linux/drivers/iommu/intel-iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * Authors: David Woodhouse <dwmw2@infradead.org>,
  14 *          Ashok Raj <ashok.raj@intel.com>,
  15 *          Shaohua Li <shaohua.li@intel.com>,
  16 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
  17 *          Fenghua Yu <fenghua.yu@intel.com>
  18 *          Joerg Roedel <jroedel@suse.de>
  19 */
  20
  21#define pr_fmt(fmt)     "DMAR: " fmt
  22
  23#include <linux/init.h>
  24#include <linux/bitmap.h>
  25#include <linux/debugfs.h>
  26#include <linux/export.h>
  27#include <linux/slab.h>
  28#include <linux/irq.h>
  29#include <linux/interrupt.h>
  30#include <linux/spinlock.h>
  31#include <linux/pci.h>
  32#include <linux/dmar.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/mempool.h>
  35#include <linux/memory.h>
  36#include <linux/cpu.h>
  37#include <linux/timer.h>
  38#include <linux/io.h>
  39#include <linux/iova.h>
  40#include <linux/iommu.h>
  41#include <linux/intel-iommu.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/tboot.h>
  44#include <linux/dmi.h>
  45#include <linux/pci-ats.h>
  46#include <linux/memblock.h>
  47#include <linux/dma-contiguous.h>
  48#include <linux/crash_dump.h>
  49#include <asm/irq_remapping.h>
  50#include <asm/cacheflush.h>
  51#include <asm/iommu.h>
  52
  53#include "irq_remapping.h"
  54
  55#define ROOT_SIZE               VTD_PAGE_SIZE
  56#define CONTEXT_SIZE            VTD_PAGE_SIZE
  57
  58#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
  59#define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
  60#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
  61#define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
  62
  63#define IOAPIC_RANGE_START      (0xfee00000)
  64#define IOAPIC_RANGE_END        (0xfeefffff)
  65#define IOVA_START_ADDR         (0x1000)
  66
  67#define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
  68
  69#define MAX_AGAW_WIDTH 64
  70#define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
  71
  72#define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
  73#define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
  74
  75/* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
  76   to match. That way, we can use 'unsigned long' for PFNs with impunity. */
  77#define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
  78                                __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
  79#define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
  80
  81/* IO virtual address start page frame number */
  82#define IOVA_START_PFN          (1)
  83
  84#define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
  85
  86/* page table handling */
  87#define LEVEL_STRIDE            (9)
  88#define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
  89
  90/*
  91 * This bitmap is used to advertise the page sizes our hardware support
  92 * to the IOMMU core, which will then use this information to split
  93 * physically contiguous memory regions it is mapping into page sizes
  94 * that we support.
  95 *
  96 * Traditionally the IOMMU core just handed us the mappings directly,
  97 * after making sure the size is an order of a 4KiB page and that the
  98 * mapping has natural alignment.
  99 *
 100 * To retain this behavior, we currently advertise that we support
 101 * all page sizes that are an order of 4KiB.
 102 *
 103 * If at some point we'd like to utilize the IOMMU core's new behavior,
 104 * we could change this to advertise the real page sizes we support.
 105 */
 106#define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
 107
 108static inline int agaw_to_level(int agaw)
 109{
 110        return agaw + 2;
 111}
 112
 113static inline int agaw_to_width(int agaw)
 114{
 115        return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
 116}
 117
 118static inline int width_to_agaw(int width)
 119{
 120        return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
 121}
 122
 123static inline unsigned int level_to_offset_bits(int level)
 124{
 125        return (level - 1) * LEVEL_STRIDE;
 126}
 127
 128static inline int pfn_level_offset(unsigned long pfn, int level)
 129{
 130        return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
 131}
 132
 133static inline unsigned long level_mask(int level)
 134{
 135        return -1UL << level_to_offset_bits(level);
 136}
 137
 138static inline unsigned long level_size(int level)
 139{
 140        return 1UL << level_to_offset_bits(level);
 141}
 142
 143static inline unsigned long align_to_level(unsigned long pfn, int level)
 144{
 145        return (pfn + level_size(level) - 1) & level_mask(level);
 146}
 147
 148static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
 149{
 150        return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
 151}
 152
 153/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
 154   are never going to work. */
 155static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
 156{
 157        return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
 158}
 159
 160static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
 161{
 162        return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
 163}
 164static inline unsigned long page_to_dma_pfn(struct page *pg)
 165{
 166        return mm_to_dma_pfn(page_to_pfn(pg));
 167}
 168static inline unsigned long virt_to_dma_pfn(void *p)
 169{
 170        return page_to_dma_pfn(virt_to_page(p));
 171}
 172
 173/* global iommu list, set NULL for ignored DMAR units */
 174static struct intel_iommu **g_iommus;
 175
 176static void __init check_tylersburg_isoch(void);
 177static int rwbf_quirk;
 178
 179/*
 180 * set to 1 to panic kernel if can't successfully enable VT-d
 181 * (used when kernel is launched w/ TXT)
 182 */
 183static int force_on = 0;
 184int intel_iommu_tboot_noforce;
 185
 186/*
 187 * 0: Present
 188 * 1-11: Reserved
 189 * 12-63: Context Ptr (12 - (haw-1))
 190 * 64-127: Reserved
 191 */
 192struct root_entry {
 193        u64     lo;
 194        u64     hi;
 195};
 196#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
 197
 198/*
 199 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
 200 * if marked present.
 201 */
 202static phys_addr_t root_entry_lctp(struct root_entry *re)
 203{
 204        if (!(re->lo & 1))
 205                return 0;
 206
 207        return re->lo & VTD_PAGE_MASK;
 208}
 209
 210/*
 211 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
 212 * if marked present.
 213 */
 214static phys_addr_t root_entry_uctp(struct root_entry *re)
 215{
 216        if (!(re->hi & 1))
 217                return 0;
 218
 219        return re->hi & VTD_PAGE_MASK;
 220}
 221/*
 222 * low 64 bits:
 223 * 0: present
 224 * 1: fault processing disable
 225 * 2-3: translation type
 226 * 12-63: address space root
 227 * high 64 bits:
 228 * 0-2: address width
 229 * 3-6: aval
 230 * 8-23: domain id
 231 */
 232struct context_entry {
 233        u64 lo;
 234        u64 hi;
 235};
 236
 237static inline void context_clear_pasid_enable(struct context_entry *context)
 238{
 239        context->lo &= ~(1ULL << 11);
 240}
 241
 242static inline bool context_pasid_enabled(struct context_entry *context)
 243{
 244        return !!(context->lo & (1ULL << 11));
 245}
 246
 247static inline void context_set_copied(struct context_entry *context)
 248{
 249        context->hi |= (1ull << 3);
 250}
 251
 252static inline bool context_copied(struct context_entry *context)
 253{
 254        return !!(context->hi & (1ULL << 3));
 255}
 256
 257static inline bool __context_present(struct context_entry *context)
 258{
 259        return (context->lo & 1);
 260}
 261
 262static inline bool context_present(struct context_entry *context)
 263{
 264        return context_pasid_enabled(context) ?
 265             __context_present(context) :
 266             __context_present(context) && !context_copied(context);
 267}
 268
 269static inline void context_set_present(struct context_entry *context)
 270{
 271        context->lo |= 1;
 272}
 273
 274static inline void context_set_fault_enable(struct context_entry *context)
 275{
 276        context->lo &= (((u64)-1) << 2) | 1;
 277}
 278
 279static inline void context_set_translation_type(struct context_entry *context,
 280                                                unsigned long value)
 281{
 282        context->lo &= (((u64)-1) << 4) | 3;
 283        context->lo |= (value & 3) << 2;
 284}
 285
 286static inline void context_set_address_root(struct context_entry *context,
 287                                            unsigned long value)
 288{
 289        context->lo &= ~VTD_PAGE_MASK;
 290        context->lo |= value & VTD_PAGE_MASK;
 291}
 292
 293static inline void context_set_address_width(struct context_entry *context,
 294                                             unsigned long value)
 295{
 296        context->hi |= value & 7;
 297}
 298
 299static inline void context_set_domain_id(struct context_entry *context,
 300                                         unsigned long value)
 301{
 302        context->hi |= (value & ((1 << 16) - 1)) << 8;
 303}
 304
 305static inline int context_domain_id(struct context_entry *c)
 306{
 307        return((c->hi >> 8) & 0xffff);
 308}
 309
 310static inline void context_clear_entry(struct context_entry *context)
 311{
 312        context->lo = 0;
 313        context->hi = 0;
 314}
 315
 316/*
 317 * 0: readable
 318 * 1: writable
 319 * 2-6: reserved
 320 * 7: super page
 321 * 8-10: available
 322 * 11: snoop behavior
 323 * 12-63: Host physcial address
 324 */
 325struct dma_pte {
 326        u64 val;
 327};
 328
 329static inline void dma_clear_pte(struct dma_pte *pte)
 330{
 331        pte->val = 0;
 332}
 333
 334static inline u64 dma_pte_addr(struct dma_pte *pte)
 335{
 336#ifdef CONFIG_64BIT
 337        return pte->val & VTD_PAGE_MASK;
 338#else
 339        /* Must have a full atomic 64-bit read */
 340        return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
 341#endif
 342}
 343
 344static inline bool dma_pte_present(struct dma_pte *pte)
 345{
 346        return (pte->val & 3) != 0;
 347}
 348
 349static inline bool dma_pte_superpage(struct dma_pte *pte)
 350{
 351        return (pte->val & DMA_PTE_LARGE_PAGE);
 352}
 353
 354static inline int first_pte_in_page(struct dma_pte *pte)
 355{
 356        return !((unsigned long)pte & ~VTD_PAGE_MASK);
 357}
 358
 359/*
 360 * This domain is a statically identity mapping domain.
