linux/drivers/iio/gyro/mpu3050-core.c
<<
>>
Prefs
   1/*
   2 * MPU3050 gyroscope driver
   3 *
   4 * Copyright (C) 2016 Linaro Ltd.
   5 * Author: Linus Walleij <linus.walleij@linaro.org>
   6 *
   7 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
   8 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
   9 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
  10 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
  11 *
  12 * TODO: add support for setting up the low pass 3dB frequency.
  13 */
  14
  15#include <linux/bitops.h>
  16#include <linux/delay.h>
  17#include <linux/err.h>
  18#include <linux/iio/buffer.h>
  19#include <linux/iio/iio.h>
  20#include <linux/iio/sysfs.h>
  21#include <linux/iio/trigger.h>
  22#include <linux/iio/trigger_consumer.h>
  23#include <linux/iio/triggered_buffer.h>
  24#include <linux/interrupt.h>
  25#include <linux/module.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/random.h>
  28#include <linux/slab.h>
  29
  30#include "mpu3050.h"
  31
  32#define MPU3050_CHIP_ID         0x69
  33
  34/*
  35 * Register map: anything suffixed *_H is a big-endian high byte and always
  36 * followed by the corresponding low byte (*_L) even though these are not
  37 * explicitly included in the register definitions.
  38 */
  39#define MPU3050_CHIP_ID_REG     0x00
  40#define MPU3050_PRODUCT_ID_REG  0x01
  41#define MPU3050_XG_OFFS_TC      0x05
  42#define MPU3050_YG_OFFS_TC      0x08
  43#define MPU3050_ZG_OFFS_TC      0x0B
  44#define MPU3050_X_OFFS_USR_H    0x0C
  45#define MPU3050_Y_OFFS_USR_H    0x0E
  46#define MPU3050_Z_OFFS_USR_H    0x10
  47#define MPU3050_FIFO_EN         0x12
  48#define MPU3050_AUX_VDDIO       0x13
  49#define MPU3050_SLV_ADDR        0x14
  50#define MPU3050_SMPLRT_DIV      0x15
  51#define MPU3050_DLPF_FS_SYNC    0x16
  52#define MPU3050_INT_CFG         0x17
  53#define MPU3050_AUX_ADDR        0x18
  54#define MPU3050_INT_STATUS      0x1A
  55#define MPU3050_TEMP_H          0x1B
  56#define MPU3050_XOUT_H          0x1D
  57#define MPU3050_YOUT_H          0x1F
  58#define MPU3050_ZOUT_H          0x21
  59#define MPU3050_DMP_CFG1        0x35
  60#define MPU3050_DMP_CFG2        0x36
  61#define MPU3050_BANK_SEL        0x37
  62#define MPU3050_MEM_START_ADDR  0x38
  63#define MPU3050_MEM_R_W         0x39
  64#define MPU3050_FIFO_COUNT_H    0x3A
  65#define MPU3050_FIFO_R          0x3C
  66#define MPU3050_USR_CTRL        0x3D
  67#define MPU3050_PWR_MGM         0x3E
  68
  69/* MPU memory bank read options */
  70#define MPU3050_MEM_PRFTCH      BIT(5)
  71#define MPU3050_MEM_USER_BANK   BIT(4)
  72/* Bits 8-11 select memory bank */
  73#define MPU3050_MEM_RAM_BANK_0  0
  74#define MPU3050_MEM_RAM_BANK_1  1
  75#define MPU3050_MEM_RAM_BANK_2  2
  76#define MPU3050_MEM_RAM_BANK_3  3
  77#define MPU3050_MEM_OTP_BANK_0  4
  78
  79#define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
  80
  81/* Register bits */
  82
  83/* FIFO Enable */
  84#define MPU3050_FIFO_EN_FOOTER          BIT(0)
  85#define MPU3050_FIFO_EN_AUX_ZOUT        BIT(1)
  86#define MPU3050_FIFO_EN_AUX_YOUT        BIT(2)
  87#define MPU3050_FIFO_EN_AUX_XOUT        BIT(3)
  88#define MPU3050_FIFO_EN_GYRO_ZOUT       BIT(4)
  89#define MPU3050_FIFO_EN_GYRO_YOUT       BIT(5)
  90#define MPU3050_FIFO_EN_GYRO_XOUT       BIT(6)
  91#define MPU3050_FIFO_EN_TEMP_OUT        BIT(7)
  92
  93/*
  94 * Digital Low Pass filter (DLPF)
  95 * Full Scale (FS)
  96 * and Synchronization
  97 */
  98#define MPU3050_EXT_SYNC_NONE           0x00
  99#define MPU3050_EXT_SYNC_TEMP           0x20
 100#define MPU3050_EXT_SYNC_GYROX          0x40
 101#define MPU3050_EXT_SYNC_GYROY          0x60
 102#define MPU3050_EXT_SYNC_GYROZ          0x80
 103#define MPU3050_EXT_SYNC_ACCELX 0xA0
 104#define MPU3050_EXT_SYNC_ACCELY 0xC0
 105#define MPU3050_EXT_SYNC_ACCELZ 0xE0
 106#define MPU3050_EXT_SYNC_MASK           0xE0
 107#define MPU3050_EXT_SYNC_SHIFT          5
 108
 109#define MPU3050_FS_250DPS               0x00
 110#define MPU3050_FS_500DPS               0x08
 111#define MPU3050_FS_1000DPS              0x10
 112#define MPU3050_FS_2000DPS              0x18
 113#define MPU3050_FS_MASK                 0x18
 114#define MPU3050_FS_SHIFT                3
 115
 116#define MPU3050_DLPF_CFG_256HZ_NOLPF2   0x00
 117#define MPU3050_DLPF_CFG_188HZ          0x01
 118#define MPU3050_DLPF_CFG_98HZ           0x02
 119#define MPU3050_DLPF_CFG_42HZ           0x03
