linux/drivers/i2c/busses/i2c-img-scb.c
<<
>>
Prefs
   1/*
   2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
   3 *
   4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 * There are three ways that this I2C controller can be driven:
  11 *
  12 * - Raw control of the SDA and SCK signals.
  13 *
  14 *   This corresponds to MODE_RAW, which takes control of the signals
  15 *   directly for a certain number of clock cycles (the INT_TIMING
  16 *   interrupt can be used for timing).
  17 *
  18 * - Atomic commands. A low level I2C symbol (such as generate
  19 *   start/stop/ack/nack bit, generate byte, receive byte, and receive
  20 *   ACK) is given to the hardware, with detection of completion by bits
  21 *   in the LINESTAT register.
  22 *
  23 *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
  24 *   state machine in the interrupt handler to compose/react to I2C
  25 *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
  26 *   which emits a simple fixed sequence of atomic mode commands.
  27 *
  28 *   Due to software control, the use of atomic commands usually results
  29 *   in suboptimal use of the bus, with gaps between the I2C symbols while
  30 *   the driver decides what to do next.
  31 *
  32 * - Automatic mode. A bus address, and whether to read/write is
  33 *   specified, and the hardware takes care of the I2C state machine,
  34 *   using a FIFO to send/receive bytes of data to an I2C slave. The
  35 *   driver just has to keep the FIFO drained or filled in response to the
  36 *   appropriate FIFO interrupts.
  37 *
  38 *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
  39 *   with control of repeated start bits between I2C messages.
  40 *
  41 *   Use of automatic mode and the FIFO can make much more efficient use
  42 *   of the bus compared to individual atomic commands, with potentially
  43 *   no wasted time between I2C symbols or I2C messages.
  44 *
  45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
  46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
  47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
  48 * started by the writing of data into the FIFO.
  49 *
  50 * The other modes are used in specific circumstances where MODE_ATOMIC and
  51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
  52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
  53 * it is in a sane state.
  54 *
  55 * Notice that the driver implements a timer-based timeout mechanism.
  56 * The reason for this mechanism is to reduce the number of interrupts
  57 * received in automatic mode.
  58 *
  59 * The driver would get a slave event and transaction done interrupts for
  60 * each atomic mode command that gets completed. However, these events are
  61 * not needed in automatic mode, becase those atomic mode commands are
  62 * managed automatically by the hardware.
  63 *
  64 * In practice, normal I2C transactions will be complete well before you
  65 * get the timer interrupt, as the timer is re-scheduled during FIFO
  66 * maintenance and disabled after the transaction is complete.
  67 *
  68 * In this way normal automatic mode operation isn't impacted by
  69 * unnecessary interrupts, but the exceptional abort condition can still be
  70 * detected (with a slight delay).
  71 */
  72
  73#include <linux/bitops.h>
  74#include <linux/clk.h>
  75#include <linux/completion.h>
  76#include <linux/err.h>
  77#include <linux/i2c.h>
  78#include <linux/init.h>
  79#include <linux/interrupt.h>
  80#include <linux/io.h>
  81#include <linux/kernel.h>
  82#include <linux/module.h>
  83#include <linux/of_platform.h>
  84#include <linux/platform_device.h>
  85#include <linux/pm_runtime.h>
  86#include <linux/slab.h>
  87#include <linux/timer.h>
  88
  89/* Register offsets */
  90
  91#define SCB_STATUS_REG                  0x00
  92#define SCB_OVERRIDE_REG                0x04
  93#define SCB_READ_ADDR_REG               0x08
  94#define SCB_READ_COUNT_REG              0x0c
  95#define SCB_WRITE_ADDR_REG              0x10
  96#define SCB_READ_DATA_REG               0x14
  97#define SCB_WRITE_DATA_REG              0x18
  98#define SCB_FIFO_STATUS_REG             0x1c
  99#define SCB_CONTROL_SOFT_RESET          0x1f
 100#define SCB_CLK_SET_REG                 0x3c
 101#define SCB_INT_STATUS_REG              0x40
 102#define SCB_INT_CLEAR_REG               0x44
 103#define SCB_INT_MASK_REG                0x48
 104#define SCB_CONTROL_REG                 0x4c
 105#define SCB_TIME_TPL_REG                0x50
 106#define SCB_TIME_TPH_REG                0x54
 107#define SCB_TIME_TP2S_REG               0x58
 108#define SCB_TIME_TBI_REG                0x60
 109#define SCB_TIME_TSL_REG                0x64
 110#define SCB_TIME_TDL_REG                0x68
 111#define SCB_TIME_TSDL_REG               0x6c
 112#define SCB_TIME_TSDH_REG               0x70
 113#define SCB_READ_XADDR_REG              0x74
 114#define SCB_WRITE_XADDR_REG             0x78
 115#define SCB_WRITE_COUNT_REG             0x7c
 116#define SCB_CORE_REV_REG                0x80
 117#define SCB_TIME_TCKH_REG               0x84
 118#define SCB_TIME_TCKL_REG               0x88
 119#define SCB_FIFO_FLUSH_REG              0x8c
 120#define SCB_READ_FIFO_REG               0x94
 121#define SCB_CLEAR_REG                   0x98
 122
 123/* SCB_CONTROL_REG bits */
 124
 125#define SCB_CONTROL_CLK_ENABLE          0x1e0
 126#define SCB_CONTROL_TRANSACTION_HALT    0x200
 127
 128#define FIFO_READ_FULL                  BIT(0)
 129#define FIFO_READ_EMPTY                 BIT(1)
 130#define FIFO_WRITE_FULL                 BIT(2)
 131#define FIFO_WRITE_EMPTY                BIT(3)
 132
 133/* SCB_CLK_SET_REG bits */
 134#define SCB_FILT_DISABLE                BIT(31)
 135#define SCB_FILT_BYPASS                 BIT(30)
 136#define SCB_FILT_INC_MASK               0x7f
 137#define SCB_FILT_INC_SHIFT              16
 138#define SCB_INC_MASK                    0x7f
 139#define SCB_INC_SHIFT                   8
 140
 141/* SCB_INT_*_REG bits */
 142
 143#define INT_BUS_INACTIVE                BIT(0)
