
   8 *
   9 * This CRC-32 implementation algorithm is bitreflected and processes
  10 * the least-significant bit first (Little-Endian).
  11 *
  12 * Copyright IBM Corp. 2015
  13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  14 */
  15
  16#include <linux/linkage.h>
  17#include <asm/vx-insn.h>
  18
  19/* Vector register range containing CRC-32 constants */
  20#define CONST_PERM_LE2BE        %v9
  21#define CONST_R2R1              %v10
  22#define CONST_R4R3              %v11
  23#define CONST_R5                %v12
  24#define CONST_RU_POLY           %v13
  25#define CONST_CRC_POLY          %v14
  26
  27.data
  28.align 8
  29
  30/*
  31 * The CRC-32 constant block contains reduction constants to fold and
  32 * process particular chunks of the input data stream in parallel.
  33 *
  34 * For the CRC-32 variants, the constants are precomputed according to
  35 * these definitions:
  36 *
  37 *      R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
  38 *      R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
  39 *      R3 = [(x128+32 mod P'(x) << 32)]'   << 1
  40 *      R4 = [(x128-32 mod P'(x) << 32)]'   << 1
  41 *      R5 = [(x64 mod P'(x) << 32)]'       << 1
  42 *      R6 = [(x32 mod P'(x) << 32)]'       << 1
  43 *
  44 *      The bitreflected Barret reduction constant, u', is defined as
  45 *      the bit reversal of floor(x**64 / P(x)).
  46 *
  47 *      where P(x) is the polynomial in the normal domain and the P'(x) is the
  48 *      polynomial in the reversed (bitreflected) domain.
  49 *
  50 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
  51 *
  52 *      P(x)  = 0x04C11DB7
  53 *      P'(x) = 0xEDB88320
  54 *
  55 * CRC-32C (Castagnoli) polynomials:
  56 *
  57 *      P(x)  = 0x1EDC6F41
  58 *      P'(x) = 0x82F63B78
  59 */
  60
  61.Lconstants_CRC_32_LE:
  62        .octa           0x0F0E0D0C0B0A09080706050403020100      # BE->LE mask
  63        .quad           0x1c6e41596, 0x154442bd4                # R2, R1
  64        .quad           0x0ccaa009e, 0x1751997d0                # R4, R3
  65        .octa           0x163cd6124                             # R5
  66        .octa           0x1F7011641                             # u'
  67        .octa           0x1DB710641                             # P'(x) << 1
  68
  69.Lconstants_CRC_32C_LE:
  70        .octa           0x0F0E0D0C0B0A09080706050403020100      # BE->LE mask
  71        .quad           0x09e4addf8, 0x740eef02                 # R2, R1
  72        .quad           0x14cd00bd6, 0xf20c0dfe                 # R4, R3
  73        .octa           0x0dd45aab8                             # R5
  74        .octa           0x0dea713f1                             # u'
  75        .octa           0x105ec76f0                             # P'(x) << 1
  76
  77.previous
  78
  79
  80.text
  81
  82/*
  83 * The CRC-32 functions use these calling conventions:
  84 *
  85 * Parameters:
  86 *
  87 *      %r2:    Initial CRC value, typically ~0; and final CRC (return) value.
  88 *      %r3:    Input buffer pointer, performance might be improved if the
  89 *              buffer is on a doubleword boundary.
  90 *      %r4:    Length of the buffer, must be 64 bytes or greater.
  91 *
  92 * Register usage:
  93 *
  94 *      %r5:    CRC-32 constant pool base pointer.
  95 *      V0:     Initial CRC value and intermediate constants and results.
  96 *      V1..V4: Data for CRC computation.
  97 *      V5..V8: Next data chunks that are fetched from the input buffer.
  98 *      V9:     Constant for BE->LE conversion and shift operations
  99 *
 100 *      V10..V14: CRC-32 constants.
 101 */
 102
 103ENTRY(crc32_le_vgfm_16)
 104        larl    %r5,.Lconstants_CRC_32_LE
 105        j       crc32_le_vgfm_generic
 106
 107ENTRY(crc32c_le_vgfm_16)
 108        larl    %r5,.Lconstants_CRC_32C_LE
 109        j       crc32_le_vgfm_generic
 110
 111
 112crc32_le_vgfm_generic:
 113        /* Load CRC-32 constants */
 114        VLM     CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
 115
 116        /*
 117         * Load the initial CRC value.
 118         *
 119         * The CRC value is loaded into the rightmost word of the
 120         * vector register and is later XORed with the LSB portion
 121         * of the loaded input data.
 122         */
 123        VZERO   %v0                     /* Clear V0 */
 124        VLVGF   %v0,%r2,3               /* Load CRC into rightmost word */
 125
 126        /* Load a 64-byte data chunk and XOR with CRC */
 127        VLM     %v1,%v4,0,%r3           /* 64-bytes into V1..V4 */
 128        VPERM   %v1,%v1,%v1,CONST_PERM_LE2BE
 129        VPERM   %v2,%v2,%v2,CONST_PERM_LE2BE
 130        VPERM   %v3,%v3,%v3,CONST_PERM_LE2BE
 131        VPERM   %v4,%v4,%v4,CONST_PERM_LE2BE
 132
 133        VX      %v1,%v0,%v1             /* V1 ^= CRC */
 134        aghi    %r3,64                  /* BUF = BUF + 64 */
 135        aghi    %r4,-64                 /* LEN = LEN - 64 */
 136
 137        cghi    %r4,64
 138        jl      .Lless_than_64bytes
 139
 140.Lfold_64bytes_loop:
 141        /* Load the next 64-byte data chunk into V5 to V8 */
 142        VLM     %v5,%v8,0,%r3
 143        VPERM   %v5,%v5,%v5,CONST_PERM_LE2BE
 144        VPERM   %v6,%v6,%v6,CONST_PERM_LE2BE
 145        VPERM   %v7,%v7,%v7,CONST_PERM_LE2BE
 146        VPERM   %v8,%v8,%v8,CONST_PERM_LE2BE
 147
 148        /*
 149         * Perform a GF(2) multiplication of the doublewords in V1 with
 150         * the R1 and R2 reduction constants in V0.  The intermediate result
 151         * is then folded (accumulated) with the next data chunk in V5 and
 152         * stored in V1. Repeat this step for the register contents
 153         * in V2, V3, and V4 respectively.
