linux/crypto/keywrap.c
<<
>>
Prefs
   1/*
   2 * Key Wrapping: RFC3394 / NIST SP800-38F
   3 *
   4 * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de>
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, and the entire permission notice in its entirety,
  11 *    including the disclaimer of warranties.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The name of the author may not be used to endorse or promote
  16 *    products derived from this software without specific prior
  17 *    written permission.
  18 *
  19 * ALTERNATIVELY, this product may be distributed under the terms of
  20 * the GNU General Public License, in which case the provisions of the GPL2
  21 * are required INSTEAD OF the above restrictions.  (This clause is
  22 * necessary due to a potential bad interaction between the GPL and
  23 * the restrictions contained in a BSD-style copyright.)
  24 *
  25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  27 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  28 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  29 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  31 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  35 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  36 * DAMAGE.
  37 */
  38
  39/*
  40 * Note for using key wrapping:
  41 *
  42 *      * The result of the encryption operation is the ciphertext starting
  43 *        with the 2nd semiblock. The first semiblock is provided as the IV.
  44 *        The IV used to start the encryption operation is the default IV.
  45 *
  46 *      * The input for the decryption is the first semiblock handed in as an
  47 *        IV. The ciphertext is the data starting with the 2nd semiblock. The
  48 *        return code of the decryption operation will be EBADMSG in case an
  49 *        integrity error occurs.
  50 *
  51 * To obtain the full result of an encryption as expected by SP800-38F, the
  52 * caller must allocate a buffer of plaintext + 8 bytes:
  53 *
  54 *      unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm);
  55 *      u8 data[datalen];
  56 *      u8 *iv = data;
  57 *      u8 *pt = data + crypto_skcipher_ivsize(tfm);
  58 *              <ensure that pt contains the plaintext of size ptlen>
  59 *      sg_init_one(&sg, ptdata, ptlen);
  60 *      skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
  61 *
  62 *      ==> After encryption, data now contains full KW result as per SP800-38F.
  63 *
  64 * In case of decryption, ciphertext now already has the expected length
  65 * and must be segmented appropriately:
  66 *
  67 *      unsigned int datalen = CTLEN;
  68 *      u8 data[datalen];
  69 *              <ensure that data contains full ciphertext>
  70 *      u8 *iv = data;
  71 *      u8 *ct = data + crypto_skcipher_ivsize(tfm);
  72 *      unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm);
  73 *      sg_init_one(&sg, ctdata, ctlen);
  74 *      skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv);
  75 *
  76 *      ==> After decryption (which hopefully does not return EBADMSG), the ct
  77 *      pointer now points to the plaintext of size ctlen.
  78 *
  79 * Note 2: KWP is not implemented as this would defy in-place operation.
  80 *         If somebody wants to wrap non-aligned data, he should simply pad
  81 *         the input with zeros to fill it up to the 8 byte boundary.
  82 */
  83
  84#include <linux/module.h>
  85#include <linux/crypto.h>
  86#include <linux/scatterlist.h>
  87#include <crypto/scatterwalk.h>
  88#include <crypto/internal/skcipher.h>
  89
  90struct crypto_kw_ctx {
  91        struct crypto_cipher *child;
  92};
  93
  94struct crypto_kw_block {
  95#define SEMIBSIZE 8
  96        __be64 A;
  97        __be64 R;
  98};
  99
 100/*
 101 * Fast forward the SGL to the "end" length minus SEMIBSIZE.
 102 * The start in the SGL defined by the fast-forward is returned with
 103 * the walk variable
 104 */
 105static void crypto_kw_scatterlist_ff(struct scatter_walk *walk,
 106                                     struct scatterlist *sg,
 107                                     unsigned int end)
 108{
 109        unsigned int skip = 0;
 110
 111        /* The caller should only operate on full SEMIBLOCKs. */
 112        BUG_ON(end < SEMIBSIZE);
 113
 114        skip = end - SEMIBSIZE;
 115        while (sg) {
 116                if (sg->length > skip) {
 117                        scatterwalk_start(walk, sg);
 118                        scatterwalk_advance(walk, skip);
 119                        break;
 120                } else
 121                        skip -= sg->length;
 122
 123                sg = sg_next(sg);
 124        }
 125}
 126
 127static int crypto_kw_decrypt(struct blkcipher_desc *desc,
 128                             struct scatterlist *dst, struct scatterlist *src,
 129                             unsigned int nbytes)
 130{
 131        struct crypto_blkcipher *tfm = desc->tfm;
 132        struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
 133        struct crypto_cipher *child = ctx->child;
 134        struct crypto_kw_block block;
 135        struct scatterlist *lsrc, *ldst;
 136        u64 t = 6 * ((nbytes) >> 3);
 137        unsigned int i;
 138        int ret = 0;
 139
 140        /*
 141         * Require at least 2 semiblocks (note, the 3rd semiblock that is
 142         * required by SP800-38F is the IV.