 120#define MPU3050_DLPF_CFG_20HZ           0x04
 121#define MPU3050_DLPF_CFG_10HZ           0x05
 122#define MPU3050_DLPF_CFG_5HZ            0x06
 123#define MPU3050_DLPF_CFG_2100HZ_NOLPF   0x07
 124#define MPU3050_DLPF_CFG_MASK           0x07
 125#define MPU3050_DLPF_CFG_SHIFT          0
 126
 127/* Interrupt config */
 128#define MPU3050_INT_RAW_RDY_EN          BIT(0)
 129#define MPU3050_INT_DMP_DONE_EN         BIT(1)
 130#define MPU3050_INT_MPU_RDY_EN          BIT(2)
 131#define MPU3050_INT_ANYRD_2CLEAR        BIT(4)
 132#define MPU3050_INT_LATCH_EN            BIT(5)
 133#define MPU3050_INT_OPEN                BIT(6)
 134#define MPU3050_INT_ACTL                BIT(7)
 135/* Interrupt status */
 136#define MPU3050_INT_STATUS_RAW_RDY      BIT(0)
 137#define MPU3050_INT_STATUS_DMP_DONE     BIT(1)
 138#define MPU3050_INT_STATUS_MPU_RDY      BIT(2)
 139#define MPU3050_INT_STATUS_FIFO_OVFLW   BIT(7)
 140/* USR_CTRL */
 141#define MPU3050_USR_CTRL_FIFO_EN        BIT(6)
 142#define MPU3050_USR_CTRL_AUX_IF_EN      BIT(5)
 143#define MPU3050_USR_CTRL_AUX_IF_RST     BIT(3)
 144#define MPU3050_USR_CTRL_FIFO_RST       BIT(1)
 145#define MPU3050_USR_CTRL_GYRO_RST       BIT(0)
 146/* PWR_MGM */
 147#define MPU3050_PWR_MGM_PLL_X           0x01
 148#define MPU3050_PWR_MGM_PLL_Y           0x02
 149#define MPU3050_PWR_MGM_PLL_Z           0x03
 150#define MPU3050_PWR_MGM_CLKSEL_MASK     0x07
 151#define MPU3050_PWR_MGM_STBY_ZG         BIT(3)
 152#define MPU3050_PWR_MGM_STBY_YG         BIT(4)
 153#define MPU3050_PWR_MGM_STBY_XG         BIT(5)
 154#define MPU3050_PWR_MGM_SLEEP           BIT(6)
 155#define MPU3050_PWR_MGM_RESET           BIT(7)
 156#define MPU3050_PWR_MGM_MASK            0xff
 157
 158/*
 159 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
 160 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
 161 * in two's complement.
 162 */
 163static unsigned int mpu3050_fs_precision[] = {
 164        IIO_DEGREE_TO_RAD(250),
 165        IIO_DEGREE_TO_RAD(500),
 166        IIO_DEGREE_TO_RAD(1000),
 167        IIO_DEGREE_TO_RAD(2000)
 168};
 169
 170/*
 171 * Regulator names
 172 */
 173static const char mpu3050_reg_vdd[] = "vdd";
 174static const char mpu3050_reg_vlogic[] = "vlogic";
 175
 176static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
 177{
 178        unsigned int freq;
 179
 180        if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
 181                freq = 8000;
 182        else
 183                freq = 1000;
 184        freq /= (mpu3050->divisor + 1);
 185
 186        return freq;
 187}
 188
 189static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
 190{
 191        __be16 raw_val[3];
 192        int ret;
 193        int i;
 194
 195        /* Reset */
 196        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 197                                 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
 198        if (ret)
 199                return ret;
 200
 201        /* Turn on the Z-axis PLL */
 202        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 203                                 MPU3050_PWR_MGM_CLKSEL_MASK,
 204                                 MPU3050_PWR_MGM_PLL_Z);
 205        if (ret)
 206                return ret;
 207
 208        /* Write calibration offset registers */
 209        for (i = 0; i < 3; i++)
 210                raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
 211
 212        ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
 213                                sizeof(raw_val));
 214        if (ret)
 215                return ret;
 216
 217        /* Set low pass filter (sample rate), sync and full scale */
 218        ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
 219                           MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
 220                           mpu3050->fullscale << MPU3050_FS_SHIFT |
 221                           mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
 222        if (ret)
 223                return ret;
 224
 225        /* Set up sampling frequency */
 226        ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
 227        if (ret)
 228                return ret;
 229
 230        /*
 231         * Max 50 ms start-up time after setting DLPF_FS_SYNC
 232         * according to the data sheet, then wait for the next sample
 233         * at this frequency T = 1000/f ms.
