linux/drivers/cpufreq/intel_pstate.c
<<
>>
Prefs
   1/*
   2 * intel_pstate.c: Native P state management for Intel processors
   3 *
   4 * (C) Copyright 2012 Intel Corporation
   5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; version 2
  10 * of the License.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/module.h>
  18#include <linux/ktime.h>
  19#include <linux/hrtimer.h>
  20#include <linux/tick.h>
  21#include <linux/slab.h>
  22#include <linux/sched/cpufreq.h>
  23#include <linux/list.h>
  24#include <linux/cpu.h>
  25#include <linux/cpufreq.h>
  26#include <linux/sysfs.h>
  27#include <linux/types.h>
  28#include <linux/fs.h>
  29#include <linux/debugfs.h>
  30#include <linux/acpi.h>
  31#include <linux/vmalloc.h>
  32#include <trace/events/power.h>
  33
  34#include <asm/div64.h>
  35#include <asm/msr.h>
  36#include <asm/cpu_device_id.h>
  37#include <asm/cpufeature.h>
  38#include <asm/intel-family.h>
  39
  40#define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
  41
  42#define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
  43#define INTEL_CPUFREQ_TRANSITION_DELAY          500
  44
  45#ifdef CONFIG_ACPI
  46#include <acpi/processor.h>
  47#include <acpi/cppc_acpi.h>
  48#endif
  49
  50#define FRAC_BITS 8
  51#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
  52#define fp_toint(X) ((X) >> FRAC_BITS)
  53
  54#define EXT_BITS 6
  55#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
  56#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
  57#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
  58
  59static inline int32_t mul_fp(int32_t x, int32_t y)
  60{
  61        return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
  62}
  63
  64static inline int32_t div_fp(s64 x, s64 y)
  65{
  66        return div64_s64((int64_t)x << FRAC_BITS, y);
  67}
  68
  69static inline int ceiling_fp(int32_t x)
  70{
  71        int mask, ret;
  72
  73        ret = fp_toint(x);
  74        mask = (1 << FRAC_BITS) - 1;
  75        if (x & mask)
  76                ret += 1;
  77        return ret;
  78}
  79
  80static inline int32_t percent_fp(int percent)
  81{
  82        return div_fp(percent, 100);
  83}
  84
  85static inline u64 mul_ext_fp(u64 x, u64 y)
  86{
  87        return (x * y) >> EXT_FRAC_BITS;
  88}
  89
  90static inline u64 div_ext_fp(u64 x, u64 y)
  91{
  92        return div64_u64(x << EXT_FRAC_BITS, y);
  93}
  94
  95static inline int32_t percent_ext_fp(int percent)
  96{
  97        return div_ext_fp(percent, 100);
  98}
  99
 100/**
 101 * struct sample -      Store performance sample
 102 * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
 103 *                      performance during last sample period
 104 * @busy_scaled:        Scaled busy value which is used to calculate next
 105 *                      P state. This can be different than core_avg_perf
 106 *                      to account for cpu idle period
 107 * @aperf:              Difference of actual performance frequency clock count
 108 *                      read from APERF MSR between last and current sample
 109 * @mperf:              Difference of maximum performance frequency clock count
 110 *                      read from MPERF MSR between last and current sample
 111 * @tsc:                Difference of time stamp counter between last and
 112 *                      current sample
 113 * @time:               Current time from scheduler
 114 *
 115 * This structure is used in the cpudata structure to store performance sample
 116 * data for choosing next P State.
 117 */
 118struct sample {
 119        int32_t core_avg_perf;
 120        int32_t busy_scaled;
 121        u64 aperf;
 122        u64 mperf;
 123        u64 tsc;
 124        u64 time;
 125};
 126
 127/**
 128 * struct pstate_data - Store P state data
 129 * @current_pstate:     Current requested P state
 130 * @min_pstate:         Min P state possible for this platform
 131 * @max_pstate:         Max P state possible for this platform
 132 * @max_pstate_physical:This is physical Max P state for a processor
 133 *                      This can be higher than the max_pstate which can
 134 *                      be limited by platform thermal design power limits
 135 * @scaling:            Scaling factor to  convert frequency to cpufreq
 136 *                      frequency units
 137 * @turbo_pstate:       Max Turbo P state possible for this platform
 138 * @max_freq:           @max_pstate frequency in cpufreq units
 139 * @turbo_freq:         @turbo_pstate frequency in cpufreq units
 140 *
 141 * Stores the per cpu model P state limits and current P state.
 142 */
 143struct pstate_data {
 144        int     current_pstate;
 145        int     min_pstate;
 146        int     max_pstate;
 147        int     max_pstate_physical;
 148        int     scaling;
 149        int     turbo_pstate;
 150        unsigned int max_freq;
 151        unsigned int turbo_freq;
 152};
 153
 154/**
 155 * struct vid_data -    Stores voltage information data
 156 * @min:                VID data for this platform corresponding to
 157 *                      the lowest P state
 158 * @max:                VID data corresponding to the highest P State.
 159 * @turbo:              VID data for turbo P state
 160 * @ratio:              Ratio of (vid max - vid min) /
 161 *                      (max P state - Min P State)
 162 *
 163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 164 * This data is used in Atom platforms, where in addition to target P state,
 165 * the voltage data needs to be specified to select next P State.
 166 */
 167struct vid_data {
 168        int min;
 169        int max;
 170        int turbo;
 171        int32_t ratio;
 172};
 173
 174/**
 175 * struct global_params - Global parameters, mostly tunable via sysfs.
 176 * @no_turbo:           Whether or not to use turbo P-states.
 177 * @turbo_disabled:     Whethet or not turbo P-states are available at all,
 178 *                      based on the MSR_IA32_MISC_ENABLE value and whether or
 179 *                      not the maximum reported turbo P-state is different from
 180 *                      the maximum reported non-turbo one.
 181 * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
 182 *                      P-state capacity.
 183 * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
 184 *                      P-state capacity.
 185 */
 186struct global_params {
 187        bool no_turbo;
 188        bool turbo_disabled;
 189        int max_perf_pct;
 190        int min_perf_pct;
 191};
 192
 193/**
 194 * struct cpudata -     Per CPU instance data storage
 195 * @cpu:                CPU number for this instance data
 196 * @policy:             CPUFreq policy value
 197 * @update_util:        CPUFreq utility callback information
 198 * @update_util_set:    CPUFreq utility callback is set
 199 * @iowait_boost:       iowait-related boost fraction
 200 * @last_update:        Time of the last update.
 201 * @pstate:             Stores P state limits for this CPU
 202 * @vid:                Stores VID limits for this CPU
 203 * @last_sample_time:   Last Sample time
 204 * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
 205 *                      This shift is a multiplier to mperf delta to
 206 *                      calculate CPU busy.
 207 * @prev_aperf:         Last APERF value read from APERF MSR
 208 * @prev_mperf:         Last MPERF value read from MPERF MSR
 209 * @prev_tsc:           Last timestamp counter (TSC) value
 210 * @prev_cummulative_iowait: IO Wait time difference from last and
 211 *                      current sample
 212 * @sample:             Storage for storing last Sample data
 213 * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
 214 * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
 215 * @acpi_perf_data:     Stores ACPI perf information read from _PSS
 216 * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
 217 * @epp_powersave:      Last saved HWP energy performance preference
 218 *                      (EPP) or energy performance bias (EPB),
 219 *                      when policy switched to performance
 220 * @epp_policy:         Last saved policy used to set EPP/EPB
 221 * @epp_default:        Power on default HWP energy performance
 222 *                      preference/bias
 223 * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
 224 *                      operation
 225 *
 226 * This structure stores per CPU instance data for all CPUs.
 227 */
 228struct cpudata {
 229        int cpu;
 230
 231        unsigned int policy;
 232        struct update_util_data update_util;
 233        bool   update_util_set;
 234
 235        struct pstate_data pstate;
 236        struct vid_data vid;
 237
 238        u64     last_update;
 239        u64     last_sample_time;
 240        u64     aperf_mperf_shift;
 241        u64     prev_aperf;
 242        u64     prev_mperf;
 243        u64     prev_tsc;
 244        u64     prev_cummulative_iowait;
 245        struct sample sample;
 246        int32_t min_perf_ratio;
 247        int32_t max_perf_ratio;
 248#ifdef CONFIG_ACPI
 249        struct acpi_processor_performance acpi_perf_data;
 250        bool valid_pss_table;
 251#endif
 252        unsigned int iowait_boost;
 253        s16 epp_powersave;
 254        s16 epp_policy;
 255        s16 epp_default;
 256        s16 epp_saved;
 257};
 258
 259static struct cpudata **all_cpu_data;
 260
 261/**
 262 * struct pstate_funcs - Per CPU model specific callbacks
 263 * @get_max:            Callback to get maximum non turbo effective P state
 264 * @get_max_physical:   Callback to get maximum non turbo physical P state
 265 * @get_min:            Callback to get minimum P state
 266 * @get_turbo:          Callback to get turbo P state
 267 * @get_scaling:        Callback to get frequency scaling factor
 268 * @get_val:            Callback to convert P state to actual MSR write value
 269 * @get_vid:            Callback to get VID data for Atom platforms
 270 *
 271 * Core and Atom CPU models have different way to get P State limits. This
 272 * structure is used to store those callbacks.