 361 *      1. This domain creats a static 1:1 mapping to all usable memory.
 362 *      2. It maps to each iommu if successful.
 363 *      3. Each iommu mapps to this domain if successful.
 364 */
 365static struct dmar_domain *si_domain;
 366static int hw_pass_through = 1;
 367
 368/*
 369 * Domain represents a virtual machine, more than one devices
 370 * across iommus may be owned in one domain, e.g. kvm guest.
 371 */
 372#define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
 373
 374/* si_domain contains mulitple devices */
 375#define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
 376
 377#define for_each_domain_iommu(idx, domain)                      \
 378        for (idx = 0; idx < g_num_of_iommus; idx++)             \
 379                if (domain->iommu_refcnt[idx])
 380
 381struct dmar_domain {
 382        int     nid;                    /* node id */
 383
 384        unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
 385                                        /* Refcount of devices per iommu */
 386
 387
 388        u16             iommu_did[DMAR_UNITS_SUPPORTED];
 389                                        /* Domain ids per IOMMU. Use u16 since
 390                                         * domain ids are 16 bit wide according
 391                                         * to VT-d spec, section 9.3 */
 392
 393        bool has_iotlb_device;
 394        struct list_head devices;       /* all devices' list */
 395        struct iova_domain iovad;       /* iova's that belong to this domain */
 396
 397        struct dma_pte  *pgd;           /* virtual address */
 398        int             gaw;            /* max guest address width */
 399
 400        /* adjusted guest address width, 0 is level 2 30-bit */
 401        int             agaw;
 402
 403        int             flags;          /* flags to find out type of domain */
 404
 405        int             iommu_coherency;/* indicate coherency of iommu access */
 406        int             iommu_snooping; /* indicate snooping control feature*/
 407        int             iommu_count;    /* reference count of iommu */
 408        int             iommu_superpage;/* Level of superpages supported:
 409                                           0 == 4KiB (no superpages), 1 == 2MiB,
 410                                           2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
 411        u64             max_addr;       /* maximum mapped address */
 412
 413        struct iommu_domain domain;     /* generic domain data structure for
 414                                           iommu core */
 415};
 416
 417/* PCI domain-device relationship */
 418struct device_domain_info {
 419        struct list_head link;  /* link to domain siblings */
 420        struct list_head global; /* link to global list */
 421        u8 bus;                 /* PCI bus number */
 422        u8 devfn;               /* PCI devfn number */
 423        u8 pasid_supported:3;
 424        u8 pasid_enabled:1;
 425        u8 pri_supported:1;
 426        u8 pri_enabled:1;
 427        u8 ats_supported:1;
 428        u8 ats_enabled:1;
 429        u8 ats_qdep;
 430        struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
 431        struct intel_iommu *iommu; /* IOMMU used by this device */
 432        struct dmar_domain *domain; /* pointer to domain */
 433};
 434
 435struct dmar_rmrr_unit {
 436        struct list_head list;          /* list of rmrr units   */
 437        struct acpi_dmar_header *hdr;   /* ACPI header          */
 438        u64     base_address;           /* reserved base address*/
 439        u64     end_address;            /* reserved end address */
 440        struct dmar_dev_scope *devices; /* target devices */
 441        int     devices_cnt;            /* target device count */
 442        struct iommu_resv_region *resv; /* reserved region handle */
 443};
 444
 445struct dmar_atsr_unit {
 446        struct list_head list;          /* list of ATSR units */
 447        struct acpi_dmar_header *hdr;   /* ACPI header */
 448        struct dmar_dev_scope *devices; /* target devices */
 449        int devices_cnt;                /* target device count */
 450        u8 include_all:1;               /* include all ports */
 451};
 452
 453static LIST_HEAD(dmar_atsr_units);
 454static LIST_HEAD(dmar_rmrr_units);
 455
 456#define for_each_rmrr_units(rmrr) \
 457        list_for_each_entry(rmrr, &dmar_rmrr_units, list)
 458
 459/* bitmap for indexing intel_iommus */
 460static int g_num_of_iommus;
 461
 462static void domain_exit(struct dmar_domain *domain);
 463static void domain_remove_dev_info(struct dmar_domain *domain);
 464static void dmar_remove_one_dev_info(struct dmar_domain *domain,
 465                                     struct device *dev);
 466static void __dmar_remove_one_dev_info(struct device_domain_info *info);
 467static void domain_context_clear(struct intel_iommu *iommu,
 468                                 struct device *dev);
 469static int domain_detach_iommu(struct dmar_domain *domain,
 470                               struct intel_iommu *iommu);
 471
 472#ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
 473int dmar_disabled = 0;
 474#else
 475int dmar_disabled = 1;
 476#endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
 477
 478int intel_iommu_enabled = 0;
 479EXPORT_SYMBOL_GPL(intel_iommu_enabled);
 480
 481static int dmar_map_gfx = 1;
 482static int dmar_forcedac;
 483static int intel_iommu_strict;
 484static int intel_iommu_superpage = 1;
 485static int intel_iommu_ecs = 1;
 486static int intel_iommu_pasid28;
 487static int iommu_identity_mapping;
 488
 489#define IDENTMAP_ALL            1
 490#define IDENTMAP_GFX            2
 491#define IDENTMAP_AZALIA         4
 492
 493/* Broadwell and Skylake have broken ECS support — normal so-called "second
 494 * level" translation of DMA requests-without-PASID doesn't actually happen
 495 * unless you also set the NESTE bit in an extended context-entry. Which of
 496 * course means that SVM doesn't work because it's trying to do nested
 497 * translation of the physical addresses it finds in the process page tables,
 498 * through the IOVA->phys mapping found in the "second level" page tables.
 499 *
 500 * The VT-d specification was retroactively changed to change the definition
 501 * of the capability bits and pretend that Broadwell/Skylake never happened...
 502 * but unfortunately the wrong bit was changed. It's ECS which is broken, but
 503 * for some reason it was the PASID capability bit which was redefined (from
 504 * bit 28 on BDW/SKL to bit 40 in future).
 505 *
 506 * So our test for ECS needs to eschew those implementations which set the old
 507 * PASID capabiity bit 28, since those are the ones on which ECS is broken.
 508 * Unless we are working around the 'pasid28' limitations, that is, by putting
 509 * the device into passthrough mode for normal DMA and thus masking the bug.