 234         */
 235        msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
 236
 237        return 0;
 238}
 239
 240static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
 241{
 242        int ret;
 243        u8 divisor;
 244        enum mpu3050_lpf lpf;
 245
 246        lpf = mpu3050->lpf;
 247        divisor = mpu3050->divisor;
 248
 249        mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
 250        mpu3050->divisor = 0; /* Divide by 1 */
 251        ret = mpu3050_start_sampling(mpu3050);
 252
 253        mpu3050->lpf = lpf;
 254        mpu3050->divisor = divisor;
 255
 256        return ret;
 257}
 258
 259static int mpu3050_read_raw(struct iio_dev *indio_dev,
 260                            struct iio_chan_spec const *chan,
 261                            int *val, int *val2,
 262                            long mask)
 263{
 264        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 265        int ret;
 266        __be16 raw_val;
 267
 268        switch (mask) {
 269        case IIO_CHAN_INFO_OFFSET:
 270                switch (chan->type) {
 271                case IIO_TEMP:
 272                        /* The temperature scaling is (x+23000)/280 Celsius */
 273                        *val = 23000;
 274                        return IIO_VAL_INT;
 275                default:
 276                        return -EINVAL;
 277                }
 278        case IIO_CHAN_INFO_CALIBBIAS:
 279                switch (chan->type) {
 280                case IIO_ANGL_VEL:
 281                        *val = mpu3050->calibration[chan->scan_index-1];
 282                        return IIO_VAL_INT;
 283                default:
 284                        return -EINVAL;
 285                }
 286        case IIO_CHAN_INFO_SAMP_FREQ:
 287                *val = mpu3050_get_freq(mpu3050);
 288                return IIO_VAL_INT;
 289        case IIO_CHAN_INFO_SCALE:
 290                switch (chan->type) {
 291                case IIO_TEMP:
 292                        /* Millidegrees, see about temperature scaling above */
 293                        *val = 1000;
 294                        *val2 = 280;
 295                        return IIO_VAL_FRACTIONAL;
 296                case IIO_ANGL_VEL:
 297                        /*
 298                         * Convert to the corresponding full scale in
 299                         * radians. All 16 bits are used with sign to
 300                         * span the available scale: to account for the one
 301                         * missing value if we multiply by 1/S16_MAX, instead
 302                         * multiply with 2/U16_MAX.
 303                         */
 304                        *val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
 305                        *val2 = U16_MAX;
 306                        return IIO_VAL_FRACTIONAL;
 307                default:
 308                        return -EINVAL;
 309                }
 310        case IIO_CHAN_INFO_RAW:
 311                /* Resume device */
 312                pm_runtime_get_sync(mpu3050->dev);
 313                mutex_lock(&mpu3050->lock);
 314
 315                ret = mpu3050_set_8khz_samplerate(mpu3050);
 316                if (ret)
 317                        goto out_read_raw_unlock;
 318
 319                switch (chan->type) {
 320                case IIO_TEMP:
 321                        ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
 322                                               &raw_val, sizeof(raw_val));
 323                        if (ret) {
 324                                dev_err(mpu3050->dev,
 325                                        "error reading temperature\n");
 326                                goto out_read_raw_unlock;
 327                        }
 328
 329                        *val = be16_to_cpu(raw_val);
 330                        ret = IIO_VAL_INT;
 331
 332                        goto out_read_raw_unlock;
 333                case IIO_ANGL_VEL:
 334                        ret = regmap_bulk_read(mpu3050->map,
 335                                       MPU3050_AXIS_REGS(chan->scan_index-1),
 336                                       &raw_val,
 337                                       sizeof(raw_val));
 338                        if (ret) {
 339                                dev_err(mpu3050->dev,
 340                                        "error reading axis data\n");
 341                                goto out_read_raw_unlock;
 342                        }
 343
 344                        *val = be16_to_cpu(raw_val);
 345                        ret = IIO_VAL_INT;
 346
 347                        goto out_read_raw_unlock;
 348                default:
 349                        ret = -EINVAL;
 350                        goto out_read_raw_unlock;
 351                }
 352        default:
 353                break;
 354        }
 355
 356        return -EINVAL;
 357
 358out_read_raw_unlock:
 359        mutex_unlock(&mpu3050->lock);
 360        pm_runtime_mark_last_busy(mpu3050->dev);
 361        pm_runtime_put_autosuspend(mpu3050->dev);
 362
 363        return ret;
 364}
 365
 366static int mpu3050_write_raw(struct iio_dev *indio_dev,
 367                             const struct iio_chan_spec *chan,
 368                             int val, int val2, long mask)
 369{
 370        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 371        /*
 372         * Couldn't figure out a way to precalculate these at compile time.
 373         */
 374        unsigned int fs250 =
 375                DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
 376                                  U16_MAX);
 377        unsigned int fs500 =
 378                DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
 379                                  U16_MAX);
 380        unsigned int fs1000 =
 381                DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
 382                                  U16_MAX);
 383        unsigned int fs2000 =
 384                DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
 385                                  U16_MAX);
 386
 387        switch (mask) {
 388        case IIO_CHAN_INFO_CALIBBIAS:
 389                if (chan->type != IIO_ANGL_VEL)
 390                        return -EINVAL;
 391                mpu3050->calibration[chan->scan_index-1] = val;
 392                return 0;
 393        case IIO_CHAN_INFO_SAMP_FREQ:
 394                /*
 395                 * The max samplerate is 8000 Hz, the minimum
 396                 * 1000 / 256 ~= 4 Hz
 397                 */
 398                if (val < 4 || val > 8000)
 399                        return -EINVAL;
 400
 401                /*
 402                 * Above 1000 Hz we must turn off the digital low pass filter
 403                 * so we get a base frequency of 8kHz to the divider
 404                 */
 405                if (val > 1000) {
 406                        mpu3050->lpf = LPF_256_HZ_NOLPF;
 407                        mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
 408                        return 0;
 409                }
 410
 411                mpu3050->lpf = LPF_188_HZ;
 412                mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
 413                return 0;
 414        case IIO_CHAN_INFO_SCALE:
 415                if (chan->type != IIO_ANGL_VEL)
 416                        return -EINVAL;
 417                /*
 418                 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
 419                 * which means we need to round to the closest radians
 420                 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
 421                 * rad/s. The scale is then for the 16 bits used to cover
 422                 * it 2/(2^16) of that.
 423                 */
 424
 425                /* Just too large, set the max range */
 426                if (val != 0) {
 427                        mpu3050->fullscale = FS_2000_DPS;
 428                        return 0;
 429                }
 430
 431                /*
 432                 * Now we're dealing with fractions below zero in millirad/s
 433                 * do some integer interpolation and match with the closest
 434                 * fullscale in the table.