 273 */
 274struct pstate_funcs {
 275        int (*get_max)(void);
 276        int (*get_max_physical)(void);
 277        int (*get_min)(void);
 278        int (*get_turbo)(void);
 279        int (*get_scaling)(void);
 280        int (*get_aperf_mperf_shift)(void);
 281        u64 (*get_val)(struct cpudata*, int pstate);
 282        void (*get_vid)(struct cpudata *);
 283};
 284
 285static struct pstate_funcs pstate_funcs __read_mostly;
 286
 287static int hwp_active __read_mostly;
 288static bool per_cpu_limits __read_mostly;
 289
 290static struct cpufreq_driver *intel_pstate_driver __read_mostly;
 291
 292#ifdef CONFIG_ACPI
 293static bool acpi_ppc;
 294#endif
 295
 296static struct global_params global;
 297
 298static DEFINE_MUTEX(intel_pstate_driver_lock);
 299static DEFINE_MUTEX(intel_pstate_limits_lock);
 300
 301#ifdef CONFIG_ACPI
 302
 303static bool intel_pstate_get_ppc_enable_status(void)
 304{
 305        if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
 306            acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
 307                return true;
 308
 309        return acpi_ppc;
 310}
 311
 312#ifdef CONFIG_ACPI_CPPC_LIB
 313
 314/* The work item is needed to avoid CPU hotplug locking issues */
 315static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
 316{
 317        sched_set_itmt_support();
 318}
 319
 320static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
 321
 322static void intel_pstate_set_itmt_prio(int cpu)
 323{
 324        struct cppc_perf_caps cppc_perf;
 325        static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
 326        int ret;
 327
 328        ret = cppc_get_perf_caps(cpu, &cppc_perf);
 329        if (ret)
 330                return;
 331
 332        /*
 333         * The priorities can be set regardless of whether or not
 334         * sched_set_itmt_support(true) has been called and it is valid to
 335         * update them at any time after it has been called.
 336         */
 337        sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
 338
 339        if (max_highest_perf <= min_highest_perf) {
 340                if (cppc_perf.highest_perf > max_highest_perf)
 341                        max_highest_perf = cppc_perf.highest_perf;
 342
 343                if (cppc_perf.highest_perf < min_highest_perf)
 344                        min_highest_perf = cppc_perf.highest_perf;
 345
 346                if (max_highest_perf > min_highest_perf) {
 347                        /*
 348                         * This code can be run during CPU online under the
 349                         * CPU hotplug locks, so sched_set_itmt_support()
 350                         * cannot be called from here.  Queue up a work item
 351                         * to invoke it.
 352                         */
 353                        schedule_work(&sched_itmt_work);
 354                }
 355        }
 356}
 357#else
 358static void intel_pstate_set_itmt_prio(int cpu)
 359{
 360}
 361#endif
 362
 363static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 364{
 365        struct cpudata *cpu;
 366        int ret;
 367        int i;
 368
 369        if (hwp_active) {
 370                intel_pstate_set_itmt_prio(policy->cpu);
 371                return;
 372        }
 373
 374        if (!intel_pstate_get_ppc_enable_status())
 375                return;
 376
 377        cpu = all_cpu_data[policy->cpu];
 378
 379        ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
 380                                                  policy->cpu);
 381        if (ret)
 382                return;
 383
 384        /*
 385         * Check if the control value in _PSS is for PERF_CTL MSR, which should
 386         * guarantee that the states returned by it map to the states in our
 387         * list directly.
 388         */
 389        if (cpu->acpi_perf_data.control_register.space_id !=
 390                                                ACPI_ADR_SPACE_FIXED_HARDWARE)
 391                goto err;
 392
 393        /*
 394         * If there is only one entry _PSS, simply ignore _PSS and continue as
 395         * usual without taking _PSS into account
 396         */
 397        if (cpu->acpi_perf_data.state_count < 2)
 398                goto err;
 399
 400        pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
 401        for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
 402                pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
 403                         (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
 404                         (u32) cpu->acpi_perf_data.states[i].core_frequency,
 405                         (u32) cpu->acpi_perf_data.states[i].power,
 406                         (u32) cpu->acpi_perf_data.states[i].control);
 407        }
 408
 409        /*
 410         * The _PSS table doesn't contain whole turbo frequency range.
 411         * This just contains +1 MHZ above the max non turbo frequency,
 412         * with control value corresponding to max turbo ratio. But
 413         * when cpufreq set policy is called, it will call with this
 414         * max frequency, which will cause a reduced performance as
 415         * this driver uses real max turbo frequency as the max
 416         * frequency. So correct this frequency in _PSS table to
 417         * correct max turbo frequency based on the turbo state.
 418         * Also need to convert to MHz as _PSS freq is in MHz.
 419         */
 420        if (!global.turbo_disabled)
 421                cpu->acpi_perf_data.states[0].core_frequency =
 422                                        policy->cpuinfo.max_freq / 1000;
 423        cpu->valid_pss_table = true;
 424        pr_debug("_PPC limits will be enforced\n");
 425
 426        return;
 427
 428 err:
 429        cpu->valid_pss_table = false;
 430        acpi_processor_unregister_performance(policy->cpu);
 431}
 432
 433static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 434{
 435        struct cpudata *cpu;
 436
 437        cpu = all_cpu_data[policy->cpu];
 438        if (!cpu->valid_pss_table)
 439                return;
 440
 441        acpi_processor_unregister_performance(policy->cpu);
 442}
 443#else
 444static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
 445{
 446}
 447
 448static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
 449{
 450}
 451#endif
 452
 453static inline void update_turbo_state(void)
 454{
 455        u64 misc_en;
 456        struct cpudata *cpu;
 457
 458        cpu = all_cpu_data[0];
 459        rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
 460        global.turbo_disabled =
 461                (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
 462                 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
 463}
 464
 465static int min_perf_pct_min(void)
 466{
 467        struct cpudata *cpu = all_cpu_data[0];
 468        int turbo_pstate = cpu->pstate.turbo_pstate;
 469
 470        return turbo_pstate ?
 471                (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
 472}
 473
 474static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
 475{
 476        u64 epb;
 477        int ret;
 478
 479        if (!static_cpu_has(X86_FEATURE_EPB))
 480                return -ENXIO;
 481
 482        ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 483        if (ret)
 484                return (s16)ret;
 485
 486        return (s16)(epb & 0x0f);
 487}
 488
 489static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
 490{
 491        s16 epp;
 492
 493        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 494                /*
 495                 * When hwp_req_data is 0, means that caller didn't read
 496                 * MSR_HWP_REQUEST, so need to read and get EPP.
 497                 */
 498                if (!hwp_req_data) {
 499                        epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
 500                                            &hwp_req_data);
 501                        if (epp)
 502                                return epp;
 503                }
 504                epp = (hwp_req_data >> 24) & 0xff;
 505        } else {
 506                /* When there is no EPP present, HWP uses EPB settings */
 507                epp = intel_pstate_get_epb(cpu_data);
 508        }
 509
 510        return epp;
 511}
 512
 513static int intel_pstate_set_epb(int cpu, s16 pref)
 514{
 515        u64 epb;
 516        int ret;
 517
 518        if (!static_cpu_has(X86_FEATURE_EPB))
 519                return -ENXIO;
 520
 521        ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
 522        if (ret)
 523                return ret;
 524
 525        epb = (epb & ~0x0f) | pref;
 526        wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
 527
 528        return 0;
 529}
 530
 531/*
 532 * EPP/EPB display strings corresponding to EPP index in the
 533 * energy_perf_strings[]
 534 *      index           String
 535 *-------------------------------------
 536 *      0               default
 537 *      1               performance
 538 *      2               balance_performance
 539 *      3               balance_power
 540 *      4               power
 541 */
 542static const char * const energy_perf_strings[] = {
 543        "default",
 544        "performance",
 545        "balance_performance",
 546        "balance_power",
 547        "power",
 548        NULL
 549};
 550static const unsigned int epp_values[] = {
 551        HWP_EPP_PERFORMANCE,
 552        HWP_EPP_BALANCE_PERFORMANCE,
 553        HWP_EPP_BALANCE_POWERSAVE,
 554        HWP_EPP_POWERSAVE
 555};
 556
 557static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
 558{
 559        s16 epp;
 560        int index = -EINVAL;
 561
 562        epp = intel_pstate_get_epp(cpu_data, 0);
 563        if (epp < 0)
 564                return epp;
 565
 566        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 567                if (epp == HWP_EPP_PERFORMANCE)
 568                        return 1;
 569                if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
 570                        return 2;
 571                if (epp <= HWP_EPP_BALANCE_POWERSAVE)
 572                        return 3;
 573                else
 574                        return 4;
 575        } else if (static_cpu_has(X86_FEATURE_EPB)) {
 576                /*
 577                 * Range:
 578                 *      0x00-0x03       :       Performance
 579                 *      0x04-0x07       :       Balance performance
 580                 *      0x08-0x0B       :       Balance power
 581                 *      0x0C-0x0F       :       Power
 582                 * The EPB is a 4 bit value, but our ranges restrict the
 583                 * value which can be set. Here only using top two bits
 584                 * effectively.
