linux/arch/x86/boot/compressed/kaslr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * kaslr.c
   4 *
   5 * This contains the routines needed to generate a reasonable level of
   6 * entropy to choose a randomized kernel base address offset in support
   7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
   8 * handles walking the physical memory maps (and tracking memory regions
   9 * to avoid) in order to select a physical memory location that can
  10 * contain the entire properly aligned running kernel image.
  11 *
  12 */
  13
  14/*
  15 * isspace() in linux/ctype.h is expected by next_args() to filter
  16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
  17 * since isdigit() is implemented in both of them. Hence disable it
  18 * here.
  19 */
  20#define BOOT_CTYPE_H
  21
  22/*
  23 * _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
  24 * While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
  25 * which is meaningless and will cause compiling error in some cases.
  26 * So do not include linux/export.h and define EXPORT_SYMBOL(sym)
  27 * as empty.
  28 */
  29#define _LINUX_EXPORT_H
  30#define EXPORT_SYMBOL(sym)
  31
  32#include "misc.h"
  33#include "error.h"
  34#include "../string.h"
  35
  36#include <generated/compile.h>
  37#include <linux/module.h>
  38#include <linux/uts.h>
  39#include <linux/utsname.h>
  40#include <linux/ctype.h>
  41#include <linux/efi.h>
  42#include <generated/utsrelease.h>
  43#include <asm/efi.h>
  44
  45/* Macros used by the included decompressor code below. */
  46#define STATIC
  47#include <linux/decompress/mm.h>
  48
  49extern unsigned long get_cmd_line_ptr(void);
  50
  51/* Simplified build-specific string for starting entropy. */
  52static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
  53                LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
  54
  55static unsigned long rotate_xor(unsigned long hash, const void *area,
  56                                size_t size)
  57{
  58        size_t i;
  59        unsigned long *ptr = (unsigned long *)area;
  60
  61        for (i = 0; i < size / sizeof(hash); i++) {
  62                /* Rotate by odd number of bits and XOR. */
  63                hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
  64                hash ^= ptr[i];
  65        }
  66
  67        return hash;
  68}
  69
  70/* Attempt to create a simple but unpredictable starting entropy. */
  71static unsigned long get_boot_seed(void)
  72{
  73        unsigned long hash = 0;
  74
  75        hash = rotate_xor(hash, build_str, sizeof(build_str));
  76        hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
  77
  78        return hash;
  79}
  80
  81#define KASLR_COMPRESSED_BOOT
  82#include "../../lib/kaslr.c"
  83
  84struct mem_vector {
  85        unsigned long long start;
  86        unsigned long long size;
  87};
  88
  89/* Only supporting at most 4 unusable memmap regions with kaslr */
  90#define MAX_MEMMAP_REGIONS      4
  91
  92static bool memmap_too_large;
  93
  94
  95/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
  96unsigned long long mem_limit = ULLONG_MAX;
  97
  98
  99enum mem_avoid_index {
 100        MEM_AVOID_ZO_RANGE = 0,
 101        MEM_AVOID_INITRD,
 102        MEM_AVOID_CMDLINE,
 103        MEM_AVOID_BOOTPARAMS,
 104        MEM_AVOID_MEMMAP_BEGIN,
 105        MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 106        MEM_AVOID_MAX,
 107};
 108
 109static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 110
 111static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 112{
 113        /* Item one is entirely before item two. */
 114        if (one->start + one->size <= two->start)
 115                return false;
 116        /* Item one is entirely after item two. */
 117        if (one->start >= two->start + two->size)
 118                return false;
 119        return true;
 120}
 121
 122char *skip_spaces(const char *str)
 123{
 124        while (isspace(*str))
 125                ++str;
 126        return (char *)str;
 127}
 128#include "../../../../lib/ctype.c"
 129#include "../../../../lib/cmdline.c"
 130
 131static int
 132parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
 133{
 134        char *oldp;
 135
 136        if (!p)
 137                return -EINVAL;
 138
 139        /* We don't care about this option here */
 140        if (!strncmp(p, "exactmap", 8))
 141                return -EINVAL;
 142
 143        oldp = p;
 144        *size = memparse(p, &p);
 145        if (p == oldp)
 146                return -EINVAL;
 147
 148        switch (*p) {
 149        case '#':
 150        case '$':
 151        case '!':
 152                *start = memparse(p + 1, &p);
 153                return 0;
 154        case '@':
 155                /* memmap=nn@ss specifies usable region, should be skipped */
 156                *size = 0;
 157                /* Fall through */
 158        default:
 159                /*
 160                 * If w/o offset, only size specified, memmap=nn[KMG] has the
 161                 * same behaviour as mem=nn[KMG]. It limits the max address
 162                 * system can use. Region above the limit should be avoided.