 510 */
 511#define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
 512                            (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
 513/* PASID support is thus enabled if ECS is enabled and *either* of the old
 514 * or new capability bits are set. */
 515#define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
 516                              (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
 517
 518int intel_iommu_gfx_mapped;
 519EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
 520
 521#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
 522static DEFINE_SPINLOCK(device_domain_lock);
 523static LIST_HEAD(device_domain_list);
 524
 525const struct iommu_ops intel_iommu_ops;
 526
 527static bool translation_pre_enabled(struct intel_iommu *iommu)
 528{
 529        return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
 530}
 531
 532static void clear_translation_pre_enabled(struct intel_iommu *iommu)
 533{
 534        iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
 535}
 536
 537static void init_translation_status(struct intel_iommu *iommu)
 538{
 539        u32 gsts;
 540
 541        gsts = readl(iommu->reg + DMAR_GSTS_REG);
 542        if (gsts & DMA_GSTS_TES)
 543                iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
 544}
 545
 546/* Convert generic 'struct iommu_domain to private struct dmar_domain */
 547static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
 548{
 549        return container_of(dom, struct dmar_domain, domain);
 550}
 551
 552static int __init intel_iommu_setup(char *str)
 553{
 554        if (!str)
 555                return -EINVAL;
 556        while (*str) {
 557                if (!strncmp(str, "on", 2)) {
 558                        dmar_disabled = 0;
 559                        pr_info("IOMMU enabled\n");
 560                } else if (!strncmp(str, "off", 3)) {
 561                        dmar_disabled = 1;
 562                        pr_info("IOMMU disabled\n");
 563                } else if (!strncmp(str, "igfx_off", 8)) {
 564                        dmar_map_gfx = 0;
 565                        pr_info("Disable GFX device mapping\n");
 566                } else if (!strncmp(str, "forcedac", 8)) {
 567                        pr_info("Forcing DAC for PCI devices\n");
 568                        dmar_forcedac = 1;
 569                } else if (!strncmp(str, "strict", 6)) {
 570                        pr_info("Disable batched IOTLB flush\n");
 571                        intel_iommu_strict = 1;
 572                } else if (!strncmp(str, "sp_off", 6)) {
 573                        pr_info("Disable supported super page\n");
 574                        intel_iommu_superpage = 0;
 575                } else if (!strncmp(str, "ecs_off", 7)) {
 576                        printk(KERN_INFO
 577                                "Intel-IOMMU: disable extended context table support\n");
 578                        intel_iommu_ecs = 0;
 579                } else if (!strncmp(str, "pasid28", 7)) {
 580                        printk(KERN_INFO
 581                                "Intel-IOMMU: enable pre-production PASID support\n");
 582                        intel_iommu_pasid28 = 1;
 583                        iommu_identity_mapping |= IDENTMAP_GFX;
 584                } else if (!strncmp(str, "tboot_noforce", 13)) {
 585                        printk(KERN_INFO
 586                                "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
 587                        intel_iommu_tboot_noforce = 1;
 588                }
 589
 590                str += strcspn(str, ",");
 591                while (*str == ',')
 592                        str++;
 593        }
 594        return 0;
 595}
 596__setup("intel_iommu=", intel_iommu_setup);
 597
 598static struct kmem_cache *iommu_domain_cache;
 599static struct kmem_cache *iommu_devinfo_cache;
 600
 601static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
 602{
 603        struct dmar_domain **domains;
 604        int idx = did >> 8;
 605
 606        domains = iommu->domains[idx];
 607        if (!domains)
 608                return NULL;
 609
 610        return domains[did & 0xff];
 611}
 612
 613static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
 614                             struct dmar_domain *domain)
 615{
 616        struct dmar_domain **domains;
 617        int idx = did >> 8;
 618
 619        if (!iommu->domains[idx]) {
 620                size_t size = 256 * sizeof(struct dmar_domain *);
 621                iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
 622        }
 623
 624        domains = iommu->domains[idx];
 625        if (WARN_ON(!domains))
 626                return;
 627        else
 628                domains[did & 0xff] = domain;
 629}
 630
 631static inline void *alloc_pgtable_page(int node)
 632{
 633        struct page *page;
 634        void *vaddr = NULL;
 635
 636        page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
 637        if (page)
 638                vaddr = page_address(page);
 639        return vaddr;
 640}
 641
 642static inline void free_pgtable_page(void *vaddr)
 643{
 644        free_page((unsigned long)vaddr);
 645}
 646
 647static inline void *alloc_domain_mem(void)
 648{
 649        return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
 650}
 651
 652static void free_domain_mem(void *vaddr)
 653{
 654        kmem_cache_free(iommu_domain_cache, vaddr);
 655}
 656
 657static inline void * alloc_devinfo_mem(void)
 658{
 659        return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
 660}
 661
 662static inline void free_devinfo_mem(void *vaddr)
 663{
 664        kmem_cache_free(iommu_devinfo_cache, vaddr);
 665}
 666
 667static inline int domain_type_is_vm(struct dmar_domain *domain)
 668{
 669        return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
 670}
 671
 672static inline int domain_type_is_si(struct dmar_domain *domain)
 673{
 674        return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
 675}
 676
 677static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
 678{
 679        return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
 680                                DOMAIN_FLAG_STATIC_IDENTITY);
 681}
 682
 683static inline int domain_pfn_supported(struct dmar_domain *domain,
 684                                       unsigned long pfn)
 685{
 686        int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
 687
 688        return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
 689}
 690
 691static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
 692{
 693        unsigned long sagaw;
 694        int agaw = -1;
 695
 696        sagaw = cap_sagaw(iommu->cap);
 697        for (agaw = width_to_agaw(max_gaw);
 698             agaw >= 0; agaw--) {
 699                if (test_bit(agaw, &sagaw))
 700                        break;
 701        }
 702
 703        return agaw;
 704}
 705
 706/*
 707 * Calculate max SAGAW for each iommu.
 708 */
 709int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
 710{
 711        return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
 712}
 713
 714/*
 715 * calculate agaw for each iommu.
 716 * "SAGAW" may be different across iommus, use a default agaw, and
 717 * get a supported less agaw for iommus that don't support the default agaw.
 718 */
 719int iommu_calculate_agaw(struct intel_iommu *iommu)
 720{
 721        return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
 722}
 723
 724/* This functionin only returns single iommu in a domain */
 725static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
 726{
 727        int iommu_id;
 728
 729        /* si_domain and vm domain should not get here. */
 730        BUG_ON(domain_type_is_vm_or_si(domain));
 731        for_each_domain_iommu(iommu_id, domain)
 732                break;
 733
 734        if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
 735                return NULL;
 736
 737        return g_iommus[iommu_id];
 738}
 739
 740static void domain_update_iommu_coherency(struct dmar_domain *domain)
 741{
 742        struct dmar_drhd_unit *drhd;
 743        struct intel_iommu *iommu;
 744        bool found = false;
 745        int i;
 746
 747        domain->iommu_coherency = 1;
 748
 749        for_each_domain_iommu(i, domain) {
 750                found = true;
 751                if (!ecap_coherent(g_iommus[i]->ecap)) {
 752                        domain->iommu_coherency = 0;
 753                        break;
 754                }
 755        }
 756        if (found)
 757                return;
 758
 759        /* No hardware attached; use lowest common denominator */
 760        rcu_read_lock();
 761        for_each_active_iommu(iommu, drhd) {
 762                if (!ecap_coherent(iommu->ecap)) {
 763                        domain->iommu_coherency = 0;
 764                        break;
 765                }
 766        }
 767        rcu_read_unlock();
 768}
 769
 770static int domain_update_iommu_snooping(struct intel_iommu *skip)
 771{
 772        struct dmar_drhd_unit *drhd;
 773        struct intel_iommu *iommu;
 774        int ret = 1;
 775
 776        rcu_read_lock();
 777        for_each_active_iommu(iommu, drhd) {
 778                if (iommu != skip) {
 779                        if (!ecap_sc_support(iommu->ecap)) {
 780                                ret = 0;
 781                                break;
 782                        }
 783                }
 784        }
 785        rcu_read_unlock();
 786
 787        return ret;
 788}
 789
 790static int domain_update_iommu_superpage(struct intel_iommu *skip)
 791{
 792        struct dmar_drhd_unit *drhd;
 793        struct intel_iommu *iommu;
 794        int mask = 0xf;
 795
 796        if (!intel_iommu_superpage) {
 797                return 0;
 798        }
 799
 800        /* set iommu_superpage to the smallest common denominator */
 801        rcu_read_lock();
 802        for_each_active_iommu(iommu, drhd) {
 803                if (iommu != skip) {
 804                        mask &= cap_super_page_val(iommu->cap);
 805                        if (!mask)
 806                                break;
 807                }
 808        }
 809        rcu_read_unlock();
 810
 811        return fls(mask);
 812}
 813
 814/* Some capabilities may be different across iommus */
 815static void domain_update_iommu_cap(struct dmar_domain *domain)
 816{
 817        domain_update_iommu_coherency(domain);
 818        domain->iommu_snooping = domain_update_iommu_snooping(NULL);
 819        domain->iommu_superpage = domain_update_iommu_superpage(NULL);
 820}
 821
 822static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
 823                                                       u8 bus, u8 devfn, int alloc)
 824{
 825        struct root_entry *root = &iommu->root_entry[bus];
 826        struct context_entry *context;
 827        u64 *entry;
 828
 829        entry = &root->lo;
 830        if (ecs_enabled(iommu)) {
 831                if (devfn >= 0x80) {
 832                        devfn -= 0x80;
 833                        entry = &root->hi;
 834                }
 835                devfn *= 2;
 836        }
 837        if (*entry & 1)
 838                context = phys_to_virt(*entry & VTD_PAGE_MASK);
 839        else {
 840                unsigned long phy_addr;
 841                if (!alloc)
 842                        return NULL;
 843
 844                context = alloc_pgtable_page(iommu->node);
 845                if (!context)
 846                        return NULL;
 847
 848                __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
 849                phy_addr = virt_to_phys((void *)context);
 850                *entry = phy_addr | 1;
 851                __iommu_flush_cache(iommu, entry, sizeof(*entry));
 852        }
 853        return &context[devfn];
 854}
 855
 856static int iommu_dummy(struct device *dev)
 857{
 858        return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
 859}
 860
 861static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
