linux/arch/x86/mm/mpx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * mpx.c - Memory Protection eXtensions
   4 *
   5 * Copyright (c) 2014, Intel Corporation.
   6 * Qiaowei Ren <qiaowei.ren@intel.com>
   7 * Dave Hansen <dave.hansen@intel.com>
   8 */
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/mm_types.h>
  12#include <linux/syscalls.h>
  13#include <linux/sched/sysctl.h>
  14
  15#include <asm/insn.h>
  16#include <asm/insn-eval.h>
  17#include <asm/mman.h>
  18#include <asm/mmu_context.h>
  19#include <asm/mpx.h>
  20#include <asm/processor.h>
  21#include <asm/fpu/internal.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <asm/trace/mpx.h>
  25
  26static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
  27{
  28        if (is_64bit_mm(mm))
  29                return MPX_BD_SIZE_BYTES_64;
  30        else
  31                return MPX_BD_SIZE_BYTES_32;
  32}
  33
  34static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
  35{
  36        if (is_64bit_mm(mm))
  37                return MPX_BT_SIZE_BYTES_64;
  38        else
  39                return MPX_BT_SIZE_BYTES_32;
  40}
  41
  42/*
  43 * This is really a simplified "vm_mmap". it only handles MPX
  44 * bounds tables (the bounds directory is user-allocated).
  45 */
  46static unsigned long mpx_mmap(unsigned long len)
  47{
  48        struct mm_struct *mm = current->mm;
  49        unsigned long addr, populate;
  50
  51        /* Only bounds table can be allocated here */
  52        if (len != mpx_bt_size_bytes(mm))
  53                return -EINVAL;
  54
  55        down_write(&mm->mmap_sem);
  56        addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
  57                       MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
  58        up_write(&mm->mmap_sem);
  59        if (populate)
  60                mm_populate(addr, populate);
  61
  62        return addr;
  63}
  64
  65static int mpx_insn_decode(struct insn *insn,
  66                           struct pt_regs *regs)
  67{
  68        unsigned char buf[MAX_INSN_SIZE];
  69        int x86_64 = !test_thread_flag(TIF_IA32);
  70        int not_copied;
  71        int nr_copied;
  72
  73        not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
  74        nr_copied = sizeof(buf) - not_copied;
  75        /*
  76         * The decoder _should_ fail nicely if we pass it a short buffer.
  77         * But, let's not depend on that implementation detail.  If we
  78         * did not get anything, just error out now.
  79         */
  80        if (!nr_copied)
  81                return -EFAULT;
  82        insn_init(insn, buf, nr_copied, x86_64);
  83        insn_get_length(insn);
  84        /*
  85         * copy_from_user() tries to get as many bytes as we could see in
  86         * the largest possible instruction.  If the instruction we are
  87         * after is shorter than that _and_ we attempt to copy from
  88         * something unreadable, we might get a short read.  This is OK
  89         * as long as the read did not stop in the middle of the
  90         * instruction.  Check to see if we got a partial instruction.
  91         */
  92        if (nr_copied < insn->length)
  93                return -EFAULT;
  94
  95        insn_get_opcode(insn);
  96        /*
  97         * We only _really_ need to decode bndcl/bndcn/bndcu
  98         * Error out on anything else.
  99         */
 100        if (insn->opcode.bytes[0] != 0x0f)
 101                goto bad_opcode;
 102        if ((insn->opcode.bytes[1] != 0x1a) &&
 103            (insn->opcode.bytes[1] != 0x1b))
 104                goto bad_opcode;
 105
 106        return 0;
 107bad_opcode:
 108        return -EINVAL;
 109}
 110
 111/*
 112 * If a bounds overflow occurs then a #BR is generated. This
 113 * function decodes MPX instructions to get violation address
 114 * and set this address into extended struct siginfo.
 115 *
 116 * Note that this is not a super precise way of doing this.