 163                 */
 164                *start = 0;
 165                return 0;
 166        }
 167
 168        return -EINVAL;
 169}
 170
 171static void mem_avoid_memmap(char *str)
 172{
 173        static int i;
 174
 175        if (i >= MAX_MEMMAP_REGIONS)
 176                return;
 177
 178        while (str && (i < MAX_MEMMAP_REGIONS)) {
 179                int rc;
 180                unsigned long long start, size;
 181                char *k = strchr(str, ',');
 182
 183                if (k)
 184                        *k++ = 0;
 185
 186                rc = parse_memmap(str, &start, &size);
 187                if (rc < 0)
 188                        break;
 189                str = k;
 190
 191                if (start == 0) {
 192                        /* Store the specified memory limit if size > 0 */
 193                        if (size > 0)
 194                                mem_limit = size;
 195
 196                        continue;
 197                }
 198
 199                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
 200                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
 201                i++;
 202        }
 203
 204        /* More than 4 memmaps, fail kaslr */
 205        if ((i >= MAX_MEMMAP_REGIONS) && str)
 206                memmap_too_large = true;
 207}
 208
 209static int handle_mem_memmap(void)
 210{
 211        char *args = (char *)get_cmd_line_ptr();
 212        size_t len = strlen((char *)args);
 213        char *tmp_cmdline;
 214        char *param, *val;
 215        u64 mem_size;
 216
 217        if (!strstr(args, "memmap=") && !strstr(args, "mem="))
 218                return 0;
 219
 220        tmp_cmdline = malloc(len + 1);
 221        if (!tmp_cmdline)
 222                error("Failed to allocate space for tmp_cmdline");
 223
 224        memcpy(tmp_cmdline, args, len);
 225        tmp_cmdline[len] = 0;
 226        args = tmp_cmdline;
 227
 228        /* Chew leading spaces */
 229        args = skip_spaces(args);
 230
 231        while (*args) {
 232                args = next_arg(args, &param, &val);
 233                /* Stop at -- */
 234                if (!val && strcmp(param, "--") == 0) {
 235                        warn("Only '--' specified in cmdline");
 236                        free(tmp_cmdline);
 237                        return -1;
 238                }
 239
 240                if (!strcmp(param, "memmap")) {
 241                        mem_avoid_memmap(val);
 242                } else if (!strcmp(param, "mem")) {
 243                        char *p = val;
 244
 245                        if (!strcmp(p, "nopentium"))
 246                                continue;
 247                        mem_size = memparse(p, &p);
 248                        if (mem_size == 0) {
 249                                free(tmp_cmdline);
 250                                return -EINVAL;
 251                        }
 252                        mem_limit = mem_size;
 253                }
 254        }
 255
 256        free(tmp_cmdline);
 257        return 0;
 258}
 259
 260/*
 261 * In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
 262 * The mem_avoid array is used to store the ranges that need to be avoided
 263 * when KASLR searches for an appropriate random address. We must avoid any
 264 * regions that are unsafe to overlap with during decompression, and other
 265 * things like the initrd, cmdline and boot_params. This comment seeks to
 266 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 267 * memory ranges lead to really hard to debug boot failures.
 268 *
 269 * The initrd, cmdline, and boot_params are trivial to identify for
 270 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 271 * MEM_AVOID_BOOTPARAMS respectively below.