 862{
 863        struct dmar_drhd_unit *drhd = NULL;
 864        struct intel_iommu *iommu;
 865        struct device *tmp;
 866        struct pci_dev *ptmp, *pdev = NULL;
 867        u16 segment = 0;
 868        int i;
 869
 870        if (iommu_dummy(dev))
 871                return NULL;
 872
 873        if (dev_is_pci(dev)) {
 874                struct pci_dev *pf_pdev;
 875
 876                pdev = to_pci_dev(dev);
 877
 878#ifdef CONFIG_X86
 879                /* VMD child devices currently cannot be handled individually */
 880                if (is_vmd(pdev->bus))
 881                        return NULL;
 882#endif
 883
 884                /* VFs aren't listed in scope tables; we need to look up
 885                 * the PF instead to find the IOMMU. */
 886                pf_pdev = pci_physfn(pdev);
 887                dev = &pf_pdev->dev;
 888                segment = pci_domain_nr(pdev->bus);
 889        } else if (has_acpi_companion(dev))
 890                dev = &ACPI_COMPANION(dev)->dev;
 891
 892        rcu_read_lock();
 893        for_each_active_iommu(iommu, drhd) {
 894                if (pdev && segment != drhd->segment)
 895                        continue;
 896
 897                for_each_active_dev_scope(drhd->devices,
 898                                          drhd->devices_cnt, i, tmp) {
 899                        if (tmp == dev) {
 900                                /* For a VF use its original BDF# not that of the PF
 901                                 * which we used for the IOMMU lookup. Strictly speaking
 902                                 * we could do this for all PCI devices; we only need to
 903                                 * get the BDF# from the scope table for ACPI matches. */
 904                                if (pdev && pdev->is_virtfn)
 905                                        goto got_pdev;
 906
 907                                *bus = drhd->devices[i].bus;
 908                                *devfn = drhd->devices[i].devfn;
 909                                goto out;
 910                        }
 911
 912                        if (!pdev || !dev_is_pci(tmp))
 913                                continue;
 914
 915                        ptmp = to_pci_dev(tmp);
 916                        if (ptmp->subordinate &&
 917                            ptmp->subordinate->number <= pdev->bus->number &&
 918                            ptmp->subordinate->busn_res.end >= pdev->bus->number)
 919                                goto got_pdev;
 920                }
 921
 922                if (pdev && drhd->include_all) {
 923                got_pdev:
 924                        *bus = pdev->bus->number;
 925                        *devfn = pdev->devfn;
 926                        goto out;
 927                }
 928        }
 929        iommu = NULL;
 930 out:
 931        rcu_read_unlock();
 932
 933        return iommu;
 934}
 935
 936static void domain_flush_cache(struct dmar_domain *domain,
 937                               void *addr, int size)
 938{
 939        if (!domain->iommu_coherency)
 940                clflush_cache_range(addr, size);
 941}
 942
 943static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
 944{
 945        struct context_entry *context;
 946        int ret = 0;
 947        unsigned long flags;
 948
 949        spin_lock_irqsave(&iommu->lock, flags);
 950        context = iommu_context_addr(iommu, bus, devfn, 0);
 951        if (context)
 952                ret = context_present(context);
 953        spin_unlock_irqrestore(&iommu->lock, flags);
 954        return ret;
 955}
 956
 957static void free_context_table(struct intel_iommu *iommu)
 958{
 959        int i;
 960        unsigned long flags;
 961        struct context_entry *context;
 962
 963        spin_lock_irqsave(&iommu->lock, flags);
 964        if (!iommu->root_entry) {
 965                goto out;
 966        }
 967        for (i = 0; i < ROOT_ENTRY_NR; i++) {
 968                context = iommu_context_addr(iommu, i, 0, 0);
 969                if (context)
 970                        free_pgtable_page(context);
 971
 972                if (!ecs_enabled(iommu))
 973                        continue;
 974
 975                context = iommu_context_addr(iommu, i, 0x80, 0);
 976                if (context)
 977                        free_pgtable_page(context);
 978
 979        }
 980        free_pgtable_page(iommu->root_entry);
 981        iommu->root_entry = NULL;
 982out:
 983        spin_unlock_irqrestore(&iommu->lock, flags);
 984}
 985
 986static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
 987                                      unsigned long pfn, int *target_level)
 988{
 989        struct dma_pte *parent, *pte = NULL;
 990        int level = agaw_to_level(domain->agaw);
 991        int offset;
 992
 993        BUG_ON(!domain->pgd);
 994
 995        if (!domain_pfn_supported(domain, pfn))
 996                /* Address beyond IOMMU's addressing capabilities. */
 997                return NULL;
 998
 999        parent = domain->pgd;
1000
1001        while (1) {
1002                void *tmp_page;
1003
1004                offset = pfn_level_offset(pfn, level);
1005                pte = &parent[offset];
1006                if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1007                        break;
1008                if (level == *target_level)
1009                        break;
1010
1011                if (!dma_pte_present(pte)) {
1012                        uint64_t pteval;
1013
1014                        tmp_page = alloc_pgtable_page(domain->nid);
1015
1016                        if (!tmp_page)
1017                                return NULL;
1018
1019                        domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1020                        pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1021                        if (cmpxchg64(&pte->val, 0ULL, pteval))
1022                                /* Someone else set it while we were thinking; use theirs. */
1023                                free_pgtable_page(tmp_page);
1024                        else
1025                                domain_flush_cache(domain, pte, sizeof(*pte));
1026                }
1027                if (level == 1)
1028                        break;
1029
1030                parent = phys_to_virt(dma_pte_addr(pte));
1031                level--;
1032        }
1033
1034        if (!*target_level)
1035                *target_level = level;
1036
1037        return pte;
1038}
1039
1040
1041/* return address's pte at specific level */
1042static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1043                                         unsigned long pfn,
1044                                         int level, int *large_page)
1045{
1046        struct dma_pte *parent, *pte = NULL;
1047        int total = agaw_to_level(domain->agaw);
1048        int offset;
1049
1050        parent = domain->pgd;
1051        while (level <= total) {
1052                offset = pfn_level_offset(pfn, total);
1053                pte = &parent[offset];
1054                if (level == total)
1055                        return pte;
1056
1057                if (!dma_pte_present(pte)) {
1058                        *large_page = total;
1059                        break;
1060                }
1061
1062                if (dma_pte_superpage(pte)) {
1063                        *large_page = total;
1064                        return pte;
1065                }
1066
1067                parent = phys_to_virt(dma_pte_addr(pte));
1068                total--;
1069        }
1070        return NULL;
1071}
1072
1073/* clear last level pte, a tlb flush should be followed */
1074static void dma_pte_clear_range(struct dmar_domain *domain,
1075                                unsigned long start_pfn,
1076                                unsigned long last_pfn)
1077{
1078        unsigned int large_page = 1;
1079        struct dma_pte *first_pte, *pte;
1080
1081        BUG_ON(!domain_pfn_supported(domain, start_pfn));
1082        BUG_ON(!domain_pfn_supported(domain, last_pfn));
1083        BUG_ON(start_pfn > last_pfn);
1084
1085        /* we don't need lock here; nobody else touches the iova range */
1086        do {
1087                large_page = 1;
1088                first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1089                if (!pte) {
1090                        start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1091                        continue;
1092                }
1093                do {
1094                        dma_clear_pte(pte);
1095                        start_pfn += lvl_to_nr_pages(large_page);
1096                        pte++;
1097                } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1098
1099                domain_flush_cache(domain, first_pte,
1100                                   (void *)pte - (void *)first_pte);
1101
1102        } while (start_pfn && start_pfn <= last_pfn);
1103}
1104
1105static void dma_pte_free_level(struct dmar_domain *domain, int level,
1106                               int retain_level, struct dma_pte *pte,
1107                               unsigned long pfn, unsigned long start_pfn,
1108                               unsigned long last_pfn)
1109{
1110        pfn = max(start_pfn, pfn);
1111        pte = &pte[pfn_level_offset(pfn, level)];
1112
1113        do {
1114                unsigned long level_pfn;
1115                struct dma_pte *level_pte;
1116
1117                if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1118                        goto next;
1119
1120                level_pfn = pfn & level_mask(level);
1121                level_pte = phys_to_virt(dma_pte_addr(pte));
1122
1123                if (level > 2) {
1124                        dma_pte_free_level(domain, level - 1, retain_level,
1125                                           level_pte, level_pfn, start_pfn,
1126                                           last_pfn);
1127                }
1128
1129                /*
1130                 * Free the page table if we're below the level we want to
1131                 * retain and the range covers the entire table.
1132                 */
1133                if (level < retain_level && !(start_pfn > level_pfn ||
1134                      last_pfn < level_pfn + level_size(level) - 1)) {
1135                        dma_clear_pte(pte);
1136                        domain_flush_cache(domain, pte, sizeof(*pte));
1137                        free_pgtable_page(level_pte);
1138                }
1139next:
1140                pfn += level_size(level);
1141        } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1142}
1143
1144/*
1145 * clear last level (leaf) ptes and free page table pages below the
1146 * level we wish to keep intact.
1147 */
1148static void dma_pte_free_pagetable(struct dmar_domain *domain,
1149                                   unsigned long start_pfn,
1150                                   unsigned long last_pfn,
1151                                   int retain_level)
1152{
1153        BUG_ON(!domain_pfn_supported(domain, start_pfn));
1154        BUG_ON(!domain_pfn_supported(domain, last_pfn));
1155        BUG_ON(start_pfn > last_pfn);
1156
1157        dma_pte_clear_range(domain, start_pfn, last_pfn);
1158
1159        /* We don't need lock here; nobody else touches the iova range */
1160        dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1161                           domain->pgd, 0, start_pfn, last_pfn);
1162
1163        /* free pgd */
1164        if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1165                free_pgtable_page(domain->pgd);
1166                domain->pgd = NULL;
1167        }
1168}
1169
1170/* When a page at a given level is being unlinked from its parent, we don't
1171   need to *modify* it at all. All we need to do is make a list of all the
1172   pages which can be freed just as soon as we've flushed the IOTLB and we
1173   know the hardware page-walk will no longer touch them.
