linux/arch/tile/kernel/hardwall.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/fs.h>
  16#include <linux/proc_fs.h>
  17#include <linux/seq_file.h>
  18#include <linux/rwsem.h>
  19#include <linux/kprobes.h>
  20#include <linux/sched.h>
  21#include <linux/hardirq.h>
  22#include <linux/uaccess.h>
  23#include <linux/smp.h>
  24#include <linux/cdev.h>
  25#include <linux/compat.h>
  26#include <asm/hardwall.h>
  27#include <asm/traps.h>
  28#include <asm/siginfo.h>
  29#include <asm/irq_regs.h>
  30
  31#include <arch/interrupts.h>
  32#include <arch/spr_def.h>
  33
  34
  35/*
  36 * Implement a per-cpu "hardwall" resource class such as UDN or IPI.
  37 * We use "hardwall" nomenclature throughout for historical reasons.
  38 * The lock here controls access to the list data structure as well as
  39 * to the items on the list.
  40 */
  41struct hardwall_type {
  42        int index;
  43        int is_xdn;
  44        int is_idn;
  45        int disabled;
  46        const char *name;
  47        struct list_head list;
  48        spinlock_t lock;
  49        struct proc_dir_entry *proc_dir;
  50};
  51
  52enum hardwall_index {
  53        HARDWALL_UDN = 0,
  54#ifndef __tilepro__
  55        HARDWALL_IDN = 1,
  56        HARDWALL_IPI = 2,
  57#endif
  58        _HARDWALL_TYPES
  59};
  60
  61static struct hardwall_type hardwall_types[] = {
  62        {  /* user-space access to UDN */
  63                0,
  64                1,
  65                0,
  66                0,
  67                "udn",
  68                LIST_HEAD_INIT(hardwall_types[HARDWALL_UDN].list),
  69                __SPIN_LOCK_UNLOCKED(hardwall_types[HARDWALL_UDN].lock),
  70                NULL
  71        },
  72#ifndef __tilepro__
  73        {  /* user-space access to IDN */
  74                1,
  75                1,
  76                1,
  77                1,  /* disabled pending hypervisor support */
  78                "idn",
  79                LIST_HEAD_INIT(hardwall_types[HARDWALL_IDN].list),
  80                __SPIN_LOCK_UNLOCKED(hardwall_types[HARDWALL_IDN].lock),
  81                NULL
  82        },
  83        {  /* access to user-space IPI */
  84                2,
  85                0,
  86                0,
  87                0,
  88                "ipi",
  89                LIST_HEAD_INIT(hardwall_types[HARDWALL_IPI].list),
  90                __SPIN_LOCK_UNLOCKED(hardwall_types[HARDWALL_IPI].lock),
  91                NULL
  92        },
  93#endif
  94};
  95
  96/*
  97 * This data structure tracks the cpu data, etc., associated
  98 * one-to-one with a "struct file *" from opening a hardwall device file.
  99 * Note that the file's private data points back to this structure.
 100 */
 101struct hardwall_info {
 102        struct list_head list;             /* for hardwall_types.list */
 103        struct list_head task_head;        /* head of tasks in this hardwall */
 104        struct hardwall_type *type;        /* type of this resource */
 105        struct cpumask cpumask;            /* cpus reserved */
 106        int id;                            /* integer id for this hardwall */
 107        int teardown_in_progress;          /* are we tearing this one down? */
 108
 109        /* Remaining fields only valid for user-network resources. */
 110        int ulhc_x;                        /* upper left hand corner x coord */
 111        int ulhc_y;                        /* upper left hand corner y coord */
 112        int width;                         /* rectangle width */
 113        int height;                        /* rectangle height */
 114#if CHIP_HAS_REV1_XDN()
 115        atomic_t xdn_pending_count;        /* cores in phase 1 of drain */
 116#endif
 117};
 118
 119
 120/* /proc/tile/hardwall */
 121static struct proc_dir_entry *hardwall_proc_dir;
 122
 123/* Functions to manage files in /proc/tile/hardwall. */
 124static void hardwall_add_proc(struct hardwall_info *);
 125static void hardwall_remove_proc(struct hardwall_info *);
 126
 127/* Allow disabling UDN access. */
 128static int __init noudn(char *str)
 129{
 130        pr_info("User-space UDN access is disabled\n");
 131        hardwall_types[HARDWALL_UDN].disabled = 1;
 132        return 0;
 133}
 134early_param("noudn", noudn);
 135
 136#ifndef __tilepro__
 137/* Allow disabling IDN access. */
 138static int __init noidn(char *str)
 139{
 140        pr_info("User-space IDN access is disabled\n");
 141        hardwall_types[HARDWALL_IDN].disabled = 1;
 142        return 0;
 143}
 144early_param("noidn", noidn);
 145
 146/* Allow disabling IPI access. */
 147static int __init noipi(char *str)
 148{
 149        pr_info("User-space IPI access is disabled\n");
 150        hardwall_types[HARDWALL_IPI].disabled = 1;
 151        return 0;
 152}
 153early_param("noipi", noipi);
 154#endif
 155
 156
 157/*
 158 * Low-level primitives for UDN/IDN
 159 */
 160
 161#ifdef __tilepro__
 162#define mtspr_XDN(hwt, name, val) \
 163        do { (void)(hwt); __insn_mtspr(SPR_UDN_##name, (val)); } while (0)
 164#define mtspr_MPL_XDN(hwt, name, val) \