 144#define INT_UNEXPECTED_START            BIT(1)
 145#define INT_SCLK_LOW_TIMEOUT            BIT(2)
 146#define INT_SDAT_LOW_TIMEOUT            BIT(3)
 147#define INT_WRITE_ACK_ERR               BIT(4)
 148#define INT_ADDR_ACK_ERR                BIT(5)
 149#define INT_FIFO_FULL                   BIT(9)
 150#define INT_FIFO_FILLING                BIT(10)
 151#define INT_FIFO_EMPTY                  BIT(11)
 152#define INT_FIFO_EMPTYING               BIT(12)
 153#define INT_TRANSACTION_DONE            BIT(15)
 154#define INT_SLAVE_EVENT                 BIT(16)
 155#define INT_MASTER_HALTED               BIT(17)
 156#define INT_TIMING                      BIT(18)
 157#define INT_STOP_DETECTED               BIT(19)
 158
 159#define INT_FIFO_FULL_FILLING   (INT_FIFO_FULL  | INT_FIFO_FILLING)
 160
 161/* Level interrupts need clearing after handling instead of before */
 162#define INT_LEVEL                       0x01e00
 163
 164/* Don't allow any interrupts while the clock may be off */
 165#define INT_ENABLE_MASK_INACTIVE        0x00000
 166
 167/* Interrupt masks for the different driver modes */
 168
 169#define INT_ENABLE_MASK_RAW             INT_TIMING
 170
 171#define INT_ENABLE_MASK_ATOMIC          (INT_TRANSACTION_DONE | \
 172                                         INT_SLAVE_EVENT      | \
 173                                         INT_ADDR_ACK_ERR     | \
 174                                         INT_WRITE_ACK_ERR)
 175
 176#define INT_ENABLE_MASK_AUTOMATIC       (INT_SCLK_LOW_TIMEOUT | \
 177                                         INT_ADDR_ACK_ERR     | \
 178                                         INT_WRITE_ACK_ERR    | \
 179                                         INT_FIFO_FULL        | \
 180                                         INT_FIFO_FILLING     | \
 181                                         INT_FIFO_EMPTY       | \
 182                                         INT_MASTER_HALTED    | \
 183                                         INT_STOP_DETECTED)
 184
 185#define INT_ENABLE_MASK_WAITSTOP        (INT_SLAVE_EVENT      | \
 186                                         INT_ADDR_ACK_ERR     | \
 187                                         INT_WRITE_ACK_ERR)
 188
 189/* SCB_STATUS_REG fields */
 190
 191#define LINESTAT_SCLK_LINE_STATUS       BIT(0)
 192#define LINESTAT_SCLK_EN                BIT(1)
 193#define LINESTAT_SDAT_LINE_STATUS       BIT(2)
 194#define LINESTAT_SDAT_EN                BIT(3)
 195#define LINESTAT_DET_START_STATUS       BIT(4)
 196#define LINESTAT_DET_STOP_STATUS        BIT(5)
 197#define LINESTAT_DET_ACK_STATUS         BIT(6)
 198#define LINESTAT_DET_NACK_STATUS        BIT(7)
 199#define LINESTAT_BUS_IDLE               BIT(8)
 200#define LINESTAT_T_DONE_STATUS          BIT(9)
 201#define LINESTAT_SCLK_OUT_STATUS        BIT(10)
 202#define LINESTAT_SDAT_OUT_STATUS        BIT(11)
 203#define LINESTAT_GEN_LINE_MASK_STATUS   BIT(12)
 204#define LINESTAT_START_BIT_DET          BIT(13)
 205#define LINESTAT_STOP_BIT_DET           BIT(14)
 206#define LINESTAT_ACK_DET                BIT(15)
 207#define LINESTAT_NACK_DET               BIT(16)
 208#define LINESTAT_INPUT_HELD_V           BIT(17)
 209#define LINESTAT_ABORT_DET              BIT(18)
 210#define LINESTAT_ACK_OR_NACK_DET        (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
 211#define LINESTAT_INPUT_DATA             0xff000000
 212#define LINESTAT_INPUT_DATA_SHIFT       24
 213
 214#define LINESTAT_CLEAR_SHIFT            13
 215#define LINESTAT_LATCHED                (0x3f << LINESTAT_CLEAR_SHIFT)
 216
 217/* SCB_OVERRIDE_REG fields */
 218
 219#define OVERRIDE_SCLK_OVR               BIT(0)
 220#define OVERRIDE_SCLKEN_OVR             BIT(1)
 221#define OVERRIDE_SDAT_OVR               BIT(2)
 222#define OVERRIDE_SDATEN_OVR             BIT(3)
 223#define OVERRIDE_MASTER                 BIT(9)
 224#define OVERRIDE_LINE_OVR_EN            BIT(10)
 225#define OVERRIDE_DIRECT                 BIT(11)
 226#define OVERRIDE_CMD_SHIFT              4
 227#define OVERRIDE_CMD_MASK               0x1f
 228#define OVERRIDE_DATA_SHIFT             24
 229
 230#define OVERRIDE_SCLK_DOWN              (OVERRIDE_LINE_OVR_EN | \
 231                                         OVERRIDE_SCLKEN_OVR)
 232#define OVERRIDE_SCLK_UP                (OVERRIDE_LINE_OVR_EN | \
 233                                         OVERRIDE_SCLKEN_OVR | \
 234                                         OVERRIDE_SCLK_OVR)
 235#define OVERRIDE_SDAT_DOWN              (OVERRIDE_LINE_OVR_EN | \
 236                                         OVERRIDE_SDATEN_OVR)
 237#define OVERRIDE_SDAT_UP                (OVERRIDE_LINE_OVR_EN | \
 238                                         OVERRIDE_SDATEN_OVR | \
 239                                         OVERRIDE_SDAT_OVR)
 240
 241/* OVERRIDE_CMD values */
 242
 243#define CMD_PAUSE                       0x00
 244#define CMD_GEN_DATA                    0x01
 245#define CMD_GEN_START                   0x02
 246#define CMD_GEN_STOP                    0x03
 247#define CMD_GEN_ACK                     0x04
 248#define CMD_GEN_NACK                    0x05
 249#define CMD_RET_DATA                    0x08
 250#define CMD_RET_ACK                     0x09
 251
 252/* Fixed timing values */
 253
 254#define TIMEOUT_TBI                     0x0
 255#define TIMEOUT_TSL                     0xffff
 256#define TIMEOUT_TDL                     0x0
 257
 258/* Transaction timeout */
 259
 260#define IMG_I2C_TIMEOUT                 (msecs_to_jiffies(1000))
 261
 262/*
 263 * Worst incs are 1 (innacurate) and 16*256 (irregular).
 264 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
 265 * in the middle of the valid range (0-127).
 266 */
 267#define SCB_OPT_INC             64
 268
 269/* Setup the clock enable filtering for 25 ns */
 270#define SCB_FILT_GLITCH         25
 271
 272/*
 273 * Bits to return from interrupt handler functions for different modes.
 274 * This delays completion until we've finished with the registers, so that the
 275 * function waiting for completion can safely disable the clock to save power.