 117 * Userspace could have, by the time we get here, written
 118 * anything it wants in to the instructions.  We can not
 119 * trust anything about it.  They might not be valid
 120 * instructions or might encode invalid registers, etc...
 121 *
 122 * The caller is expected to kfree() the returned siginfo_t.
 123 */
 124siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
 125{
 126        const struct mpx_bndreg_state *bndregs;
 127        const struct mpx_bndreg *bndreg;
 128        siginfo_t *info = NULL;
 129        struct insn insn;
 130        uint8_t bndregno;
 131        int err;
 132
 133        err = mpx_insn_decode(&insn, regs);
 134        if (err)
 135                goto err_out;
 136
 137        /*
 138         * We know at this point that we are only dealing with
 139         * MPX instructions.
 140         */
 141        insn_get_modrm(&insn);
 142        bndregno = X86_MODRM_REG(insn.modrm.value);
 143        if (bndregno > 3) {
 144                err = -EINVAL;
 145                goto err_out;
 146        }
 147        /* get bndregs field from current task's xsave area */
 148        bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
 149        if (!bndregs) {
 150                err = -EINVAL;
 151                goto err_out;
 152        }
 153        /* now go select the individual register in the set of 4 */
 154        bndreg = &bndregs->bndreg[bndregno];
 155
 156        info = kzalloc(sizeof(*info), GFP_KERNEL);
 157        if (!info) {
 158                err = -ENOMEM;
 159                goto err_out;
 160        }
 161        /*
 162         * The registers are always 64-bit, but the upper 32
 163         * bits are ignored in 32-bit mode.  Also, note that the
 164         * upper bounds are architecturally represented in 1's
 165         * complement form.
 166         *
 167         * The 'unsigned long' cast is because the compiler
 168         * complains when casting from integers to different-size
 169         * pointers.
 170         */
 171        info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
 172        info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
 173        info->si_addr_lsb = 0;
 174        info->si_signo = SIGSEGV;
 175        info->si_errno = 0;
 176        info->si_code = SEGV_BNDERR;
 177        info->si_addr = insn_get_addr_ref(&insn, regs);
 178        /*
 179         * We were not able to extract an address from the instruction,
 180         * probably because there was something invalid in it.
 181         */
 182        if (info->si_addr == (void __user *)-1) {
 183                err = -EINVAL;
 184                goto err_out;
 185        }
 186        trace_mpx_bounds_register_exception(info->si_addr, bndreg);
 187        return info;
 188err_out:
 189        /* info might be NULL, but kfree() handles that */
 190        kfree(info);
 191        return ERR_PTR(err);
 192}
 193
 194static __user void *mpx_get_bounds_dir(void)
 195{
 196        const struct mpx_bndcsr *bndcsr;
 197
 198        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 199                return MPX_INVALID_BOUNDS_DIR;
 200
 201        /*
 202         * The bounds directory pointer is stored in a register
 203         * only accessible if we first do an xsave.
 204         */
 205        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 206        if (!bndcsr)
 207                return MPX_INVALID_BOUNDS_DIR;
 208
 209        /*
 210         * Make sure the register looks valid by checking the
 211         * enable bit.
 212         */
 213        if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
 214                return MPX_INVALID_BOUNDS_DIR;
 215
 216        /*
 217         * Lastly, mask off the low bits used for configuration
 218         * flags, and return the address of the bounds table.
 219         */
 220        return (void __user *)(unsigned long)
 221                (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
 222}
 223
 224int mpx_enable_management(void)
 225{
 226        void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
 227        struct mm_struct *mm = current->mm;
 228        int ret = 0;
 229
 230        /*
 231         * runtime in the userspace will be responsible for allocation of
 232         * the bounds directory. Then, it will save the base of the bounds
 233         * directory into XSAVE/XRSTOR Save Area and enable MPX through
 234         * XRSTOR instruction.
 235         *
 236         * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
 237         * expected to be relatively expensive. Storing the bounds
 238         * directory here means that we do not have to do xsave in the
 239         * unmap path; we can just use mm->context.bd_addr instead.