1174   The 'pte' argument is the *parent* PTE, pointing to the page that is to
1175   be freed. */
1176static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1177                                            int level, struct dma_pte *pte,
1178                                            struct page *freelist)
1179{
1180        struct page *pg;
1181
1182        pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1183        pg->freelist = freelist;
1184        freelist = pg;
1185
1186        if (level == 1)
1187                return freelist;
1188
1189        pte = page_address(pg);
1190        do {
1191                if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1192                        freelist = dma_pte_list_pagetables(domain, level - 1,
1193                                                           pte, freelist);
1194                pte++;
1195        } while (!first_pte_in_page(pte));
1196
1197        return freelist;
1198}
1199
1200static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1201                                        struct dma_pte *pte, unsigned long pfn,
1202                                        unsigned long start_pfn,
1203                                        unsigned long last_pfn,
1204                                        struct page *freelist)
1205{
1206        struct dma_pte *first_pte = NULL, *last_pte = NULL;
1207
1208        pfn = max(start_pfn, pfn);
1209        pte = &pte[pfn_level_offset(pfn, level)];
1210
1211        do {
1212                unsigned long level_pfn;
1213
1214                if (!dma_pte_present(pte))
1215                        goto next;
1216
1217                level_pfn = pfn & level_mask(level);
1218
1219                /* If range covers entire pagetable, free it */
1220                if (start_pfn <= level_pfn &&
1221                    last_pfn >= level_pfn + level_size(level) - 1) {
1222                        /* These suborbinate page tables are going away entirely. Don't
1223                           bother to clear them; we're just going to *free* them. */
1224                        if (level > 1 && !dma_pte_superpage(pte))
1225                                freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1226
1227                        dma_clear_pte(pte);
1228                        if (!first_pte)
1229                                first_pte = pte;
1230                        last_pte = pte;
1231                } else if (level > 1) {
1232                        /* Recurse down into a level that isn't *entirely* obsolete */
1233                        freelist = dma_pte_clear_level(domain, level - 1,
1234                                                       phys_to_virt(dma_pte_addr(pte)),
1235                                                       level_pfn, start_pfn, last_pfn,
1236                                                       freelist);
1237                }
1238next:
1239                pfn += level_size(level);
1240        } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1241
1242        if (first_pte)
1243                domain_flush_cache(domain, first_pte,
1244                                   (void *)++last_pte - (void *)first_pte);
1245
1246        return freelist;
1247}
1248
1249/* We can't just free the pages because the IOMMU may still be walking
1250   the page tables, and may have cached the intermediate levels. The
1251   pages can only be freed after the IOTLB flush has been done. */
1252static struct page *domain_unmap(struct dmar_domain *domain,
1253                                 unsigned long start_pfn,
1254                                 unsigned long last_pfn)
1255{
1256        struct page *freelist = NULL;
1257
1258        BUG_ON(!domain_pfn_supported(domain, start_pfn));
1259        BUG_ON(!domain_pfn_supported(domain, last_pfn));
1260        BUG_ON(start_pfn > last_pfn);
1261
1262        /* we don't need lock here; nobody else touches the iova range */
1263        freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1264                                       domain->pgd, 0, start_pfn, last_pfn, NULL);
1265
1266        /* free pgd */
1267        if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1268                struct page *pgd_page = virt_to_page(domain->pgd);
1269                pgd_page->freelist = freelist;
1270                freelist = pgd_page;
1271
1272                domain->pgd = NULL;
1273        }
1274
1275        return freelist;
1276}
1277
1278static void dma_free_pagelist(struct page *freelist)
1279{
1280        struct page *pg;
1281
1282        while ((pg = freelist)) {
1283                freelist = pg->freelist;
1284                free_pgtable_page(page_address(pg));
1285        }
1286}
1287
1288static void iova_entry_free(unsigned long data)
1289{
1290        struct page *freelist = (struct page *)data;
1291
1292        dma_free_pagelist(freelist);
1293}
1294
1295/* iommu handling */
1296static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1297{
1298        struct root_entry *root;
1299        unsigned long flags;
1300
1301        root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1302        if (!root) {
1303                pr_err("Allocating root entry for %s failed\n",
1304                        iommu->name);
1305                return -ENOMEM;
1306        }
1307
1308        __iommu_flush_cache(iommu, root, ROOT_SIZE);
1309
1310        spin_lock_irqsave(&iommu->lock, flags);
1311        iommu->root_entry = root;
1312        spin_unlock_irqrestore(&iommu->lock, flags);
1313
1314        return 0;
1315}
1316
1317static void iommu_set_root_entry(struct intel_iommu *iommu)
1318{
1319        u64 addr;
1320        u32 sts;
1321        unsigned long flag;
1322
1323        addr = virt_to_phys(iommu->root_entry);
1324        if (ecs_enabled(iommu))
1325                addr |= DMA_RTADDR_RTT;
1326
1327        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1328        dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1329
1330        writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1331
1332        /* Make sure hardware complete it */
1333        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1334                      readl, (sts & DMA_GSTS_RTPS), sts);
1335
1336        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1337}
1338
1339static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1340{
1341        u32 val;
1342        unsigned long flag;
1343
1344        if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1345                return;
1346
1347        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1348        writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1349
1350        /* Make sure hardware complete it */
1351        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1352                      readl, (!(val & DMA_GSTS_WBFS)), val);
1353
1354        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1355}
1356
1357/* return value determine if we need a write buffer flush */
1358static void __iommu_flush_context(struct intel_iommu *iommu,
1359                                  u16 did, u16 source_id, u8 function_mask,
1360                                  u64 type)
1361{
1362        u64 val = 0;
1363        unsigned long flag;
1364
1365        switch (type) {
1366        case DMA_CCMD_GLOBAL_INVL:
1367                val = DMA_CCMD_GLOBAL_INVL;
1368                break;
1369        case DMA_CCMD_DOMAIN_INVL:
1370                val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1371                break;
1372        case DMA_CCMD_DEVICE_INVL:
1373                val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1374                        | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1375                break;
1376        default:
1377                BUG();
1378        }
1379        val |= DMA_CCMD_ICC;
1380
1381        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1382        dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1383
1384        /* Make sure hardware complete it */
1385        IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1386                dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1387
1388        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1389}
1390
1391/* return value determine if we need a write buffer flush */
1392static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1393                                u64 addr, unsigned int size_order, u64 type)
1394{
1395        int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1396        u64 val = 0, val_iva = 0;
1397        unsigned long flag;
1398
1399        switch (type) {
1400        case DMA_TLB_GLOBAL_FLUSH:
1401                /* global flush doesn't need set IVA_REG */
1402                val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1403                break;
1404        case DMA_TLB_DSI_FLUSH:
1405                val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1406                break;
1407        case DMA_TLB_PSI_FLUSH:
1408                val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1409                /* IH bit is passed in as part of address */
1410                val_iva = size_order | addr;
1411                break;
1412        default:
1413                BUG();
1414        }
1415        /* Note: set drain read/write */
1416#if 0
1417        /*
1418         * This is probably to be super secure.. Looks like we can
1419         * ignore it without any impact.
