linux/drivers/i2c/busses/i2c-rk3x.c
<<
>>
Prefs
   1/*
   2 * Driver for I2C adapter in Rockchip RK3xxx SoC
   3 *
   4 * Max Schwarz <max.schwarz@online.de>
   5 * based on the patches by Rockchip Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/module.h>
  14#include <linux/i2c.h>
  15#include <linux/interrupt.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/platform_device.h>
  19#include <linux/io.h>
  20#include <linux/of_address.h>
  21#include <linux/of_irq.h>
  22#include <linux/spinlock.h>
  23#include <linux/clk.h>
  24#include <linux/wait.h>
  25#include <linux/mfd/syscon.h>
  26#include <linux/regmap.h>
  27#include <linux/math64.h>
  28
  29
  30/* Register Map */
  31#define REG_CON        0x00 /* control register */
  32#define REG_CLKDIV     0x04 /* clock divisor register */
  33#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
  34#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
  35#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
  36#define REG_MRXCNT     0x14 /* number of bytes to be received */
  37#define REG_IEN        0x18 /* interrupt enable */
  38#define REG_IPD        0x1c /* interrupt pending */
  39#define REG_FCNT       0x20 /* finished count */
  40
  41/* Data buffer offsets */
  42#define TXBUFFER_BASE 0x100
  43#define RXBUFFER_BASE 0x200
  44
  45/* REG_CON bits */
  46#define REG_CON_EN        BIT(0)
  47enum {
  48        REG_CON_MOD_TX = 0,      /* transmit data */
  49        REG_CON_MOD_REGISTER_TX, /* select register and restart */
  50        REG_CON_MOD_RX,          /* receive data */
  51        REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
  52                                  * register addr */
  53};
  54#define REG_CON_MOD(mod)  ((mod) << 1)
  55#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
  56#define REG_CON_START     BIT(3)
  57#define REG_CON_STOP      BIT(4)
  58#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
  59#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
  60
  61#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
  62
  63#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
  64#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
  65#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
  66
  67/* REG_MRXADDR bits */
  68#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
  69
  70/* REG_IEN/REG_IPD bits */
  71#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
  72#define REG_INT_BRF       BIT(1) /* a byte was received */
  73#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
  74#define REG_INT_MBRF      BIT(3) /* master data receive finished */
  75#define REG_INT_START     BIT(4) /* START condition generated */
  76#define REG_INT_STOP      BIT(5) /* STOP condition generated */
  77#define REG_INT_NAKRCV    BIT(6) /* NACK received */
  78#define REG_INT_ALL       0x7f
  79
  80/* Constants */
  81#define WAIT_TIMEOUT      1000 /* ms */
  82#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
  83
  84/**
  85 * struct i2c_spec_values:
  86 * @min_hold_start_ns: min hold time (repeated) START condition
  87 * @min_low_ns: min LOW period of the SCL clock
  88 * @min_high_ns: min HIGH period of the SCL cloc
  89 * @min_setup_start_ns: min set-up time for a repeated START conditio
  90 * @max_data_hold_ns: max data hold time
  91 * @min_data_setup_ns: min data set-up time
  92 * @min_setup_stop_ns: min set-up time for STOP condition
  93 * @min_hold_buffer_ns: min bus free time between a STOP and
  94 * START condition
  95 */
  96struct i2c_spec_values {
  97        unsigned long min_hold_start_ns;
  98        unsigned long min_low_ns;
  99        unsigned long min_high_ns;
 100        unsigned long min_setup_start_ns;
 101        unsigned long max_data_hold_ns;
 102        unsigned long min_data_setup_ns;
 103        unsigned long min_setup_stop_ns;
 104        unsigned long min_hold_buffer_ns;
 105};
 106
 107static const struct i2c_spec_values standard_mode_spec = {
 108        .min_hold_start_ns = 4000,
 109        .min_low_ns = 4700,
 110        .min_high_ns = 4000,
 111        .min_setup_start_ns = 4700,
 112        .max_data_hold_ns = 3450,
 113        .min_data_setup_ns = 250,
 114        .min_setup_stop_ns = 4000,
 115        .min_hold_buffer_ns = 4700,
 116};
 117
 118static const struct i2c_spec_values fast_mode_spec = {
 119        .min_hold_start_ns = 600,
 120        .min_low_ns = 1300,
 121        .min_high_ns = 600,
 122        .min_setup_start_ns = 600,
 123        .max_data_hold_ns = 900,
 124        .min_data_setup_ns = 100,
 125        .min_setup_stop_ns = 600,
 126        .min_hold_buffer_ns = 1300,
 127};
 128
 129static const struct i2c_spec_values fast_mode_plus_spec = {
 130        .min_hold_start_ns = 260,
 131        .min_low_ns = 500,
 132        .min_high_ns = 260,
 133        .min_setup_start_ns = 260,
 134        .max_data_hold_ns = 400,
 135        .min_data_setup_ns = 50,
 136        .min_setup_stop_ns = 260,
 137        .min_hold_buffer_ns = 500,
 138};
 139
 140/**
 141 * struct rk3x_i2c_calced_timings:
 142 * @div_low: Divider output for low
 143 * @div_high: Divider output for high
 144 * @tuning: Used to adjust setup/hold data time,
 145 * setup/hold start time and setup stop time for
 146 * v1's calc_timings, the tuning should all be 0
 147 * for old hardware anyone using v0's calc_timings.