 585                 */
 586                index = (epp >> 2) + 1;
 587        }
 588
 589        return index;
 590}
 591
 592static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
 593                                              int pref_index)
 594{
 595        int epp = -EINVAL;
 596        int ret;
 597
 598        if (!pref_index)
 599                epp = cpu_data->epp_default;
 600
 601        mutex_lock(&intel_pstate_limits_lock);
 602
 603        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 604                u64 value;
 605
 606                ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
 607                if (ret)
 608                        goto return_pref;
 609
 610                value &= ~GENMASK_ULL(31, 24);
 611
 612                if (epp == -EINVAL)
 613                        epp = epp_values[pref_index - 1];
 614
 615                value |= (u64)epp << 24;
 616                ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
 617        } else {
 618                if (epp == -EINVAL)
 619                        epp = (pref_index - 1) << 2;
 620                ret = intel_pstate_set_epb(cpu_data->cpu, epp);
 621        }
 622return_pref:
 623        mutex_unlock(&intel_pstate_limits_lock);
 624
 625        return ret;
 626}
 627
 628static ssize_t show_energy_performance_available_preferences(
 629                                struct cpufreq_policy *policy, char *buf)
 630{
 631        int i = 0;
 632        int ret = 0;
 633
 634        while (energy_perf_strings[i] != NULL)
 635                ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
 636
 637        ret += sprintf(&buf[ret], "\n");
 638
 639        return ret;
 640}
 641
 642cpufreq_freq_attr_ro(energy_performance_available_preferences);
 643
 644static ssize_t store_energy_performance_preference(
 645                struct cpufreq_policy *policy, const char *buf, size_t count)
 646{
 647        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 648        char str_preference[21];
 649        int ret, i = 0;
 650
 651        ret = sscanf(buf, "%20s", str_preference);
 652        if (ret != 1)
 653                return -EINVAL;
 654
 655        while (energy_perf_strings[i] != NULL) {
 656                if (!strcmp(str_preference, energy_perf_strings[i])) {
 657                        intel_pstate_set_energy_pref_index(cpu_data, i);
 658                        return count;
 659                }
 660                ++i;
 661        }
 662
 663        return -EINVAL;
 664}
 665
 666static ssize_t show_energy_performance_preference(
 667                                struct cpufreq_policy *policy, char *buf)
 668{
 669        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 670        int preference;
 671
 672        preference = intel_pstate_get_energy_pref_index(cpu_data);
 673        if (preference < 0)
 674                return preference;
 675
 676        return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
 677}
 678
 679cpufreq_freq_attr_rw(energy_performance_preference);
 680
 681static struct freq_attr *hwp_cpufreq_attrs[] = {
 682        &energy_performance_preference,
 683        &energy_performance_available_preferences,
 684        NULL,
 685};
 686
 687static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
 688                                     int *current_max)
 689{
 690        u64 cap;
 691
 692        rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
 693        if (global.no_turbo)
 694                *current_max = HWP_GUARANTEED_PERF(cap);
 695        else
 696                *current_max = HWP_HIGHEST_PERF(cap);
 697
 698        *phy_max = HWP_HIGHEST_PERF(cap);
 699}
 700
 701static void intel_pstate_hwp_set(unsigned int cpu)
 702{
 703        struct cpudata *cpu_data = all_cpu_data[cpu];
 704        int max, min;
 705        u64 value;
 706        s16 epp;
 707
 708        max = cpu_data->max_perf_ratio;
 709        min = cpu_data->min_perf_ratio;
 710
 711        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
 712                min = max;
 713
 714        rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
 715
 716        value &= ~HWP_MIN_PERF(~0L);
 717        value |= HWP_MIN_PERF(min);
 718
 719        value &= ~HWP_MAX_PERF(~0L);
 720        value |= HWP_MAX_PERF(max);
 721
 722        if (cpu_data->epp_policy == cpu_data->policy)
 723                goto skip_epp;
 724
 725        cpu_data->epp_policy = cpu_data->policy;
 726
 727        if (cpu_data->epp_saved >= 0) {
 728                epp = cpu_data->epp_saved;
 729                cpu_data->epp_saved = -EINVAL;
 730                goto update_epp;
 731        }
 732
 733        if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
 734                epp = intel_pstate_get_epp(cpu_data, value);
 735                cpu_data->epp_powersave = epp;
 736                /* If EPP read was failed, then don't try to write */
 737                if (epp < 0)
 738                        goto skip_epp;
 739
 740                epp = 0;
 741        } else {
 742                /* skip setting EPP, when saved value is invalid */
 743                if (cpu_data->epp_powersave < 0)
 744                        goto skip_epp;
 745
 746                /*
 747                 * No need to restore EPP when it is not zero. This
 748                 * means:
 749                 *  - Policy is not changed
 750                 *  - user has manually changed
 751                 *  - Error reading EPB
 752                 */
 753                epp = intel_pstate_get_epp(cpu_data, value);
 754                if (epp)
 755                        goto skip_epp;
 756
 757                epp = cpu_data->epp_powersave;
 758        }
 759update_epp:
 760        if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
 761                value &= ~GENMASK_ULL(31, 24);
 762                value |= (u64)epp << 24;
 763        } else {
 764                intel_pstate_set_epb(cpu, epp);
 765        }
 766skip_epp:
 767        wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
 768}
 769
 770static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
 771{
 772        struct cpudata *cpu_data = all_cpu_data[policy->cpu];
 773
 774        if (!hwp_active)
 775                return 0;
 776
 777        cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
 778
 779        return 0;
 780}
 781
 782static void intel_pstate_hwp_enable(struct cpudata *cpudata);
 783
 784static int intel_pstate_resume(struct cpufreq_policy *policy)
 785{
 786        if (!hwp_active)
 787                return 0;
 788
 789        mutex_lock(&intel_pstate_limits_lock);
 790
 791        if (policy->cpu == 0)
 792                intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
 793
 794        all_cpu_data[policy->cpu]->epp_policy = 0;
 795        intel_pstate_hwp_set(policy->cpu);
 796
 797        mutex_unlock(&intel_pstate_limits_lock);
 798
 799        return 0;
 800}
 801
 802static void intel_pstate_update_policies(void)
 803{
 804        int cpu;
 805
 806        for_each_possible_cpu(cpu)
 807                cpufreq_update_policy(cpu);
 808}
 809
 810/************************** sysfs begin ************************/
 811#define show_one(file_name, object)                                     \
 812        static ssize_t show_##file_name                                 \
 813        (struct kobject *kobj, struct attribute *attr, char *buf)       \
 814        {                                                               \
 815                return sprintf(buf, "%u\n", global.object);             \
 816        }
 817
 818static ssize_t intel_pstate_show_status(char *buf);
 819static int intel_pstate_update_status(const char *buf, size_t size);
 820
 821static ssize_t show_status(struct kobject *kobj,
 822                           struct attribute *attr, char *buf)
 823{
 824        ssize_t ret;
 825
 826        mutex_lock(&intel_pstate_driver_lock);
 827        ret = intel_pstate_show_status(buf);
 828        mutex_unlock(&intel_pstate_driver_lock);
 829
 830        return ret;
 831}
 832
 833static ssize_t store_status(struct kobject *a, struct attribute *b,
 834                            const char *buf, size_t count)
 835{
 836        char *p = memchr(buf, '\n', count);
 837        int ret;
 838
 839        mutex_lock(&intel_pstate_driver_lock);
 840        ret = intel_pstate_update_status(buf, p ? p - buf : count);
 841        mutex_unlock(&intel_pstate_driver_lock);
 842
 843        return ret < 0 ? ret : count;
 844}
 845
 846static ssize_t show_turbo_pct(struct kobject *kobj,
 847                                struct attribute *attr, char *buf)
 848{
 849        struct cpudata *cpu;
 850        int total, no_turbo, turbo_pct;
 851        uint32_t turbo_fp;
 852
 853        mutex_lock(&intel_pstate_driver_lock);
 854
 855        if (!intel_pstate_driver) {
 856                mutex_unlock(&intel_pstate_driver_lock);
 857                return -EAGAIN;
 858        }
 859
 860        cpu = all_cpu_data[0];
 861
 862        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 863        no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
 864        turbo_fp = div_fp(no_turbo, total);
 865        turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
 866
 867        mutex_unlock(&intel_pstate_driver_lock);
 868