 165        do { (void)(hwt); __insn_mtspr(SPR_MPL_UDN_##name, (val)); } while (0)
 166#define mfspr_XDN(hwt, name) \
 167        ((void)(hwt), __insn_mfspr(SPR_UDN_##name))
 168#else
 169#define mtspr_XDN(hwt, name, val)                                       \
 170        do {                                                            \
 171                if ((hwt)->is_idn)                                      \
 172                        __insn_mtspr(SPR_IDN_##name, (val));            \
 173                else                                                    \
 174                        __insn_mtspr(SPR_UDN_##name, (val));            \
 175        } while (0)
 176#define mtspr_MPL_XDN(hwt, name, val)                                   \
 177        do {                                                            \
 178                if ((hwt)->is_idn)                                      \
 179                        __insn_mtspr(SPR_MPL_IDN_##name, (val));        \
 180                else                                                    \
 181                        __insn_mtspr(SPR_MPL_UDN_##name, (val));        \
 182        } while (0)
 183#define mfspr_XDN(hwt, name) \
 184  ((hwt)->is_idn ? __insn_mfspr(SPR_IDN_##name) : __insn_mfspr(SPR_UDN_##name))
 185#endif
 186
 187/* Set a CPU bit if the CPU is online. */
 188#define cpu_online_set(cpu, dst) do { \
 189        if (cpu_online(cpu))          \
 190                cpumask_set_cpu(cpu, dst);    \
 191} while (0)
 192
 193
 194/* Does the given rectangle contain the given x,y coordinate? */
 195static int contains(struct hardwall_info *r, int x, int y)
 196{
 197        return (x >= r->ulhc_x && x < r->ulhc_x + r->width) &&
 198                (y >= r->ulhc_y && y < r->ulhc_y + r->height);
 199}
 200
 201/* Compute the rectangle parameters and validate the cpumask. */
 202static int check_rectangle(struct hardwall_info *r, struct cpumask *mask)
 203{
 204        int x, y, cpu, ulhc, lrhc;
 205
 206        /* The first cpu is the ULHC, the last the LRHC. */
 207        ulhc = find_first_bit(cpumask_bits(mask), nr_cpumask_bits);
 208        lrhc = find_last_bit(cpumask_bits(mask), nr_cpumask_bits);
 209
 210        /* Compute the rectangle attributes from the cpus. */
 211        r->ulhc_x = cpu_x(ulhc);
 212        r->ulhc_y = cpu_y(ulhc);
 213        r->width = cpu_x(lrhc) - r->ulhc_x + 1;
 214        r->height = cpu_y(lrhc) - r->ulhc_y + 1;
 215
 216        /* Width and height must be positive */
 217        if (r->width <= 0 || r->height <= 0)
 218                return -EINVAL;
 219
 220        /* Confirm that the cpumask is exactly the rectangle. */
 221        for (y = 0, cpu = 0; y < smp_height; ++y)
 222                for (x = 0; x < smp_width; ++x, ++cpu)
 223                        if (cpumask_test_cpu(cpu, mask) != contains(r, x, y))
 224                                return -EINVAL;
 225
 226        /*
 227         * Note that offline cpus can't be drained when this user network
 228         * rectangle eventually closes.  We used to detect this
 229         * situation and print a warning, but it annoyed users and
 230         * they ignored it anyway, so now we just return without a
 231         * warning.
 232         */
 233        return 0;
 234}
 235
 236/*
 237 * Hardware management of hardwall setup, teardown, trapping,
 238 * and enabling/disabling PL0 access to the networks.
 239 */
 240
 241/* Bit field values to mask together for writes to SPR_XDN_DIRECTION_PROTECT */
 242enum direction_protect {
 243        N_PROTECT = (1 << 0),
 244        E_PROTECT = (1 << 1),
 245        S_PROTECT = (1 << 2),
 246        W_PROTECT = (1 << 3),
 247        C_PROTECT = (1 << 4),
 248};
 249
 250static inline int xdn_which_interrupt(struct hardwall_type *hwt)
 251{
 252#ifndef __tilepro__
 253        if (hwt->is_idn)
 254                return INT_IDN_FIREWALL;
 255#endif
 256        return INT_UDN_FIREWALL;
 257}
 258
 259static void enable_firewall_interrupts(struct hardwall_type *hwt)
 260{
 261        arch_local_irq_unmask_now(xdn_which_interrupt(hwt));
 262}
 263
 264static void disable_firewall_interrupts(struct hardwall_type *hwt)
 265{
 266        arch_local_irq_mask_now(xdn_which_interrupt(hwt));
 267}
 268
 269/* Set up hardwall on this cpu based on the passed hardwall_info. */
 270static void hardwall_setup_func(void *info)
 271{
 272        struct hardwall_info *r = info;
 273        struct hardwall_type *hwt = r->type;
 274
 275        int cpu = smp_processor_id();  /* on_each_cpu disables preemption */
 276        int x = cpu_x(cpu);
 277        int y = cpu_y(cpu);
 278        int bits = 0;
 279        if (x == r->ulhc_x)
 280                bits |= W_PROTECT;
 281        if (x == r->ulhc_x + r->width - 1)
 282                bits |= E_PROTECT;
 283        if (y == r->ulhc_y)
 284                bits |= N_PROTECT;
 285        if (y == r->ulhc_y + r->height - 1)
 286                bits |= S_PROTECT;
 287        BUG_ON(bits == 0);
 288        mtspr_XDN(hwt, DIRECTION_PROTECT, bits);