 272 *
 273 * What is not obvious how to avoid is the range of memory that is used
 274 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 275 * the compressed kernel (ZO) and its run space, which is used to extract
 276 * the uncompressed kernel (VO) and relocs.
 277 *
 278 * ZO's full run size sits against the end of the decompression buffer, so
 279 * we can calculate where text, data, bss, etc of ZO are positioned more
 280 * easily.
 281 *
 282 * For additional background, the decompression calculations can be found
 283 * in header.S, and the memory diagram is based on the one found in misc.c.
 284 *
 285 * The following conditions are already enforced by the image layouts and
 286 * associated code:
 287 *  - input + input_size >= output + output_size
 288 *  - kernel_total_size <= init_size
 289 *  - kernel_total_size <= output_size (see Note below)
 290 *  - output + init_size >= output + output_size
 291 *
 292 * (Note that kernel_total_size and output_size have no fundamental
 293 * relationship, but output_size is passed to choose_random_location
 294 * as a maximum of the two. The diagram is showing a case where
 295 * kernel_total_size is larger than output_size, but this case is
 296 * handled by bumping output_size.)
 297 *
 298 * The above conditions can be illustrated by a diagram:
 299 *
 300 * 0   output            input            input+input_size    output+init_size
 301 * |     |                 |                             |             |
 302 * |     |                 |                             |             |
 303 * |-----|--------|--------|--------------|-----------|--|-------------|
 304 *                |                       |           |
 305 *                |                       |           |
 306 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
 307 *
 308 * [output, output+init_size) is the entire memory range used for
 309 * extracting the compressed image.
 310 *
 311 * [output, output+kernel_total_size) is the range needed for the
 312 * uncompressed kernel (VO) and its run size (bss, brk, etc).
 313 *
 314 * [output, output+output_size) is VO plus relocs (i.e. the entire
 315 * uncompressed payload contained by ZO). This is the area of the buffer
 316 * written to during decompression.
 317 *
 318 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 319 * range of the copied ZO and decompression code. (i.e. the range
 320 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
 321 *
 322 * [input, input+input_size) is the original copied compressed image (ZO)
 323 * (i.e. it does not include its run size). This range must be avoided
 324 * because it contains the data used for decompression.
 325 *
 326 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 327 * range includes ZO's heap and stack, and must be avoided since it
 328 * performs the decompression.
 329 *
 330 * Since the above two ranges need to be avoided and they are adjacent,
 331 * they can be merged, resulting in: [input, output+init_size) which
 332 * becomes the MEM_AVOID_ZO_RANGE below.
 333 */
 334static void mem_avoid_init(unsigned long input, unsigned long input_size,
 335                           unsigned long output)
 336{
 337        unsigned long init_size = boot_params->hdr.init_size;
 338        u64 initrd_start, initrd_size;
 339        u64 cmd_line, cmd_line_size;
 340        char *ptr;
 341
 342        /*
 343         * Avoid the region that is unsafe to overlap during
 344         * decompression.
 345         */
 346        mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
 347        mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 348        add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
 349                         mem_avoid[MEM_AVOID_ZO_RANGE].size);
 350
 351        /* Avoid initrd. */
 352        initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
 353        initrd_start |= boot_params->hdr.ramdisk_image;
 354        initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
 355        initrd_size |= boot_params->hdr.ramdisk_size;
 356        mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
 357        mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
 358        /* No need to set mapping for initrd, it will be handled in VO. */
 359
 360        /* Avoid kernel command line. */
 361        cmd_line  = (u64)boot_params->ext_cmd_line_ptr << 32;
 362        cmd_line |= boot_params->hdr.cmd_line_ptr;
 363        /* Calculate size of cmd_line. */
 364        ptr = (char *)(unsigned long)cmd_line;
 365        for (cmd_line_size = 0; ptr[cmd_line_size++];)
 366                ;
 367        mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
 368        mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
 369        add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
 370                         mem_avoid[MEM_AVOID_CMDLINE].size);
 371
 372        /* Avoid boot parameters. */
 373        mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
 374        mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 375        add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
 376                         mem_avoid[MEM_AVOID_BOOTPARAMS].size);
 377
 378        /* We don't need to set a mapping for setup_data. */
 379
 380        /* Mark the memmap regions we need to avoid */
 381        handle_mem_memmap();
 382
 383#ifdef CONFIG_X86_VERBOSE_BOOTUP
 384        /* Make sure video RAM can be used. */
 385        add_identity_map(0, PMD_SIZE);
 386#endif
 387}
 388
 389/*
 390 * Does this memory vector overlap a known avoided area? If so, record the
 391 * overlap region with the lowest address.