 435                 */
 436                if (val2 <= fs250 ||
 437                    val2 < ((fs500 + fs250) / 2))
 438                        mpu3050->fullscale = FS_250_DPS;
 439                else if (val2 <= fs500 ||
 440                         val2 < ((fs1000 + fs500) / 2))
 441                        mpu3050->fullscale = FS_500_DPS;
 442                else if (val2 <= fs1000 ||
 443                         val2 < ((fs2000 + fs1000) / 2))
 444                        mpu3050->fullscale = FS_1000_DPS;
 445                else
 446                        /* Catch-all */
 447                        mpu3050->fullscale = FS_2000_DPS;
 448                return 0;
 449        default:
 450                break;
 451        }
 452
 453        return -EINVAL;
 454}
 455
 456static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
 457{
 458        const struct iio_poll_func *pf = p;
 459        struct iio_dev *indio_dev = pf->indio_dev;
 460        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 461        int ret;
 462        /*
 463         * Temperature 1*16 bits
 464         * Three axes 3*16 bits
 465         * Timestamp 64 bits (4*16 bits)
 466         * Sum total 8*16 bits
 467         */
 468        __be16 hw_values[8];
 469        s64 timestamp;
 470        unsigned int datums_from_fifo = 0;
 471
 472        /*
 473         * If we're using the hardware trigger, get the precise timestamp from
 474         * the top half of the threaded IRQ handler. Otherwise get the
 475         * timestamp here so it will be close in time to the actual values
 476         * read from the registers.
 477         */
 478        if (iio_trigger_using_own(indio_dev))
 479                timestamp = mpu3050->hw_timestamp;
 480        else
 481                timestamp = iio_get_time_ns(indio_dev);
 482
 483        mutex_lock(&mpu3050->lock);
 484
 485        /* Using the hardware IRQ trigger? Check the buffer then. */
 486        if (mpu3050->hw_irq_trigger) {
 487                __be16 raw_fifocnt;
 488                u16 fifocnt;
 489                /* X, Y, Z + temperature */
 490                unsigned int bytes_per_datum = 8;
 491                bool fifo_overflow = false;
 492
 493                ret = regmap_bulk_read(mpu3050->map,
 494                                       MPU3050_FIFO_COUNT_H,
 495                                       &raw_fifocnt,
 496                                       sizeof(raw_fifocnt));
 497                if (ret)
 498                        goto out_trigger_unlock;
 499                fifocnt = be16_to_cpu(raw_fifocnt);
 500
 501                if (fifocnt == 512) {
 502                        dev_info(mpu3050->dev,
 503                                 "FIFO overflow! Emptying and resetting FIFO\n");
 504                        fifo_overflow = true;
 505                        /* Reset and enable the FIFO */
 506                        ret = regmap_update_bits(mpu3050->map,
 507                                                 MPU3050_USR_CTRL,
 508                                                 MPU3050_USR_CTRL_FIFO_EN |
 509                                                 MPU3050_USR_CTRL_FIFO_RST,
 510                                                 MPU3050_USR_CTRL_FIFO_EN |
 511                                                 MPU3050_USR_CTRL_FIFO_RST);
 512                        if (ret) {
 513                                dev_info(mpu3050->dev, "error resetting FIFO\n");
 514                                goto out_trigger_unlock;
 515                        }
 516                        mpu3050->pending_fifo_footer = false;
 517                }
 518
 519                if (fifocnt)
 520                        dev_dbg(mpu3050->dev,
 521                                "%d bytes in the FIFO\n",
 522                                fifocnt);
 523
 524                while (!fifo_overflow && fifocnt > bytes_per_datum) {
 525                        unsigned int toread;
 526                        unsigned int offset;
 527                        __be16 fifo_values[5];
 528
 529                        /*
 530                         * If there is a FIFO footer in the pipe, first clear
 531                         * that out. This follows the complex algorithm in the
 532                         * datasheet that states that you may never leave the
 533                         * FIFO empty after the first reading: you have to
 534                         * always leave two footer bytes in it. The footer is
 535                         * in practice just two zero bytes.
 536                         */
 537                        if (mpu3050->pending_fifo_footer) {
 538                                toread = bytes_per_datum + 2;
 539                                offset = 0;
 540                        } else {
 541                                toread = bytes_per_datum;
 542                                offset = 1;
 543                                /* Put in some dummy value */
 544                                fifo_values[0] = 0xAAAA;
 545                        }
 546
 547                        ret = regmap_bulk_read(mpu3050->map,
 548                                               MPU3050_FIFO_R,
 549                                               &fifo_values[offset],
 550                                               toread);
 551
 552                        dev_dbg(mpu3050->dev,
 553                                "%04x %04x %04x %04x %04x\n",
 554                                fifo_values[0],
 555                                fifo_values[1],
 556                                fifo_values[2],
 557                                fifo_values[3],
 558                                fifo_values[4]);
 559
 560                        /* Index past the footer (fifo_values[0]) and push */
 561                        iio_push_to_buffers_with_timestamp(indio_dev,
 562                                                           &fifo_values[1],
 563                                                           timestamp);
 564
 565                        fifocnt -= toread;
 566                        datums_from_fifo++;
 567                        mpu3050->pending_fifo_footer = true;
 568
 569                        /*
 570                         * If we're emptying the FIFO, just make sure to
 571                         * check if something new appeared.
 572                         */
 573                        if (fifocnt < bytes_per_datum) {
 574                                ret = regmap_bulk_read(mpu3050->map,
 575                                                       MPU3050_FIFO_COUNT_H,
 576                                                       &raw_fifocnt,
 577                                                       sizeof(raw_fifocnt));
 578                                if (ret)
 579                                        goto out_trigger_unlock;
 580                                fifocnt = be16_to_cpu(raw_fifocnt);
 581                        }
 582
 583                        if (fifocnt < bytes_per_datum)
 584                                dev_dbg(mpu3050->dev,
 585                                        "%d bytes left in the FIFO\n",
 586                                        fifocnt);
 587
 588                        /*
 589                         * At this point, the timestamp that triggered the
 590                         * hardware interrupt is no longer valid for what
 591                         * we are reading (the interrupt likely fired for
 592                         * the value on the top of the FIFO), so set the
 593                         * timestamp to zero and let userspace deal with it.