 276 */
 277#define ISR_COMPLETE_M          BIT(31)
 278#define ISR_FATAL_M             BIT(30)
 279#define ISR_WAITSTOP            BIT(29)
 280#define ISR_STATUS_M            0x0000ffff      /* contains +ve errno */
 281#define ISR_COMPLETE(err)       (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
 282#define ISR_FATAL(err)          (ISR_COMPLETE(err) | ISR_FATAL_M)
 283
 284#define IMG_I2C_PM_TIMEOUT      1000 /* ms */
 285
 286enum img_i2c_mode {
 287        MODE_INACTIVE,
 288        MODE_RAW,
 289        MODE_ATOMIC,
 290        MODE_AUTOMATIC,
 291        MODE_SEQUENCE,
 292        MODE_FATAL,
 293        MODE_WAITSTOP,
 294        MODE_SUSPEND,
 295};
 296
 297/* Timing parameters for i2c modes (in ns) */
 298struct img_i2c_timings {
 299        const char *name;
 300        unsigned int max_bitrate;
 301        unsigned int tckh, tckl, tsdh, tsdl;
 302        unsigned int tp2s, tpl, tph;
 303};
 304
 305/* The timings array must be ordered from slower to faster */
 306static struct img_i2c_timings timings[] = {
 307        /* Standard mode */
 308        {
 309                .name = "standard",
 310                .max_bitrate = 100000,
 311                .tckh = 4000,
 312                .tckl = 4700,
 313                .tsdh = 4700,
 314                .tsdl = 8700,
 315                .tp2s = 4700,
 316                .tpl = 4700,
 317                .tph = 4000,
 318        },
 319        /* Fast mode */
 320        {
 321                .name = "fast",
 322                .max_bitrate = 400000,
 323                .tckh = 600,
 324                .tckl = 1300,
 325                .tsdh = 600,
 326                .tsdl = 1200,
 327                .tp2s = 1300,
 328                .tpl = 600,
 329                .tph = 600,
 330        },
 331};
 332
 333/* Reset dance */
 334static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
 335                                  CMD_GEN_DATA, 0xff,
 336                                  CMD_RET_ACK,
 337                                  CMD_GEN_START,
 338                                  CMD_GEN_STOP,
 339                                  0 };
 340/* Just issue a stop (after an abort condition) */
 341static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
 342                                  0 };
 343
 344/* We're interested in different interrupts depending on the mode */
 345static unsigned int img_i2c_int_enable_by_mode[] = {
 346        [MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
 347        [MODE_RAW]       = INT_ENABLE_MASK_RAW,
 348        [MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
 349        [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
 350        [MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
 351        [MODE_FATAL]     = 0,
 352        [MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
 353        [MODE_SUSPEND]   = 0,
 354};
 355
 356/* Atomic command names */
 357static const char * const img_i2c_atomic_cmd_names[] = {
 358        [CMD_PAUSE]     = "PAUSE",
 359        [CMD_GEN_DATA]  = "GEN_DATA",
 360        [CMD_GEN_START] = "GEN_START",
 361        [CMD_GEN_STOP]  = "GEN_STOP",
 362        [CMD_GEN_ACK]   = "GEN_ACK",
 363        [CMD_GEN_NACK]  = "GEN_NACK",
 364        [CMD_RET_DATA]  = "RET_DATA",
 365        [CMD_RET_ACK]   = "RET_ACK",
 366};
 367
 368struct img_i2c {
 369        struct i2c_adapter adap;
 370
 371        void __iomem *base;
 372
 373        /*
 374         * The scb core clock is used to get the input frequency, and to disable
 375         * it after every set of transactions to save some power.
 376         */
 377        struct clk *scb_clk, *sys_clk;
 378        unsigned int bitrate;
 379        bool need_wr_rd_fence;
 380
 381        /* state */
 382        struct completion msg_complete;
 383        spinlock_t lock;        /* lock before doing anything with the state */
 384        struct i2c_msg msg;
 385
 386        /* After the last transaction, wait for a stop bit */
 387        bool last_msg;
 388        int msg_status;
 389
 390        enum img_i2c_mode mode;
 391        u32 int_enable;         /* depends on mode */
 392        u32 line_status;        /* line status over command */
 393
 394        /*
 395         * To avoid slave event interrupts in automatic mode, use a timer to
 396         * poll the abort condition if we don't get an interrupt for too long.
 397         */
 398        struct timer_list check_timer;
 399        bool t_halt;
 400
 401        /* atomic mode state */
 402        bool at_t_done;
 403        bool at_slave_event;
 404        int at_cur_cmd;
 405        u8 at_cur_data;
 406
 407        /* Sequence: either reset or stop. See img_i2c_sequence. */
 408        u8 *seq;
 409
 410        /* raw mode */
 411        unsigned int raw_timeout;
 412};
 413
 414static int img_i2c_runtime_suspend(struct device *dev);
 415static int img_i2c_runtime_resume(struct device *dev);
 416
 417static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
 418{
 419        writel(value, i2c->base + offset);
 420}
 421
 422static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
 423{
 424        return readl(i2c->base + offset);
 425}
 426
 427/*
 428 * The code to read from the master read fifo, and write to the master
 429 * write fifo, checks a bit in an SCB register before every byte to
 430 * ensure that the fifo is not full (write fifo) or empty (read fifo).
 431 * Due to clock domain crossing inside the SCB block the updated value
 432 * of this bit is only visible after 2 cycles.
 433 *
 434 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
 435 * revision register), and it's called after reading from or writing to the
 436 * fifos to ensure that subsequent reads of the fifo status bits do not read
 437 * stale values.
 438 */
 439static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
 440{
 441        if (i2c->need_wr_rd_fence) {
 442                img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 443                img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 444        }
 445}
 446
 447static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
 448{
 449        i2c->mode = mode;
 450        i2c->int_enable = img_i2c_int_enable_by_mode[mode];
 451        i2c->line_status = 0;
 452}
 453
 454static void img_i2c_raw_op(struct img_i2c *i2c)
 455{
 456        i2c->raw_timeout = 0;
 457        img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 458                OVERRIDE_SCLKEN_OVR |
 459                OVERRIDE_SDATEN_OVR |
 460                OVERRIDE_MASTER |
 461                OVERRIDE_LINE_OVR_EN |
 462                OVERRIDE_DIRECT |
 463                ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 464                (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
 465}
 466
 467static const char *img_i2c_atomic_op_name(unsigned int cmd)
 468{
 469        if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
 470                return "UNKNOWN";
 471        return img_i2c_atomic_cmd_names[cmd];
 472}
 473
 474/* Send a single atomic mode command to the hardware */
 475static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
 476{
 477        i2c->at_cur_cmd = cmd;
 478        i2c->at_cur_data = data;
 479
 480        /* work around lack of data setup time when generating data */
 481        if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
 482                u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 483
 484                if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
 485                        /* hold the data line down for a moment */
 486                        img_i2c_switch_mode(i2c, MODE_RAW);
 487                        img_i2c_raw_op(i2c);
 488                        return;
 489                }
 490        }
 491
 492        dev_dbg(i2c->adap.dev.parent,
 493                "atomic cmd=%s (%d) data=%#x\n",
 494                img_i2c_atomic_op_name(cmd), cmd, data);
 495        i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
 496        i2c->at_slave_event = false;
 497        i2c->line_status = 0;
 498
 499        img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 500                ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 501                OVERRIDE_MASTER |
 502                OVERRIDE_DIRECT |
 503                (data << OVERRIDE_DATA_SHIFT));
 504}
 505
 506/* Start a transaction in atomic mode */
 507static void img_i2c_atomic_start(struct img_i2c *i2c)
 508{
 509        img_i2c_switch_mode(i2c, MODE_ATOMIC);
 510        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 511        img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
 512}
 513
 514static void img_i2c_soft_reset(struct img_i2c *i2c)
 515{
 516        i2c->t_halt = false;
 517        img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
 518        img_i2c_writel(i2c, SCB_CONTROL_REG,
 519                       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
 520}
 521
 522/*
 523 * Enable or release transaction halt for control of repeated starts.