 869        return sprintf(buf, "%u\n", turbo_pct);
 870}
 871
 872static ssize_t show_num_pstates(struct kobject *kobj,
 873                                struct attribute *attr, char *buf)
 874{
 875        struct cpudata *cpu;
 876        int total;
 877
 878        mutex_lock(&intel_pstate_driver_lock);
 879
 880        if (!intel_pstate_driver) {
 881                mutex_unlock(&intel_pstate_driver_lock);
 882                return -EAGAIN;
 883        }
 884
 885        cpu = all_cpu_data[0];
 886        total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
 887
 888        mutex_unlock(&intel_pstate_driver_lock);
 889
 890        return sprintf(buf, "%u\n", total);
 891}
 892
 893static ssize_t show_no_turbo(struct kobject *kobj,
 894                             struct attribute *attr, char *buf)
 895{
 896        ssize_t ret;
 897
 898        mutex_lock(&intel_pstate_driver_lock);
 899
 900        if (!intel_pstate_driver) {
 901                mutex_unlock(&intel_pstate_driver_lock);
 902                return -EAGAIN;
 903        }
 904
 905        update_turbo_state();
 906        if (global.turbo_disabled)
 907                ret = sprintf(buf, "%u\n", global.turbo_disabled);
 908        else
 909                ret = sprintf(buf, "%u\n", global.no_turbo);
 910
 911        mutex_unlock(&intel_pstate_driver_lock);
 912
 913        return ret;
 914}
 915
 916static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
 917                              const char *buf, size_t count)
 918{
 919        unsigned int input;
 920        int ret;
 921
 922        ret = sscanf(buf, "%u", &input);
 923        if (ret != 1)
 924                return -EINVAL;
 925
 926        mutex_lock(&intel_pstate_driver_lock);
 927
 928        if (!intel_pstate_driver) {
 929                mutex_unlock(&intel_pstate_driver_lock);
 930                return -EAGAIN;
 931        }
 932
 933        mutex_lock(&intel_pstate_limits_lock);
 934
 935        update_turbo_state();
 936        if (global.turbo_disabled) {
 937                pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
 938                mutex_unlock(&intel_pstate_limits_lock);
 939                mutex_unlock(&intel_pstate_driver_lock);
 940                return -EPERM;
 941        }
 942
 943        global.no_turbo = clamp_t(int, input, 0, 1);
 944
 945        if (global.no_turbo) {
 946                struct cpudata *cpu = all_cpu_data[0];
 947                int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
 948
 949                /* Squash the global minimum into the permitted range. */
 950                if (global.min_perf_pct > pct)
 951                        global.min_perf_pct = pct;
 952        }
 953
 954        mutex_unlock(&intel_pstate_limits_lock);
 955
 956        intel_pstate_update_policies();
 957
 958        mutex_unlock(&intel_pstate_driver_lock);
 959
 960        return count;
 961}
 962
 963static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
 964                                  const char *buf, size_t count)
 965{
 966        unsigned int input;
 967        int ret;
 968
 969        ret = sscanf(buf, "%u", &input);
 970        if (ret != 1)
 971                return -EINVAL;
 972
 973        mutex_lock(&intel_pstate_driver_lock);
 974
 975        if (!intel_pstate_driver) {
 976                mutex_unlock(&intel_pstate_driver_lock);
 977                return -EAGAIN;
 978        }
 979
 980        mutex_lock(&intel_pstate_limits_lock);
 981
 982        global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
 983
 984        mutex_unlock(&intel_pstate_limits_lock);
 985
 986        intel_pstate_update_policies();
 987
 988        mutex_unlock(&intel_pstate_driver_lock);
 989
 990        return count;
 991}
 992
 993static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
 994                                  const char *buf, size_t count)
 995{
 996        unsigned int input;
 997        int ret;
 998
 999        ret = sscanf(buf, "%u", &input);
1000        if (ret != 1)
1001                return -EINVAL;
1002
1003        mutex_lock(&intel_pstate_driver_lock);
1004
1005        if (!intel_pstate_driver) {
1006                mutex_unlock(&intel_pstate_driver_lock);
1007                return -EAGAIN;
1008        }
1009
1010        mutex_lock(&intel_pstate_limits_lock);
1011
1012        global.min_perf_pct = clamp_t(int, input,
1013                                      min_perf_pct_min(), global.max_perf_pct);
1014
1015        mutex_unlock(&intel_pstate_limits_lock);
1016
1017        intel_pstate_update_policies();
1018
1019        mutex_unlock(&intel_pstate_driver_lock);
1020
1021        return count;
1022}
1023
1024show_one(max_perf_pct, max_perf_pct);
1025show_one(min_perf_pct, min_perf_pct);
1026
1027define_one_global_rw(status);
1028define_one_global_rw(no_turbo);
1029define_one_global_rw(max_perf_pct);
1030define_one_global_rw(min_perf_pct);
1031define_one_global_ro(turbo_pct);
1032define_one_global_ro(num_pstates);
1033
1034static struct attribute *intel_pstate_attributes[] = {
1035        &status.attr,
1036        &no_turbo.attr,
1037        &turbo_pct.attr,
1038        &num_pstates.attr,
1039        NULL
1040};
1041
1042static const struct attribute_group intel_pstate_attr_group = {
1043        .attrs = intel_pstate_attributes,
1044};
1045
1046static void __init intel_pstate_sysfs_expose_params(void)
1047{
1048        struct kobject *intel_pstate_kobject;
1049        int rc;
1050
1051        intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1052                                                &cpu_subsys.dev_root->kobj);
1053        if (WARN_ON(!intel_pstate_kobject))
1054                return;
1055
1056        rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1057        if (WARN_ON(rc))
1058                return;
1059
1060        /*
1061         * If per cpu limits are enforced there are no global limits, so
1062         * return without creating max/min_perf_pct attributes
1063         */
1064        if (per_cpu_limits)
1065                return;
1066
1067        rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1068        WARN_ON(rc);
1069
1070        rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1071        WARN_ON(rc);
1072
1073}
1074/************************** sysfs end ************************/
1075
1076static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1077{
1078        /* First disable HWP notification interrupt as we don't process them */
1079        if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1080                wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1081
1082        wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1083        cpudata->epp_policy = 0;
1084        if (cpudata->epp_default == -EINVAL)
1085                cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1086}
1087
1088#define MSR_IA32_POWER_CTL_BIT_EE       19
1089
1090/* Disable energy efficiency optimization */
1091static void intel_pstate_disable_ee(int cpu)
1092{
1093        u64 power_ctl;
1094        int ret;
1095
1096        ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1097        if (ret)
1098                return;
1099
1100        if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1101                pr_info("Disabling energy efficiency optimization\n");
1102                power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1103                wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1104        }
1105}
1106
1107static int atom_get_min_pstate(void)
1108{
1109        u64 value;
1110
1111        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1112        return (value >> 8) & 0x7F;
1113}
1114
1115static int atom_get_max_pstate(void)
1116{
1117        u64 value;
1118
1119        rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1120        return (value >> 16) & 0x7F;
1121}
1122
1123static int atom_get_turbo_pstate(void)
1124{
1125        u64 value;
1126
1127        rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1128        return value & 0x7F;
1129}
1130
1131static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1132{
1133        u64 val;
1134        int32_t vid_fp;
1135        u32 vid;
1136
1137        val = (u64)pstate << 8;
1138        if (global.no_turbo && !global.turbo_disabled)
1139                val |= (u64)1 << 32;
1140
1141        vid_fp = cpudata->vid.min + mul_fp(
1142                int_tofp(pstate - cpudata->pstate.min_pstate),
1143                cpudata->vid.ratio);
1144
1145        vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1146        vid = ceiling_fp(vid_fp);
1147
1148        if (pstate > cpudata->pstate.max_pstate)
1149                vid = cpudata->vid.turbo;
1150
1151        return val | vid;
1152}
1153
1154static int silvermont_get_scaling(void)
1155{
1156        u64 value;
1157        int i;
1158        /* Defined in Table 35-6 from SDM (Sept 2015) */
1159        static int silvermont_freq_table[] = {
1160                83300, 100000, 133300, 116700, 80000};
1161
1162        rdmsrl(MSR_FSB_FREQ, value);
1163        i = value & 0x7;
1164        WARN_ON(i > 4);
1165
1166        return silvermont_freq_table[i];
1167}
1168
1169static int airmont_get_scaling(void)
1170{
1171        u64 value;
1172        int i;
1173        /* Defined in Table 35-10 from SDM (Sept 2015) */
1174        static int airmont_freq_table[] = {