 143         */
 144        if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
 145                return -EINVAL;
 146
 147        /* Place the IV into block A */
 148        memcpy(&block.A, desc->info, SEMIBSIZE);
 149
 150        /*
 151         * src scatterlist is read-only. dst scatterlist is r/w. During the
 152         * first loop, lsrc points to src and ldst to dst. For any
 153         * subsequent round, the code operates on dst only.
 154         */
 155        lsrc = src;
 156        ldst = dst;
 157
 158        for (i = 0; i < 6; i++) {
 159                struct scatter_walk src_walk, dst_walk;
 160                unsigned int tmp_nbytes = nbytes;
 161
 162                while (tmp_nbytes) {
 163                        /* move pointer by tmp_nbytes in the SGL */
 164                        crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes);
 165                        /* get the source block */
 166                        scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE,
 167                                               false);
 168
 169                        /* perform KW operation: modify IV with counter */
 170                        block.A ^= cpu_to_be64(t);
 171                        t--;
 172                        /* perform KW operation: decrypt block */
 173                        crypto_cipher_decrypt_one(child, (u8*)&block,
 174                                                  (u8*)&block);
 175
 176                        /* move pointer by tmp_nbytes in the SGL */
 177                        crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes);
 178                        /* Copy block->R into place */
 179                        scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE,
 180                                               true);
 181
 182                        tmp_nbytes -= SEMIBSIZE;
 183                }
 184
 185                /* we now start to operate on the dst SGL only */
 186                lsrc = dst;
 187                ldst = dst;
 188        }
 189
 190        /* Perform authentication check */
 191        if (block.A != cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL))
 192                ret = -EBADMSG;
 193
 194        memzero_explicit(&block, sizeof(struct crypto_kw_block));
 195
 196        return ret;
 197}
 198
 199static int crypto_kw_encrypt(struct blkcipher_desc *desc,
 200                             struct scatterlist *dst, struct scatterlist *src,
 201                             unsigned int nbytes)
 202{
 203        struct crypto_blkcipher *tfm = desc->tfm;
 204        struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm);
 205        struct crypto_cipher *child = ctx->child;
 206        struct crypto_kw_block block;
 207        struct scatterlist *lsrc, *ldst;
 208        u64 t = 1;
 209        unsigned int i;
 210
 211        /*
 212         * Require at least 2 semiblocks (note, the 3rd semiblock that is
 213         * required by SP800-38F is the IV that occupies the first semiblock.
 214         * This means that the dst memory must be one semiblock larger than src.
 215         * Also ensure that the given data is aligned to semiblock.
 216         */
 217        if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE)
 218                return -EINVAL;
 219
 220        /*
 221         * Place the predefined IV into block A -- for encrypt, the caller
 222         * does not need to provide an IV, but he needs to fetch the final IV.
 223         */
 224        block.A = cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL);
 225
 226        /*
 227         * src scatterlist is read-only. dst scatterlist is r/w. During the
 228         * first loop, lsrc points to src and ldst to dst. For any
 229         * subsequent round, the code operates on dst only.