 392 */
 393static bool mem_avoid_overlap(struct mem_vector *img,
 394                              struct mem_vector *overlap)
 395{
 396        int i;
 397        struct setup_data *ptr;
 398        unsigned long earliest = img->start + img->size;
 399        bool is_overlapping = false;
 400
 401        for (i = 0; i < MEM_AVOID_MAX; i++) {
 402                if (mem_overlaps(img, &mem_avoid[i]) &&
 403                    mem_avoid[i].start < earliest) {
 404                        *overlap = mem_avoid[i];
 405                        earliest = overlap->start;
 406                        is_overlapping = true;
 407                }
 408        }
 409
 410        /* Avoid all entries in the setup_data linked list. */
 411        ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 412        while (ptr) {
 413                struct mem_vector avoid;
 414
 415                avoid.start = (unsigned long)ptr;
 416                avoid.size = sizeof(*ptr) + ptr->len;
 417
 418                if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 419                        *overlap = avoid;
 420                        earliest = overlap->start;
 421                        is_overlapping = true;
 422                }
 423
 424                ptr = (struct setup_data *)(unsigned long)ptr->next;
 425        }
 426
 427        return is_overlapping;
 428}
 429
 430struct slot_area {
 431        unsigned long addr;
 432        int num;
 433};
 434
 435#define MAX_SLOT_AREA 100
 436
 437static struct slot_area slot_areas[MAX_SLOT_AREA];
 438
 439static unsigned long slot_max;
 440
 441static unsigned long slot_area_index;
 442
 443static void store_slot_info(struct mem_vector *region, unsigned long image_size)
 444{
 445        struct slot_area slot_area;
 446
 447        if (slot_area_index == MAX_SLOT_AREA)
 448                return;
 449
 450        slot_area.addr = region->start;
 451        slot_area.num = (region->size - image_size) /
 452                        CONFIG_PHYSICAL_ALIGN + 1;
 453
 454        if (slot_area.num > 0) {
 455                slot_areas[slot_area_index++] = slot_area;
 456                slot_max += slot_area.num;
 457        }
 458}
 459
 460static unsigned long slots_fetch_random(void)
 461{
 462        unsigned long slot;
 463        int i;
 464
 465        /* Handle case of no slots stored. */
 466        if (slot_max == 0)
 467                return 0;
 468
 469        slot = kaslr_get_random_long("Physical") % slot_max;
 470
 471        for (i = 0; i < slot_area_index; i++) {
 472                if (slot >= slot_areas[i].num) {
 473                        slot -= slot_areas[i].num;
 474                        continue;
 475                }
 476                return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
 477        }
 478
 479        if (i == slot_area_index)
 480                debug_putstr("slots_fetch_random() failed!?\n");
 481        return 0;
 482}
 483
 484static void process_mem_region(struct mem_vector *entry,
 485                               unsigned long minimum,
 486                               unsigned long image_size)
 487{
 488        struct mem_vector region, overlap;
 489        struct slot_area slot_area;
 490        unsigned long start_orig, end;
 491        struct mem_vector cur_entry;
 492
 493        /* On 32-bit, ignore entries entirely above our maximum. */
 494        if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
 495                return;
 496
 497        /* Ignore entries entirely below our minimum. */
 498        if (entry->start + entry->size < minimum)
 499                return;
 500
 501        /* Ignore entries above memory limit */
 502        end = min(entry->size + entry->start, mem_limit);
 503        if (entry->start >= end)
 504                return;
 505        cur_entry.start = entry->start;
 506        cur_entry.size = end - entry->start;
 507
 508        region.start = cur_entry.start;
 509        region.size = cur_entry.size;
 510
 511        /* Give up if slot area array is full. */
 512        while (slot_area_index < MAX_SLOT_AREA) {
 513                start_orig = region.start;
 514
 515                /* Potentially raise address to minimum location. */
 516                if (region.start < minimum)