 240         */
 241        bd_base = mpx_get_bounds_dir();
 242        down_write(&mm->mmap_sem);
 243
 244        /* MPX doesn't support addresses above 47 bits yet. */
 245        if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
 246                pr_warn_once("%s (%d): MPX cannot handle addresses "
 247                                "above 47-bits. Disabling.",
 248                                current->comm, current->pid);
 249                ret = -ENXIO;
 250                goto out;
 251        }
 252        mm->context.bd_addr = bd_base;
 253        if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
 254                ret = -ENXIO;
 255out:
 256        up_write(&mm->mmap_sem);
 257        return ret;
 258}
 259
 260int mpx_disable_management(void)
 261{
 262        struct mm_struct *mm = current->mm;
 263
 264        if (!cpu_feature_enabled(X86_FEATURE_MPX))
 265                return -ENXIO;
 266
 267        down_write(&mm->mmap_sem);
 268        mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
 269        up_write(&mm->mmap_sem);
 270        return 0;
 271}
 272
 273static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
 274                unsigned long *curval,
 275                unsigned long __user *addr,
 276                unsigned long old_val, unsigned long new_val)
 277{
 278        int ret;
 279        /*
 280         * user_atomic_cmpxchg_inatomic() actually uses sizeof()
 281         * the pointer that we pass to it to figure out how much
 282         * data to cmpxchg.  We have to be careful here not to
 283         * pass a pointer to a 64-bit data type when we only want
 284         * a 32-bit copy.
 285         */
 286        if (is_64bit_mm(mm)) {
 287                ret = user_atomic_cmpxchg_inatomic(curval,
 288                                addr, old_val, new_val);
 289        } else {
 290                u32 uninitialized_var(curval_32);
 291                u32 old_val_32 = old_val;
 292                u32 new_val_32 = new_val;
 293                u32 __user *addr_32 = (u32 __user *)addr;
 294
 295                ret = user_atomic_cmpxchg_inatomic(&curval_32,
 296                                addr_32, old_val_32, new_val_32);
 297                *curval = curval_32;
 298        }
 299        return ret;
 300}
 301
 302/*
 303 * With 32-bit mode, a bounds directory is 4MB, and the size of each
 304 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
 305 * and the size of each bounds table is 4MB.
 306 */
 307static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
 308{
 309        unsigned long expected_old_val = 0;
 310        unsigned long actual_old_val = 0;
 311        unsigned long bt_addr;
 312        unsigned long bd_new_entry;
 313        int ret = 0;
 314
 315        /*
 316         * Carve the virtual space out of userspace for the new
 317         * bounds table:
 318         */
 319        bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
 320        if (IS_ERR((void *)bt_addr))
 321                return PTR_ERR((void *)bt_addr);
 322        /*
 323         * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
 324         */
 325        bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 326
 327        /*
 328         * Go poke the address of the new bounds table in to the
 329         * bounds directory entry out in userspace memory.  Note:
 330         * we may race with another CPU instantiating the same table.
 331         * In that case the cmpxchg will see an unexpected
 332         * 'actual_old_val'.
 333         *
 334         * This can fault, but that's OK because we do not hold
 335         * mmap_sem at this point, unlike some of the other part
 336         * of the MPX code that have to pagefault_disable().
 337         */
 338        ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry,
 339                                   expected_old_val, bd_new_entry);
 340        if (ret)
 341                goto out_unmap;
 342
 343        /*
 344         * The user_atomic_cmpxchg_inatomic() will only return nonzero
 345         * for faults, *not* if the cmpxchg itself fails.  Now we must
 346         * verify that the cmpxchg itself completed successfully.
 347         */
 348        /*
 349         * We expected an empty 'expected_old_val', but instead found
 350         * an apparently valid entry.  Assume we raced with another
 351         * thread to instantiate this table and desclare succecss.