 524 * In version 3.3 of the IP when transaction halt is set, an interrupt
 525 * will be generated after each byte of a transfer instead of after
 526 * every transfer but before the stop bit.
 527 * Due to this behaviour we have to be careful that every time we
 528 * release the transaction halt we have to re-enable it straight away
 529 * so that we only process a single byte, not doing so will result in
 530 * all remaining bytes been processed and a stop bit being issued,
 531 * which will prevent us having a repeated start.
 532 */
 533static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
 534{
 535        u32 val;
 536
 537        if (i2c->t_halt == t_halt)
 538                return;
 539        i2c->t_halt = t_halt;
 540        val = img_i2c_readl(i2c, SCB_CONTROL_REG);
 541        if (t_halt)
 542                val |= SCB_CONTROL_TRANSACTION_HALT;
 543        else
 544                val &= ~SCB_CONTROL_TRANSACTION_HALT;
 545        img_i2c_writel(i2c, SCB_CONTROL_REG, val);
 546}
 547
 548/* Drain data from the FIFO into the buffer (automatic mode) */
 549static void img_i2c_read_fifo(struct img_i2c *i2c)
 550{
 551        while (i2c->msg.len) {
 552                u32 fifo_status;
 553                u8 data;
 554
 555                img_i2c_wr_rd_fence(i2c);
 556                fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 557                if (fifo_status & FIFO_READ_EMPTY)
 558                        break;
 559
 560                data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
 561                *i2c->msg.buf = data;
 562
 563                img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
 564                i2c->msg.len--;
 565                i2c->msg.buf++;
 566        }
 567}
 568
 569/* Fill the FIFO with data from the buffer (automatic mode) */
 570static void img_i2c_write_fifo(struct img_i2c *i2c)
 571{
 572        while (i2c->msg.len) {
 573                u32 fifo_status;
 574
 575                img_i2c_wr_rd_fence(i2c);
 576                fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 577                if (fifo_status & FIFO_WRITE_FULL)
 578                        break;
 579
 580                img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
 581                i2c->msg.len--;
 582                i2c->msg.buf++;
 583        }
 584
 585        /* Disable fifo emptying interrupt if nothing more to write */
 586        if (!i2c->msg.len)
 587                i2c->int_enable &= ~INT_FIFO_EMPTYING;
 588}
 589
 590/* Start a read transaction in automatic mode */
 591static void img_i2c_read(struct img_i2c *i2c)
 592{
 593        img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 594        if (!i2c->last_msg)
 595                i2c->int_enable |= INT_SLAVE_EVENT;
 596
 597        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 598        img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
 599        img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
 600
 601        mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 602}
 603
 604/* Start a write transaction in automatic mode */
 605static void img_i2c_write(struct img_i2c *i2c)
 606{
 607        img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 608        if (!i2c->last_msg)
 609                i2c->int_enable |= INT_SLAVE_EVENT;
 610
 611        img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
 612        img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
 613
 614        mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 615        img_i2c_write_fifo(i2c);
 616
 617        /* img_i2c_write_fifo() may modify int_enable */
 618        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 619}
 620
 621/*
 622 * Indicate that the transaction is complete. This is called from the
 623 * ISR to wake up the waiting thread, after which the ISR must not
 624 * access any more SCB registers.
 625 */
 626static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
 627{
 628        img_i2c_switch_mode(i2c, MODE_INACTIVE);
 629        if (status) {
 630                i2c->msg_status = status;
 631                img_i2c_transaction_halt(i2c, false);
 632        }
 633        complete(&i2c->msg_complete);
 634}
 635
 636static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
 637                                        u32 int_status, u32 line_status)
 638{
 639        /* Stay in raw mode for this, so we don't just loop infinitely */
 640        img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
 641        img_i2c_switch_mode(i2c, MODE_ATOMIC);
 642        return 0;
 643}
 644
 645static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
 646                                u32 line_status)
 647{
 648        if (int_status & INT_TIMING) {
 649                if (i2c->raw_timeout == 0)
 650                        return img_i2c_raw_atomic_delay_handler(i2c,
 651                                int_status, line_status);
 652                --i2c->raw_timeout;
 653        }
 654        return 0;
 655}
 656
 657static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
 658{
 659        static const unsigned int continue_bits[] = {
 660                [CMD_GEN_START] = LINESTAT_START_BIT_DET,
 661                [CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
 662                [CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
 663                [CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
 664                [CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
 665        };
 666        int next_cmd = -1;
 667        u8 next_data = 0x00;
 668
 669        if (int_status & INT_SLAVE_EVENT)
 670                i2c->at_slave_event = true;
 671        if (int_status & INT_TRANSACTION_DONE)
 672                i2c->at_t_done = true;
 673
 674        if (!i2c->at_slave_event || !i2c->at_t_done)
 675                return 0;
 676
 677        /* wait if no continue bits are set */
 678        if (i2c->at_cur_cmd >= 0 &&
 679            i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
 680                unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
 681
 682                if (cont_bits) {
 683                        cont_bits |= LINESTAT_ABORT_DET;
 684                        if (!(i2c->line_status & cont_bits))
 685                                return 0;
 686                }
 687        }
 688
 689        /* follow the sequence of commands in i2c->seq */
 690        next_cmd = *i2c->seq;
 691        /* stop on a nil */
 692        if (!next_cmd) {
 693                img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 694                return ISR_COMPLETE(0);
 695        }
 696        /* when generating data, the next byte is the data */
 697        if (next_cmd == CMD_GEN_DATA) {
 698                ++i2c->seq;
 699                next_data = *i2c->seq;
 700        }
 701        ++i2c->seq;
 702        img_i2c_atomic_op(i2c, next_cmd, next_data);
 703
 704        return 0;
 705}
 706
 707static void img_i2c_reset_start(struct img_i2c *i2c)
 708{
 709        /* Initiate the magic dance */
 710        img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 711        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 712        i2c->seq = img_i2c_reset_seq;
 713        i2c->at_slave_event = true;
 714        i2c->at_t_done = true;
 715        i2c->at_cur_cmd = -1;
 716
 717        /* img_i2c_reset_seq isn't empty so the following won't fail */
 718        img_i2c_sequence(i2c, 0);
 719}
 720
 721static void img_i2c_stop_start(struct img_i2c *i2c)
 722{
 723        /* Initiate a stop bit sequence */
 724        img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 725        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 726        i2c->seq = img_i2c_stop_seq;
 727        i2c->at_slave_event = true;