1420         */
1421        if (cap_read_drain(iommu->cap))
1422                val |= DMA_TLB_READ_DRAIN;
1423#endif
1424        if (cap_write_drain(iommu->cap))
1425                val |= DMA_TLB_WRITE_DRAIN;
1426
1427        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1428        /* Note: Only uses first TLB reg currently */
1429        if (val_iva)
1430                dmar_writeq(iommu->reg + tlb_offset, val_iva);
1431        dmar_writeq(iommu->reg + tlb_offset + 8, val);
1432
1433        /* Make sure hardware complete it */
1434        IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1435                dmar_readq, (!(val & DMA_TLB_IVT)), val);
1436
1437        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1438
1439        /* check IOTLB invalidation granularity */
1440        if (DMA_TLB_IAIG(val) == 0)
1441                pr_err("Flush IOTLB failed\n");
1442        if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1443                pr_debug("TLB flush request %Lx, actual %Lx\n",
1444                        (unsigned long long)DMA_TLB_IIRG(type),
1445                        (unsigned long long)DMA_TLB_IAIG(val));
1446}
1447
1448static struct device_domain_info *
1449iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1450                         u8 bus, u8 devfn)
1451{
1452        struct device_domain_info *info;
1453
1454        assert_spin_locked(&device_domain_lock);
1455
1456        if (!iommu->qi)
1457                return NULL;
1458
1459        list_for_each_entry(info, &domain->devices, link)
1460                if (info->iommu == iommu && info->bus == bus &&
1461                    info->devfn == devfn) {
1462                        if (info->ats_supported && info->dev)
1463                                return info;
1464                        break;
1465                }
1466
1467        return NULL;
1468}
1469
1470static void domain_update_iotlb(struct dmar_domain *domain)
1471{
1472        struct device_domain_info *info;
1473        bool has_iotlb_device = false;
1474
1475        assert_spin_locked(&device_domain_lock);
1476
1477        list_for_each_entry(info, &domain->devices, link) {
1478                struct pci_dev *pdev;
1479
1480                if (!info->dev || !dev_is_pci(info->dev))
1481                        continue;
1482
1483                pdev = to_pci_dev(info->dev);
1484                if (pdev->ats_enabled) {
1485                        has_iotlb_device = true;
1486                        break;
1487                }
1488        }
1489
1490        domain->has_iotlb_device = has_iotlb_device;
1491}
1492
1493static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1494{
1495        struct pci_dev *pdev;
1496
1497        assert_spin_locked(&device_domain_lock);
1498
1499        if (!info || !dev_is_pci(info->dev))
1500                return;
1501
1502        pdev = to_pci_dev(info->dev);
1503
1504#ifdef CONFIG_INTEL_IOMMU_SVM
1505        /* The PCIe spec, in its wisdom, declares that the behaviour of
1506           the device if you enable PASID support after ATS support is
1507           undefined. So always enable PASID support on devices which
1508           have it, even if we can't yet know if we're ever going to
1509           use it. */
1510        if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1511                info->pasid_enabled = 1;
1512
1513        if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1514                info->pri_enabled = 1;
1515#endif
1516        if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1517                info->ats_enabled = 1;
1518                domain_update_iotlb(info->domain);
1519                info->ats_qdep = pci_ats_queue_depth(pdev);
1520        }
1521}
1522
1523static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1524{
1525        struct pci_dev *pdev;
1526
1527        assert_spin_locked(&device_domain_lock);
1528
1529        if (!dev_is_pci(info->dev))
1530                return;
1531
1532        pdev = to_pci_dev(info->dev);
1533
1534        if (info->ats_enabled) {
1535                pci_disable_ats(pdev);
1536                info->ats_enabled = 0;
1537                domain_update_iotlb(info->domain);
1538        }
1539#ifdef CONFIG_INTEL_IOMMU_SVM
1540        if (info->pri_enabled) {
1541                pci_disable_pri(pdev);
1542                info->pri_enabled = 0;
1543        }
1544        if (info->pasid_enabled) {
1545                pci_disable_pasid(pdev);
1546                info->pasid_enabled = 0;
1547        }
1548#endif
1549}
1550
1551static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1552                                  u64 addr, unsigned mask)
1553{
1554        u16 sid, qdep;
1555        unsigned long flags;
1556        struct device_domain_info *info;
1557
1558        if (!domain->has_iotlb_device)
1559                return;
1560
1561        spin_lock_irqsave(&device_domain_lock, flags);
1562        list_for_each_entry(info, &domain->devices, link) {
1563                if (!info->ats_enabled)
1564                        continue;
1565
1566                sid = info->bus << 8 | info->devfn;
1567                qdep = info->ats_qdep;
1568                qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1569        }
1570        spin_unlock_irqrestore(&device_domain_lock, flags);
1571}
1572
1573static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1574                                  struct dmar_domain *domain,
1575                                  unsigned long pfn, unsigned int pages,
1576                                  int ih, int map)
1577{
1578        unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1579        uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1580        u16 did = domain->iommu_did[iommu->seq_id];
1581
1582        BUG_ON(pages == 0);
1583
1584        if (ih)
1585                ih = 1 << 6;
1586        /*
1587         * Fallback to domain selective flush if no PSI support or the size is
1588         * too big.
1589         * PSI requires page size to be 2 ^ x, and the base address is naturally
1590         * aligned to the size
1591         */
1592        if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1593                iommu->flush.flush_iotlb(iommu, did, 0, 0,
1594                                                DMA_TLB_DSI_FLUSH);
1595        else
1596                iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1597                                                DMA_TLB_PSI_FLUSH);
1598
1599        /*
1600         * In caching mode, changes of pages from non-present to present require
1601         * flush. However, device IOTLB doesn't need to be flushed in this case.
1602         */
1603        if (!cap_caching_mode(iommu->cap) || !map)
1604                iommu_flush_dev_iotlb(domain, addr, mask);
1605}
1606
1607static void iommu_flush_iova(struct iova_domain *iovad)
1608{
1609        struct dmar_domain *domain;
1610        int idx;
1611
1612        domain = container_of(iovad, struct dmar_domain, iovad);
1613
1614        for_each_domain_iommu(idx, domain) {
1615                struct intel_iommu *iommu = g_iommus[idx];
1616                u16 did = domain->iommu_did[iommu->seq_id];
1617
1618                iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
1619
1620                if (!cap_caching_mode(iommu->cap))
1621                        iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1622                                              0, MAX_AGAW_PFN_WIDTH);
1623        }
1624}
1625
1626static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1627{
1628        u32 pmen;
1629        unsigned long flags;
1630
1631        raw_spin_lock_irqsave(&iommu->register_lock, flags);
1632        pmen = readl(iommu->reg + DMAR_PMEN_REG);
1633        pmen &= ~DMA_PMEN_EPM;
1634        writel(pmen, iommu->reg + DMAR_PMEN_REG);
1635
1636        /* wait for the protected region status bit to clear */
1637        IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1638                readl, !(pmen & DMA_PMEN_PRS), pmen);
1639
1640        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1641}
1642
1643static void iommu_enable_translation(struct intel_iommu *iommu)
1644{
1645        u32 sts;
1646        unsigned long flags;
1647
1648        raw_spin_lock_irqsave(&iommu->register_lock, flags);
1649        iommu->gcmd |= DMA_GCMD_TE;
1650        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1651
1652        /* Make sure hardware complete it */
1653        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1654                      readl, (sts & DMA_GSTS_TES), sts);
1655
1656        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1657}
1658
1659static void iommu_disable_translation(struct intel_iommu *iommu)
1660{
1661        u32 sts;
1662        unsigned long flag;
1663
1664        raw_spin_lock_irqsave(&iommu->register_lock, flag);
1665        iommu->gcmd &= ~DMA_GCMD_TE;
1666        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1667
1668        /* Make sure hardware complete it */
1669        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1670                      readl, (!(sts & DMA_GSTS_TES)), sts);
1671
1672        raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1673}
1674
1675
1676static int iommu_init_domains(struct intel_iommu *iommu)
1677{
1678        u32 ndomains, nlongs;
1679        size_t size;
1680
1681        ndomains = cap_ndoms(iommu->cap);
1682        pr_debug("%s: Number of Domains supported <%d>\n",
1683                 iommu->name, ndomains);
1684        nlongs = BITS_TO_LONGS(ndomains);
1685
1686        spin_lock_init(&iommu->lock);
1687
1688        iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1689        if (!iommu->domain_ids) {
1690                pr_err("%s: Allocating domain id array failed\n",
1691                       iommu->name);
1692                return -ENOMEM;
1693        }
1694
1695        size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1696        iommu->domains = kzalloc(size, GFP_KERNEL);
1697
1698        if (iommu->domains) {
1699                size = 256 * sizeof(struct dmar_domain *);
1700                iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1701        }
1702
1703        if (!iommu->domains || !iommu->domains[0]) {
1704                pr_err("%s: Allocating domain array failed\n",
1705                       iommu->name);
1706                kfree(iommu->domain_ids);
1707                kfree(iommu->domains);
1708                iommu->domain_ids = NULL;
1709                iommu->domains    = NULL;
1710                return -ENOMEM;
1711        }
1712
1713
1714
1715        /*
1716         * If Caching mode is set, then invalid translations are tagged
1717         * with domain-id 0, hence we need to pre-allocate it. We also
1718         * use domain-id 0 as a marker for non-allocated domain-id, so
1719         * make sure it is not used for a real domain.
1720         */
1721        set_bit(0, iommu->domain_ids);
1722
1723        return 0;
1724}
1725
1726static void disable_dmar_iommu(struct intel_iommu *iommu)
1727{
1728        struct device_domain_info *info, *tmp;
1729        unsigned long flags;
1730
1731        if (!iommu->domains || !iommu->domain_ids)
1732                return;
1733
1734again:
1735        spin_lock_irqsave(&device_domain_lock, flags);
1736        list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1737                struct dmar_domain *domain;
1738
1739                if (info->iommu != iommu)
1740                        continue;
1741
1742                if (!info->dev || !info->domain)
1743                        continue;
1744
1745                domain = info->domain;
1746
1747                __dmar_remove_one_dev_info(info);
1748
1749                if (!domain_type_is_vm_or_si(domain)) {
1750                        /*
1751                         * The domain_exit() function  can't be called under
1752                         * device_domain_lock, as it takes this lock itself.
1753                         * So release the lock here and re-run the loop
1754                         * afterwards.