 230         */
 231        lsrc = src;
 232        ldst = dst;
 233
 234        for (i = 0; i < 6; i++) {
 235                struct scatter_walk src_walk, dst_walk;
 236                unsigned int tmp_nbytes = nbytes;
 237
 238                scatterwalk_start(&src_walk, lsrc);
 239                scatterwalk_start(&dst_walk, ldst);
 240
 241                while (tmp_nbytes) {
 242                        /* get the source block */
 243                        scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE,
 244                                               false);
 245
 246                        /* perform KW operation: encrypt block */
 247                        crypto_cipher_encrypt_one(child, (u8 *)&block,
 248                                                  (u8 *)&block);
 249                        /* perform KW operation: modify IV with counter */
 250                        block.A ^= cpu_to_be64(t);
 251                        t++;
 252
 253                        /* Copy block->R into place */
 254                        scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE,
 255                                               true);
 256
 257                        tmp_nbytes -= SEMIBSIZE;
 258                }
 259
 260                /* we now start to operate on the dst SGL only */
 261                lsrc = dst;
 262                ldst = dst;
 263        }
 264
 265        /* establish the IV for the caller to pick up */
 266        memcpy(desc->info, &block.A, SEMIBSIZE);
 267
 268        memzero_explicit(&block, sizeof(struct crypto_kw_block));
 269
 270        return 0;
 271}
 272
 273static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key,
 274                            unsigned int keylen)
 275{
 276        struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent);
 277        struct crypto_cipher *child = ctx->child;
 278        int err;
 279
 280        crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 281        crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
 282                                       CRYPTO_TFM_REQ_MASK);
 283        err = crypto_cipher_setkey(child, key, keylen);
 284        crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
 285                                     CRYPTO_TFM_RES_MASK);
 286        return err;
 287}
 288
 289static int crypto_kw_init_tfm(struct crypto_tfm *tfm)
 290{
 291        struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
 292        struct crypto_spawn *spawn = crypto_instance_ctx(inst);
 293        struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
 294        struct crypto_cipher *cipher;
 295
 296        cipher = crypto_spawn_cipher(spawn);
 297        if (IS_ERR(cipher))
 298                return PTR_ERR(cipher);
 299
 300        ctx->child = cipher;
 301        return 0;
 302}
 303
 304static void crypto_kw_exit_tfm(struct crypto_tfm *tfm)
 305{
 306        struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm);
 307
 308        crypto_free_cipher(ctx->child);
 309}
 310
 311static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb)
 312{
 313        struct crypto_instance *inst = NULL;
 314        struct crypto_alg *alg = NULL;
 315        int err;
 316
 317        err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
 318        if (err)
 319                return ERR_PTR(err);
 320
 321        alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
 322                                  CRYPTO_ALG_TYPE_MASK);
 323        if (IS_ERR(alg))
 324                return ERR_CAST(alg);
 325
 326        inst = ERR_PTR(-EINVAL);
 327        /* Section 5.1 requirement for KW */
 328        if (alg->cra_blocksize != sizeof(struct crypto_kw_block))
 329                goto err;
 330
 331        inst = crypto_alloc_instance("kw", alg);
 332        if (IS_ERR(inst))
 333                goto err;
 334
 335        inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
 336        inst->alg.cra_priority = alg->cra_priority;
 337        inst->alg.cra_blocksize = SEMIBSIZE;
 338        inst->alg.cra_alignmask = 0;
 339        inst->alg.cra_type = &crypto_blkcipher_type;
 340        inst->alg.cra_blkcipher.ivsize = SEMIBSIZE;
 341        inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize;
 342        inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize;
 343
 344        inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx);
 345
 346        inst->alg.cra_init = crypto_kw_init_tfm;
 347        inst->alg.cra_exit = crypto_kw_exit_tfm;
 348
 349        inst->alg.cra_blkcipher.setkey = crypto_kw_setkey;
 350        inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt;
 351        inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt;
 352
 353err:
 354        crypto_mod_put(alg);
 355        return inst;
 356}
 357
 358static void crypto_kw_free(struct crypto_instance *inst)
 359{
 360        crypto_drop_spawn(crypto_instance_ctx(inst));
 361        kfree(inst);
 362}
 363
 364static struct crypto_template crypto_kw_tmpl = {
 365        .name = "kw",
 366        .alloc = crypto_kw_alloc,
 367        .free = crypto_kw_free,
 368        .module = THIS_MODULE,
 369};
 370
 371static int __init crypto_kw_init(void)
 372{
 373        return crypto_register_template(&crypto_kw_tmpl);
 374}
 375
 376static void __exit crypto_kw_exit(void)
 377{
 378        crypto_unregister_template(&crypto_kw_tmpl);
 379}
 380
 381module_init(crypto_kw_init);
 382module_exit(crypto_kw_exit);
 383
 384MODULE_LICENSE("Dual BSD/GPL");
 385MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
 386MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)");
 387MODULE_ALIAS_CRYPTO("kw");
 388