 728        i2c->at_t_done = true;
 729        i2c->at_cur_cmd = -1;
 730
 731        /* img_i2c_stop_seq isn't empty so the following won't fail */
 732        img_i2c_sequence(i2c, 0);
 733}
 734
 735static unsigned int img_i2c_atomic(struct img_i2c *i2c,
 736                                   u32 int_status,
 737                                   u32 line_status)
 738{
 739        int next_cmd = -1;
 740        u8 next_data = 0x00;
 741
 742        if (int_status & INT_SLAVE_EVENT)
 743                i2c->at_slave_event = true;
 744        if (int_status & INT_TRANSACTION_DONE)
 745                i2c->at_t_done = true;
 746
 747        if (!i2c->at_slave_event || !i2c->at_t_done)
 748                goto next_atomic_cmd;
 749        if (i2c->line_status & LINESTAT_ABORT_DET) {
 750                dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 751                next_cmd = CMD_GEN_STOP;
 752                i2c->msg_status = -EIO;
 753                goto next_atomic_cmd;
 754        }
 755
 756        /* i2c->at_cur_cmd may have completed */
 757        switch (i2c->at_cur_cmd) {
 758        case CMD_GEN_START:
 759                next_cmd = CMD_GEN_DATA;
 760                next_data = i2c_8bit_addr_from_msg(&i2c->msg);
 761                break;
 762        case CMD_GEN_DATA:
 763                if (i2c->line_status & LINESTAT_INPUT_HELD_V)
 764                        next_cmd = CMD_RET_ACK;
 765                break;
 766        case CMD_RET_ACK:
 767                if (i2c->line_status & LINESTAT_ACK_DET ||
 768                    (i2c->line_status & LINESTAT_NACK_DET &&
 769                    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
 770                        if (i2c->msg.len == 0) {
 771                                next_cmd = CMD_GEN_STOP;
 772                        } else if (i2c->msg.flags & I2C_M_RD) {
 773                                next_cmd = CMD_RET_DATA;
 774                        } else {
 775                                next_cmd = CMD_GEN_DATA;
 776                                next_data = *i2c->msg.buf;
 777                                --i2c->msg.len;
 778                                ++i2c->msg.buf;
 779                        }
 780                } else if (i2c->line_status & LINESTAT_NACK_DET) {
 781                        i2c->msg_status = -EIO;
 782                        next_cmd = CMD_GEN_STOP;
 783                }
 784                break;
 785        case CMD_RET_DATA:
 786                if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
 787                        *i2c->msg.buf = (i2c->line_status &
 788                                                LINESTAT_INPUT_DATA)
 789                                        >> LINESTAT_INPUT_DATA_SHIFT;
 790                        --i2c->msg.len;
 791                        ++i2c->msg.buf;
 792                        if (i2c->msg.len)
 793                                next_cmd = CMD_GEN_ACK;
 794                        else
 795                                next_cmd = CMD_GEN_NACK;
 796                }
 797                break;
 798        case CMD_GEN_ACK:
 799                if (i2c->line_status & LINESTAT_ACK_DET) {
 800                        next_cmd = CMD_RET_DATA;
 801                } else {
 802                        i2c->msg_status = -EIO;
 803                        next_cmd = CMD_GEN_STOP;
 804                }
 805                break;
 806        case CMD_GEN_NACK:
 807                next_cmd = CMD_GEN_STOP;
 808                break;
 809        case CMD_GEN_STOP:
 810                img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 811                return ISR_COMPLETE(0);
 812        default:
 813                dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
 814                        i2c->at_cur_cmd);
 815                i2c->msg_status = -EIO;
 816                next_cmd = CMD_GEN_STOP;
 817                break;
 818        }
 819
 820next_atomic_cmd:
 821        if (next_cmd != -1) {
 822                /* don't actually stop unless we're the last transaction */
 823                if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
 824                                                !i2c->last_msg)
 825                        return ISR_COMPLETE(0);
 826                img_i2c_atomic_op(i2c, next_cmd, next_data);
 827        }
 828        return 0;
 829}
 830
 831/*
 832 * Timer function to check if something has gone wrong in automatic mode (so we
 833 * don't have to handle so many interrupts just to catch an exception).
 834 */
 835static void img_i2c_check_timer(struct timer_list *t)
 836{
 837        struct img_i2c *i2c = from_timer(i2c, t, check_timer);
 838        unsigned long flags;
 839        unsigned int line_status;
 840
 841        spin_lock_irqsave(&i2c->lock, flags);
 842        line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 843
 844        /* check for an abort condition */
 845        if (line_status & LINESTAT_ABORT_DET) {
 846                dev_dbg(i2c->adap.dev.parent,
 847                        "abort condition detected by check timer\n");
 848                /* enable slave event interrupt mask to trigger irq */
 849                img_i2c_writel(i2c, SCB_INT_MASK_REG,
 850                               i2c->int_enable | INT_SLAVE_EVENT);
 851        }
 852
 853        spin_unlock_irqrestore(&i2c->lock, flags);
 854}
 855
 856static unsigned int img_i2c_auto(struct img_i2c *i2c,
 857                                 unsigned int int_status,
 858                                 unsigned int line_status)
 859{
 860        if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
 861                return ISR_COMPLETE(EIO);
 862
 863        if (line_status & LINESTAT_ABORT_DET) {
 864                dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 865                /* empty the read fifo */
 866                if ((i2c->msg.flags & I2C_M_RD) &&
 867                    (int_status & INT_FIFO_FULL_FILLING))
 868                        img_i2c_read_fifo(i2c);
 869                /* use atomic mode and try to force a stop bit */
 870                i2c->msg_status = -EIO;
 871                img_i2c_stop_start(i2c);
 872                return 0;
 873        }
 874
 875        /* Enable transaction halt on start bit */
 876        if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
 877                img_i2c_transaction_halt(i2c, !i2c->last_msg);
 878                /* we're no longer interested in the slave event */
 879                i2c->int_enable &= ~INT_SLAVE_EVENT;
 880        }
 881
 882        mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 883
 884        if (int_status & INT_STOP_DETECTED) {
 885                /* Drain remaining data in FIFO and complete transaction */
 886                if (i2c->msg.flags & I2C_M_RD)
 887                        img_i2c_read_fifo(i2c);
 888                return ISR_COMPLETE(0);
 889        }
 890
 891        if (i2c->msg.flags & I2C_M_RD) {
 892                if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
 893                        img_i2c_read_fifo(i2c);
 894                        if (i2c->msg.len == 0)
 895                                return ISR_WAITSTOP;
 896                }
 897        } else {
 898                if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
 899                        if ((int_status & INT_FIFO_EMPTY) &&
 900                            i2c->msg.len == 0)
 901                                return ISR_WAITSTOP;
 902                        img_i2c_write_fifo(i2c);
 903                }
 904        }
 905        if (int_status & INT_MASTER_HALTED) {
 906                /*
 907                 * Release and then enable transaction halt, to
 908                 * allow only a single byte to proceed.