1175                83300, 100000, 133300, 116700, 80000,
1176                93300, 90000, 88900, 87500};
1177
1178        rdmsrl(MSR_FSB_FREQ, value);
1179        i = value & 0xF;
1180        WARN_ON(i > 8);
1181
1182        return airmont_freq_table[i];
1183}
1184
1185static void atom_get_vid(struct cpudata *cpudata)
1186{
1187        u64 value;
1188
1189        rdmsrl(MSR_ATOM_CORE_VIDS, value);
1190        cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1191        cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1192        cpudata->vid.ratio = div_fp(
1193                cpudata->vid.max - cpudata->vid.min,
1194                int_tofp(cpudata->pstate.max_pstate -
1195                        cpudata->pstate.min_pstate));
1196
1197        rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1198        cpudata->vid.turbo = value & 0x7f;
1199}
1200
1201static int core_get_min_pstate(void)
1202{
1203        u64 value;
1204
1205        rdmsrl(MSR_PLATFORM_INFO, value);
1206        return (value >> 40) & 0xFF;
1207}
1208
1209static int core_get_max_pstate_physical(void)
1210{
1211        u64 value;
1212
1213        rdmsrl(MSR_PLATFORM_INFO, value);
1214        return (value >> 8) & 0xFF;
1215}
1216
1217static int core_get_tdp_ratio(u64 plat_info)
1218{
1219        /* Check how many TDP levels present */
1220        if (plat_info & 0x600000000) {
1221                u64 tdp_ctrl;
1222                u64 tdp_ratio;
1223                int tdp_msr;
1224                int err;
1225
1226                /* Get the TDP level (0, 1, 2) to get ratios */
1227                err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1228                if (err)
1229                        return err;
1230
1231                /* TDP MSR are continuous starting at 0x648 */
1232                tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1233                err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1234                if (err)
1235                        return err;
1236
1237                /* For level 1 and 2, bits[23:16] contain the ratio */
1238                if (tdp_ctrl & 0x03)
1239                        tdp_ratio >>= 16;
1240
1241                tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1242                pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1243
1244                return (int)tdp_ratio;
1245        }
1246
1247        return -ENXIO;
1248}
1249
1250static int core_get_max_pstate(void)
1251{
1252        u64 tar;
1253        u64 plat_info;
1254        int max_pstate;
1255        int tdp_ratio;
1256        int err;
1257
1258        rdmsrl(MSR_PLATFORM_INFO, plat_info);
1259        max_pstate = (plat_info >> 8) & 0xFF;
1260
1261        tdp_ratio = core_get_tdp_ratio(plat_info);
1262        if (tdp_ratio <= 0)
1263                return max_pstate;
1264
1265        if (hwp_active) {
1266                /* Turbo activation ratio is not used on HWP platforms */
1267                return tdp_ratio;
1268        }
1269
1270        err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1271        if (!err) {
1272                int tar_levels;
1273
1274                /* Do some sanity checking for safety */
1275                tar_levels = tar & 0xff;
1276                if (tdp_ratio - 1 == tar_levels) {
1277                        max_pstate = tar_levels;
1278                        pr_debug("max_pstate=TAC %x\n", max_pstate);
1279                }
1280        }
1281
1282        return max_pstate;
1283}
1284
1285static int core_get_turbo_pstate(void)
1286{
1287        u64 value;
1288        int nont, ret;
1289
1290        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1291        nont = core_get_max_pstate();
1292        ret = (value) & 255;
1293        if (ret <= nont)
1294                ret = nont;
1295        return ret;
1296}
1297
1298static inline int core_get_scaling(void)
1299{
1300        return 100000;
1301}
1302
1303static u64 core_get_val(struct cpudata *cpudata, int pstate)
1304{
1305        u64 val;
1306
1307        val = (u64)pstate << 8;
1308        if (global.no_turbo && !global.turbo_disabled)
1309                val |= (u64)1 << 32;
1310
1311        return val;
1312}
1313
1314static int knl_get_aperf_mperf_shift(void)
1315{
1316        return 10;
1317}
1318
1319static int knl_get_turbo_pstate(void)
1320{
1321        u64 value;
1322        int nont, ret;
1323
1324        rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1325        nont = core_get_max_pstate();
1326        ret = (((value) >> 8) & 0xFF);
1327        if (ret <= nont)
1328                ret = nont;
1329        return ret;
1330}
1331
1332static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1333{
1334        return global.no_turbo || global.turbo_disabled ?
1335                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1336}
1337
1338static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1339{
1340        trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1341        cpu->pstate.current_pstate = pstate;
1342        /*
1343         * Generally, there is no guarantee that this code will always run on
1344         * the CPU being updated, so force the register update to run on the
1345         * right CPU.
1346         */
1347        wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1348                      pstate_funcs.get_val(cpu, pstate));
1349}
1350
1351static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1352{
1353        intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1354}
1355
1356static void intel_pstate_max_within_limits(struct cpudata *cpu)
1357{
1358        int pstate;
1359
1360        update_turbo_state();
1361        pstate = intel_pstate_get_base_pstate(cpu);
1362        pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1363        intel_pstate_set_pstate(cpu, pstate);
1364}
1365
1366static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1367{
1368        cpu->pstate.min_pstate = pstate_funcs.get_min();
1369        cpu->pstate.max_pstate = pstate_funcs.get_max();
1370        cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1371        cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1372        cpu->pstate.scaling = pstate_funcs.get_scaling();
1373        cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1374        cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1375
1376        if (pstate_funcs.get_aperf_mperf_shift)
1377                cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1378
1379        if (pstate_funcs.get_vid)
1380                pstate_funcs.get_vid(cpu);
1381
1382        intel_pstate_set_min_pstate(cpu);
1383}
1384
1385static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1386{
1387        struct sample *sample = &cpu->sample;
1388
1389        sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1390}
1391
1392static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1393{
1394        u64 aperf, mperf;
1395        unsigned long flags;
1396        u64 tsc;
1397
1398        local_irq_save(flags);
1399        rdmsrl(MSR_IA32_APERF, aperf);
1400        rdmsrl(MSR_IA32_MPERF, mperf);
1401        tsc = rdtsc();
1402        if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1403                local_irq_restore(flags);
1404                return false;
1405        }
1406        local_irq_restore(flags);
1407
1408        cpu->last_sample_time = cpu->sample.time;
1409        cpu->sample.time = time;
1410        cpu->sample.aperf = aperf;
1411        cpu->sample.mperf = mperf;
1412        cpu->sample.tsc =  tsc;
1413        cpu->sample.aperf -= cpu->prev_aperf;
1414        cpu->sample.mperf -= cpu->prev_mperf;
1415        cpu->sample.tsc -= cpu->prev_tsc;
1416
1417        cpu->prev_aperf = aperf;
1418        cpu->prev_mperf = mperf;
1419        cpu->prev_tsc = tsc;
1420        /*
1421         * First time this function is invoked in a given cycle, all of the
1422         * previous sample data fields are equal to zero or stale and they must
1423         * be populated with meaningful numbers for things to work, so assume
1424         * that sample.time will always be reset before setting the utilization
1425         * update hook and make the caller skip the sample then.
1426         */
1427        if (cpu->last_sample_time) {
1428                intel_pstate_calc_avg_perf(cpu);
1429                return true;
1430        }
1431        return false;
1432}
1433
1434static inline int32_t get_avg_frequency(struct cpudata *cpu)
1435{
1436        return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1437}
1438
1439static inline int32_t get_avg_pstate(struct cpudata *cpu)
1440{
1441        return mul_ext_fp(cpu->pstate.max_pstate_physical,
1442                          cpu->sample.core_avg_perf);
1443}
1444
1445static inline int32_t get_target_pstate(struct cpudata *cpu)
1446{
1447        struct sample *sample = &cpu->sample;
1448        int32_t busy_frac, boost;
1449        int target, avg_pstate;
1450
1451        busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1452                           sample->tsc);
1453
1454        boost = cpu->iowait_boost;
1455        cpu->iowait_boost >>= 1;
1456
1457        if (busy_frac < boost)
1458                busy_frac = boost;
1459
1460        sample->busy_scaled = busy_frac * 100;
1461
1462        target = global.no_turbo || global.turbo_disabled ?