 289        enable_firewall_interrupts(hwt);
 290}
 291
 292/* Set up all cpus on edge of rectangle to enable/disable hardwall SPRs. */
 293static void hardwall_protect_rectangle(struct hardwall_info *r)
 294{
 295        int x, y, cpu, delta;
 296        struct cpumask rect_cpus;
 297
 298        cpumask_clear(&rect_cpus);
 299
 300        /* First include the top and bottom edges */
 301        cpu = r->ulhc_y * smp_width + r->ulhc_x;
 302        delta = (r->height - 1) * smp_width;
 303        for (x = 0; x < r->width; ++x, ++cpu) {
 304                cpu_online_set(cpu, &rect_cpus);
 305                cpu_online_set(cpu + delta, &rect_cpus);
 306        }
 307
 308        /* Then the left and right edges */
 309        cpu -= r->width;
 310        delta = r->width - 1;
 311        for (y = 0; y < r->height; ++y, cpu += smp_width) {
 312                cpu_online_set(cpu, &rect_cpus);
 313                cpu_online_set(cpu + delta, &rect_cpus);
 314        }
 315
 316        /* Then tell all the cpus to set up their protection SPR */
 317        on_each_cpu_mask(&rect_cpus, hardwall_setup_func, r, 1);
 318}
 319
 320/* Entered from INT_xDN_FIREWALL interrupt vector with irqs disabled. */
 321void __kprobes do_hardwall_trap(struct pt_regs* regs, int fault_num)
 322{
 323        struct hardwall_info *rect;
 324        struct hardwall_type *hwt;
 325        struct task_struct *p;
 326        struct siginfo info;
 327        int cpu = smp_processor_id();
 328        int found_processes;
 329        struct pt_regs *old_regs = set_irq_regs(regs);
 330
 331        irq_enter();
 332
 333        /* Figure out which network trapped. */
 334        switch (fault_num) {
 335#ifndef __tilepro__
 336        case INT_IDN_FIREWALL:
 337                hwt = &hardwall_types[HARDWALL_IDN];
 338                break;
 339#endif
 340        case INT_UDN_FIREWALL:
 341                hwt = &hardwall_types[HARDWALL_UDN];
 342                break;
 343        default:
 344                BUG();
 345        }
 346        BUG_ON(hwt->disabled);
 347
 348        /* This tile trapped a network access; find the rectangle. */
 349        spin_lock(&hwt->lock);
 350        list_for_each_entry(rect, &hwt->list, list) {
 351                if (cpumask_test_cpu(cpu, &rect->cpumask))
 352                        break;
 353        }
 354
 355        /*
 356         * It shouldn't be possible not to find this cpu on the
 357         * rectangle list, since only cpus in rectangles get hardwalled.
 358         * The hardwall is only removed after the user network is drained.
 359         */
 360        BUG_ON(&rect->list == &hwt->list);
 361
 362        /*
 363         * If we already started teardown on this hardwall, don't worry;
 364         * the abort signal has been sent and we are just waiting for things
 365         * to quiesce.
 366         */
 367        if (rect->teardown_in_progress) {
 368                pr_notice("cpu %d: detected %s hardwall violation %#lx while teardown already in progress\n",
 369                          cpu, hwt->name,
 370                          (long)mfspr_XDN(hwt, DIRECTION_PROTECT));
 371                goto done;
 372        }
 373
 374        /*
 375         * Kill off any process that is activated in this rectangle.
 376         * We bypass security to deliver the signal, since it must be
 377         * one of the activated processes that generated the user network
 378         * message that caused this trap, and all the activated
 379         * processes shared a single open file so are pretty tightly
 380         * bound together from a security point of view to begin with.
 381         */
 382        rect->teardown_in_progress = 1;
 383        wmb(); /* Ensure visibility of rectangle before notifying processes. */
 384        pr_notice("cpu %d: detected %s hardwall violation %#lx...\n",
 385                  cpu, hwt->name, (long)mfspr_XDN(hwt, DIRECTION_PROTECT));
 386        info.si_signo = SIGILL;
 387        info.si_errno = 0;
 388        info.si_code = ILL_HARDWALL;
 389        found_processes = 0;
 390        list_for_each_entry(p, &rect->task_head,
 391                            thread.hardwall[hwt->index].list) {
 392                BUG_ON(p->thread.hardwall[hwt->index].info != rect);
 393                if (!(p->flags & PF_EXITING)) {
 394                        found_processes = 1;
 395                        pr_notice("hardwall: killing %d\n", p->pid);
 396                        do_send_sig_info(info.si_signo, &info, p, false);
 397                }
 398        }
 399        if (!found_processes)
 400                pr_notice("hardwall: no associated processes!\n");
 401
 402 done:
 403        spin_unlock(&hwt->lock);
 404
 405        /*
 406         * We have to disable firewall interrupts now, or else when we
 407         * return from this handler, we will simply re-interrupt back to
 408         * it.  However, we can't clear the protection bits, since we
 409         * haven't yet drained the network, and that would allow packets
 410         * to cross out of the hardwall region.