 352         */
 353        if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
 354                ret = 0;
 355                goto out_unmap;
 356        }
 357        /*
 358         * We found a non-empty bd_entry but it did not have the
 359         * VALID_FLAG set.  Return an error which will result in
 360         * a SEGV since this probably means that somebody scribbled
 361         * some invalid data in to a bounds table.
 362         */
 363        if (expected_old_val != actual_old_val) {
 364                ret = -EINVAL;
 365                goto out_unmap;
 366        }
 367        trace_mpx_new_bounds_table(bt_addr);
 368        return 0;
 369out_unmap:
 370        vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
 371        return ret;
 372}
 373
 374/*
 375 * When a BNDSTX instruction attempts to save bounds to a bounds
 376 * table, it will first attempt to look up the table in the
 377 * first-level bounds directory.  If it does not find a table in
 378 * the directory, a #BR is generated and we get here in order to
 379 * allocate a new table.
 380 *
 381 * With 32-bit mode, the size of BD is 4MB, and the size of each
 382 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
 383 * and the size of each bound table is 4MB.
 384 */
 385static int do_mpx_bt_fault(void)
 386{
 387        unsigned long bd_entry, bd_base;
 388        const struct mpx_bndcsr *bndcsr;
 389        struct mm_struct *mm = current->mm;
 390
 391        bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 392        if (!bndcsr)
 393                return -EINVAL;
 394        /*
 395         * Mask off the preserve and enable bits
 396         */
 397        bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
 398        /*
 399         * The hardware provides the address of the missing or invalid
 400         * entry via BNDSTATUS, so we don't have to go look it up.
 401         */
 402        bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
 403        /*
 404         * Make sure the directory entry is within where we think
 405         * the directory is.
 406         */
 407        if ((bd_entry < bd_base) ||
 408            (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
 409                return -EINVAL;
 410
 411        return allocate_bt(mm, (long __user *)bd_entry);
 412}
 413
 414int mpx_handle_bd_fault(void)
 415{
 416        /*
 417         * Userspace never asked us to manage the bounds tables,
 418         * so refuse to help.
 419         */
 420        if (!kernel_managing_mpx_tables(current->mm))
 421                return -EINVAL;
 422
 423        return do_mpx_bt_fault();
 424}
 425
 426/*
 427 * A thin wrapper around get_user_pages().  Returns 0 if the
 428 * fault was resolved or -errno if not.
 429 */
 430static int mpx_resolve_fault(long __user *addr, int write)
 431{
 432        long gup_ret;
 433        int nr_pages = 1;
 434
 435        gup_ret = get_user_pages((unsigned long)addr, nr_pages,
 436                        write ? FOLL_WRITE : 0, NULL, NULL);
 437        /*
 438         * get_user_pages() returns number of pages gotten.
 439         * 0 means we failed to fault in and get anything,
 440         * probably because 'addr' is bad.
 441         */
 442        if (!gup_ret)
 443                return -EFAULT;
 444        /* Other error, return it */
 445        if (gup_ret < 0)
 446                return gup_ret;
 447        /* must have gup'd a page and gup_ret>0, success */
 448        return 0;
 449}
 450
 451static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
 452                                             unsigned long bd_entry)
 453{
 454        unsigned long bt_addr = bd_entry;
 455        int align_to_bytes;
 456        /*
 457         * Bit 0 in a bt_entry is always the valid bit.
 458         */
 459        bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
 460        /*
 461         * Tables are naturally aligned at 8-byte boundaries
 462         * on 64-bit and 4-byte boundaries on 32-bit.  The
 463         * documentation makes it appear that the low bits
 464         * are ignored by the hardware, so we do the same.
 465         */
 466        if (is_64bit_mm(mm))
 467                align_to_bytes = 8;
 468        else
 469                align_to_bytes = 4;
 470        bt_addr &= ~(align_to_bytes-1);
 471        return bt_addr;
 472}
 473
 474/*
 475 * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
 476 * we might run off the end of the bounds table if we are on
 477 * a 64-bit kernel and try to get 8 bytes.