 148 */
 149struct rk3x_i2c_calced_timings {
 150        unsigned long div_low;
 151        unsigned long div_high;
 152        unsigned int tuning;
 153};
 154
 155enum rk3x_i2c_state {
 156        STATE_IDLE,
 157        STATE_START,
 158        STATE_READ,
 159        STATE_WRITE,
 160        STATE_STOP
 161};
 162
 163/**
 164 * struct rk3x_i2c_soc_data:
 165 * @grf_offset: offset inside the grf regmap for setting the i2c type
 166 * @calc_timings: Callback function for i2c timing information calculated
 167 */
 168struct rk3x_i2c_soc_data {
 169        int grf_offset;
 170        int (*calc_timings)(unsigned long, struct i2c_timings *,
 171                            struct rk3x_i2c_calced_timings *);
 172};
 173
 174/**
 175 * struct rk3x_i2c - private data of the controller
 176 * @adap: corresponding I2C adapter
 177 * @dev: device for this controller
 178 * @soc_data: related soc data struct
 179 * @regs: virtual memory area
 180 * @clk: function clk for rk3399 or function & Bus clks for others
 181 * @pclk: Bus clk for rk3399
 182 * @clk_rate_nb: i2c clk rate change notify
 183 * @t: I2C known timing information
 184 * @lock: spinlock for the i2c bus
 185 * @wait: the waitqueue to wait for i2c transfer
 186 * @busy: the condition for the event to wait for
 187 * @msg: current i2c message
 188 * @addr: addr of i2c slave device
 189 * @mode: mode of i2c transfer
 190 * @is_last_msg: flag determines whether it is the last msg in this transfer
 191 * @state: state of i2c transfer
 192 * @processed: byte length which has been send or received
 193 * @error: error code for i2c transfer
 194 */
 195struct rk3x_i2c {
 196        struct i2c_adapter adap;
 197        struct device *dev;
 198        const struct rk3x_i2c_soc_data *soc_data;
 199
 200        /* Hardware resources */
 201        void __iomem *regs;
 202        struct clk *clk;
 203        struct clk *pclk;
 204        struct notifier_block clk_rate_nb;
 205
 206        /* Settings */
 207        struct i2c_timings t;
 208
 209        /* Synchronization & notification */
 210        spinlock_t lock;
 211        wait_queue_head_t wait;
 212        bool busy;
 213
 214        /* Current message */
 215        struct i2c_msg *msg;
 216        u8 addr;
 217        unsigned int mode;
 218        bool is_last_msg;
 219
 220        /* I2C state machine */
 221        enum rk3x_i2c_state state;
 222        unsigned int processed;
 223        int error;
 224};
 225
 226static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
 227                              unsigned int offset)
 228{
 229        writel(value, i2c->regs + offset);
 230}
 231
 232static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
 233{
 234        return readl(i2c->regs + offset);
 235}
 236
 237/* Reset all interrupt pending bits */
 238static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
 239{
 240        i2c_writel(i2c, REG_INT_ALL, REG_IPD);
 241}
 242
 243/**
 244 * Generate a START condition, which triggers a REG_INT_START interrupt.
 245 */
 246static void rk3x_i2c_start(struct rk3x_i2c *i2c)
 247{
 248        u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 249
 250        i2c_writel(i2c, REG_INT_START, REG_IEN);
 251
 252        /* enable adapter with correct mode, send START condition */
 253        val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
 254
 255        /* if we want to react to NACK, set ACTACK bit */
 256        if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 257                val |= REG_CON_ACTACK;
 258
 259        i2c_writel(i2c, val, REG_CON);
 260}
 261
 262/**
 263 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 264 *
 265 * @error: Error code to return in rk3x_i2c_xfer
 266 */
 267static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
 268{
 269        unsigned int ctrl;
 270
 271        i2c->processed = 0;
 272        i2c->msg = NULL;
 273        i2c->error = error;
 274
 275        if (i2c->is_last_msg) {
 276                /* Enable stop interrupt */
 277                i2c_writel(i2c, REG_INT_STOP, REG_IEN);
 278
 279                i2c->state = STATE_STOP;
 280
 281                ctrl = i2c_readl(i2c, REG_CON);
 282                ctrl |= REG_CON_STOP;
 283                i2c_writel(i2c, ctrl, REG_CON);
 284        } else {
 285                /* Signal rk3x_i2c_xfer to start the next message. */
 286                i2c->busy = false;
 287                i2c->state = STATE_IDLE;
 288
 289                /*
 290                 * The HW is actually not capable of REPEATED START. But we can
 291                 * get the intended effect by resetting its internal state
 292                 * and issuing an ordinary START.
 293                 */
 294                ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 295                i2c_writel(i2c, ctrl, REG_CON);
 296
 297                /* signal that we are finished with the current msg */
 298                wake_up(&i2c->wait);
 299        }
 300}
 301
 302/**
 303 * Setup a read according to i2c->msg
 304 */
 305static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
 306{
 307        unsigned int len = i2c->msg->len - i2c->processed;
 308        u32 con;
 309
 310        con = i2c_readl(i2c, REG_CON);
 311
 312        /*
 313         * The hw can read up to 32 bytes at a time. If we need more than one
 314         * chunk, send an ACK after the last byte of the current chunk.