 411         */
 412        disable_firewall_interrupts(hwt);
 413
 414        irq_exit();
 415        set_irq_regs(old_regs);
 416}
 417
 418/* Allow access from user space to the user network. */
 419void grant_hardwall_mpls(struct hardwall_type *hwt)
 420{
 421#ifndef __tilepro__
 422        if (!hwt->is_xdn) {
 423                __insn_mtspr(SPR_MPL_IPI_0_SET_0, 1);
 424                return;
 425        }
 426#endif
 427        mtspr_MPL_XDN(hwt, ACCESS_SET_0, 1);
 428        mtspr_MPL_XDN(hwt, AVAIL_SET_0, 1);
 429        mtspr_MPL_XDN(hwt, COMPLETE_SET_0, 1);
 430        mtspr_MPL_XDN(hwt, TIMER_SET_0, 1);
 431#if !CHIP_HAS_REV1_XDN()
 432        mtspr_MPL_XDN(hwt, REFILL_SET_0, 1);
 433        mtspr_MPL_XDN(hwt, CA_SET_0, 1);
 434#endif
 435}
 436
 437/* Deny access from user space to the user network. */
 438void restrict_hardwall_mpls(struct hardwall_type *hwt)
 439{
 440#ifndef __tilepro__
 441        if (!hwt->is_xdn) {
 442                __insn_mtspr(SPR_MPL_IPI_0_SET_1, 1);
 443                return;
 444        }
 445#endif
 446        mtspr_MPL_XDN(hwt, ACCESS_SET_1, 1);
 447        mtspr_MPL_XDN(hwt, AVAIL_SET_1, 1);
 448        mtspr_MPL_XDN(hwt, COMPLETE_SET_1, 1);
 449        mtspr_MPL_XDN(hwt, TIMER_SET_1, 1);
 450#if !CHIP_HAS_REV1_XDN()
 451        mtspr_MPL_XDN(hwt, REFILL_SET_1, 1);
 452        mtspr_MPL_XDN(hwt, CA_SET_1, 1);
 453#endif
 454}
 455
 456/* Restrict or deny as necessary for the task we're switching to. */
 457void hardwall_switch_tasks(struct task_struct *prev,
 458                           struct task_struct *next)
 459{
 460        int i;
 461        for (i = 0; i < HARDWALL_TYPES; ++i) {
 462                if (prev->thread.hardwall[i].info != NULL) {
 463                        if (next->thread.hardwall[i].info == NULL)
 464                                restrict_hardwall_mpls(&hardwall_types[i]);
 465                } else if (next->thread.hardwall[i].info != NULL) {
 466                        grant_hardwall_mpls(&hardwall_types[i]);
 467                }
 468        }
 469}
 470
 471/* Does this task have the right to IPI the given cpu? */
 472int hardwall_ipi_valid(int cpu)
 473{
 474#ifdef __tilegx__
 475        struct hardwall_info *info =
 476                current->thread.hardwall[HARDWALL_IPI].info;
 477        return info && cpumask_test_cpu(cpu, &info->cpumask);
 478#else
 479        return 0;
 480#endif
 481}
 482
 483/*
 484 * Code to create, activate, deactivate, and destroy hardwall resources.
 485 */
 486
 487/* Create a hardwall for the given resource */
 488static struct hardwall_info *hardwall_create(struct hardwall_type *hwt,
 489                                             size_t size,
 490                                             const unsigned char __user *bits)
 491{
 492        struct hardwall_info *iter, *info;
 493        struct cpumask mask;
 494        unsigned long flags;
 495        int rc;
 496
 497        /* Reject crazy sizes out of hand, a la sys_mbind(). */
 498        if (size > PAGE_SIZE)
 499                return ERR_PTR(-EINVAL);
 500
 501        /* Copy whatever fits into a cpumask. */
 502        if (copy_from_user(&mask, bits, min(sizeof(struct cpumask), size)))
 503                return ERR_PTR(-EFAULT);
 504
 505        /*
 506         * If the size was short, clear the rest of the mask;
 507         * otherwise validate that the rest of the user mask was zero
 508         * (we don't try hard to be efficient when validating huge masks).
 509         */
 510        if (size < sizeof(struct cpumask)) {
 511                memset((char *)&mask + size, 0, sizeof(struct cpumask) - size);
 512        } else if (size > sizeof(struct cpumask)) {
 513                size_t i;
 514                for (i = sizeof(struct cpumask); i < size; ++i) {
 515                        char c;
 516                        if (get_user(c, &bits[i]))
 517                                return ERR_PTR(-EFAULT);
 518                        if (c)
 519                                return ERR_PTR(-EINVAL);
 520                }
 521        }
 522
 523        /* Allocate a new hardwall_info optimistically. */
 524        info = kmalloc(sizeof(struct hardwall_info),
 525                        GFP_KERNEL | __GFP_ZERO);
 526        if (info == NULL)
 527                return ERR_PTR(-ENOMEM);
 528        INIT_LIST_HEAD(&info->task_head);
 529        info->type = hwt;
 530
 531        /* Compute the rectangle size and validate that it's plausible. */
 532        cpumask_copy(&info->cpumask, &mask);
 533        info->id = find_first_bit(cpumask_bits(&mask), nr_cpumask_bits);
 534        if (hwt->is_xdn) {
 535                rc = check_rectangle(info, &mask);
 536                if (rc != 0) {
 537                        kfree(info);
 538                        return ERR_PTR(rc);
 539                }
 540        }
 541
 542        /*
 543         * Eliminate cpus that are not part of this Linux client.
 544         * Note that this allows for configurations that we might not want to
 545         * support, such as one client on every even cpu, another client on
 546         * every odd cpu.