 478 */
 479static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
 480                long __user *bd_entry_ptr)
 481{
 482        u32 bd_entry_32;
 483        int ret;
 484
 485        if (is_64bit_mm(mm))
 486                return get_user(*bd_entry_ret, bd_entry_ptr);
 487
 488        /*
 489         * Note that get_user() uses the type of the *pointer* to
 490         * establish the size of the get, not the destination.
 491         */
 492        ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
 493        *bd_entry_ret = bd_entry_32;
 494        return ret;
 495}
 496
 497/*
 498 * Get the base of bounds tables pointed by specific bounds
 499 * directory entry.
 500 */
 501static int get_bt_addr(struct mm_struct *mm,
 502                        long __user *bd_entry_ptr,
 503                        unsigned long *bt_addr_result)
 504{
 505        int ret;
 506        int valid_bit;
 507        unsigned long bd_entry;
 508        unsigned long bt_addr;
 509
 510        if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
 511                return -EFAULT;
 512
 513        while (1) {
 514                int need_write = 0;
 515
 516                pagefault_disable();
 517                ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
 518                pagefault_enable();
 519                if (!ret)
 520                        break;
 521                if (ret == -EFAULT)
 522                        ret = mpx_resolve_fault(bd_entry_ptr, need_write);
 523                /*
 524                 * If we could not resolve the fault, consider it
 525                 * userspace's fault and error out.
 526                 */
 527                if (ret)
 528                        return ret;
 529        }
 530
 531        valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
 532        bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
 533
 534        /*
 535         * When the kernel is managing bounds tables, a bounds directory
 536         * entry will either have a valid address (plus the valid bit)
 537         * *OR* be completely empty. If we see a !valid entry *and* some
 538         * data in the address field, we know something is wrong. This
 539         * -EINVAL return will cause a SIGSEGV.
 540         */
 541        if (!valid_bit && bt_addr)
 542                return -EINVAL;
 543        /*
 544         * Do we have an completely zeroed bt entry?  That is OK.  It
 545         * just means there was no bounds table for this memory.  Make
 546         * sure to distinguish this from -EINVAL, which will cause
 547         * a SEGV.
 548         */
 549        if (!valid_bit)
 550                return -ENOENT;
 551
 552        *bt_addr_result = bt_addr;
 553        return 0;
 554}
 555
 556static inline int bt_entry_size_bytes(struct mm_struct *mm)
 557{
 558        if (is_64bit_mm(mm))
 559                return MPX_BT_ENTRY_BYTES_64;
 560        else
 561                return MPX_BT_ENTRY_BYTES_32;
 562}
 563
 564/*
 565 * Take a virtual address and turns it in to the offset in bytes
 566 * inside of the bounds table where the bounds table entry
 567 * controlling 'addr' can be found.
 568 */
 569static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
 570                unsigned long addr)
 571{
 572        unsigned long bt_table_nr_entries;
 573        unsigned long offset = addr;
 574
 575        if (is_64bit_mm(mm)) {
 576                /* Bottom 3 bits are ignored on 64-bit */
 577                offset >>= 3;
 578                bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
 579        } else {
 580                /* Bottom 2 bits are ignored on 32-bit */
 581                offset >>= 2;
 582                bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
 583        }
 584        /*
 585         * We know the size of the table in to which we are
 586         * indexing, and we have eliminated all the low bits
 587         * which are ignored for indexing.
 588         *
 589         * Mask out all the high bits which we do not need
 590         * to index in to the table.  Note that the tables
 591         * are always powers of two so this gives us a proper
 592         * mask.
 593         */
 594        offset &= (bt_table_nr_entries-1);
 595        /*
 596         * We now have an entry offset in terms of *entries* in
 597         * the table.  We need to scale it back up to bytes.
 598         */
 599        offset *= bt_entry_size_bytes(mm);
 600        return offset;
 601}
 602
 603/*
 604 * How much virtual address space does a single bounds
 605 * directory entry cover?