 154         */
 155        VGFMAG  %v1,CONST_R2R1,%v1,%v5
 156        VGFMAG  %v2,CONST_R2R1,%v2,%v6
 157        VGFMAG  %v3,CONST_R2R1,%v3,%v7
 158        VGFMAG  %v4,CONST_R2R1,%v4,%v8
 159
 160        aghi    %r3,64                  /* BUF = BUF + 64 */
 161        aghi    %r4,-64                 /* LEN = LEN - 64 */
 162
 163        cghi    %r4,64
 164        jnl     .Lfold_64bytes_loop
 165
 166.Lless_than_64bytes:
 167        /*
 168         * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
 169         * and R4 and accumulating the next 128-bit chunk until a single 128-bit
 170         * value remains.
 171         */
 172        VGFMAG  %v1,CONST_R4R3,%v1,%v2
 173        VGFMAG  %v1,CONST_R4R3,%v1,%v3
 174        VGFMAG  %v1,CONST_R4R3,%v1,%v4
 175
 176        cghi    %r4,16
 177        jl      .Lfinal_fold
 178
 179.Lfold_16bytes_loop:
 180
 181        VL      %v2,0,,%r3              /* Load next data chunk */
 182        VPERM   %v2,%v2,%v2,CONST_PERM_LE2BE
 183        VGFMAG  %v1,CONST_R4R3,%v1,%v2  /* Fold next data chunk */
 184
 185        aghi    %r3,16
 186        aghi    %r4,-16
 187
 188        cghi    %r4,16
 189        jnl     .Lfold_16bytes_loop
 190
 191.Lfinal_fold:
 192        /*
 193         * Set up a vector register for byte shifts.  The shift value must
 194         * be loaded in bits 1-4 in byte element 7 of a vector register.
 195         * Shift by 8 bytes: 0x40
 196         * Shift by 4 bytes: 0x20
 197         */
 198        VLEIB   %v9,0x40,7
 199
 200        /*
 201         * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
 202         * to move R4 into the rightmost doubleword and set the leftmost
 203         * doubleword to 0x1.
 204         */
 205        VSRLB   %v0,CONST_R4R3,%v9
 206        VLEIG   %v0,1,0
 207
 208        /*
 209         * Compute GF(2) product of V1 and V0.  The rightmost doubleword
 210         * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
 211         * multiplied by 0x1 and is then XORed with rightmost product.
 212         * Implicitly, the intermediate leftmost product becomes padded
 213         */
 214        VGFMG   %v1,%v0,%v1
 215
 216        /*
 217         * Now do the final 32-bit fold by multiplying the rightmost word
 218         * in V1 with R5 and XOR the result with the remaining bits in V1.
 219         *
 220         * To achieve this by a single VGFMAG, right shift V1 by a word
 221         * and store the result in V2 which is then accumulated.  Use the
 222         * vector unpack instruction to load the rightmost half of the
 223         * doubleword into the rightmost doubleword element of V1; the other
 224         * half is loaded in the leftmost doubleword.
 225         * The vector register with CONST_R5 contains the R5 constant in the
 226         * rightmost doubleword and the leftmost doubleword is zero to ignore
 227         * the leftmost product of V1.
 228         */
 229        VLEIB   %v9,0x20,7                /* Shift by words */
 230        VSRLB   %v2,%v1,%v9               /* Store remaining bits in V2 */
 231        VUPLLF  %v1,%v1                   /* Split rightmost doubleword */
 232        VGFMAG  %v1,CONST_R5,%v1,%v2      /* V1 = (V1 * R5) XOR V2 */
 233
 234        /*
 235         * Apply a Barret reduction to compute the final 32-bit CRC value.
 236         *
 237         * The input values to the Barret reduction are the degree-63 polynomial
 238         * in V1 (R(x)), degree-32 generator polynomial, and the reduction
 239         * constant u.  The Barret reduction result is the CRC value of R(x) mod
 240         * P(x).
 241         *
 242         * The Barret reduction algorithm is defined as:
 243         *
 244         *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
 245         *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
 246         *    3. C(x)  = R(x) XOR T2(x) mod x^32
 247         *
 248         *  Note: The leftmost doubleword of vector register containing
 249         *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
 250         *  is zero and does not contribute to the final result.
 251         */
 252
 253        /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
 254        VUPLLF  %v2,%v1
 255        VGFMG   %v2,CONST_RU_POLY,%v2
 256
 257        /*
 258         * Compute the GF(2) product of the CRC polynomial with T1(x) in
 259         * V2 and XOR the intermediate result, T2(x), with the value in V1.
 260         * The final result is stored in word element 2 of V2.
 261         */
 262        VUPLLF  %v2,%v2
 263        VGFMAG  %v2,CONST_CRC_POLY,%v2,%v1
 264
 265.Ldone:
 266        VLGVF   %r2,%v2,2
 267        br      %r14
 268
 269.previous
 270