 547         */
 548        cpumask_and(&info->cpumask, &info->cpumask, cpu_online_mask);
 549
 550        /* Confirm it doesn't overlap and add it to the list. */
 551        spin_lock_irqsave(&hwt->lock, flags);
 552        list_for_each_entry(iter, &hwt->list, list) {
 553                if (cpumask_intersects(&iter->cpumask, &info->cpumask)) {
 554                        spin_unlock_irqrestore(&hwt->lock, flags);
 555                        kfree(info);
 556                        return ERR_PTR(-EBUSY);
 557                }
 558        }
 559        list_add_tail(&info->list, &hwt->list);
 560        spin_unlock_irqrestore(&hwt->lock, flags);
 561
 562        /* Set up appropriate hardwalling on all affected cpus. */
 563        if (hwt->is_xdn)
 564                hardwall_protect_rectangle(info);
 565
 566        /* Create a /proc/tile/hardwall entry. */
 567        hardwall_add_proc(info);
 568
 569        return info;
 570}
 571
 572/* Activate a given hardwall on this cpu for this process. */
 573static int hardwall_activate(struct hardwall_info *info)
 574{
 575        int cpu;
 576        unsigned long flags;
 577        struct task_struct *p = current;
 578        struct thread_struct *ts = &p->thread;
 579        struct hardwall_type *hwt;
 580
 581        /* Require a hardwall. */
 582        if (info == NULL)
 583                return -ENODATA;
 584
 585        /* Not allowed to activate a hardwall that is being torn down. */
 586        if (info->teardown_in_progress)
 587                return -EINVAL;
 588
 589        /*
 590         * Get our affinity; if we're not bound to this tile uniquely,
 591         * we can't access the network registers.
 592         */
 593        if (cpumask_weight(&p->cpus_allowed) != 1)
 594                return -EPERM;
 595
 596        /* Make sure we are bound to a cpu assigned to this resource. */
 597        cpu = smp_processor_id();
 598        BUG_ON(cpumask_first(&p->cpus_allowed) != cpu);
 599        if (!cpumask_test_cpu(cpu, &info->cpumask))
 600                return -EINVAL;
 601
 602        /* If we are already bound to this hardwall, it's a no-op. */
 603        hwt = info->type;
 604        if (ts->hardwall[hwt->index].info) {
 605                BUG_ON(ts->hardwall[hwt->index].info != info);
 606                return 0;
 607        }
 608
 609        /* Success!  This process gets to use the resource on this cpu. */
 610        ts->hardwall[hwt->index].info = info;
 611        spin_lock_irqsave(&hwt->lock, flags);
 612        list_add(&ts->hardwall[hwt->index].list, &info->task_head);
 613        spin_unlock_irqrestore(&hwt->lock, flags);
 614        grant_hardwall_mpls(hwt);
 615        printk(KERN_DEBUG "Pid %d (%s) activated for %s hardwall: cpu %d\n",
 616               p->pid, p->comm, hwt->name, cpu);
 617        return 0;
 618}
 619
 620/*
 621 * Deactivate a task's hardwall.  Must hold lock for hardwall_type.
 622 * This method may be called from exit_thread(), so we don't want to
 623 * rely on too many fields of struct task_struct still being valid.
 624 * We assume the cpus_allowed, pid, and comm fields are still valid.
 625 */
 626static void _hardwall_deactivate(struct hardwall_type *hwt,
 627                                 struct task_struct *task)
 628{
 629        struct thread_struct *ts = &task->thread;
 630
 631        if (cpumask_weight(&task->cpus_allowed) != 1) {
 632                pr_err("pid %d (%s) releasing %s hardwall with an affinity mask containing %d cpus!\n",
 633                       task->pid, task->comm, hwt->name,
 634                       cpumask_weight(&task->cpus_allowed));
 635                BUG();
 636        }
 637
 638        BUG_ON(ts->hardwall[hwt->index].info == NULL);
 639        ts->hardwall[hwt->index].info = NULL;
 640        list_del(&ts->hardwall[hwt->index].list);
 641        if (task == current)
 642                restrict_hardwall_mpls(hwt);
 643}
 644
 645/* Deactivate a task's hardwall. */
 646static int hardwall_deactivate(struct hardwall_type *hwt,
 647                               struct task_struct *task)
 648{
 649        unsigned long flags;
 650        int activated;
 651
 652        spin_lock_irqsave(&hwt->lock, flags);
 653        activated = (task->thread.hardwall[hwt->index].info != NULL);
 654        if (activated)
 655                _hardwall_deactivate(hwt, task);
 656        spin_unlock_irqrestore(&hwt->lock, flags);
 657
 658        if (!activated)
 659                return -EINVAL;
 660
 661        printk(KERN_DEBUG "Pid %d (%s) deactivated for %s hardwall: cpu %d\n",
 662               task->pid, task->comm, hwt->name, raw_smp_processor_id());
 663        return 0;
 664}
 665
 666void hardwall_deactivate_all(struct task_struct *task)
 667{
 668        int i;
 669        for (i = 0; i < HARDWALL_TYPES; ++i)
 670                if (task->thread.hardwall[i].info)
 671                        hardwall_deactivate(&hardwall_types[i], task);
 672}
 673
 674/* Stop the switch before draining the network. */
 675static void stop_xdn_switch(void *arg)
 676{
 677#if !CHIP_HAS_REV1_XDN()
 678        /* Freeze the switch and the demux. */
 679        __insn_mtspr(SPR_UDN_SP_FREEZE,
 680                     SPR_UDN_SP_FREEZE__SP_FRZ_MASK |
 681                     SPR_UDN_SP_FREEZE__DEMUX_FRZ_MASK |
 682                     SPR_UDN_SP_FREEZE__NON_DEST_EXT_MASK);
 683#else
 684        /*
 685         * Drop all packets bound for the core or off the edge.
 686         * We rely on the normal hardwall protection setup code
 687         * to have set the low four bits to trigger firewall interrupts,
 688         * and shift those bits up to trigger "drop on send" semantics,
 689         * plus adding "drop on send to core" for all switches.