 606 *
 607 * Note, we need a long long because 4GB doesn't fit in
 608 * to a long on 32-bit.
 609 */
 610static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
 611{
 612        unsigned long long virt_space;
 613        unsigned long long GB = (1ULL << 30);
 614
 615        /*
 616         * This covers 32-bit emulation as well as 32-bit kernels
 617         * running on 64-bit hardware.
 618         */
 619        if (!is_64bit_mm(mm))
 620                return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
 621
 622        /*
 623         * 'x86_virt_bits' returns what the hardware is capable
 624         * of, and returns the full >32-bit address space when
 625         * running 32-bit kernels on 64-bit hardware.
 626         */
 627        virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
 628        return virt_space / MPX_BD_NR_ENTRIES_64;
 629}
 630
 631/*
 632 * Free the backing physical pages of bounds table 'bt_addr'.
 633 * Assume start...end is within that bounds table.
 634 */
 635static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
 636                unsigned long bt_addr,
 637                unsigned long start_mapping, unsigned long end_mapping)
 638{
 639        struct vm_area_struct *vma;
 640        unsigned long addr, len;
 641        unsigned long start;
 642        unsigned long end;
 643
 644        /*
 645         * if we 'end' on a boundary, the offset will be 0 which
 646         * is not what we want.  Back it up a byte to get the
 647         * last bt entry.  Then once we have the entry itself,
 648         * move 'end' back up by the table entry size.
 649         */
 650        start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
 651        end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
 652        /*
 653         * Move end back up by one entry.  Among other things
 654         * this ensures that it remains page-aligned and does
 655         * not screw up zap_page_range()
 656         */
 657        end += bt_entry_size_bytes(mm);
 658
 659        /*
 660         * Find the first overlapping vma. If vma->vm_start > start, there
 661         * will be a hole in the bounds table. This -EINVAL return will
 662         * cause a SIGSEGV.
 663         */
 664        vma = find_vma(mm, start);
 665        if (!vma || vma->vm_start > start)
 666                return -EINVAL;
 667
 668        /*
 669         * A NUMA policy on a VM_MPX VMA could cause this bounds table to
 670         * be split. So we need to look across the entire 'start -> end'
 671         * range of this bounds table, find all of the VM_MPX VMAs, and
 672         * zap only those.
 673         */
 674        addr = start;
 675        while (vma && vma->vm_start < end) {
 676                /*
 677                 * We followed a bounds directory entry down
 678                 * here.  If we find a non-MPX VMA, that's bad,
 679                 * so stop immediately and return an error.  This
 680                 * probably results in a SIGSEGV.
 681                 */
 682                if (!(vma->vm_flags & VM_MPX))
 683                        return -EINVAL;
 684
 685                len = min(vma->vm_end, end) - addr;
 686                zap_page_range(vma, addr, len);
 687                trace_mpx_unmap_zap(addr, addr+len);
 688
 689                vma = vma->vm_next;
 690                addr = vma->vm_start;
 691        }
 692        return 0;
 693}
 694
 695static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
 696                unsigned long addr)
 697{
 698        /*
 699         * There are several ways to derive the bd offsets.  We
 700         * use the following approach here:
 701         * 1. We know the size of the virtual address space
 702         * 2. We know the number of entries in a bounds table
 703         * 3. We know that each entry covers a fixed amount of
 704         *    virtual address space.
 705         * So, we can just divide the virtual address by the
 706         * virtual space used by one entry to determine which
 707         * entry "controls" the given virtual address.
 708         */
 709        if (is_64bit_mm(mm)) {
 710                int bd_entry_size = 8; /* 64-bit pointer */
 711                /*
 712                 * Take the 64-bit addressing hole in to account.
 713                 */
 714                addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
 715                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 716        } else {
 717                int bd_entry_size = 4; /* 32-bit pointer */
 718                /*
 719                 * 32-bit has no hole so this case needs no mask
 720                 */
 721                return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 722        }
 723        /*
 724         * The two return calls above are exact copies.  If we
 725         * pull out a single copy and put it in here, gcc won't
 726         * realize that we're doing a power-of-2 divide and use
 727         * shifts.  It uses a real divide.  If we put them up
 728         * there, it manages to figure it out (gcc 4.8.3).