 909                 */
 910                img_i2c_transaction_halt(i2c, false);
 911                img_i2c_transaction_halt(i2c, !i2c->last_msg);
 912        }
 913
 914        return 0;
 915}
 916
 917static irqreturn_t img_i2c_isr(int irq, void *dev_id)
 918{
 919        struct img_i2c *i2c = (struct img_i2c *)dev_id;
 920        u32 int_status, line_status;
 921        /* We handle transaction completion AFTER accessing registers */
 922        unsigned int hret;
 923
 924        /* Read interrupt status register. */
 925        int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
 926        /* Clear detected interrupts. */
 927        img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
 928
 929        /*
 930         * Read line status and clear it until it actually is clear.  We have
 931         * to be careful not to lose any line status bits that get latched.
 932         */
 933        line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 934        if (line_status & LINESTAT_LATCHED) {
 935                img_i2c_writel(i2c, SCB_CLEAR_REG,
 936                              (line_status & LINESTAT_LATCHED)
 937                                >> LINESTAT_CLEAR_SHIFT);
 938                img_i2c_wr_rd_fence(i2c);
 939        }
 940
 941        spin_lock(&i2c->lock);
 942
 943        /* Keep track of line status bits received */
 944        i2c->line_status &= ~LINESTAT_INPUT_DATA;
 945        i2c->line_status |= line_status;
 946
 947        /*
 948         * Certain interrupts indicate that sclk low timeout is not
 949         * a problem. If any of these are set, just continue.
 950         */
 951        if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
 952            !(int_status & (INT_SLAVE_EVENT |
 953                            INT_FIFO_EMPTY |
 954                            INT_FIFO_FULL))) {
 955                dev_crit(i2c->adap.dev.parent,
 956                         "fatal: clock low timeout occurred %s addr 0x%02x\n",
 957                         (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
 958                         i2c->msg.addr);
 959                hret = ISR_FATAL(EIO);
 960                goto out;
 961        }
 962
 963        if (i2c->mode == MODE_ATOMIC)
 964                hret = img_i2c_atomic(i2c, int_status, line_status);
 965        else if (i2c->mode == MODE_AUTOMATIC)
 966                hret = img_i2c_auto(i2c, int_status, line_status);
 967        else if (i2c->mode == MODE_SEQUENCE)
 968                hret = img_i2c_sequence(i2c, int_status);
 969        else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
 970                         (line_status & LINESTAT_STOP_BIT_DET))
 971                hret = ISR_COMPLETE(0);
 972        else if (i2c->mode == MODE_RAW)
 973                hret = img_i2c_raw(i2c, int_status, line_status);
 974        else
 975                hret = 0;
 976
 977        /* Clear detected level interrupts. */
 978        img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
 979
 980out:
 981        if (hret & ISR_WAITSTOP) {
 982                /*
 983                 * Only wait for stop on last message.
 984                 * Also we may already have detected the stop bit.
 985                 */
 986                if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
 987                        hret = ISR_COMPLETE(0);
 988                else
 989                        img_i2c_switch_mode(i2c, MODE_WAITSTOP);
 990        }
 991
 992        /* now we've finished using regs, handle transaction completion */
 993        if (hret & ISR_COMPLETE_M) {
 994                int status = -(hret & ISR_STATUS_M);
 995
 996                img_i2c_complete_transaction(i2c, status);
 997                if (hret & ISR_FATAL_M)
 998                        img_i2c_switch_mode(i2c, MODE_FATAL);
 999        }
1000
1001        /* Enable interrupts (int_enable may be altered by changing mode) */
1002        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1003
1004        spin_unlock(&i2c->lock);
1005
1006        return IRQ_HANDLED;
1007}
1008
1009/* Force a bus reset sequence and wait for it to complete */
1010static int img_i2c_reset_bus(struct img_i2c *i2c)
1011{
1012        unsigned long flags;
1013        unsigned long time_left;
1014
1015        spin_lock_irqsave(&i2c->lock, flags);
1016        reinit_completion(&i2c->msg_complete);
1017        img_i2c_reset_start(i2c);
1018        spin_unlock_irqrestore(&i2c->lock, flags);
1019
1020        time_left = wait_for_completion_timeout(&i2c->msg_complete,
1021                                              IMG_I2C_TIMEOUT);
1022        if (time_left == 0)
1023                return -ETIMEDOUT;
1024        return 0;
1025}
1026
1027static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1028                        int num)
1029{
1030        struct img_i2c *i2c = i2c_get_adapdata(adap);
1031        bool atomic = false;
1032        int i, ret;
1033        unsigned long time_left;
1034
1035        if (i2c->mode == MODE_SUSPEND) {
1036                WARN(1, "refusing to service transaction in suspended state\n");
1037                return -EIO;
1038        }
1039
1040        if (i2c->mode == MODE_FATAL)
1041                return -EIO;
1042
1043        for (i = 0; i < num; i++) {
1044                /*
1045                 * 0 byte reads are not possible because the slave could try
1046                 * and pull the data line low, preventing a stop bit.
1047                 */
1048                if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1049                        return -EIO;
1050                /*
1051                 * 0 byte writes are possible and used for probing, but we
1052                 * cannot do them in automatic mode, so use atomic mode
1053                 * instead.
1054                 *
1055                 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1056                 * in atomic mode.
1057                 */
1058                if (!msgs[i].len ||
1059                    (msgs[i].flags & I2C_M_IGNORE_NAK))
1060                        atomic = true;
1061        }
1062
1063        ret = pm_runtime_get_sync(adap->dev.parent);
1064        if (ret < 0)
1065                return ret;
1066
1067        for (i = 0; i < num; i++) {
1068                struct i2c_msg *msg = &msgs[i];
1069                unsigned long flags;
1070
1071                spin_lock_irqsave(&i2c->lock, flags);
1072
1073                /*
1074                 * Make a copy of the message struct. We mustn't modify the
1075                 * original or we'll confuse drivers and i2c-dev.
1076                 */
1077                i2c->msg = *msg;
1078                i2c->msg_status = 0;
1079
1080                /*
1081                 * After the last message we must have waited for a stop bit.
1082                 * Not waiting can cause problems when the clock is disabled
1083                 * before the stop bit is sent, and the linux I2C interface
1084                 * requires separate transfers not to joined with repeated
1085                 * start.