 315         */
 316        if (len > 32) {
 317                len = 32;
 318                con &= ~REG_CON_LASTACK;
 319        } else {
 320                con |= REG_CON_LASTACK;
 321        }
 322
 323        /* make sure we are in plain RX mode if we read a second chunk */
 324        if (i2c->processed != 0) {
 325                con &= ~REG_CON_MOD_MASK;
 326                con |= REG_CON_MOD(REG_CON_MOD_RX);
 327        }
 328
 329        i2c_writel(i2c, con, REG_CON);
 330        i2c_writel(i2c, len, REG_MRXCNT);
 331}
 332
 333/**
 334 * Fill the transmit buffer with data from i2c->msg
 335 */
 336static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
 337{
 338        unsigned int i, j;
 339        u32 cnt = 0;
 340        u32 val;
 341        u8 byte;
 342
 343        for (i = 0; i < 8; ++i) {
 344                val = 0;
 345                for (j = 0; j < 4; ++j) {
 346                        if ((i2c->processed == i2c->msg->len) && (cnt != 0))
 347                                break;
 348
 349                        if (i2c->processed == 0 && cnt == 0)
 350                                byte = (i2c->addr & 0x7f) << 1;
 351                        else
 352                                byte = i2c->msg->buf[i2c->processed++];
 353
 354                        val |= byte << (j * 8);
 355                        cnt++;
 356                }
 357
 358                i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
 359
 360                if (i2c->processed == i2c->msg->len)
 361                        break;
 362        }
 363
 364        i2c_writel(i2c, cnt, REG_MTXCNT);
 365}
 366
 367
 368/* IRQ handlers for individual states */
 369
 370static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
 371{
 372        if (!(ipd & REG_INT_START)) {
 373                rk3x_i2c_stop(i2c, -EIO);
 374                dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
 375                rk3x_i2c_clean_ipd(i2c);
 376                return;
 377        }
 378
 379        /* ack interrupt */
 380        i2c_writel(i2c, REG_INT_START, REG_IPD);
 381
 382        /* disable start bit */
 383        i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
 384
 385        /* enable appropriate interrupts and transition */
 386        if (i2c->mode == REG_CON_MOD_TX) {
 387                i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
 388                i2c->state = STATE_WRITE;
 389                rk3x_i2c_fill_transmit_buf(i2c);
 390        } else {
 391                /* in any other case, we are going to be reading. */
 392                i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
 393                i2c->state = STATE_READ;
 394                rk3x_i2c_prepare_read(i2c);
 395        }
 396}
 397
 398static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
 399{
 400        if (!(ipd & REG_INT_MBTF)) {
 401                rk3x_i2c_stop(i2c, -EIO);
 402                dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
 403                rk3x_i2c_clean_ipd(i2c);
 404                return;
 405        }
 406
 407        /* ack interrupt */
 408        i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
 409
 410        /* are we finished? */
 411        if (i2c->processed == i2c->msg->len)
 412                rk3x_i2c_stop(i2c, i2c->error);
 413        else
 414                rk3x_i2c_fill_transmit_buf(i2c);
 415}
 416
 417static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
 418{
 419        unsigned int i;
 420        unsigned int len = i2c->msg->len - i2c->processed;
 421        u32 uninitialized_var(val);
 422        u8 byte;
 423
 424        /* we only care for MBRF here. */
 425        if (!(ipd & REG_INT_MBRF))
 426                return;
 427
 428        /* ack interrupt */
 429        i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
 430
 431        /* Can only handle a maximum of 32 bytes at a time */
 432        if (len > 32)
 433                len = 32;
 434
 435        /* read the data from receive buffer */
 436        for (i = 0; i < len; ++i) {
 437                if (i % 4 == 0)
 438                        val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
 439
 440                byte = (val >> ((i % 4) * 8)) & 0xff;
 441                i2c->msg->buf[i2c->processed++] = byte;
 442        }
 443
 444        /* are we finished? */
 445        if (i2c->processed == i2c->msg->len)
 446                rk3x_i2c_stop(i2c, i2c->error);
 447        else
 448                rk3x_i2c_prepare_read(i2c);
 449}
 450
 451static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
 452{
 453        unsigned int con;
 454
 455        if (!(ipd & REG_INT_STOP)) {
 456                rk3x_i2c_stop(i2c, -EIO);
 457                dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
 458                rk3x_i2c_clean_ipd(i2c);
 459                return;
 460        }
 461
 462        /* ack interrupt */
 463        i2c_writel(i2c, REG_INT_STOP, REG_IPD);
 464
 465        /* disable STOP bit */
 466        con = i2c_readl(i2c, REG_CON);
 467        con &= ~REG_CON_STOP;
 468        i2c_writel(i2c, con, REG_CON);
 469
 470        i2c->busy = false;
 471        i2c->state = STATE_IDLE;
 472
 473        /* signal rk3x_i2c_xfer that we are finished */
 474        wake_up(&i2c->wait);
 475}
 476
 477static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
 478{
 479        struct rk3x_i2c *i2c = dev_id;
 480        unsigned int ipd;
 481
 482        spin_lock(&i2c->lock);
 483
 484        ipd = i2c_readl(i2c, REG_IPD);
 485        if (i2c->state == STATE_IDLE) {
 486                dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
 487                rk3x_i2c_clean_ipd(i2c);
 488                goto out;
 489        }
 490
 491        dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
 492
 493        /* Clean interrupt bits we don't care about */
 494        ipd &= ~(REG_INT_BRF | REG_INT_BTF);
 495
 496        if (ipd & REG_INT_NAKRCV) {
 497                /*
 498                 * We got a NACK in the last operation. Depending on whether
 499                 * IGNORE_NAK is set, we have to stop the operation and report
 500                 * an error.