 690         * In practice it seems the switches latch the DIRECTION_PROTECT
 691         * SPR so they won't start dropping if they're already
 692         * delivering the last message to the core, but it doesn't
 693         * hurt to enable it here.
 694         */
 695        struct hardwall_type *hwt = arg;
 696        unsigned long protect = mfspr_XDN(hwt, DIRECTION_PROTECT);
 697        mtspr_XDN(hwt, DIRECTION_PROTECT, (protect | C_PROTECT) << 5);
 698#endif
 699}
 700
 701static void empty_xdn_demuxes(struct hardwall_type *hwt)
 702{
 703#ifndef __tilepro__
 704        if (hwt->is_idn) {
 705                while (__insn_mfspr(SPR_IDN_DATA_AVAIL) & (1 << 0))
 706                        (void) __tile_idn0_receive();
 707                while (__insn_mfspr(SPR_IDN_DATA_AVAIL) & (1 << 1))
 708                        (void) __tile_idn1_receive();
 709                return;
 710        }
 711#endif
 712        while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 0))
 713                (void) __tile_udn0_receive();
 714        while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 1))
 715                (void) __tile_udn1_receive();
 716        while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 2))
 717                (void) __tile_udn2_receive();
 718        while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 3))
 719                (void) __tile_udn3_receive();
 720}
 721
 722/* Drain all the state from a stopped switch. */
 723static void drain_xdn_switch(void *arg)
 724{
 725        struct hardwall_info *info = arg;
 726        struct hardwall_type *hwt = info->type;
 727
 728#if CHIP_HAS_REV1_XDN()
 729        /*
 730         * The switches have been configured to drop any messages
 731         * destined for cores (or off the edge of the rectangle).
 732         * But the current message may continue to be delivered,
 733         * so we wait until all the cores have finished any pending
 734         * messages before we stop draining.
 735         */
 736        int pending = mfspr_XDN(hwt, PENDING);
 737        while (pending--) {
 738                empty_xdn_demuxes(hwt);
 739                if (hwt->is_idn)
 740                        __tile_idn_send(0);
 741                else
 742                        __tile_udn_send(0);
 743        }
 744        atomic_dec(&info->xdn_pending_count);
 745        while (atomic_read(&info->xdn_pending_count))
 746                empty_xdn_demuxes(hwt);
 747#else
 748        int i;
 749        int from_tile_words, ca_count;
 750
 751        /* Empty out the 5 switch point fifos. */
 752        for (i = 0; i < 5; i++) {
 753                int words, j;
 754                __insn_mtspr(SPR_UDN_SP_FIFO_SEL, i);
 755                words = __insn_mfspr(SPR_UDN_SP_STATE) & 0xF;
 756                for (j = 0; j < words; j++)
 757                        (void) __insn_mfspr(SPR_UDN_SP_FIFO_DATA);
 758                BUG_ON((__insn_mfspr(SPR_UDN_SP_STATE) & 0xF) != 0);
 759        }
 760
 761        /* Dump out the 3 word fifo at top. */
 762        from_tile_words = (__insn_mfspr(SPR_UDN_DEMUX_STATUS) >> 10) & 0x3;
 763        for (i = 0; i < from_tile_words; i++)
 764                (void) __insn_mfspr(SPR_UDN_DEMUX_WRITE_FIFO);
 765
 766        /* Empty out demuxes. */
 767        empty_xdn_demuxes(hwt);
 768
 769        /* Empty out catch all. */
 770        ca_count = __insn_mfspr(SPR_UDN_DEMUX_CA_COUNT);
 771        for (i = 0; i < ca_count; i++)
 772                (void) __insn_mfspr(SPR_UDN_CA_DATA);
 773        BUG_ON(__insn_mfspr(SPR_UDN_DEMUX_CA_COUNT) != 0);
 774
 775        /* Clear demux logic. */
 776        __insn_mtspr(SPR_UDN_DEMUX_CTL, 1);
 777
 778        /*
 779         * Write switch state; experimentation indicates that 0xc3000
 780         * is an idle switch point.