1086                 */
1087                i2c->last_msg = (i == num - 1);
1088                reinit_completion(&i2c->msg_complete);
1089
1090                /*
1091                 * Clear line status and all interrupts before starting a
1092                 * transfer, as we may have unserviced interrupts from
1093                 * previous transfers that might be handled in the context
1094                 * of the new transfer.
1095                 */
1096                img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1097                img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1098
1099                if (atomic) {
1100                        img_i2c_atomic_start(i2c);
1101                } else {
1102                        /*
1103                         * Enable transaction halt if not the last message in
1104                         * the queue so that we can control repeated starts.
1105                         */
1106                        img_i2c_transaction_halt(i2c, !i2c->last_msg);
1107
1108                        if (msg->flags & I2C_M_RD)
1109                                img_i2c_read(i2c);
1110                        else
1111                                img_i2c_write(i2c);
1112
1113                        /*
1114                         * Release and then enable transaction halt, to
1115                         * allow only a single byte to proceed.
1116                         * This doesn't have an effect on the initial transfer
1117                         * but will allow the following transfers to start
1118                         * processing if the previous transfer was marked as
1119                         * complete while the i2c block was halted.
1120                         */
1121                        img_i2c_transaction_halt(i2c, false);
1122                        img_i2c_transaction_halt(i2c, !i2c->last_msg);
1123                }
1124                spin_unlock_irqrestore(&i2c->lock, flags);
1125
1126                time_left = wait_for_completion_timeout(&i2c->msg_complete,
1127                                                      IMG_I2C_TIMEOUT);
1128                del_timer_sync(&i2c->check_timer);
1129
1130                if (time_left == 0) {
1131                        dev_err(adap->dev.parent, "i2c transfer timed out\n");
1132                        i2c->msg_status = -ETIMEDOUT;
1133                        break;
1134                }
1135
1136                if (i2c->msg_status)
1137                        break;
1138        }
1139
1140        pm_runtime_mark_last_busy(adap->dev.parent);
1141        pm_runtime_put_autosuspend(adap->dev.parent);
1142
1143        return i2c->msg_status ? i2c->msg_status : num;
1144}
1145
1146static u32 img_i2c_func(struct i2c_adapter *adap)
1147{
1148        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1149}
1150
1151static const struct i2c_algorithm img_i2c_algo = {
1152        .master_xfer = img_i2c_xfer,
1153        .functionality = img_i2c_func,
1154};
1155
1156static int img_i2c_init(struct img_i2c *i2c)
1157{
1158        unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1159        unsigned int i, data, prescale, inc, int_bitrate, filt;
1160        struct img_i2c_timings timing;
1161        u32 rev;
1162        int ret;
1163
1164        ret = pm_runtime_get_sync(i2c->adap.dev.parent);
1165        if (ret < 0)
1166                return ret;
1167
1168        rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1169        if ((rev & 0x00ffffff) < 0x00020200) {
1170                dev_info(i2c->adap.dev.parent,
1171                         "Unknown hardware revision (%d.%d.%d.%d)\n",
1172                         (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1173                         (rev >> 8) & 0xff, rev & 0xff);
1174                pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1175                pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1176                return -EINVAL;
1177        }
1178
1179        /* Fencing enabled by default. */
1180        i2c->need_wr_rd_fence = true;
1181
1182        /* Determine what mode we're in from the bitrate */
1183        timing = timings[0];
1184        for (i = 0; i < ARRAY_SIZE(timings); i++) {
1185                if (i2c->bitrate <= timings[i].max_bitrate) {
1186                        timing = timings[i];
1187                        break;
1188                }
1189        }
1190        if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1191                dev_warn(i2c->adap.dev.parent,
1192                         "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1193                         i2c->bitrate,
1194                         timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1195                timing = timings[ARRAY_SIZE(timings) - 1];
1196                i2c->bitrate = timing.max_bitrate;
1197        }
1198
1199        bitrate_khz = i2c->bitrate / 1000;
1200        clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1201
1202        /* Find the prescale that would give us that inc (approx delay = 0) */
1203        prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1204        prescale = clamp_t(unsigned int, prescale, 1, 8);
1205        clk_khz /= prescale;
1206
1207        /* Setup the clock increment value */
1208        inc = (256 * 16 * bitrate_khz) / clk_khz;
1209
1210        /*
1211         * The clock generation logic allows to filter glitches on the bus.
1212         * This filter is able to remove bus glitches shorter than 50ns.
1213         * If the clock enable rate is greater than 20 MHz, no filtering
1214         * is required, so we need to disable it.
1215         * If it's between the 20-40 MHz range, there's no need to divide
1216         * the clock to get a filter.
1217         */
1218        if (clk_khz < 20000) {
1219                filt = SCB_FILT_DISABLE;
1220        } else if (clk_khz < 40000) {
1221                filt = SCB_FILT_BYPASS;
1222        } else {
1223                /* Calculate filter clock */
1224                filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1225
1226                /* Scale up if needed */
1227                if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1228                        inc++;
1229
1230                if (filt > SCB_FILT_INC_MASK)
1231                        filt = SCB_FILT_INC_MASK;
1232
1233                filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1234        }
1235        data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1236        img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1237
1238        /* Obtain the clock period of the fx16 clock in ns */
1239        clk_period = (256 * 1000000) / (clk_khz * inc);
1240
1241        /* Calculate the bitrate in terms of internal clock pulses */
1242        int_bitrate = 1000000 / (bitrate_khz * clk_period);
1243        if ((1000000 % (bitrate_khz * clk_period)) >=
1244            ((bitrate_khz * clk_period) / 2))
1245                int_bitrate++;
1246
1247        /*
1248         * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1249         * values from there if they don't meet minimum timing requirements
1250         */
1251        tckh = int_bitrate / 2;
1252        tckl = int_bitrate - tckh;
1253
1254        /* Adjust TCKH and TCKL values */
1255        data = DIV_ROUND_UP(timing.tckl, clk_period);
1256
1257        if (tckl < data) {
1258                tckl = data;
1259                tckh = int_bitrate - tckl;
1260        }
1261
1262        if (tckh > 0)
1263                --tckh;
1264
1265        if (tckl > 0)
1266                --tckl;
1267
1268        img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1269        img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1270
1271        /* Setup TSDH value */
1272        tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1273
1274        if (tsdh > 1)
1275                data = tsdh - 1;
1276        else
1277                data = 0x01;
1278        img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1279