 501                 */
 502                i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
 503
 504                ipd &= ~REG_INT_NAKRCV;
 505
 506                if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 507                        rk3x_i2c_stop(i2c, -ENXIO);
 508        }
 509
 510        /* is there anything left to handle? */
 511        if ((ipd & REG_INT_ALL) == 0)
 512                goto out;
 513
 514        switch (i2c->state) {
 515        case STATE_START:
 516                rk3x_i2c_handle_start(i2c, ipd);
 517                break;
 518        case STATE_WRITE:
 519                rk3x_i2c_handle_write(i2c, ipd);
 520                break;
 521        case STATE_READ:
 522                rk3x_i2c_handle_read(i2c, ipd);
 523                break;
 524        case STATE_STOP:
 525                rk3x_i2c_handle_stop(i2c, ipd);
 526                break;
 527        case STATE_IDLE:
 528                break;
 529        }
 530
 531out:
 532        spin_unlock(&i2c->lock);
 533        return IRQ_HANDLED;
 534}
 535
 536/**
 537 * Get timing values of I2C specification
 538 *
 539 * @speed: Desired SCL frequency
 540 *
 541 * Returns: Matched i2c spec values.
 542 */
 543static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
 544{
 545        if (speed <= 100000)
 546                return &standard_mode_spec;
 547        else if (speed <= 400000)
 548                return &fast_mode_spec;
 549        else
 550                return &fast_mode_plus_spec;
 551}
 552
 553/**
 554 * Calculate divider values for desired SCL frequency
 555 *
 556 * @clk_rate: I2C input clock rate
 557 * @t: Known I2C timing information
 558 * @t_calc: Caculated rk3x private timings that would be written into regs
 559 *
 560 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 561 * a best-effort divider value is returned in divs. If the target rate is
 562 * too high, we silently use the highest possible rate.
 563 */
 564static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
 565                                    struct i2c_timings *t,
 566                                    struct rk3x_i2c_calced_timings *t_calc)
 567{
 568        unsigned long min_low_ns, min_high_ns;
 569        unsigned long max_low_ns, min_total_ns;
 570
 571        unsigned long clk_rate_khz, scl_rate_khz;
 572
 573        unsigned long min_low_div, min_high_div;
 574        unsigned long max_low_div;
 575
 576        unsigned long min_div_for_hold, min_total_div;
 577        unsigned long extra_div, extra_low_div, ideal_low_div;
 578
 579        unsigned long data_hold_buffer_ns = 50;
 580        const struct i2c_spec_values *spec;
 581        int ret = 0;
 582
 583        /* Only support standard-mode and fast-mode */
 584        if (WARN_ON(t->bus_freq_hz > 400000))
 585                t->bus_freq_hz = 400000;
 586
 587        /* prevent scl_rate_khz from becoming 0 */
 588        if (WARN_ON(t->bus_freq_hz < 1000))
 589                t->bus_freq_hz = 1000;
 590
 591        /*
 592         * min_low_ns:  The minimum number of ns we need to hold low to
 593         *              meet I2C specification, should include fall time.
 594         * min_high_ns: The minimum number of ns we need to hold high to
 595         *              meet I2C specification, should include rise time.
 596         * max_low_ns:  The maximum number of ns we can hold low to meet
 597         *              I2C specification.
 598         *
 599         * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
 600         *       This is because the i2c host on Rockchip holds the data line
 601         *       for half the low time.
 602         */
 603        spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 604        min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 605
 606        /*
 607         * Timings for repeated start:
 608         * - controller appears to drop SDA at .875x (7/8) programmed clk high.
 609         * - controller appears to keep SCL high for 2x programmed clk high.
 610         *
 611         * We need to account for those rules in picking our "high" time so
 612         * we meet tSU;STA and tHD;STA times.
 613         */
 614        min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 615                (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
 616        min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 617                (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
 618                spec->min_high_ns), 2));
 619
 620        min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 621        max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
 622        min_total_ns = min_low_ns + min_high_ns;
 623
 624        /* Adjust to avoid overflow */
 625        clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 626        scl_rate_khz = t->bus_freq_hz / 1000;
 627
 628        /*
 629         * We need the total div to be >= this number
 630         * so we don't clock too fast.
 631         */
 632        min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 633
 634        /* These are the min dividers needed for min hold times. */
 635        min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 636        min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 637        min_div_for_hold = (min_low_div + min_high_div);
 638
 639        /*
 640         * This is the maximum divider so we don't go over the maximum.
 641         * We don't round up here (we round down) since this is a maximum.
 642         */
 643        max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
 644
 645        if (min_low_div > max_low_div) {
 646                WARN_ONCE(true,
 647                          "Conflicting, min_low_div %lu, max_low_div %lu\n",
 648                          min_low_div, max_low_div);
 649                max_low_div = min_low_div;
 650        }
 651
 652        if (min_div_for_hold > min_total_div) {
 653                /*
 654                 * Time needed to meet hold requirements is important.
 655                 * Just use that.
 656                 */
 657                t_calc->div_low = min_low_div;
 658                t_calc->div_high = min_high_div;
 659        } else {
 660                /*
 661                 * We've got to distribute some time among the low and high
 662                 * so we don't run too fast.
 663                 */
 664                extra_div = min_total_div - min_div_for_hold;
 665
 666                /*
 667                 * We'll try to split things up perfectly evenly,
 668                 * biasing slightly towards having a higher div
 669                 * for low (spend more time low).