 594                         */
 595                        timestamp = 0;
 596                }
 597        }
 598
 599        /*
 600         * If we picked some datums from the FIFO that's enough, else
 601         * fall through and just read from the current value registers.
 602         * This happens in two cases:
 603         *
 604         * - We are using some other trigger (external, like an HRTimer)
 605         *   than the sensor's own sample generator. In this case the
 606         *   sensor is just set to the max sampling frequency and we give
 607         *   the trigger a copy of the latest value every time we get here.
 608         *
 609         * - The hardware trigger is active but unused and we actually use
 610         *   another trigger which calls here with a frequency higher
 611         *   than what the device provides data. We will then just read
 612         *   duplicate values directly from the hardware registers.
 613         */
 614        if (datums_from_fifo) {
 615                dev_dbg(mpu3050->dev,
 616                        "read %d datums from the FIFO\n",
 617                        datums_from_fifo);
 618                goto out_trigger_unlock;
 619        }
 620
 621        ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
 622                               sizeof(hw_values));
 623        if (ret) {
 624                dev_err(mpu3050->dev,
 625                        "error reading axis data\n");
 626                goto out_trigger_unlock;
 627        }
 628
 629        iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
 630
 631out_trigger_unlock:
 632        mutex_unlock(&mpu3050->lock);
 633        iio_trigger_notify_done(indio_dev->trig);
 634
 635        return IRQ_HANDLED;
 636}
 637
 638static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
 639{
 640        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 641
 642        pm_runtime_get_sync(mpu3050->dev);
 643
 644        /* Unless we have OUR trigger active, run at full speed */
 645        if (!mpu3050->hw_irq_trigger)
 646                return mpu3050_set_8khz_samplerate(mpu3050);
 647
 648        return 0;
 649}
 650
 651static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
 652{
 653        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 654
 655        pm_runtime_mark_last_busy(mpu3050->dev);
 656        pm_runtime_put_autosuspend(mpu3050->dev);
 657
 658        return 0;
 659}
 660
 661static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
 662        .preenable = mpu3050_buffer_preenable,
 663        .postenable = iio_triggered_buffer_postenable,
 664        .predisable = iio_triggered_buffer_predisable,
 665        .postdisable = mpu3050_buffer_postdisable,
 666};
 667
 668static const struct iio_mount_matrix *
 669mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
 670                         const struct iio_chan_spec *chan)
 671{
 672        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 673
 674        return &mpu3050->orientation;
 675}
 676
 677static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
 678        IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
 679        { },
 680};
 681
 682#define MPU3050_AXIS_CHANNEL(axis, index)                               \
 683        {                                                               \
 684                .type = IIO_ANGL_VEL,                                   \
 685                .modified = 1,                                          \
 686                .channel2 = IIO_MOD_##axis,                             \
 687                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
 688                        BIT(IIO_CHAN_INFO_CALIBBIAS),                   \
 689                .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),   \
 690                .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
 691                .ext_info = mpu3050_ext_info,                           \
 692                .scan_index = index,                                    \
 693                .scan_type = {                                          \
 694                        .sign = 's',                                    \
 695                        .realbits = 16,                                 \
 696                        .storagebits = 16,                              \
 697                        .endianness = IIO_BE,                           \
 698                },                                                      \
 699        }
 700
 701static const struct iio_chan_spec mpu3050_channels[] = {
 702        {
 703                .type = IIO_TEMP,
 704                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
 705                                      BIT(IIO_CHAN_INFO_SCALE) |
 706                                      BIT(IIO_CHAN_INFO_OFFSET),
 707                .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
 708                .scan_index = 0,
 709                .scan_type = {
 710                        .sign = 's',
 711                        .realbits = 16,
 712                        .storagebits = 16,
 713                        .endianness = IIO_BE,
 714                },
 715        },
 716        MPU3050_AXIS_CHANNEL(X, 1),
 717        MPU3050_AXIS_CHANNEL(Y, 2),
 718        MPU3050_AXIS_CHANNEL(Z, 3),
 719        IIO_CHAN_SOFT_TIMESTAMP(4),
 720};
 721
 722/* Four channels apart from timestamp, scan mask = 0x0f */
 723static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
 724
 725/*
 726 * These are just the hardcoded factors resulting from the more elaborate
 727 * calculations done with fractions in the scale raw get/set functions.