1755                         */
1756                        spin_unlock_irqrestore(&device_domain_lock, flags);
1757                        domain_exit(domain);
1758                        goto again;
1759                }
1760        }
1761        spin_unlock_irqrestore(&device_domain_lock, flags);
1762
1763        if (iommu->gcmd & DMA_GCMD_TE)
1764                iommu_disable_translation(iommu);
1765}
1766
1767static void free_dmar_iommu(struct intel_iommu *iommu)
1768{
1769        if ((iommu->domains) && (iommu->domain_ids)) {
1770                int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1771                int i;
1772
1773                for (i = 0; i < elems; i++)
1774                        kfree(iommu->domains[i]);
1775                kfree(iommu->domains);
1776                kfree(iommu->domain_ids);
1777                iommu->domains = NULL;
1778                iommu->domain_ids = NULL;
1779        }
1780
1781        g_iommus[iommu->seq_id] = NULL;
1782
1783        /* free context mapping */
1784        free_context_table(iommu);
1785
1786#ifdef CONFIG_INTEL_IOMMU_SVM
1787        if (pasid_enabled(iommu)) {
1788                if (ecap_prs(iommu->ecap))
1789                        intel_svm_finish_prq(iommu);
1790                intel_svm_free_pasid_tables(iommu);
1791        }
1792#endif
1793}
1794
1795static struct dmar_domain *alloc_domain(int flags)
1796{
1797        struct dmar_domain *domain;
1798
1799        domain = alloc_domain_mem();
1800        if (!domain)
1801                return NULL;
1802
1803        memset(domain, 0, sizeof(*domain));
1804        domain->nid = -1;
1805        domain->flags = flags;
1806        domain->has_iotlb_device = false;
1807        INIT_LIST_HEAD(&domain->devices);
1808
1809        return domain;
1810}
1811
1812/* Must be called with iommu->lock */
1813static int domain_attach_iommu(struct dmar_domain *domain,
1814                               struct intel_iommu *iommu)
1815{
1816        unsigned long ndomains;
1817        int num;
1818
1819        assert_spin_locked(&device_domain_lock);
1820        assert_spin_locked(&iommu->lock);
1821
1822        domain->iommu_refcnt[iommu->seq_id] += 1;
1823        domain->iommu_count += 1;
1824        if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1825                ndomains = cap_ndoms(iommu->cap);
1826                num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1827
1828                if (num >= ndomains) {
1829                        pr_err("%s: No free domain ids\n", iommu->name);
1830                        domain->iommu_refcnt[iommu->seq_id] -= 1;
1831                        domain->iommu_count -= 1;
1832                        return -ENOSPC;
1833                }
1834
1835                set_bit(num, iommu->domain_ids);
1836                set_iommu_domain(iommu, num, domain);
1837
1838                domain->iommu_did[iommu->seq_id] = num;
1839                domain->nid                      = iommu->node;
1840
1841                domain_update_iommu_cap(domain);
1842        }
1843
1844        return 0;
1845}
1846
1847static int domain_detach_iommu(struct dmar_domain *domain,
1848                               struct intel_iommu *iommu)
1849{
1850        int num, count = INT_MAX;
1851
1852        assert_spin_locked(&device_domain_lock);
1853        assert_spin_locked(&iommu->lock);
1854
1855        domain->iommu_refcnt[iommu->seq_id] -= 1;
1856        count = --domain->iommu_count;
1857        if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1858                num = domain->iommu_did[iommu->seq_id];
1859                clear_bit(num, iommu->domain_ids);
1860                set_iommu_domain(iommu, num, NULL);
1861
1862                domain_update_iommu_cap(domain);
1863                domain->iommu_did[iommu->seq_id] = 0;
1864        }
1865
1866        return count;
1867}
1868
1869static struct iova_domain reserved_iova_list;
1870static struct lock_class_key reserved_rbtree_key;
1871
1872static int dmar_init_reserved_ranges(void)
1873{
1874        struct pci_dev *pdev = NULL;
1875        struct iova *iova;
1876        int i;
1877
1878        init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
1879
1880        lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1881                &reserved_rbtree_key);
1882
1883        /* IOAPIC ranges shouldn't be accessed by DMA */
1884        iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1885                IOVA_PFN(IOAPIC_RANGE_END));
1886        if (!iova) {
1887                pr_err("Reserve IOAPIC range failed\n");
1888                return -ENODEV;
1889        }
1890
1891        /* Reserve all PCI MMIO to avoid peer-to-peer access */
1892        for_each_pci_dev(pdev) {
1893                struct resource *r;
1894
1895                for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1896                        r = &pdev->resource[i];
1897                        if (!r->flags || !(r->flags & IORESOURCE_MEM))
1898                                continue;
1899                        iova = reserve_iova(&reserved_iova_list,
1900                                            IOVA_PFN(r->start),
1901                                            IOVA_PFN(r->end));
1902                        if (!iova) {
1903                                pr_err("Reserve iova failed\n");
1904                                return -ENODEV;
1905                        }
1906                }
1907        }
1908        return 0;
1909}
1910
1911static void domain_reserve_special_ranges(struct dmar_domain *domain)
1912{
1913        copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1914}
1915
1916static inline int guestwidth_to_adjustwidth(int gaw)
1917{
1918        int agaw;
1919        int r = (gaw - 12) % 9;
1920
1921        if (r == 0)
1922                agaw = gaw;
1923        else
1924                agaw = gaw + 9 - r;
1925        if (agaw > 64)
1926                agaw = 64;
1927        return agaw;
1928}
1929
1930static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1931                       int guest_width)
1932{
1933        int adjust_width, agaw;
1934        unsigned long sagaw;
1935        int err;
1936
1937        init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
1938
1939        err = init_iova_flush_queue(&domain->iovad,
1940                                    iommu_flush_iova, iova_entry_free);
1941        if (err)
1942                return err;
1943
1944        domain_reserve_special_ranges(domain);
1945
1946        /* calculate AGAW */
1947        if (guest_width > cap_mgaw(iommu->cap))
1948                guest_width = cap_mgaw(iommu->cap);
1949        domain->gaw = guest_width;
1950        adjust_width = guestwidth_to_adjustwidth(guest_width);
1951        agaw = width_to_agaw(adjust_width);
1952        sagaw = cap_sagaw(iommu->cap);
1953        if (!test_bit(agaw, &sagaw)) {
1954                /* hardware doesn't support it, choose a bigger one */
1955                pr_debug("Hardware doesn't support agaw %d\n", agaw);
1956                agaw = find_next_bit(&sagaw, 5, agaw);
1957                if (agaw >= 5)
1958                        return -ENODEV;
1959        }
1960        domain->agaw = agaw;
1961
1962        if (ecap_coherent(iommu->ecap))
1963                domain->iommu_coherency = 1;
1964        else
1965                domain->iommu_coherency = 0;
1966
1967        if (ecap_sc_support(iommu->ecap))
1968                domain->iommu_snooping = 1;
1969        else
1970                domain->iommu_snooping = 0;
1971
1972        if (intel_iommu_superpage)
1973                domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1974        else
1975                domain->iommu_superpage = 0;
1976
1977        domain->nid = iommu->node;
1978
1979        /* always allocate the top pgd */
1980        domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1981        if (!domain->pgd)
1982                return -ENOMEM;
1983        __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1984        return 0;
1985}
1986
1987static void domain_exit(struct dmar_domain *domain)
1988{
1989        struct page *freelist = NULL;
1990
1991        /* Domain 0 is reserved, so dont process it */
1992        if (!domain)
1993                return;
1994
1995        /* Remove associated devices and clear attached or cached domains */
1996        rcu_read_lock();
1997        domain_remove_dev_info(domain);
1998        rcu_read_unlock();
1999
2000        /* destroy iovas */
2001        put_iova_domain(&domain->iovad);
2002
2003        freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2004
2005        dma_free_pagelist(freelist);
2006
2007        free_domain_mem(domain);
2008}
2009
2010static int domain_context_mapping_one(struct dmar_domain *domain,
2011                                      struct intel_iommu *iommu,
2012                                      u8 bus, u8 devfn)
2013{
2014        u16 did = domain->iommu_did[iommu->seq_id];
2015        int translation = CONTEXT_TT_MULTI_LEVEL;
2016        struct device_domain_info *info = NULL;
2017        struct context_entry *context;
2018        unsigned long flags;
2019        struct dma_pte *pgd;
2020        int ret, agaw;
2021
2022        WARN_ON(did == 0);
2023
2024        if (hw_pass_through && domain_type_is_si(domain))
2025                translation = CONTEXT_TT_PASS_THROUGH;
2026
2027        pr_debug("Set context mapping for %02x:%02x.%d\n",
2028                bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2029
2030        BUG_ON(!domain->pgd);
2031
2032        spin_lock_irqsave(&device_domain_lock, flags);
2033        spin_lock(&iommu->lock);
2034
2035        ret = -ENOMEM;
2036        context = iommu_context_addr(iommu, bus, devfn, 1);
2037        if (!context)
2038                goto out_unlock;
2039
2040        ret = 0;
2041        if (context_present(context))
2042                goto out_unlock;
2043
2044        /*
2045         * For kdump cases, old valid entries may be cached due to the
2046         * in-flight DMA and copied pgtable, but there is no unmapping
2047         * behaviour for them, thus we need an explicit cache flush for
2048         * the newly-mapped device. For kdump, at this point, the device
2049         * is supposed to finish reset at its driver probe stage, so no
2050         * in-flight DMA will exist, and we don't need to worry anymore
2051         * hereafter.
2052         */
2053        if (context_copied(context)) {
2054                u16 did_old = context_domain_id(context);
2055
2056                if (did_old < cap_ndoms(iommu->cap)) {
2057                        iommu->flush.flush_context(iommu, did_old,
2058                                                   (((u16)bus) << 8) | devfn,
2059                                                   DMA_CCMD_MASK_NOBIT,
2060                                                   DMA_CCMD_DEVICE_INVL);
2061                        iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
2062                                                 DMA_TLB_DSI_FLUSH);
2063                }
2064        }
2065
2066        pgd = domain->pgd;
2067
2068        context_clear_entry(context);
2069        context_set_domain_id(context, did);
2070
2071        /*
2072         * Skip top levels of page tables for iommu which has less agaw
2073         * than default.  Unnecessary for PT mode.