 670                 */
 671                ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
 672                                             scl_rate_khz * 8 * min_total_ns);
 673
 674                /* Don't allow it to go over the maximum */
 675                if (ideal_low_div > max_low_div)
 676                        ideal_low_div = max_low_div;
 677
 678                /*
 679                 * Handle when the ideal low div is going to take up
 680                 * more than we have.
 681                 */
 682                if (ideal_low_div > min_low_div + extra_div)
 683                        ideal_low_div = min_low_div + extra_div;
 684
 685                /* Give low the "ideal" and give high whatever extra is left */
 686                extra_low_div = ideal_low_div - min_low_div;
 687                t_calc->div_low = ideal_low_div;
 688                t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 689        }
 690
 691        /*
 692         * Adjust to the fact that the hardware has an implicit "+1".
 693         * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
 694         */
 695        t_calc->div_low--;
 696        t_calc->div_high--;
 697
 698        /* Give the tuning value 0, that would not update con register */
 699        t_calc->tuning = 0;
 700        /* Maximum divider supported by hw is 0xffff */
 701        if (t_calc->div_low > 0xffff) {
 702                t_calc->div_low = 0xffff;
 703                ret = -EINVAL;
 704        }
 705
 706        if (t_calc->div_high > 0xffff) {
 707                t_calc->div_high = 0xffff;
 708                ret = -EINVAL;
 709        }
 710
 711        return ret;
 712}
 713
 714/**
 715 * Calculate timing values for desired SCL frequency
 716 *
 717 * @clk_rate: I2C input clock rate
 718 * @t: Known I2C timing information
 719 * @t_calc: Caculated rk3x private timings that would be written into regs
 720 *
 721 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 722 * a best-effort divider value is returned in divs. If the target rate is
 723 * too high, we silently use the highest possible rate.
 724 * The following formulas are v1's method to calculate timings.
 725 *
 726 * l = divl + 1;
 727 * h = divh + 1;
 728 * s = sda_update_config + 1;
 729 * u = start_setup_config + 1;
 730 * p = stop_setup_config + 1;
 731 * T = Tclk_i2c;
 732 *
 733 * tHigh = 8 * h * T;
 734 * tLow = 8 * l * T;
 735 *
 736 * tHD;sda = (l * s + 1) * T;
 737 * tSU;sda = [(8 - s) * l + 1] * T;
 738 * tI2C = 8 * (l + h) * T;
 739 *
 740 * tSU;sta = (8h * u + 1) * T;
 741 * tHD;sta = [8h * (u + 1) - 1] * T;
 742 * tSU;sto = (8h * p + 1) * T;
 743 */
 744static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
 745                                    struct i2c_timings *t,
 746                                    struct rk3x_i2c_calced_timings *t_calc)
 747{
 748        unsigned long min_low_ns, min_high_ns;
 749        unsigned long min_setup_start_ns, min_setup_data_ns;
 750        unsigned long min_setup_stop_ns, max_hold_data_ns;
 751
 752        unsigned long clk_rate_khz, scl_rate_khz;
 753
 754        unsigned long min_low_div, min_high_div;
 755
 756        unsigned long min_div_for_hold, min_total_div;
 757        unsigned long extra_div, extra_low_div;
 758        unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
 759
 760        const struct i2c_spec_values *spec;
 761        int ret = 0;
 762
 763        /* Support standard-mode, fast-mode and fast-mode plus */
 764        if (WARN_ON(t->bus_freq_hz > 1000000))
 765                t->bus_freq_hz = 1000000;
 766
 767        /* prevent scl_rate_khz from becoming 0 */
 768        if (WARN_ON(t->bus_freq_hz < 1000))
 769                t->bus_freq_hz = 1000;
 770
 771        /*
 772         * min_low_ns: The minimum number of ns we need to hold low to
 773         *             meet I2C specification, should include fall time.
 774         * min_high_ns: The minimum number of ns we need to hold high to
 775         *              meet I2C specification, should include rise time.
 776         */
 777        spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 778
 779        /* calculate min-divh and min-divl */
 780        clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 781        scl_rate_khz = t->bus_freq_hz / 1000;
 782        min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 783
 784        min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 785        min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 786
 787        min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 788        min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 789
 790        /*
 791         * Final divh and divl must be greater than 0, otherwise the
 792         * hardware would not output the i2c clk.
 793         */
 794        min_high_div = (min_high_div < 1) ? 2 : min_high_div;
 795        min_low_div = (min_low_div < 1) ? 2 : min_low_div;
 796
 797        /* These are the min dividers needed for min hold times. */
 798        min_div_for_hold = (min_low_div + min_high_div);
 799
 800        /*
 801         * This is the maximum divider so we don't go over the maximum.
 802         * We don't round up here (we round down) since this is a maximum.
 803         */
 804        if (min_div_for_hold >= min_total_div) {
 805                /*
 806                 * Time needed to meet hold requirements is important.
 807                 * Just use that.
 808                 */
 809                t_calc->div_low = min_low_div;
 810                t_calc->div_high = min_high_div;
 811        } else {
 812                /*
 813                 * We've got to distribute some time among the low and high
 814                 * so we don't run too fast.
 815                 * We'll try to split things up by the scale of min_low_div and
 816                 * min_high_div, biasing slightly towards having a higher div
 817                 * for low (spend more time low).
 818                 */
 819                extra_div = min_total_div - min_div_for_hold;
 820                extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
 821                                             min_div_for_hold);
 822
 823                t_calc->div_low = min_low_div + extra_low_div;
 824                t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 825        }
 826
 827        /*
 828         * calculate sda data hold count by the rules, data_upd_st:3
 829         * is a appropriate value to reduce calculated times.