1463                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1464        target += target >> 2;
1465        target = mul_fp(target, busy_frac);
1466        if (target < cpu->pstate.min_pstate)
1467                target = cpu->pstate.min_pstate;
1468
1469        /*
1470         * If the average P-state during the previous cycle was higher than the
1471         * current target, add 50% of the difference to the target to reduce
1472         * possible performance oscillations and offset possible performance
1473         * loss related to moving the workload from one CPU to another within
1474         * a package/module.
1475         */
1476        avg_pstate = get_avg_pstate(cpu);
1477        if (avg_pstate > target)
1478                target += (avg_pstate - target) >> 1;
1479
1480        return target;
1481}
1482
1483static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1484{
1485        int max_pstate = intel_pstate_get_base_pstate(cpu);
1486        int min_pstate;
1487
1488        min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1489        max_pstate = max(min_pstate, cpu->max_perf_ratio);
1490        return clamp_t(int, pstate, min_pstate, max_pstate);
1491}
1492
1493static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1494{
1495        if (pstate == cpu->pstate.current_pstate)
1496                return;
1497
1498        cpu->pstate.current_pstate = pstate;
1499        wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1500}
1501
1502static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1503{
1504        int from = cpu->pstate.current_pstate;
1505        struct sample *sample;
1506        int target_pstate;
1507
1508        update_turbo_state();
1509
1510        target_pstate = get_target_pstate(cpu);
1511        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1512        trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1513        intel_pstate_update_pstate(cpu, target_pstate);
1514
1515        sample = &cpu->sample;
1516        trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1517                fp_toint(sample->busy_scaled),
1518                from,
1519                cpu->pstate.current_pstate,
1520                sample->mperf,
1521                sample->aperf,
1522                sample->tsc,
1523                get_avg_frequency(cpu),
1524                fp_toint(cpu->iowait_boost * 100));
1525}
1526
1527static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1528                                     unsigned int flags)
1529{
1530        struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1531        u64 delta_ns;
1532
1533        /* Don't allow remote callbacks */
1534        if (smp_processor_id() != cpu->cpu)
1535                return;
1536
1537        if (flags & SCHED_CPUFREQ_IOWAIT) {
1538                cpu->iowait_boost = int_tofp(1);
1539                cpu->last_update = time;
1540                /*
1541                 * The last time the busy was 100% so P-state was max anyway
1542                 * so avoid overhead of computation.
1543                 */
1544                if (fp_toint(cpu->sample.busy_scaled) == 100)
1545                        return;
1546
1547                goto set_pstate;
1548        } else if (cpu->iowait_boost) {
1549                /* Clear iowait_boost if the CPU may have been idle. */
1550                delta_ns = time - cpu->last_update;
1551                if (delta_ns > TICK_NSEC)
1552                        cpu->iowait_boost = 0;
1553        }
1554        cpu->last_update = time;
1555        delta_ns = time - cpu->sample.time;
1556        if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1557                return;
1558
1559set_pstate:
1560        if (intel_pstate_sample(cpu, time))
1561                intel_pstate_adjust_pstate(cpu);
1562}
1563
1564static struct pstate_funcs core_funcs = {
1565        .get_max = core_get_max_pstate,
1566        .get_max_physical = core_get_max_pstate_physical,
1567        .get_min = core_get_min_pstate,
1568        .get_turbo = core_get_turbo_pstate,
1569        .get_scaling = core_get_scaling,
1570        .get_val = core_get_val,
1571};
1572
1573static const struct pstate_funcs silvermont_funcs = {
1574        .get_max = atom_get_max_pstate,
1575        .get_max_physical = atom_get_max_pstate,
1576        .get_min = atom_get_min_pstate,
1577        .get_turbo = atom_get_turbo_pstate,
1578        .get_val = atom_get_val,
1579        .get_scaling = silvermont_get_scaling,
1580        .get_vid = atom_get_vid,
1581};
1582
1583static const struct pstate_funcs airmont_funcs = {
1584        .get_max = atom_get_max_pstate,
1585        .get_max_physical = atom_get_max_pstate,
1586        .get_min = atom_get_min_pstate,
1587        .get_turbo = atom_get_turbo_pstate,
1588        .get_val = atom_get_val,
1589        .get_scaling = airmont_get_scaling,
1590        .get_vid = atom_get_vid,
1591};
1592
1593static const struct pstate_funcs knl_funcs = {
1594        .get_max = core_get_max_pstate,
1595        .get_max_physical = core_get_max_pstate_physical,
1596        .get_min = core_get_min_pstate,
1597        .get_turbo = knl_get_turbo_pstate,
1598        .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1599        .get_scaling = core_get_scaling,
1600        .get_val = core_get_val,
1601};
1602
1603#define ICPU(model, policy) \
1604        { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1605                        (unsigned long)&policy }
1606
1607static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1608        ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1609        ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1610        ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_funcs),
1611        ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1612        ICPU(INTEL_FAM6_HASWELL_CORE,           core_funcs),
1613        ICPU(INTEL_FAM6_BROADWELL_CORE,         core_funcs),
1614        ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1615        ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1616        ICPU(INTEL_FAM6_HASWELL_ULT,            core_funcs),
1617        ICPU(INTEL_FAM6_HASWELL_GT3E,           core_funcs),
1618        ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_funcs),
1619        ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1620        ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_funcs),
1621        ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1622        ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_funcs),
1623        ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_funcs),
1624        ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1625        ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1626        ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1627        ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1628        ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1629        {}
1630};
1631MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1632
1633static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1634        ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1635        ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1636        ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1637        {}
1638};
1639
1640static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1641        ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1642        {}
1643};
1644
1645static int intel_pstate_init_cpu(unsigned int cpunum)
1646{
1647        struct cpudata *cpu;
1648
1649        cpu = all_cpu_data[cpunum];
1650
1651        if (!cpu) {
1652                cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1653                if (!cpu)
1654                        return -ENOMEM;
1655
1656                all_cpu_data[cpunum] = cpu;
1657
1658                cpu->epp_default = -EINVAL;
1659                cpu->epp_powersave = -EINVAL;
1660                cpu->epp_saved = -EINVAL;
1661        }
1662
1663        cpu = all_cpu_data[cpunum];
1664
1665        cpu->cpu = cpunum;
1666
1667        if (hwp_active) {
1668                const struct x86_cpu_id *id;
1669
1670                id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1671                if (id)
1672                        intel_pstate_disable_ee(cpunum);
1673
1674                intel_pstate_hwp_enable(cpu);
1675        }
1676
1677        intel_pstate_get_cpu_pstates(cpu);
1678
1679        pr_debug("controlling: cpu %d\n", cpunum);
1680
1681        return 0;
1682}
1683
1684static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1685{
1686        struct cpudata *cpu = all_cpu_data[cpu_num];
1687
1688        if (hwp_active)
1689                return;
1690
1691        if (cpu->update_util_set)
1692                return;
1693
1694        /* Prevent intel_pstate_update_util() from using stale data. */
1695        cpu->sample.time = 0;
1696        cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1697                                     intel_pstate_update_util);
1698        cpu->update_util_set = true;
1699}
1700
1701static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1702{
1703        struct cpudata *cpu_data = all_cpu_data[cpu];
1704
1705        if (!cpu_data->update_util_set)
1706                return;
1707
1708        cpufreq_remove_update_util_hook(cpu);
1709        cpu_data->update_util_set = false;
1710        synchronize_sched();
1711}
1712
1713static int intel_pstate_get_max_freq(struct cpudata *cpu)
1714{
1715        return global.turbo_disabled || global.no_turbo ?
1716                        cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1717}
1718
1719static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1720                                            struct cpudata *cpu)
1721{
1722        int max_freq = intel_pstate_get_max_freq(cpu);
1723        int32_t max_policy_perf, min_policy_perf;
1724        int max_state, turbo_max;
1725
1726        /*
1727         * HWP needs some special consideration, because on BDX the
1728         * HWP_REQUEST uses abstract value to represent performance
1729         * rather than pure ratios.