 517                        region.start = minimum;
 518
 519                /* Potentially raise address to meet alignment needs. */
 520                region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
 521
 522                /* Did we raise the address above the passed in memory entry? */
 523                if (region.start > cur_entry.start + cur_entry.size)
 524                        return;
 525
 526                /* Reduce size by any delta from the original address. */
 527                region.size -= region.start - start_orig;
 528
 529                /* On 32-bit, reduce region size to fit within max size. */
 530                if (IS_ENABLED(CONFIG_X86_32) &&
 531                    region.start + region.size > KERNEL_IMAGE_SIZE)
 532                        region.size = KERNEL_IMAGE_SIZE - region.start;
 533
 534                /* Return if region can't contain decompressed kernel */
 535                if (region.size < image_size)
 536                        return;
 537
 538                /* If nothing overlaps, store the region and return. */
 539                if (!mem_avoid_overlap(&region, &overlap)) {
 540                        store_slot_info(&region, image_size);
 541                        return;
 542                }
 543
 544                /* Store beginning of region if holds at least image_size. */
 545                if (overlap.start > region.start + image_size) {
 546                        struct mem_vector beginning;
 547
 548                        beginning.start = region.start;
 549                        beginning.size = overlap.start - region.start;
 550                        store_slot_info(&beginning, image_size);
 551                }
 552
 553                /* Return if overlap extends to or past end of region. */
 554                if (overlap.start + overlap.size >= region.start + region.size)
 555                        return;
 556
 557                /* Clip off the overlapping region and start over. */
 558                region.size -= overlap.start - region.start + overlap.size;
 559                region.start = overlap.start + overlap.size;
 560        }
 561}
 562
 563#ifdef CONFIG_EFI
 564/*
 565 * Returns true if mirror region found (and must have been processed
 566 * for slots adding)
 567 */
 568static bool
 569process_efi_entries(unsigned long minimum, unsigned long image_size)
 570{
 571        struct efi_info *e = &boot_params->efi_info;
 572        bool efi_mirror_found = false;
 573        struct mem_vector region;
 574        efi_memory_desc_t *md;
 575        unsigned long pmap;
 576        char *signature;
 577        u32 nr_desc;
 578        int i;
 579
 580        signature = (char *)&e->efi_loader_signature;
 581        if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
 582            strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
 583                return false;
 584
 585#ifdef CONFIG_X86_32
 586        /* Can't handle data above 4GB at this time */
 587        if (e->efi_memmap_hi) {
 588                warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
 589                return false;
 590        }
 591        pmap =  e->efi_memmap;
 592#else
 593        pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
 594#endif
 595
 596        nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
 597        for (i = 0; i < nr_desc; i++) {
 598                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 599                if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 600                        efi_mirror_found = true;
 601                        break;
 602                }
 603        }
 604
 605        for (i = 0; i < nr_desc; i++) {
 606                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 607
 608                /*
 609                 * Here we are more conservative in picking free memory than
 610                 * the EFI spec allows:
 611                 *
 612                 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
 613                 * free memory and thus available to place the kernel image into,
 614                 * but in practice there's firmware where using that memory leads
 615                 * to crashes.