 830         */
 831        for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
 832                max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
 833                                                 * (t_calc->div_low) + 1)
 834                                                 * 1000000, clk_rate_khz);
 835                min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
 836                                                 * (t_calc->div_low) + 1)
 837                                                 * 1000000, clk_rate_khz);
 838                if ((max_hold_data_ns < spec->max_data_hold_ns) &&
 839                    (min_setup_data_ns > spec->min_data_setup_ns))
 840                        break;
 841        }
 842
 843        /* calculate setup start config */
 844        min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
 845        stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
 846                           - 1000000, 8 * 1000000 * (t_calc->div_high));
 847
 848        /* calculate setup stop config */
 849        min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
 850        stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
 851                           - 1000000, 8 * 1000000 * (t_calc->div_high));
 852
 853        t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
 854                         REG_CON_STA_CFG(--stp_sta_cfg) |
 855                         REG_CON_STO_CFG(--stp_sto_cfg);
 856
 857        t_calc->div_low--;
 858        t_calc->div_high--;
 859
 860        /* Maximum divider supported by hw is 0xffff */
 861        if (t_calc->div_low > 0xffff) {
 862                t_calc->div_low = 0xffff;
 863                ret = -EINVAL;
 864        }
 865
 866        if (t_calc->div_high > 0xffff) {
 867                t_calc->div_high = 0xffff;
 868                ret = -EINVAL;
 869        }
 870
 871        return ret;
 872}
 873
 874static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
 875{
 876        struct i2c_timings *t = &i2c->t;
 877        struct rk3x_i2c_calced_timings calc;
 878        u64 t_low_ns, t_high_ns;
 879        unsigned long flags;
 880        u32 val;
 881        int ret;
 882
 883        ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
 884        WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
 885
 886        clk_enable(i2c->pclk);
 887
 888        spin_lock_irqsave(&i2c->lock, flags);
 889        val = i2c_readl(i2c, REG_CON);
 890        val &= ~REG_CON_TUNING_MASK;
 891        val |= calc.tuning;
 892        i2c_writel(i2c, val, REG_CON);
 893        i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
 894                   REG_CLKDIV);
 895        spin_unlock_irqrestore(&i2c->lock, flags);
 896
 897        clk_disable(i2c->pclk);
 898
 899        t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
 900        t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
 901                            clk_rate);
 902        dev_dbg(i2c->dev,
 903                "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
 904                clk_rate / 1000,
 905                1000000000 / t->bus_freq_hz,
 906                t_low_ns, t_high_ns);
 907}
 908
 909/**
 910 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 911 * @nb:         Pointer to notifier block
 912 * @event:      Notification reason
 913 * @data:       Pointer to notification data object
 914 *
 915 * The callback checks whether a valid bus frequency can be generated after the
 916 * change. If so, the change is acknowledged, otherwise the change is aborted.
 917 * New dividers are written to the HW in the pre- or post change notification
 918 * depending on the scaling direction.
 919 *
 920 * Code adapted from i2c-cadence.c.
 921 *
 922 * Return:      NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 923 *              to acknowledge the change, NOTIFY_DONE if the notification is
 924 *              considered irrelevant.
 925 */
 926static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
 927                                    event, void *data)
 928{
 929        struct clk_notifier_data *ndata = data;
 930        struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
 931        struct rk3x_i2c_calced_timings calc;
 932
 933        switch (event) {
 934        case PRE_RATE_CHANGE:
 935                /*
 936                 * Try the calculation (but don't store the result) ahead of
 937                 * time to see if we need to block the clock change.  Timings
 938                 * shouldn't actually take effect until rk3x_i2c_adapt_div().
 939                 */
 940                if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
 941                                                &calc) != 0)
 942                        return NOTIFY_STOP;
 943
 944                /* scale up */
 945                if (ndata->new_rate > ndata->old_rate)
 946                        rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 947
 948                return NOTIFY_OK;
 949        case POST_RATE_CHANGE:
 950                /* scale down */
 951                if (ndata->new_rate < ndata->old_rate)
 952                        rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 953                return NOTIFY_OK;
 954        case ABORT_RATE_CHANGE:
 955                /* scale up */
 956                if (ndata->new_rate > ndata->old_rate)
 957                        rk3x_i2c_adapt_div(i2c, ndata->old_rate);
 958                return NOTIFY_OK;
 959        default:
 960                return NOTIFY_DONE;
 961        }
 962}
 963
 964/**
 965 * Setup I2C registers for an I2C operation specified by msgs, num.
 966 *
 967 * Must be called with i2c->lock held.
 968 *
 969 * @msgs: I2C msgs to process
 970 * @num: Number of msgs
 971 *
 972 * returns: Number of I2C msgs processed or negative in case of error
 973 */
 974static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
 975{
 976        u32 addr = (msgs[0].addr & 0x7f) << 1;
 977        int ret = 0;
 978
 979        /*
 980         * The I2C adapter can issue a small (len < 4) write packet before
 981         * reading. This speeds up SMBus-style register reads.
 982         * The MRXADDR/MRXRADDR hold the slave address and the slave register
 983         * address in this case.