 781         */
 782        for (i = 0; i < 5; i++) {
 783                __insn_mtspr(SPR_UDN_SP_FIFO_SEL, i);
 784                __insn_mtspr(SPR_UDN_SP_STATE, 0xc3000);
 785        }
 786#endif
 787}
 788
 789/* Reset random XDN state registers at boot up and during hardwall teardown. */
 790static void reset_xdn_network_state(struct hardwall_type *hwt)
 791{
 792        if (hwt->disabled)
 793                return;
 794
 795        /* Clear out other random registers so we have a clean slate. */
 796        mtspr_XDN(hwt, DIRECTION_PROTECT, 0);
 797        mtspr_XDN(hwt, AVAIL_EN, 0);
 798        mtspr_XDN(hwt, DEADLOCK_TIMEOUT, 0);
 799
 800#if !CHIP_HAS_REV1_XDN()
 801        /* Reset UDN coordinates to their standard value */
 802        {
 803                unsigned int cpu = smp_processor_id();
 804                unsigned int x = cpu_x(cpu);
 805                unsigned int y = cpu_y(cpu);
 806                __insn_mtspr(SPR_UDN_TILE_COORD, (x << 18) | (y << 7));
 807        }
 808
 809        /* Set demux tags to predefined values and enable them. */
 810        __insn_mtspr(SPR_UDN_TAG_VALID, 0xf);
 811        __insn_mtspr(SPR_UDN_TAG_0, (1 << 0));
 812        __insn_mtspr(SPR_UDN_TAG_1, (1 << 1));
 813        __insn_mtspr(SPR_UDN_TAG_2, (1 << 2));
 814        __insn_mtspr(SPR_UDN_TAG_3, (1 << 3));
 815
 816        /* Set other rev0 random registers to a clean state. */
 817        __insn_mtspr(SPR_UDN_REFILL_EN, 0);
 818        __insn_mtspr(SPR_UDN_DEMUX_QUEUE_SEL, 0);
 819        __insn_mtspr(SPR_UDN_SP_FIFO_SEL, 0);
 820
 821        /* Start the switch and demux. */
 822        __insn_mtspr(SPR_UDN_SP_FREEZE, 0);
 823#endif
 824}
 825
 826void reset_network_state(void)
 827{
 828        reset_xdn_network_state(&hardwall_types[HARDWALL_UDN]);
 829#ifndef __tilepro__
 830        reset_xdn_network_state(&hardwall_types[HARDWALL_IDN]);
 831#endif
 832}
 833
 834/* Restart an XDN switch after draining. */
 835static void restart_xdn_switch(void *arg)
 836{
 837        struct hardwall_type *hwt = arg;
 838
 839#if CHIP_HAS_REV1_XDN()
 840        /* One last drain step to avoid races with injection and draining. */
 841        empty_xdn_demuxes(hwt);
 842#endif
 843
 844        reset_xdn_network_state(hwt);
 845
 846        /* Disable firewall interrupts. */
 847        disable_firewall_interrupts(hwt);
 848}
 849
 850/* Last reference to a hardwall is gone, so clear the network. */
 851static void hardwall_destroy(struct hardwall_info *info)
 852{
 853        struct task_struct *task;
 854        struct hardwall_type *hwt;
 855        unsigned long flags;
 856
 857        /* Make sure this file actually represents a hardwall. */
 858        if (info == NULL)
 859                return;
 860
 861        /*
 862         * Deactivate any remaining tasks.  It's possible to race with
 863         * some other thread that is exiting and hasn't yet called
 864         * deactivate (when freeing its thread_info), so we carefully
 865         * deactivate any remaining tasks before freeing the
 866         * hardwall_info object itself.
 867         */
 868        hwt = info->type;
 869        info->teardown_in_progress = 1;
 870        spin_lock_irqsave(&hwt->lock, flags);
 871        list_for_each_entry(task, &info->task_head,
 872                            thread.hardwall[hwt->index].list)
 873                _hardwall_deactivate(hwt, task);
 874        spin_unlock_irqrestore(&hwt->lock, flags);
 875
 876        if (hwt->is_xdn) {
 877                /* Configure the switches for draining the user network. */
 878                printk(KERN_DEBUG
 879                       "Clearing %s hardwall rectangle %dx%d %d,%d\n",
 880                       hwt->name, info->width, info->height,
 881                       info->ulhc_x, info->ulhc_y);
 882                on_each_cpu_mask(&info->cpumask, stop_xdn_switch, hwt, 1);
 883
 884                /* Drain the network. */
 885#if CHIP_HAS_REV1_XDN()
 886                atomic_set(&info->xdn_pending_count,
 887                           cpumask_weight(&info->cpumask));
 888                on_each_cpu_mask(&info->cpumask, drain_xdn_switch, info, 0);
 889#else
 890                on_each_cpu_mask(&info->cpumask, drain_xdn_switch, info, 1);
 891#endif
 892
 893                /* Restart switch and disable firewall. */
 894                on_each_cpu_mask(&info->cpumask, restart_xdn_switch, hwt, 1);
 895        }
 896
 897        /* Remove the /proc/tile/hardwall entry. */
 898        hardwall_remove_proc(info);
 899
 900        /* Now free the hardwall from the list. */
 901        spin_lock_irqsave(&hwt->lock, flags);
 902        BUG_ON(!list_empty(&info->task_head));
 903        list_del(&info->list);
 904        spin_unlock_irqrestore(&hwt->lock, flags);
 905        kfree(info);
 906}
 907
 908
 909static int hardwall_proc_show(struct seq_file *sf, void *v)
 910{
 911        struct hardwall_info *info = sf->private;
 912
 913        seq_printf(sf, "%*pbl\n", cpumask_pr_args(&info->cpumask));
 914        return 0;
 915}
 916
 917static int hardwall_proc_open(struct inode *inode,
 918                              struct file *file)
 919{
 920        return single_open(file, hardwall_proc_show, PDE_DATA(inode));
 921}
 922
 923static const struct file_operations hardwall_proc_fops = {
 924        .open           = hardwall_proc_open,
 925        .read           = seq_read,
 926        .llseek         = seq_lseek,
 927        .release        = single_release,
 928};
 929
 930static void hardwall_add_proc(struct hardwall_info *info)
 931{
 932        char buf[64];
 933        snprintf(buf, sizeof(buf), "%d", info->id);
 934        proc_create_data(buf, 0444, info->type->proc_dir,
 935                         &hardwall_proc_fops, info);
 936}
 937
 938static void hardwall_remove_proc(struct hardwall_info *info)
 939{
 940        char buf[64];
 941        snprintf(buf, sizeof(buf), "%d", info->id);
 942        remove_proc_entry(buf, info->type->proc_dir);
 943}
 944
 945int proc_pid_hardwall(struct seq_file *m, struct pid_namespace *ns,
 946                      struct pid *pid, struct task_struct *task)
 947{
 948        int i;
 949        int n = 0;
 950        for (i = 0; i < HARDWALL_TYPES; ++i) {
 951                struct hardwall_info *info = task->thread.hardwall[i].info;
 952                if (info)
 953                        seq_printf(m, "%s: %d\n", info->type->name, info->id);
 954        }
 955        return n;
 956}
 957
 958void proc_tile_hardwall_init(struct proc_dir_entry *root)
 959{
 960        int i;
 961        for (i = 0; i < HARDWALL_TYPES; ++i) {
 962                struct hardwall_type *hwt = &hardwall_types[i];
 963                if (hwt->disabled)
 964                        continue;
 965                if (hardwall_proc_dir == NULL)
 966                        hardwall_proc_dir = proc_mkdir("hardwall", root);
 967                hwt->proc_dir = proc_mkdir(hwt->name, hardwall_proc_dir);
 968        }
 969}
 970
 971
 972/*
 973 * Character device support via ioctl/close.