 728 */
 729static IIO_CONST_ATTR(anglevel_scale_available,
 730                      "0.000122070 "
 731                      "0.000274658 "
 732                      "0.000518798 "
 733                      "0.001068115");
 734
 735static struct attribute *mpu3050_attributes[] = {
 736        &iio_const_attr_anglevel_scale_available.dev_attr.attr,
 737        NULL,
 738};
 739
 740static const struct attribute_group mpu3050_attribute_group = {
 741        .attrs = mpu3050_attributes,
 742};
 743
 744static const struct iio_info mpu3050_info = {
 745        .read_raw = mpu3050_read_raw,
 746        .write_raw = mpu3050_write_raw,
 747        .attrs = &mpu3050_attribute_group,
 748};
 749
 750/**
 751 * mpu3050_read_mem() - read MPU-3050 internal memory
 752 * @mpu3050: device to read from
 753 * @bank: target bank
 754 * @addr: target address
 755 * @len: number of bytes
 756 * @buf: the buffer to store the read bytes in
 757 */
 758static int mpu3050_read_mem(struct mpu3050 *mpu3050,
 759                            u8 bank,
 760                            u8 addr,
 761                            u8 len,
 762                            u8 *buf)
 763{
 764        int ret;
 765
 766        ret = regmap_write(mpu3050->map,
 767                           MPU3050_BANK_SEL,
 768                           bank);
 769        if (ret)
 770                return ret;
 771
 772        ret = regmap_write(mpu3050->map,
 773                           MPU3050_MEM_START_ADDR,
 774                           addr);
 775        if (ret)
 776                return ret;
 777
 778        return regmap_bulk_read(mpu3050->map,
 779                                MPU3050_MEM_R_W,
 780                                buf,
 781                                len);
 782}
 783
 784static int mpu3050_hw_init(struct mpu3050 *mpu3050)
 785{
 786        int ret;
 787        u8 otp[8];
 788
 789        /* Reset */
 790        ret = regmap_update_bits(mpu3050->map,
 791                                 MPU3050_PWR_MGM,
 792                                 MPU3050_PWR_MGM_RESET,
 793                                 MPU3050_PWR_MGM_RESET);
 794        if (ret)
 795                return ret;
 796
 797        /* Turn on the PLL */
 798        ret = regmap_update_bits(mpu3050->map,
 799                                 MPU3050_PWR_MGM,
 800                                 MPU3050_PWR_MGM_CLKSEL_MASK,
 801                                 MPU3050_PWR_MGM_PLL_Z);
 802        if (ret)
 803                return ret;
 804
 805        /* Disable IRQs */
 806        ret = regmap_write(mpu3050->map,
 807                           MPU3050_INT_CFG,
 808                           0);
 809        if (ret)
 810                return ret;
 811
 812        /* Read out the 8 bytes of OTP (one-time-programmable) memory */
 813        ret = mpu3050_read_mem(mpu3050,
 814                               (MPU3050_MEM_PRFTCH |
 815                                MPU3050_MEM_USER_BANK |
 816                                MPU3050_MEM_OTP_BANK_0),
 817                               0,
 818                               sizeof(otp),
 819                               otp);
 820        if (ret)
 821                return ret;
 822
 823        /* This is device-unique data so it goes into the entropy pool */
 824        add_device_randomness(otp, sizeof(otp));
 825
 826        dev_info(mpu3050->dev,
 827                 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
 828                 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
 829                 /* Die ID, bits 0-12 */
 830                 (otp[1] << 8 | otp[0]) & 0x1fff,
 831                 /* Wafer ID, bits 13-17 */
 832                 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
 833                 /* A lot ID, bits 18-33 */
 834                 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
 835                 /* W lot ID, bits 34-45 */
 836                 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
 837                 /* WP ID, bits 47-49 */
 838                 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
 839                 /* rev ID, bits 50-55 */
 840                 otp[6] >> 2);
 841
 842        return 0;
 843}
 844
 845static int mpu3050_power_up(struct mpu3050 *mpu3050)
 846{
 847        int ret;
 848
 849        ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
 850        if (ret) {
 851                dev_err(mpu3050->dev, "cannot enable regulators\n");
 852                return ret;
 853        }
 854        /*
 855         * 20-100 ms start-up time for register read/write according to
 856         * the datasheet, be on the safe side and wait 200 ms.
 857         */
 858        msleep(200);
 859
 860        /* Take device out of sleep mode */
 861        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 862                                 MPU3050_PWR_MGM_SLEEP, 0);
 863        if (ret) {
 864                dev_err(mpu3050->dev, "error setting power mode\n");
 865                return ret;
 866        }
 867        msleep(10);
 868
 869        return 0;
 870}
 871
 872static int mpu3050_power_down(struct mpu3050 *mpu3050)
 873{
 874        int ret;
 875
 876        /*
 877         * Put MPU-3050 into sleep mode before cutting regulators.
 878         * This is important, because we may not be the sole user
 879         * of the regulator so the power may stay on after this, and
 880         * then we would be wasting power unless we go to sleep mode
 881         * first.
 882         */
 883        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 884                                 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
 885        if (ret)
 886                dev_err(mpu3050->dev, "error putting to sleep\n");
 887
 888        ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
 889        if (ret)
 890                dev_err(mpu3050->dev, "error disabling regulators\n");
 891
 892        return 0;
 893}
 894
 895static irqreturn_t mpu3050_irq_handler(int irq, void *p)
 896{
 897        struct iio_trigger *trig = p;
 898        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 899        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 900
 901        if (!mpu3050->hw_irq_trigger)
 902                return IRQ_NONE;
 903
 904        /* Get the time stamp as close in time as possible */
 905        mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
 906
 907        return IRQ_WAKE_THREAD;
 908}
 909
 910static irqreturn_t mpu3050_irq_thread(int irq, void *p)
 911{
 912        struct iio_trigger *trig = p;
 913        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 914        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 915        unsigned int val;
 916        int ret;
 917