1730         */
1731        if (hwp_active) {
1732                intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1733        } else {
1734                max_state = intel_pstate_get_base_pstate(cpu);
1735                turbo_max = cpu->pstate.turbo_pstate;
1736        }
1737
1738        max_policy_perf = max_state * policy->max / max_freq;
1739        if (policy->max == policy->min) {
1740                min_policy_perf = max_policy_perf;
1741        } else {
1742                min_policy_perf = max_state * policy->min / max_freq;
1743                min_policy_perf = clamp_t(int32_t, min_policy_perf,
1744                                          0, max_policy_perf);
1745        }
1746
1747        pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1748                 policy->cpu, max_state,
1749                 min_policy_perf, max_policy_perf);
1750
1751        /* Normalize user input to [min_perf, max_perf] */
1752        if (per_cpu_limits) {
1753                cpu->min_perf_ratio = min_policy_perf;
1754                cpu->max_perf_ratio = max_policy_perf;
1755        } else {
1756                int32_t global_min, global_max;
1757
1758                /* Global limits are in percent of the maximum turbo P-state. */
1759                global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1760                global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1761                global_min = clamp_t(int32_t, global_min, 0, global_max);
1762
1763                pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1764                         global_min, global_max);
1765
1766                cpu->min_perf_ratio = max(min_policy_perf, global_min);
1767                cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1768                cpu->max_perf_ratio = min(max_policy_perf, global_max);
1769                cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1770
1771                /* Make sure min_perf <= max_perf */
1772                cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1773                                          cpu->max_perf_ratio);
1774
1775        }
1776        pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1777                 cpu->max_perf_ratio,
1778                 cpu->min_perf_ratio);
1779}
1780
1781static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1782{
1783        struct cpudata *cpu;
1784
1785        if (!policy->cpuinfo.max_freq)
1786                return -ENODEV;
1787
1788        pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1789                 policy->cpuinfo.max_freq, policy->max);
1790
1791        cpu = all_cpu_data[policy->cpu];
1792        cpu->policy = policy->policy;
1793
1794        mutex_lock(&intel_pstate_limits_lock);
1795
1796        intel_pstate_update_perf_limits(policy, cpu);
1797
1798        if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1799                /*
1800                 * NOHZ_FULL CPUs need this as the governor callback may not
1801                 * be invoked on them.
1802                 */
1803                intel_pstate_clear_update_util_hook(policy->cpu);
1804                intel_pstate_max_within_limits(cpu);
1805        } else {
1806                intel_pstate_set_update_util_hook(policy->cpu);
1807        }
1808
1809        if (hwp_active)
1810                intel_pstate_hwp_set(policy->cpu);
1811
1812        mutex_unlock(&intel_pstate_limits_lock);
1813
1814        return 0;
1815}
1816
1817static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1818                                         struct cpudata *cpu)
1819{
1820        if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1821            policy->max < policy->cpuinfo.max_freq &&
1822            policy->max > cpu->pstate.max_freq) {
1823                pr_debug("policy->max > max non turbo frequency\n");
1824                policy->max = policy->cpuinfo.max_freq;
1825        }
1826}
1827
1828static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1829{
1830        struct cpudata *cpu = all_cpu_data[policy->cpu];
1831
1832        update_turbo_state();
1833        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1834                                     intel_pstate_get_max_freq(cpu));
1835
1836        if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1837            policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1838                return -EINVAL;
1839
1840        intel_pstate_adjust_policy_max(policy, cpu);
1841
1842        return 0;
1843}
1844
1845static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1846{
1847        intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1848}
1849
1850static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1851{
1852        pr_debug("CPU %d exiting\n", policy->cpu);
1853
1854        intel_pstate_clear_update_util_hook(policy->cpu);
1855        if (hwp_active)
1856                intel_pstate_hwp_save_state(policy);
1857        else
1858                intel_cpufreq_stop_cpu(policy);
1859}
1860
1861static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1862{
1863        intel_pstate_exit_perf_limits(policy);
1864
1865        policy->fast_switch_possible = false;
1866
1867        return 0;
1868}
1869
1870static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1871{
1872        struct cpudata *cpu;
1873        int rc;
1874
1875        rc = intel_pstate_init_cpu(policy->cpu);
1876        if (rc)
1877                return rc;
1878
1879        cpu = all_cpu_data[policy->cpu];
1880
1881        cpu->max_perf_ratio = 0xFF;
1882        cpu->min_perf_ratio = 0;
1883
1884        policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1885        policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1886
1887        /* cpuinfo and default policy values */
1888        policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1889        update_turbo_state();
1890        policy->cpuinfo.max_freq = global.turbo_disabled ?
1891                        cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1892        policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1893
1894        intel_pstate_init_acpi_perf_limits(policy);
1895
1896        policy->fast_switch_possible = true;
1897
1898        return 0;
1899}
1900
1901static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1902{
1903        int ret = __intel_pstate_cpu_init(policy);
1904
1905        if (ret)
1906                return ret;
1907
1908        if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1909                policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1910        else
1911                policy->policy = CPUFREQ_POLICY_POWERSAVE;
1912
1913        return 0;
1914}
1915
1916static struct cpufreq_driver intel_pstate = {
1917        .flags          = CPUFREQ_CONST_LOOPS,
1918        .verify         = intel_pstate_verify_policy,
1919        .setpolicy      = intel_pstate_set_policy,
1920        .suspend        = intel_pstate_hwp_save_state,
1921        .resume         = intel_pstate_resume,
1922        .init           = intel_pstate_cpu_init,
1923        .exit           = intel_pstate_cpu_exit,
1924        .stop_cpu       = intel_pstate_stop_cpu,
1925        .name           = "intel_pstate",
1926};
1927
1928static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1929{
1930        struct cpudata *cpu = all_cpu_data[policy->cpu];
1931
1932        update_turbo_state();
1933        cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1934                                     intel_pstate_get_max_freq(cpu));
1935
1936        intel_pstate_adjust_policy_max(policy, cpu);
1937
1938        intel_pstate_update_perf_limits(policy, cpu);
1939
1940        return 0;
1941}
1942
1943static int intel_cpufreq_target(struct cpufreq_policy *policy,
1944                                unsigned int target_freq,
1945                                unsigned int relation)
1946{
1947        struct cpudata *cpu = all_cpu_data[policy->cpu];
1948        struct cpufreq_freqs freqs;
1949        int target_pstate;
1950
1951        update_turbo_state();
1952
1953        freqs.old = policy->cur;
1954        freqs.new = target_freq;
1955
1956        cpufreq_freq_transition_begin(policy, &freqs);
1957        switch (relation) {
1958        case CPUFREQ_RELATION_L:
1959                target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1960                break;
1961        case CPUFREQ_RELATION_H:
1962                target_pstate = freqs.new / cpu->pstate.scaling;
1963                break;
1964        default:
1965                target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1966                break;
1967        }
1968        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1969        if (target_pstate != cpu->pstate.current_pstate) {
1970                cpu->pstate.current_pstate = target_pstate;
1971                wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1972                              pstate_funcs.get_val(cpu, target_pstate));
1973        }
1974        freqs.new = target_pstate * cpu->pstate.scaling;
1975        cpufreq_freq_transition_end(policy, &freqs, false);
1976
1977        return 0;
1978}
1979
1980static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1981                                              unsigned int target_freq)
1982{
1983        struct cpudata *cpu = all_cpu_data[policy->cpu];
1984        int target_pstate;
1985
1986        update_turbo_state();
1987
1988        target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1989        target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1990        intel_pstate_update_pstate(cpu, target_pstate);
1991        return target_pstate * cpu->pstate.scaling;
1992}
1993
1994static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1995{
1996        int ret = __intel_pstate_cpu_init(policy);
1997
1998        if (ret)
1999                return ret;
2000
2001        policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2002        policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2003        /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2004        policy->cur = policy->cpuinfo.min_freq;
2005
2006        return 0;
2007}
2008
2009static struct cpufreq_driver intel_cpufreq = {
2010        .flags          = CPUFREQ_CONST_LOOPS,
2011        .verify         = intel_cpufreq_verify_policy,
2012        .target         = intel_cpufreq_target,
2013        .fast_switch    = intel_cpufreq_fast_switch,
2014        .init           = intel_cpufreq_cpu_init,
2015        .exit           = intel_pstate_cpu_exit,
2016        .stop_cpu       = intel_cpufreq_stop_cpu,
2017        .name           = "intel_cpufreq",
2018};
2019
2020static struct cpufreq_driver *default_driver = &intel_pstate;
2021
2022static void intel_pstate_driver_cleanup(void)
2023{
2024        unsigned int cpu;
2025
2026        get_online_cpus();
2027        for_each_online_cpu(cpu) {
2028                if (all_cpu_data[cpu]) {
2029                        if (intel_pstate_driver == &intel_pstate)
2030                                intel_pstate_clear_update_util_hook(cpu);
2031
2032                        kfree(all_cpu_data[cpu]);
2033                        all_cpu_data[cpu] = NULL;
2034                }
2035        }
2036        put_online_cpus();
2037        intel_pstate_driver = NULL;
2038}
2039
2040static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2041{
2042        int ret;
2043
2044        memset(&global, 0, sizeof(global));
2045        global.max_perf_pct = 100;
2046
2047        intel_pstate_driver = driver;
2048        ret = cpufreq_register_driver(intel_pstate_driver);
2049        if (ret) {
2050                intel_pstate_driver_cleanup();
2051                return ret;
2052        }
2053
2054        global.min_perf_pct = min_perf_pct_min();
2055
2056        return 0;
2057}
2058
2059static int intel_pstate_unregister_driver(void)
2060{
2061        if (hwp_active)
2062                return -EBUSY;
2063
2064        cpufreq_unregister_driver(intel_pstate_driver);
2065        intel_pstate_driver_cleanup();
2066
2067        return 0;
2068}
2069
2070static ssize_t intel_pstate_show_status(char *buf)
2071{
2072        if (!intel_pstate_driver)
2073                return sprintf(buf, "off\n");
2074
2075        return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2076                                        "active" : "passive");
2077}
2078
2079static int intel_pstate_update_status(const char *buf, size_t size)
2080{
2081        int ret;
2082
2083        if (size == 3 && !strncmp(buf, "off", size))
2084                return intel_pstate_driver ?