 729         */
 730}
 731
 732static int unmap_entire_bt(struct mm_struct *mm,
 733                long __user *bd_entry, unsigned long bt_addr)
 734{
 735        unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 736        unsigned long uninitialized_var(actual_old_val);
 737        int ret;
 738
 739        while (1) {
 740                int need_write = 1;
 741                unsigned long cleared_bd_entry = 0;
 742
 743                pagefault_disable();
 744                ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
 745                                bd_entry, expected_old_val, cleared_bd_entry);
 746                pagefault_enable();
 747                if (!ret)
 748                        break;
 749                if (ret == -EFAULT)
 750                        ret = mpx_resolve_fault(bd_entry, need_write);
 751                /*
 752                 * If we could not resolve the fault, consider it
 753                 * userspace's fault and error out.
 754                 */
 755                if (ret)
 756                        return ret;
 757        }
 758        /*
 759         * The cmpxchg was performed, check the results.
 760         */
 761        if (actual_old_val != expected_old_val) {
 762                /*
 763                 * Someone else raced with us to unmap the table.
 764                 * That is OK, since we were both trying to do
 765                 * the same thing.  Declare success.
 766                 */
 767                if (!actual_old_val)
 768                        return 0;
 769                /*
 770                 * Something messed with the bounds directory
 771                 * entry.  We hold mmap_sem for read or write
 772                 * here, so it could not be a _new_ bounds table
 773                 * that someone just allocated.  Something is
 774                 * wrong, so pass up the error and SIGSEGV.
 775                 */
 776                return -EINVAL;
 777        }
 778        /*
 779         * Note, we are likely being called under do_munmap() already. To
 780         * avoid recursion, do_munmap() will check whether it comes
 781         * from one bounds table through VM_MPX flag.
 782         */
 783        return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
 784}
 785
 786static int try_unmap_single_bt(struct mm_struct *mm,
 787               unsigned long start, unsigned long end)
 788{
 789        struct vm_area_struct *next;
 790        struct vm_area_struct *prev;
 791        /*
 792         * "bta" == Bounds Table Area: the area controlled by the
 793         * bounds table that we are unmapping.
 794         */
 795        unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
 796        unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
 797        unsigned long uninitialized_var(bt_addr);
 798        void __user *bde_vaddr;
 799        int ret;
 800        /*
 801         * We already unlinked the VMAs from the mm's rbtree so 'start'
 802         * is guaranteed to be in a hole. This gets us the first VMA
 803         * before the hole in to 'prev' and the next VMA after the hole
 804         * in to 'next'.
 805         */
 806        next = find_vma_prev(mm, start, &prev);
 807        /*
 808         * Do not count other MPX bounds table VMAs as neighbors.
 809         * Although theoretically possible, we do not allow bounds
 810         * tables for bounds tables so our heads do not explode.
 811         * If we count them as neighbors here, we may end up with
 812         * lots of tables even though we have no actual table
 813         * entries in use.
 814         */
 815        while (next && (next->vm_flags & VM_MPX))
 816                next = next->vm_next;
 817        while (prev && (prev->vm_flags & VM_MPX))
 818                prev = prev->vm_prev;
 819        /*
 820         * We know 'start' and 'end' lie within an area controlled
 821         * by a single bounds table.  See if there are any other
 822         * VMAs controlled by that bounds table.  If there are not
 823         * then we can "expand" the are we are unmapping to possibly
 824         * cover the entire table.
 825         */
 826        next = find_vma_prev(mm, start, &prev);
 827        if ((!prev || prev->vm_end <= bta_start_vaddr) &&
 828            (!next || next->vm_start >= bta_end_vaddr)) {
 829                /*
 830                 * No neighbor VMAs controlled by same bounds
 831                 * table.  Try to unmap the whole thing
 832                 */
 833                start = bta_start_vaddr;
 834                end = bta_end_vaddr;
 835        }
 836
 837        bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
 838        ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
 839        /*
 840         * No bounds table there, so nothing to unmap.