 918        /* ACK IRQ and check if it was from us */
 919        ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
 920        if (ret) {
 921                dev_err(mpu3050->dev, "error reading IRQ status\n");
 922                return IRQ_HANDLED;
 923        }
 924        if (!(val & MPU3050_INT_STATUS_RAW_RDY))
 925                return IRQ_NONE;
 926
 927        iio_trigger_poll_chained(p);
 928
 929        return IRQ_HANDLED;
 930}
 931
 932/**
 933 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
 934 * @trig: trigger instance
 935 * @enable: true if trigger should be enabled, false to disable
 936 */
 937static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
 938                                          bool enable)
 939{
 940        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 941        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 942        unsigned int val;
 943        int ret;
 944
 945        /* Disabling trigger: disable interrupt and return */
 946        if (!enable) {
 947                /* Disable all interrupts */
 948                ret = regmap_write(mpu3050->map,
 949                                   MPU3050_INT_CFG,
 950                                   0);
 951                if (ret)
 952                        dev_err(mpu3050->dev, "error disabling IRQ\n");
 953
 954                /* Clear IRQ flag */
 955                ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
 956                if (ret)
 957                        dev_err(mpu3050->dev, "error clearing IRQ status\n");
 958
 959                /* Disable all things in the FIFO and reset it */
 960                ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
 961                if (ret)
 962                        dev_err(mpu3050->dev, "error disabling FIFO\n");
 963
 964                ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
 965                                   MPU3050_USR_CTRL_FIFO_RST);
 966                if (ret)
 967                        dev_err(mpu3050->dev, "error resetting FIFO\n");
 968
 969                pm_runtime_mark_last_busy(mpu3050->dev);
 970                pm_runtime_put_autosuspend(mpu3050->dev);
 971                mpu3050->hw_irq_trigger = false;
 972
 973                return 0;
 974        } else {
 975                /* Else we're enabling the trigger from this point */
 976                pm_runtime_get_sync(mpu3050->dev);
 977                mpu3050->hw_irq_trigger = true;
 978
 979                /* Disable all things in the FIFO */
 980                ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
 981                if (ret)
 982                        return ret;
 983
 984                /* Reset and enable the FIFO */
 985                ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
 986                                         MPU3050_USR_CTRL_FIFO_EN |
 987                                         MPU3050_USR_CTRL_FIFO_RST,
 988                                         MPU3050_USR_CTRL_FIFO_EN |
 989                                         MPU3050_USR_CTRL_FIFO_RST);
 990                if (ret)
 991                        return ret;
 992
 993                mpu3050->pending_fifo_footer = false;
 994
 995                /* Turn on the FIFO for temp+X+Y+Z */
 996                ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
 997                                   MPU3050_FIFO_EN_TEMP_OUT |
 998                                   MPU3050_FIFO_EN_GYRO_XOUT |
 999                                   MPU3050_FIFO_EN_GYRO_YOUT |
1000                                   MPU3050_FIFO_EN_GYRO_ZOUT |
1001                                   MPU3050_FIFO_EN_FOOTER);
1002                if (ret)
1003                        return ret;
1004
1005                /* Configure the sample engine */
1006                ret = mpu3050_start_sampling(mpu3050);
1007                if (ret)
1008                        return ret;
1009
1010                /* Clear IRQ flag */
1011                ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1012                if (ret)
1013                        dev_err(mpu3050->dev, "error clearing IRQ status\n");
1014
1015                /* Give us interrupts whenever there is new data ready */
1016                val = MPU3050_INT_RAW_RDY_EN;
1017
1018                if (mpu3050->irq_actl)
1019                        val |= MPU3050_INT_ACTL;
1020                if (mpu3050->irq_latch)
1021                        val |= MPU3050_INT_LATCH_EN;
1022                if (mpu3050->irq_opendrain)
1023                        val |= MPU3050_INT_OPEN;
1024
1025                ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1026                if (ret)
1027                        return ret;
1028        }
1029
1030        return 0;
1031}
1032
1033static const struct iio_trigger_ops mpu3050_trigger_ops = {
1034        .set_trigger_state = mpu3050_drdy_trigger_set_state,
1035};
1036
1037static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1038{
1039        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1040        unsigned long irq_trig;
1041        int ret;
1042
1043        mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1044                                               "%s-dev%d",
1045                                               indio_dev->name,
1046                                               indio_dev->id);
1047        if (!mpu3050->trig)
1048                return -ENOMEM;
1049
1050        /* Check if IRQ is open drain */
1051        if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1052                mpu3050->irq_opendrain = true;
1053
1054        irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1055        /*
1056         * Configure the interrupt generator hardware to supply whatever
1057         * the interrupt is configured for, edges low/high level low/high,
1058         * we can provide it all.
1059         */
1060        switch (irq_trig) {
1061        case IRQF_TRIGGER_RISING:
1062                dev_info(&indio_dev->dev,
1063                         "pulse interrupts on the rising edge\n");
1064                break;
1065        case IRQF_TRIGGER_FALLING:
1066                mpu3050->irq_actl = true;
1067                dev_info(&indio_dev->dev,
1068                         "pulse interrupts on the falling edge\n");
1069                break;
1070        case IRQF_TRIGGER_HIGH:
1071                mpu3050->irq_latch = true;
1072                dev_info(&indio_dev->dev,
1073                         "interrupts active high level\n");
1074                /*
1075                 * With level IRQs, we mask the IRQ until it is processed,
1076                 * but with edge IRQs (pulses) we can queue several interrupts
1077                 * in the top half.