 984         */
 985
 986        if (num >= 2 && msgs[0].len < 4 &&
 987            !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
 988                u32 reg_addr = 0;
 989                int i;
 990
 991                dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
 992                        addr >> 1);
 993
 994                /* Fill MRXRADDR with the register address(es) */
 995                for (i = 0; i < msgs[0].len; ++i) {
 996                        reg_addr |= msgs[0].buf[i] << (i * 8);
 997                        reg_addr |= REG_MRXADDR_VALID(i);
 998                }
 999
1000                /* msgs[0] is handled by hw. */
1001                i2c->msg = &msgs[1];
1002
1003                i2c->mode = REG_CON_MOD_REGISTER_TX;
1004
1005                i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1006                i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1007
1008                ret = 2;
1009        } else {
1010                /*
1011                 * We'll have to do it the boring way and process the msgs
1012                 * one-by-one.
1013                 */
1014
1015                if (msgs[0].flags & I2C_M_RD) {
1016                        addr |= 1; /* set read bit */
1017
1018                        /*
1019                         * We have to transmit the slave addr first. Use
1020                         * MOD_REGISTER_TX for that purpose.
1021                         */
1022                        i2c->mode = REG_CON_MOD_REGISTER_TX;
1023                        i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1024                                   REG_MRXADDR);
1025                        i2c_writel(i2c, 0, REG_MRXRADDR);
1026                } else {
1027                        i2c->mode = REG_CON_MOD_TX;
1028                }
1029
1030                i2c->msg = &msgs[0];
1031
1032                ret = 1;
1033        }
1034
1035        i2c->addr = msgs[0].addr;
1036        i2c->busy = true;
1037        i2c->state = STATE_START;
1038        i2c->processed = 0;
1039        i2c->error = 0;
1040
1041        rk3x_i2c_clean_ipd(i2c);
1042
1043        return ret;
1044}
1045
1046static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1047                         struct i2c_msg *msgs, int num)
1048{
1049        struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1050        unsigned long timeout, flags;
1051        u32 val;
1052        int ret = 0;
1053        int i;
1054
1055        spin_lock_irqsave(&i2c->lock, flags);
1056
1057        clk_enable(i2c->clk);
1058        clk_enable(i2c->pclk);
1059
1060        i2c->is_last_msg = false;
1061
1062        /*
1063         * Process msgs. We can handle more than one message at once (see
1064         * rk3x_i2c_setup()).
1065         */
1066        for (i = 0; i < num; i += ret) {
1067                ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1068
1069                if (ret < 0) {
1070                        dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1071                        break;
1072                }
1073
1074                if (i + ret >= num)
1075                        i2c->is_last_msg = true;
1076
1077                spin_unlock_irqrestore(&i2c->lock, flags);
1078
1079                rk3x_i2c_start(i2c);
1080
1081                timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1082                                             msecs_to_jiffies(WAIT_TIMEOUT));
1083
1084                spin_lock_irqsave(&i2c->lock, flags);
1085
1086                if (timeout == 0) {
1087                        dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1088                                i2c_readl(i2c, REG_IPD), i2c->state);
1089
1090                        /* Force a STOP condition without interrupt */
1091                        i2c_writel(i2c, 0, REG_IEN);
1092                        val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1093                        val |= REG_CON_EN | REG_CON_STOP;
1094                        i2c_writel(i2c, val, REG_CON);
1095
1096                        i2c->state = STATE_IDLE;
1097
1098                        ret = -ETIMEDOUT;
1099                        break;
1100                }
1101
1102                if (i2c->error) {
1103                        ret = i2c->error;
1104                        break;
1105                }
1106        }
1107
1108        clk_disable(i2c->pclk);
1109        clk_disable(i2c->clk);
1110
1111        spin_unlock_irqrestore(&i2c->lock, flags);
1112
1113        return ret < 0 ? ret : num;
1114}
1115
1116static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1117{
1118        struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1119
1120        rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1121
1122        return 0;
1123}
1124
1125static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1126{
1127        return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1128}
1129
1130static const struct i2c_algorithm rk3x_i2c_algorithm = {
1131        .master_xfer            = rk3x_i2c_xfer,
1132        .functionality          = rk3x_i2c_func,
1133};
1134
1135static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1136        .grf_offset = -1,
1137        .calc_timings = rk3x_i2c_v1_calc_timings,
1138};
1139
1140static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1141        .grf_offset = 0x154,
1142        .calc_timings = rk3x_i2c_v0_calc_timings,
1143};
1144
1145static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1146        .grf_offset = 0x0a4,
1147        .calc_timings = rk3x_i2c_v0_calc_timings,
1148};
1149
1150static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1151        .grf_offset = -1,
1152        .calc_timings = rk3x_i2c_v0_calc_timings,
1153};
1154
1155static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1156        .grf_offset = -1,
1157        .calc_timings = rk3x_i2c_v0_calc_timings,
1158};
1159
1160static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1161        .grf_offset = -1,
1162        .calc_timings = rk3x_i2c_v1_calc_timings,
1163};
1164
1165static const struct of_device_id rk3x_i2c_match[] = {
1166        {
1167                .compatible = "rockchip,rv1108-i2c",
1168                .data = &rv1108_soc_data
1169        },
1170        {
1171                .compatible = "rockchip,rk3066-i2c",
1172                .data = &rk3066_soc_data
1173        },
1174        {
1175                .compatible = "rockchip,rk3188-i2c",
1176                .data = &rk3188_soc_data
1177        },
1178        {
1179                .compatible = "rockchip,rk3228-i2c",
1180                .data = &rk3228_soc_data
1181        },
1182        {