 616                 *
 617                 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
 618                 */
 619                if (md->type != EFI_CONVENTIONAL_MEMORY)
 620                        continue;
 621
 622                if (efi_mirror_found &&
 623                    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
 624                        continue;
 625
 626                region.start = md->phys_addr;
 627                region.size = md->num_pages << EFI_PAGE_SHIFT;
 628                process_mem_region(&region, minimum, image_size);
 629                if (slot_area_index == MAX_SLOT_AREA) {
 630                        debug_putstr("Aborted EFI scan (slot_areas full)!\n");
 631                        break;
 632                }
 633        }
 634        return true;
 635}
 636#else
 637static inline bool
 638process_efi_entries(unsigned long minimum, unsigned long image_size)
 639{
 640        return false;
 641}
 642#endif
 643
 644static void process_e820_entries(unsigned long minimum,
 645                                 unsigned long image_size)
 646{
 647        int i;
 648        struct mem_vector region;
 649        struct boot_e820_entry *entry;
 650
 651        /* Verify potential e820 positions, appending to slots list. */
 652        for (i = 0; i < boot_params->e820_entries; i++) {
 653                entry = &boot_params->e820_table[i];
 654                /* Skip non-RAM entries. */
 655                if (entry->type != E820_TYPE_RAM)
 656                        continue;
 657                region.start = entry->addr;
 658                region.size = entry->size;
 659                process_mem_region(&region, minimum, image_size);
 660                if (slot_area_index == MAX_SLOT_AREA) {
 661                        debug_putstr("Aborted e820 scan (slot_areas full)!\n");
 662                        break;
 663                }
 664        }
 665}
 666
 667static unsigned long find_random_phys_addr(unsigned long minimum,
 668                                           unsigned long image_size)
 669{
 670        /* Check if we had too many memmaps. */
 671        if (memmap_too_large) {
 672                debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
 673                return 0;
 674        }
 675
 676        /* Make sure minimum is aligned. */
 677        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 678
 679        if (process_efi_entries(minimum, image_size))
 680                return slots_fetch_random();
 681
 682        process_e820_entries(minimum, image_size);
 683        return slots_fetch_random();
 684}
 685
 686static unsigned long find_random_virt_addr(unsigned long minimum,
 687                                           unsigned long image_size)
 688{
 689        unsigned long slots, random_addr;
 690
 691        /* Make sure minimum is aligned. */
 692        minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
 693        /* Align image_size for easy slot calculations. */
 694        image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
 695
 696        /*
 697         * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
 698         * that can hold image_size within the range of minimum to
 699         * KERNEL_IMAGE_SIZE?
 700         */
 701        slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
 702                 CONFIG_PHYSICAL_ALIGN + 1;
 703
 704        random_addr = kaslr_get_random_long("Virtual") % slots;
 705
 706        return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
 707}
 708
 709/*
 710 * Since this function examines addresses much more numerically,
 711 * it takes the input and output pointers as 'unsigned long'.
 712 */
 713void choose_random_location(unsigned long input,
 714                            unsigned long input_size,
 715                            unsigned long *output,
 716                            unsigned long output_size,
 717                            unsigned long *virt_addr)
 718{
 719        unsigned long random_addr, min_addr;
 720
 721        if (cmdline_find_option_bool("nokaslr")) {
 722                warn("KASLR disabled: 'nokaslr' on cmdline.");
 723                return;
 724        }
 725
 726        boot_params->hdr.loadflags |= KASLR_FLAG;
 727
 728        /* Prepare to add new identity pagetables on demand. */
 729        initialize_identity_maps();
 730
 731        /* Record the various known unsafe memory ranges. */
 732        mem_avoid_init(input, input_size, *output);
 733
 734        /*
 735         * Low end of the randomization range should be the
 736         * smaller of 512M or the initial kernel image
 737         * location:
 738         */
 739        min_addr = min(*output, 512UL << 20);
 740
 741        /* Walk available memory entries to find a random address. */
 742        random_addr = find_random_phys_addr(min_addr, output_size);
 743        if (!random_addr) {
 744                warn("Physical KASLR disabled: no suitable memory region!");
 745        } else {
 746                /* Update the new physical address location. */
 747                if (*output != random_addr) {
 748                        add_identity_map(random_addr, output_size);
 749                        *output = random_addr;
 750                }
 751
 752                /*
 753                 * This loads the identity mapping page table.
 754                 * This should only be done if a new physical address
 755                 * is found for the kernel, otherwise we should keep
 756                 * the old page table to make it be like the "nokaslr"
 757                 * case.
 758                 */
 759                finalize_identity_maps();
 760        }
 761
 762
 763        /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
 764        if (IS_ENABLED(CONFIG_X86_64))
 765                random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
 766        *virt_addr = random_addr;
 767}
 768