1078                 */
1079                irq_trig |= IRQF_ONESHOT;
1080                break;
1081        case IRQF_TRIGGER_LOW:
1082                mpu3050->irq_latch = true;
1083                mpu3050->irq_actl = true;
1084                irq_trig |= IRQF_ONESHOT;
1085                dev_info(&indio_dev->dev,
1086                         "interrupts active low level\n");
1087                break;
1088        default:
1089                /* This is the most preferred mode, if possible */
1090                dev_err(&indio_dev->dev,
1091                        "unsupported IRQ trigger specified (%lx), enforce "
1092                        "rising edge\n", irq_trig);
1093                irq_trig = IRQF_TRIGGER_RISING;
1094                break;
1095        }
1096
1097        /* An open drain line can be shared with several devices */
1098        if (mpu3050->irq_opendrain)
1099                irq_trig |= IRQF_SHARED;
1100
1101        ret = request_threaded_irq(irq,
1102                                   mpu3050_irq_handler,
1103                                   mpu3050_irq_thread,
1104                                   irq_trig,
1105                                   mpu3050->trig->name,
1106                                   mpu3050->trig);
1107        if (ret) {
1108                dev_err(mpu3050->dev,
1109                        "can't get IRQ %d, error %d\n", irq, ret);
1110                return ret;
1111        }
1112
1113        mpu3050->irq = irq;
1114        mpu3050->trig->dev.parent = mpu3050->dev;
1115        mpu3050->trig->ops = &mpu3050_trigger_ops;
1116        iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1117
1118        ret = iio_trigger_register(mpu3050->trig);
1119        if (ret)
1120                return ret;
1121
1122        indio_dev->trig = iio_trigger_get(mpu3050->trig);
1123
1124        return 0;
1125}
1126
1127int mpu3050_common_probe(struct device *dev,
1128                         struct regmap *map,
1129                         int irq,
1130                         const char *name)
1131{
1132        struct iio_dev *indio_dev;
1133        struct mpu3050 *mpu3050;
1134        unsigned int val;
1135        int ret;
1136
1137        indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1138        if (!indio_dev)
1139                return -ENOMEM;
1140        mpu3050 = iio_priv(indio_dev);
1141
1142        mpu3050->dev = dev;
1143        mpu3050->map = map;
1144        mutex_init(&mpu3050->lock);
1145        /* Default fullscale: 2000 degrees per second */
1146        mpu3050->fullscale = FS_2000_DPS;
1147        /* 1 kHz, divide by 100, default frequency = 10 Hz */
1148        mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1149        mpu3050->divisor = 99;
1150
1151        /* Read the mounting matrix, if present */
1152        ret = of_iio_read_mount_matrix(dev, "mount-matrix",
1153                                       &mpu3050->orientation);
1154        if (ret)
1155                return ret;
1156
1157        /* Fetch and turn on regulators */
1158        mpu3050->regs[0].supply = mpu3050_reg_vdd;
1159        mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1160        ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1161                                      mpu3050->regs);
1162        if (ret) {
1163                dev_err(dev, "Cannot get regulators\n");
1164                return ret;
1165        }
1166
1167        ret = mpu3050_power_up(mpu3050);
1168        if (ret)
1169                return ret;
1170
1171        ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1172        if (ret) {
1173                dev_err(dev, "could not read device ID\n");
1174                ret = -ENODEV;
1175
1176                goto err_power_down;
1177        }
1178
1179        if (val != MPU3050_CHIP_ID) {
1180                dev_err(dev, "unsupported chip id %02x\n", (u8)val);
1181                ret = -ENODEV;
1182                goto err_power_down;
1183        }
1184
1185        ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1186        if (ret) {
1187                dev_err(dev, "could not read device ID\n");
1188                ret = -ENODEV;
1189
1190                goto err_power_down;
1191        }
1192        dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1193                 ((val >> 4) & 0xf), (val & 0xf));
1194
1195        ret = mpu3050_hw_init(mpu3050);
1196        if (ret)
1197                goto err_power_down;
1198
1199        indio_dev->dev.parent = dev;
1200        indio_dev->channels = mpu3050_channels;
1201        indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1202        indio_dev->info = &mpu3050_info;
1203        indio_dev->available_scan_masks = mpu3050_scan_masks;
1204        indio_dev->modes = INDIO_DIRECT_MODE;
1205        indio_dev->name = name;
1206
1207        ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1208                                         mpu3050_trigger_handler,
1209                                         &mpu3050_buffer_setup_ops);
1210        if (ret) {
1211                dev_err(dev, "triggered buffer setup failed\n");
1212                goto err_power_down;
1213        }
1214
1215        ret = iio_device_register(indio_dev);
1216        if (ret) {
1217                dev_err(dev, "device register failed\n");
1218                goto err_cleanup_buffer;
1219        }
1220
1221        dev_set_drvdata(dev, indio_dev);
1222
1223        /* Check if we have an assigned IRQ to use as trigger */
1224        if (irq) {
1225                ret = mpu3050_trigger_probe(indio_dev, irq);
1226                if (ret)
1227                        dev_err(dev, "failed to register trigger\n");
1228        }
1229
1230        /* Enable runtime PM */
1231        pm_runtime_get_noresume(dev);
1232        pm_runtime_set_active(dev);
1233        pm_runtime_enable(dev);
1234        /*
1235         * Set autosuspend to two orders of magnitude larger than the
1236         * start-up time. 100ms start-up time means 10000ms autosuspend,
1237         * i.e. 10 seconds.
1238         */
1239        pm_runtime_set_autosuspend_delay(dev, 10000);
1240        pm_runtime_use_autosuspend(dev);
1241        pm_runtime_put(dev);
1242
1243        return 0;
1244
1245err_cleanup_buffer:
1246        iio_triggered_buffer_cleanup(indio_dev);
1247err_power_down:
1248        mpu3050_power_down(mpu3050);
1249
1250        return ret;
1251}
1252EXPORT_SYMBOL(mpu3050_common_probe);
1253
1254int mpu3050_common_remove(struct device *dev)
1255{
1256        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1257        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1258
1259        pm_runtime_get_sync(dev);
1260        pm_runtime_put_noidle(dev);
1261        pm_runtime_disable(dev);
1262        iio_triggered_buffer_cleanup(indio_dev);
1263        if (mpu3050->irq)
1264                free_irq(mpu3050->irq, mpu3050);
1265        iio_device_unregister(indio_dev);
1266        mpu3050_power_down(mpu3050);
1267
1268        return 0;
1269}
1270EXPORT_SYMBOL(mpu3050_common_remove);
1271
1272#ifdef CONFIG_PM
1273static int mpu3050_runtime_suspend(struct device *dev)
1274{
1275        return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1276}
1277
1278static int mpu3050_runtime_resume(struct device *dev)
1279{
1280        return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1281}
1282#endif /* CONFIG_PM */
1283
1284const struct dev_pm_ops mpu3050_dev_pm_ops = {
1285        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1286                                pm_runtime_force_resume)
1287        SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1288                           mpu3050_runtime_resume, NULL)
1289};
1290EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1291
1292MODULE_AUTHOR("Linus Walleij");
1293MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1294MODULE_LICENSE("GPL");
1295