1280        /* This value is used later */
1281        tsdh = data;
1282
1283        /* Setup TPL value */
1284        data = timing.tpl / clk_period;
1285        if (data > 0)
1286                --data;
1287        img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1288
1289        /* Setup TPH value */
1290        data = timing.tph / clk_period;
1291        if (data > 0)
1292                --data;
1293        img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1294
1295        /* Setup TSDL value to TPL + TSDH + 2 */
1296        img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1297
1298        /* Setup TP2S value */
1299        data = timing.tp2s / clk_period;
1300        if (data > 0)
1301                --data;
1302        img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1303
1304        img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1305        img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1306        img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1307
1308        /* Take module out of soft reset and enable clocks */
1309        img_i2c_soft_reset(i2c);
1310
1311        /* Disable all interrupts */
1312        img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1313
1314        /* Clear all interrupts */
1315        img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1316
1317        /* Clear the scb_line_status events */
1318        img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1319
1320        /* Enable interrupts */
1321        img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1322
1323        /* Perform a synchronous sequence to reset the bus */
1324        ret = img_i2c_reset_bus(i2c);
1325
1326        pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1327        pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1328
1329        return ret;
1330}
1331
1332static int img_i2c_probe(struct platform_device *pdev)
1333{
1334        struct device_node *node = pdev->dev.of_node;
1335        struct img_i2c *i2c;
1336        struct resource *res;
1337        int irq, ret;
1338        u32 val;
1339
1340        i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1341        if (!i2c)
1342                return -ENOMEM;
1343
1344        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345        i2c->base = devm_ioremap_resource(&pdev->dev, res);
1346        if (IS_ERR(i2c->base))
1347                return PTR_ERR(i2c->base);
1348
1349        irq = platform_get_irq(pdev, 0);
1350        if (irq < 0) {
1351                dev_err(&pdev->dev, "can't get irq number\n");
1352                return irq;
1353        }
1354
1355        i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1356        if (IS_ERR(i2c->sys_clk)) {
1357                dev_err(&pdev->dev, "can't get system clock\n");
1358                return PTR_ERR(i2c->sys_clk);
1359        }
1360
1361        i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1362        if (IS_ERR(i2c->scb_clk)) {
1363                dev_err(&pdev->dev, "can't get core clock\n");
1364                return PTR_ERR(i2c->scb_clk);
1365        }
1366
1367        ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1368                               pdev->name, i2c);
1369        if (ret) {
1370                dev_err(&pdev->dev, "can't request irq %d\n", irq);
1371                return ret;
1372        }
1373
1374        /* Set up the exception check timer */
1375        timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1376
1377        i2c->bitrate = timings[0].max_bitrate;
1378        if (!of_property_read_u32(node, "clock-frequency", &val))
1379                i2c->bitrate = val;
1380
1381        i2c_set_adapdata(&i2c->adap, i2c);
1382        i2c->adap.dev.parent = &pdev->dev;
1383        i2c->adap.dev.of_node = node;
1384        i2c->adap.owner = THIS_MODULE;
1385        i2c->adap.algo = &img_i2c_algo;
1386        i2c->adap.retries = 5;
1387        i2c->adap.nr = pdev->id;
1388        snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1389
1390        img_i2c_switch_mode(i2c, MODE_INACTIVE);
1391        spin_lock_init(&i2c->lock);
1392        init_completion(&i2c->msg_complete);
1393
1394        platform_set_drvdata(pdev, i2c);
1395
1396        pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1397        pm_runtime_use_autosuspend(&pdev->dev);
1398        pm_runtime_enable(&pdev->dev);
1399        if (!pm_runtime_enabled(&pdev->dev)) {
1400                ret = img_i2c_runtime_resume(&pdev->dev);
1401                if (ret)
1402                        return ret;
1403        }
1404
1405        ret = img_i2c_init(i2c);
1406        if (ret)
1407                goto rpm_disable;
1408
1409        ret = i2c_add_numbered_adapter(&i2c->adap);
1410        if (ret < 0)
1411                goto rpm_disable;
1412
1413        return 0;
1414
1415rpm_disable:
1416        if (!pm_runtime_enabled(&pdev->dev))
1417                img_i2c_runtime_suspend(&pdev->dev);
1418        pm_runtime_disable(&pdev->dev);
1419        pm_runtime_dont_use_autosuspend(&pdev->dev);
1420        return ret;
1421}
1422
1423static int img_i2c_remove(struct platform_device *dev)
1424{
1425        struct img_i2c *i2c = platform_get_drvdata(dev);
1426
1427        i2c_del_adapter(&i2c->adap);
1428        pm_runtime_disable(&dev->dev);
1429        if (!pm_runtime_status_suspended(&dev->dev))
1430                img_i2c_runtime_suspend(&dev->dev);
1431
1432        return 0;
1433}
1434
1435static int img_i2c_runtime_suspend(struct device *dev)
1436{
1437        struct img_i2c *i2c = dev_get_drvdata(dev);
1438
1439        clk_disable_unprepare(i2c->scb_clk);
1440        clk_disable_unprepare(i2c->sys_clk);
1441
1442        return 0;
1443}
1444
1445static int img_i2c_runtime_resume(struct device *dev)
1446{
1447        struct img_i2c *i2c = dev_get_drvdata(dev);
1448        int ret;
1449
1450        ret = clk_prepare_enable(i2c->sys_clk);
1451        if (ret) {
1452                dev_err(dev, "Unable to enable sys clock\n");
1453                return ret;
1454        }
1455
1456        ret = clk_prepare_enable(i2c->scb_clk);
1457        if (ret) {
1458                dev_err(dev, "Unable to enable scb clock\n");
1459                clk_disable_unprepare(i2c->sys_clk);
1460                return ret;
1461        }
1462
1463        return 0;
1464}
1465
1466#ifdef CONFIG_PM_SLEEP
1467static int img_i2c_suspend(struct device *dev)
1468{
1469        struct img_i2c *i2c = dev_get_drvdata(dev);
1470        int ret;
1471
1472        ret = pm_runtime_force_suspend(dev);
1473        if (ret)
1474                return ret;
1475
1476        img_i2c_switch_mode(i2c, MODE_SUSPEND);
1477
1478        return 0;
1479}
1480
1481static int img_i2c_resume(struct device *dev)
1482{
1483        struct img_i2c *i2c = dev_get_drvdata(dev);
1484        int ret;
1485
1486        ret = pm_runtime_force_resume(dev);
1487        if (ret)
1488                return ret;
1489
1490        img_i2c_init(i2c);
1491
1492        return 0;
1493}
1494#endif /* CONFIG_PM_SLEEP */
1495
1496static const struct dev_pm_ops img_i2c_pm = {
1497        SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
1498                           img_i2c_runtime_resume,
1499                           NULL)
1500        SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1501};
1502
1503static const struct of_device_id img_scb_i2c_match[] = {
1504        { .compatible = "img,scb-i2c" },
1505        { }
1506};
1507MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1508
1509static struct platform_driver img_scb_i2c_driver = {
1510        .driver = {
1511                .name           = "img-i2c-scb",
1512                .of_match_table = img_scb_i2c_match,
1513                .pm             = &img_i2c_pm,
1514        },
1515        .probe = img_i2c_probe,
1516        .remove = img_i2c_remove,
1517};
1518module_platform_driver(img_scb_i2c_driver);
1519
1520MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1521MODULE_DESCRIPTION("IMG host I2C driver");
1522MODULE_LICENSE("GPL v2");
1523