1183                .compatible = "rockchip,rk3288-i2c",
1184                .data = &rk3288_soc_data
1185        },
1186        {
1187                .compatible = "rockchip,rk3399-i2c",
1188                .data = &rk3399_soc_data
1189        },
1190        {},
1191};
1192MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1193
1194static int rk3x_i2c_probe(struct platform_device *pdev)
1195{
1196        struct device_node *np = pdev->dev.of_node;
1197        const struct of_device_id *match;
1198        struct rk3x_i2c *i2c;
1199        struct resource *mem;
1200        int ret = 0;
1201        int bus_nr;
1202        u32 value;
1203        int irq;
1204        unsigned long clk_rate;
1205
1206        i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1207        if (!i2c)
1208                return -ENOMEM;
1209
1210        match = of_match_node(rk3x_i2c_match, np);
1211        i2c->soc_data = match->data;
1212
1213        /* use common interface to get I2C timing properties */
1214        i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1215
1216        strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1217        i2c->adap.owner = THIS_MODULE;
1218        i2c->adap.algo = &rk3x_i2c_algorithm;
1219        i2c->adap.retries = 3;
1220        i2c->adap.dev.of_node = np;
1221        i2c->adap.algo_data = i2c;
1222        i2c->adap.dev.parent = &pdev->dev;
1223
1224        i2c->dev = &pdev->dev;
1225
1226        spin_lock_init(&i2c->lock);
1227        init_waitqueue_head(&i2c->wait);
1228
1229        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1230        i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
1231        if (IS_ERR(i2c->regs))
1232                return PTR_ERR(i2c->regs);
1233
1234        /* Try to set the I2C adapter number from dt */
1235        bus_nr = of_alias_get_id(np, "i2c");
1236
1237        /*
1238         * Switch to new interface if the SoC also offers the old one.
1239         * The control bit is located in the GRF register space.
1240         */
1241        if (i2c->soc_data->grf_offset >= 0) {
1242                struct regmap *grf;
1243
1244                grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1245                if (IS_ERR(grf)) {
1246                        dev_err(&pdev->dev,
1247                                "rk3x-i2c needs 'rockchip,grf' property\n");
1248                        return PTR_ERR(grf);
1249                }
1250
1251                if (bus_nr < 0) {
1252                        dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1253                        return -EINVAL;
1254                }
1255
1256                /* 27+i: write mask, 11+i: value */
1257                value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1258
1259                ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1260                if (ret != 0) {
1261                        dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1262                        return ret;
1263                }
1264        }
1265
1266        /* IRQ setup */
1267        irq = platform_get_irq(pdev, 0);
1268        if (irq < 0) {
1269                dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
1270                return irq;
1271        }
1272
1273        ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1274                               0, dev_name(&pdev->dev), i2c);
1275        if (ret < 0) {
1276                dev_err(&pdev->dev, "cannot request IRQ\n");
1277                return ret;
1278        }
1279
1280        platform_set_drvdata(pdev, i2c);
1281
1282        if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1283                /* Only one clock to use for bus clock and peripheral clock */
1284                i2c->clk = devm_clk_get(&pdev->dev, NULL);
1285                i2c->pclk = i2c->clk;
1286        } else {
1287                i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1288                i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1289        }
1290
1291        if (IS_ERR(i2c->clk)) {
1292                ret = PTR_ERR(i2c->clk);
1293                if (ret != -EPROBE_DEFER)
1294                        dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
1295                return ret;
1296        }
1297        if (IS_ERR(i2c->pclk)) {
1298                ret = PTR_ERR(i2c->pclk);
1299                if (ret != -EPROBE_DEFER)
1300                        dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
1301                return ret;
1302        }
1303
1304        ret = clk_prepare(i2c->clk);
1305        if (ret < 0) {
1306                dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1307                return ret;
1308        }
1309        ret = clk_prepare(i2c->pclk);
1310        if (ret < 0) {
1311                dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1312                goto err_clk;
1313        }
1314
1315        i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1316        ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1317        if (ret != 0) {
1318                dev_err(&pdev->dev, "Unable to register clock notifier\n");
1319                goto err_pclk;
1320        }
1321
1322        clk_rate = clk_get_rate(i2c->clk);
1323        rk3x_i2c_adapt_div(i2c, clk_rate);
1324
1325        ret = i2c_add_adapter(&i2c->adap);
1326        if (ret < 0)
1327                goto err_clk_notifier;
1328
1329        dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
1330
1331        return 0;
1332
1333err_clk_notifier:
1334        clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1335err_pclk:
1336        clk_unprepare(i2c->pclk);
1337err_clk:
1338        clk_unprepare(i2c->clk);
1339        return ret;
1340}
1341
1342static int rk3x_i2c_remove(struct platform_device *pdev)
1343{
1344        struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1345
1346        i2c_del_adapter(&i2c->adap);
1347
1348        clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1349        clk_unprepare(i2c->pclk);
1350        clk_unprepare(i2c->clk);
1351
1352        return 0;
1353}
1354
1355static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1356
1357static struct platform_driver rk3x_i2c_driver = {
1358        .probe   = rk3x_i2c_probe,
1359        .remove  = rk3x_i2c_remove,
1360        .driver  = {
1361                .name  = "rk3x-i2c",
1362                .of_match_table = rk3x_i2c_match,
1363                .pm = &rk3x_i2c_pm_ops,
1364        },
1365};
1366
1367module_platform_driver(rk3x_i2c_driver);
1368
1369MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1370MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1371MODULE_LICENSE("GPL v2");
1372