2085                        intel_pstate_unregister_driver() : -EINVAL;
2086
2087        if (size == 6 && !strncmp(buf, "active", size)) {
2088                if (intel_pstate_driver) {
2089                        if (intel_pstate_driver == &intel_pstate)
2090                                return 0;
2091
2092                        ret = intel_pstate_unregister_driver();
2093                        if (ret)
2094                                return ret;
2095                }
2096
2097                return intel_pstate_register_driver(&intel_pstate);
2098        }
2099
2100        if (size == 7 && !strncmp(buf, "passive", size)) {
2101                if (intel_pstate_driver) {
2102                        if (intel_pstate_driver == &intel_cpufreq)
2103                                return 0;
2104
2105                        ret = intel_pstate_unregister_driver();
2106                        if (ret)
2107                                return ret;
2108                }
2109
2110                return intel_pstate_register_driver(&intel_cpufreq);
2111        }
2112
2113        return -EINVAL;
2114}
2115
2116static int no_load __initdata;
2117static int no_hwp __initdata;
2118static int hwp_only __initdata;
2119static unsigned int force_load __initdata;
2120
2121static int __init intel_pstate_msrs_not_valid(void)
2122{
2123        if (!pstate_funcs.get_max() ||
2124            !pstate_funcs.get_min() ||
2125            !pstate_funcs.get_turbo())
2126                return -ENODEV;
2127
2128        return 0;
2129}
2130
2131static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2132{
2133        pstate_funcs.get_max   = funcs->get_max;
2134        pstate_funcs.get_max_physical = funcs->get_max_physical;
2135        pstate_funcs.get_min   = funcs->get_min;
2136        pstate_funcs.get_turbo = funcs->get_turbo;
2137        pstate_funcs.get_scaling = funcs->get_scaling;
2138        pstate_funcs.get_val   = funcs->get_val;
2139        pstate_funcs.get_vid   = funcs->get_vid;
2140        pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2141}
2142
2143#ifdef CONFIG_ACPI
2144
2145static bool __init intel_pstate_no_acpi_pss(void)
2146{
2147        int i;
2148
2149        for_each_possible_cpu(i) {
2150                acpi_status status;
2151                union acpi_object *pss;
2152                struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2153                struct acpi_processor *pr = per_cpu(processors, i);
2154
2155                if (!pr)
2156                        continue;
2157
2158                status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2159                if (ACPI_FAILURE(status))
2160                        continue;
2161
2162                pss = buffer.pointer;
2163                if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2164                        kfree(pss);
2165                        return false;
2166                }
2167
2168                kfree(pss);
2169        }
2170
2171        return true;
2172}
2173
2174static bool __init intel_pstate_has_acpi_ppc(void)
2175{
2176        int i;
2177
2178        for_each_possible_cpu(i) {
2179                struct acpi_processor *pr = per_cpu(processors, i);
2180
2181                if (!pr)
2182                        continue;
2183                if (acpi_has_method(pr->handle, "_PPC"))
2184                        return true;
2185        }
2186        return false;
2187}
2188
2189enum {
2190        PSS,
2191        PPC,
2192};
2193
2194/* Hardware vendor-specific info that has its own power management modes */
2195static struct acpi_platform_list plat_info[] __initdata = {
2196        {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2197        {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2198        {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2199        {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2200        {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201        {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202        {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203        {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204        {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205        {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206        {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207        {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208        {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209        {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210        {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2211        { } /* End */
2212};
2213
2214static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2215{
2216        const struct x86_cpu_id *id;
2217        u64 misc_pwr;
2218        int idx;
2219
2220        id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2221        if (id) {
2222                rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2223                if ( misc_pwr & (1 << 8))
2224                        return true;
2225        }
2226
2227        idx = acpi_match_platform_list(plat_info);
2228        if (idx < 0)
2229                return false;
2230
2231        switch (plat_info[idx].data) {
2232        case PSS:
2233                return intel_pstate_no_acpi_pss();
2234        case PPC:
2235                return intel_pstate_has_acpi_ppc() && !force_load;
2236        }
2237
2238        return false;
2239}
2240
2241static void intel_pstate_request_control_from_smm(void)
2242{
2243        /*
2244         * It may be unsafe to request P-states control from SMM if _PPC support
2245         * has not been enabled.
2246         */
2247        if (acpi_ppc)
2248                acpi_processor_pstate_control();
2249}
2250#else /* CONFIG_ACPI not enabled */
2251static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2252static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2253static inline void intel_pstate_request_control_from_smm(void) {}
2254#endif /* CONFIG_ACPI */
2255
2256static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2257        { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2258        {}
2259};
2260
2261static int __init intel_pstate_init(void)
2262{
2263        int rc;
2264
2265        if (no_load)
2266                return -ENODEV;
2267
2268        if (x86_match_cpu(hwp_support_ids)) {
2269                copy_cpu_funcs(&core_funcs);
2270                if (!no_hwp) {
2271                        hwp_active++;
2272                        intel_pstate.attr = hwp_cpufreq_attrs;
2273                        goto hwp_cpu_matched;
2274                }
2275        } else {
2276                const struct x86_cpu_id *id;
2277
2278                id = x86_match_cpu(intel_pstate_cpu_ids);
2279                if (!id)
2280                        return -ENODEV;
2281
2282                copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2283        }
2284
2285        if (intel_pstate_msrs_not_valid())
2286                return -ENODEV;
2287
2288hwp_cpu_matched:
2289        /*
2290         * The Intel pstate driver will be ignored if the platform
2291         * firmware has its own power management modes.
2292         */
2293        if (intel_pstate_platform_pwr_mgmt_exists())
2294                return -ENODEV;
2295
2296        if (!hwp_active && hwp_only)
2297                return -ENOTSUPP;
2298
2299        pr_info("Intel P-state driver initializing\n");
2300
2301        all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2302        if (!all_cpu_data)
2303                return -ENOMEM;
2304
2305        intel_pstate_request_control_from_smm();
2306
2307        intel_pstate_sysfs_expose_params();
2308
2309        mutex_lock(&intel_pstate_driver_lock);
2310        rc = intel_pstate_register_driver(default_driver);
2311        mutex_unlock(&intel_pstate_driver_lock);
2312        if (rc)
2313                return rc;
2314
2315        if (hwp_active)
2316                pr_info("HWP enabled\n");
2317
2318        return 0;
2319}
2320device_initcall(intel_pstate_init);
2321
2322static int __init intel_pstate_setup(char *str)
2323{
2324        if (!str)
2325                return -EINVAL;
2326
2327        if (!strcmp(str, "disable")) {
2328                no_load = 1;
2329        } else if (!strcmp(str, "passive")) {
2330                pr_info("Passive mode enabled\n");
2331                default_driver = &intel_cpufreq;
2332                no_hwp = 1;
2333        }
2334        if (!strcmp(str, "no_hwp")) {
2335                pr_info("HWP disabled\n");
2336                no_hwp = 1;
2337        }
2338        if (!strcmp(str, "force"))
2339                force_load = 1;
2340        if (!strcmp(str, "hwp_only"))
2341                hwp_only = 1;
2342        if (!strcmp(str, "per_cpu_perf_limits"))
2343                per_cpu_limits = true;
2344
2345#ifdef CONFIG_ACPI
2346        if (!strcmp(str, "support_acpi_ppc"))
2347                acpi_ppc = true;
2348#endif
2349
2350        return 0;
2351}
2352early_param("intel_pstate", intel_pstate_setup);
2353
2354MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2355MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2356MODULE_LICENSE("GPL");
2357