 974 */
 975
 976static long hardwall_ioctl(struct file *file, unsigned int a, unsigned long b)
 977{
 978        struct hardwall_info *info = file->private_data;
 979        int minor = iminor(file->f_mapping->host);
 980        struct hardwall_type* hwt;
 981
 982        if (_IOC_TYPE(a) != HARDWALL_IOCTL_BASE)
 983                return -EINVAL;
 984
 985        BUILD_BUG_ON(HARDWALL_TYPES != _HARDWALL_TYPES);
 986        BUILD_BUG_ON(HARDWALL_TYPES !=
 987                     sizeof(hardwall_types)/sizeof(hardwall_types[0]));
 988
 989        if (minor < 0 || minor >= HARDWALL_TYPES)
 990                return -EINVAL;
 991        hwt = &hardwall_types[minor];
 992        WARN_ON(info && hwt != info->type);
 993
 994        switch (_IOC_NR(a)) {
 995        case _HARDWALL_CREATE:
 996                if (hwt->disabled)
 997                        return -ENOSYS;
 998                if (info != NULL)
 999                        return -EALREADY;
1000                info = hardwall_create(hwt, _IOC_SIZE(a),
1001                                       (const unsigned char __user *)b);
1002                if (IS_ERR(info))
1003                        return PTR_ERR(info);
1004                file->private_data = info;
1005                return 0;
1006
1007        case _HARDWALL_ACTIVATE:
1008                return hardwall_activate(info);
1009
1010        case _HARDWALL_DEACTIVATE:
1011                if (current->thread.hardwall[hwt->index].info != info)
1012                        return -EINVAL;
1013                return hardwall_deactivate(hwt, current);
1014
1015        case _HARDWALL_GET_ID:
1016                return info ? info->id : -EINVAL;
1017
1018        default:
1019                return -EINVAL;
1020        }
1021}
1022
1023#ifdef CONFIG_COMPAT
1024static long hardwall_compat_ioctl(struct file *file,
1025                                  unsigned int a, unsigned long b)
1026{
1027        /* Sign-extend the argument so it can be used as a pointer. */
1028        return hardwall_ioctl(file, a, (unsigned long)compat_ptr(b));
1029}
1030#endif
1031
1032/* The user process closed the file; revoke access to user networks. */
1033static int hardwall_flush(struct file *file, fl_owner_t owner)
1034{
1035        struct hardwall_info *info = file->private_data;
1036        struct task_struct *task, *tmp;
1037        unsigned long flags;
1038
1039        if (info) {
1040                /*
1041                 * NOTE: if multiple threads are activated on this hardwall
1042                 * file, the other threads will continue having access to the
1043                 * user network until they are context-switched out and back
1044                 * in again.
1045                 *
1046                 * NOTE: A NULL files pointer means the task is being torn
1047                 * down, so in that case we also deactivate it.
1048                 */
1049                struct hardwall_type *hwt = info->type;
1050                spin_lock_irqsave(&hwt->lock, flags);
1051                list_for_each_entry_safe(task, tmp, &info->task_head,
1052                                         thread.hardwall[hwt->index].list) {
1053                        if (task->files == owner || task->files == NULL)
1054                                _hardwall_deactivate(hwt, task);
1055                }
1056                spin_unlock_irqrestore(&hwt->lock, flags);
1057        }
1058
1059        return 0;
1060}
1061
1062/* This hardwall is gone, so destroy it. */
1063static int hardwall_release(struct inode *inode, struct file *file)
1064{
1065        hardwall_destroy(file->private_data);
1066        return 0;
1067}
1068
1069static const struct file_operations dev_hardwall_fops = {
1070        .open           = nonseekable_open,
1071        .unlocked_ioctl = hardwall_ioctl,
1072#ifdef CONFIG_COMPAT
1073        .compat_ioctl   = hardwall_compat_ioctl,
1074#endif
1075        .flush          = hardwall_flush,
1076        .release        = hardwall_release,
1077};
1078
1079static struct cdev hardwall_dev;
1080
1081static int __init dev_hardwall_init(void)
1082{
1083        int rc;
1084        dev_t dev;
1085
1086        rc = alloc_chrdev_region(&dev, 0, HARDWALL_TYPES, "hardwall");
1087        if (rc < 0)
1088                return rc;
1089        cdev_init(&hardwall_dev, &dev_hardwall_fops);
1090        rc = cdev_add(&hardwall_dev, dev, HARDWALL_TYPES);
1091        if (rc < 0)
1092                return rc;
1093
1094        return 0;
1095}
1096late_initcall(dev_hardwall_init);
1097