 841         */
 842        if (ret == -ENOENT) {
 843                ret = 0;
 844                return 0;
 845        }
 846        if (ret)
 847                return ret;
 848        /*
 849         * We are unmapping an entire table.  Either because the
 850         * unmap that started this whole process was large enough
 851         * to cover an entire table, or that the unmap was small
 852         * but was the area covered by a bounds table.
 853         */
 854        if ((start == bta_start_vaddr) &&
 855            (end == bta_end_vaddr))
 856                return unmap_entire_bt(mm, bde_vaddr, bt_addr);
 857        return zap_bt_entries_mapping(mm, bt_addr, start, end);
 858}
 859
 860static int mpx_unmap_tables(struct mm_struct *mm,
 861                unsigned long start, unsigned long end)
 862{
 863        unsigned long one_unmap_start;
 864        trace_mpx_unmap_search(start, end);
 865
 866        one_unmap_start = start;
 867        while (one_unmap_start < end) {
 868                int ret;
 869                unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
 870                                                       bd_entry_virt_space(mm));
 871                unsigned long one_unmap_end = end;
 872                /*
 873                 * if the end is beyond the current bounds table,
 874                 * move it back so we only deal with a single one
 875                 * at a time
 876                 */
 877                if (one_unmap_end > next_unmap_start)
 878                        one_unmap_end = next_unmap_start;
 879                ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
 880                if (ret)
 881                        return ret;
 882
 883                one_unmap_start = next_unmap_start;
 884        }
 885        return 0;
 886}
 887
 888/*
 889 * Free unused bounds tables covered in a virtual address region being
 890 * munmap()ed. Assume end > start.
 891 *
 892 * This function will be called by do_munmap(), and the VMAs covering
 893 * the virtual address region start...end have already been split if
 894 * necessary, and the 'vma' is the first vma in this range (start -> end).
 895 */
 896void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
 897                unsigned long start, unsigned long end)
 898{
 899        int ret;
 900
 901        /*
 902         * Refuse to do anything unless userspace has asked
 903         * the kernel to help manage the bounds tables,
 904         */
 905        if (!kernel_managing_mpx_tables(current->mm))
 906                return;
 907        /*
 908         * This will look across the entire 'start -> end' range,
 909         * and find all of the non-VM_MPX VMAs.
 910         *
 911         * To avoid recursion, if a VM_MPX vma is found in the range
 912         * (start->end), we will not continue follow-up work. This
 913         * recursion represents having bounds tables for bounds tables,
 914         * which should not occur normally. Being strict about it here
 915         * helps ensure that we do not have an exploitable stack overflow.
 916         */
 917        do {
 918                if (vma->vm_flags & VM_MPX)
 919                        return;
 920                vma = vma->vm_next;
 921        } while (vma && vma->vm_start < end);
 922
 923        ret = mpx_unmap_tables(mm, start, end);
 924        if (ret)
 925                force_sig(SIGSEGV, current);
 926}
 927
 928/* MPX cannot handle addresses above 47 bits yet. */
 929unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
 930                unsigned long flags)
 931{
 932        if (!kernel_managing_mpx_tables(current->mm))
 933                return addr;
 934        if (addr + len <= DEFAULT_MAP_WINDOW)
 935                return addr;
 936        if (flags & MAP_FIXED)
 937                return -ENOMEM;
 938
 939        /*
 940         * Requested len is larger than the whole area we're allowed to map in.
 941         * Resetting hinting address wouldn't do much good -- fail early.
 942         */
 943        if (len > DEFAULT_MAP_WINDOW)
 944                return -ENOMEM;
 945
 946        /* Look for unmap area within DEFAULT_MAP_WINDOW */
 947        return 0;
 948}
 949