2074         */
2075        if (translation != CONTEXT_TT_PASS_THROUGH) {
2076                for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2077                        ret = -ENOMEM;
2078                        pgd = phys_to_virt(dma_pte_addr(pgd));
2079                        if (!dma_pte_present(pgd))
2080                                goto out_unlock;
2081                }
2082
2083                info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2084                if (info && info->ats_supported)
2085                        translation = CONTEXT_TT_DEV_IOTLB;
2086                else
2087                        translation = CONTEXT_TT_MULTI_LEVEL;
2088
2089                context_set_address_root(context, virt_to_phys(pgd));
2090                context_set_address_width(context, iommu->agaw);
2091        } else {
2092                /*
2093                 * In pass through mode, AW must be programmed to
2094                 * indicate the largest AGAW value supported by
2095                 * hardware. And ASR is ignored by hardware.
2096                 */
2097                context_set_address_width(context, iommu->msagaw);
2098        }
2099
2100        context_set_translation_type(context, translation);
2101        context_set_fault_enable(context);
2102        context_set_present(context);
2103        domain_flush_cache(domain, context, sizeof(*context));
2104
2105        /*
2106         * It's a non-present to present mapping. If hardware doesn't cache
2107         * non-present entry we only need to flush the write-buffer. If the
2108         * _does_ cache non-present entries, then it does so in the special
2109         * domain #0, which we have to flush:
2110         */
2111        if (cap_caching_mode(iommu->cap)) {
2112                iommu->flush.flush_context(iommu, 0,
2113                                           (((u16)bus) << 8) | devfn,
2114                                           DMA_CCMD_MASK_NOBIT,
2115                                           DMA_CCMD_DEVICE_INVL);
2116                iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2117        } else {
2118                iommu_flush_write_buffer(iommu);
2119        }
2120        iommu_enable_dev_iotlb(info);
2121
2122        ret = 0;
2123
2124out_unlock:
2125        spin_unlock(&iommu->lock);
2126        spin_unlock_irqrestore(&device_domain_lock, flags);
2127
2128        return ret;
2129}
2130
2131struct domain_context_mapping_data {
2132        struct dmar_domain *domain;
2133        struct intel_iommu *iommu;
2134};
2135
2136static int domain_context_mapping_cb(struct pci_dev *pdev,
2137                                     u16 alias, void *opaque)
2138{
2139        struct domain_context_mapping_data *data = opaque;
2140
2141        return domain_context_mapping_one(data->domain, data->iommu,
2142                                          PCI_BUS_NUM(alias), alias & 0xff);
2143}
2144
2145static int
2146domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2147{
2148        struct intel_iommu *iommu;
2149        u8 bus, devfn;
2150        struct domain_context_mapping_data data;
2151
2152        iommu = device_to_iommu(dev, &bus, &devfn);
2153        if (!iommu)
2154                return -ENODEV;
2155
2156        if (!dev_is_pci(dev))
2157                return domain_context_mapping_one(domain, iommu, bus, devfn);
2158
2159        data.domain = domain;
2160        data.iommu = iommu;
2161
2162        return pci_for_each_dma_alias(to_pci_dev(dev),
2163                                      &domain_context_mapping_cb, &data);
2164}
2165
2166static int domain_context_mapped_cb(struct pci_dev *pdev,
2167                                    u16 alias, void *opaque)
2168{
2169        struct intel_iommu *iommu = opaque;
2170
2171        return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2172}
2173
2174static int domain_context_mapped(struct device *dev)
2175{
2176        struct intel_iommu *iommu;
2177        u8 bus, devfn;
2178
2179        iommu = device_to_iommu(dev, &bus, &devfn);
2180        if (!iommu)
2181                return -ENODEV;
2182
2183        if (!dev_is_pci(dev))
2184                return device_context_mapped(iommu, bus, devfn);
2185
2186        return !pci_for_each_dma_alias(to_pci_dev(dev),
2187                                       domain_context_mapped_cb, iommu);
2188}
2189
2190/* Returns a number of VTD pages, but aligned to MM page size */
2191static inline unsigned long aligned_nrpages(unsigned long host_addr,
2192                                            size_t size)
2193{
2194        host_addr &= ~PAGE_MASK;
2195        return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2196}
2197
2198/* Return largest possible superpage level for a given mapping */
2199static inline int hardware_largepage_caps(struct dmar_domain *domain,
2200                                          unsigned long iov_pfn,
2201                                          unsigned long phy_pfn,
2202                                          unsigned long pages)
2203{
2204        int support, level = 1;
2205        unsigned long pfnmerge;
2206
2207        support = domain->iommu_superpage;
2208
2209        /* To use a large page, the virtual *and* physical addresses
2210           must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2211           of them will mean we have to use smaller pages. So just
2212           merge them and check both at once. */
2213        pfnmerge = iov_pfn | phy_pfn;
2214
2215        while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2216                pages >>= VTD_STRIDE_SHIFT;
2217                if (!pages)
2218                        break;
2219                pfnmerge >>= VTD_STRIDE_SHIFT;
2220                level++;
2221                support--;
2222        }
2223        return level;
2224}
2225
2226static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2227                            struct scatterlist *sg, unsigned long phys_pfn,
2228                            unsigned long nr_pages, int prot)
2229{
2230        struct dma_pte *first_pte = NULL, *pte = NULL;
2231        phys_addr_t uninitialized_var(pteval);
2232        unsigned long sg_res = 0;
2233        unsigned int largepage_lvl = 0;
2234        unsigned long lvl_pages = 0;
2235
2236        BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2237
2238        if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2239                return -EINVAL;
2240
2241        prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2242
2243        if (!sg) {
2244                sg_res = nr_pages;
2245                pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2246        }
2247
2248        while (nr_pages > 0) {
2249                uint64_t tmp;
2250
2251                if (!sg_res) {
2252                        unsigned int pgoff = sg->offset & ~PAGE_MASK;
2253
2254                        sg_res = aligned_nrpages(sg->offset, sg->length);
2255                        sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
2256                        sg->dma_length = sg->length;
2257                        pteval = (sg_phys(sg) - pgoff) | prot;
2258                        phys_pfn = pteval >> VTD_PAGE_SHIFT;
2259                }
2260
2261                if (!pte) {
2262                        largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2263
2264                        first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2265                        if (!pte)
2266                                return -ENOMEM;
2267                        /* It is large page*/
2268                        if (largepage_lvl > 1) {
2269                                unsigned long nr_superpages, end_pfn;
2270
2271                                pteval |= DMA_PTE_LARGE_PAGE;
2272                                lvl_pages = lvl_to_nr_pages(largepage_lvl);
2273
2274                                nr_superpages = sg_res / lvl_pages;
2275                                end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2276
2277                                /*
2278                                 * Ensure that old small page tables are
2279                                 * removed to make room for superpage(s).
2280                                 * We're adding new large pages, so make sure
2281                                 * we don't remove their parent tables.
2282                                 */
2283                                dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
2284                                                       largepage_lvl + 1);
2285                        } else {
2286                                pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2287                        }
2288
2289                }
2290                /* We don't need lock here, nobody else
2291                 * touches the iova range
2292                 */
2293                tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2294                if (tmp) {
2295                        static int dumps = 5;
2296                        pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2297                                iov_pfn, tmp, (unsigned long long)pteval);
2298                        if (dumps) {
2299                                dumps--;
2300                                debug_dma_dump_mappings(NULL);
2301                        }
2302                        WARN_ON(1);
2303                }
2304
2305                lvl_pages = lvl_to_nr_pages(largepage_lvl);
2306
2307                BUG_ON(nr_pages < lvl_pages);
2308                BUG_ON(sg_res < lvl_pages);
2309
2310                nr_pages -= lvl_pages;
2311                iov_pfn += lvl_pages;
2312                phys_pfn += lvl_pages;
2313                pteval += lvl_pages * VTD_PAGE_SIZE;
2314                sg_res -= lvl_pages;
2315
2316                /* If the next PTE would be the first in a new page, then we
2317                   need to flush the cache on the entries we've just written.
2318                   And then we'll need to recalculate 'pte', so clear it and
2319                   let it get set again in the if (!pte) block above.
2320
2321                   If we're done (!nr_pages) we need to flush the cache too.
2322
2323                   Also if we've been setting superpages, we may need to
2324                   recalculate 'pte' and switch back to smaller pages for the
2325                   end of the mapping, if the trailing size is not enough to
2326                   use another superpage (i.e. sg_res < lvl_pages). */
2327                pte++;
2328                if (!nr_pages || first_pte_in_page(pte) ||
2329                    (largepage_lvl > 1 && sg_res < lvl_pages)) {
2330                        domain_flush_cache(domain, first_pte,
2331                                           (void *)pte - (void *)first_pte);
2332                        pte = NULL;
2333                }
2334
2335                if (!sg_res && nr_pages)
2336                        sg = sg_next(sg);
2337        }
2338        return 0;
2339}
2340
2341static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2342                                    struct scatterlist *sg, unsigned long nr_pages,
2343                                    int prot)
2344{
2345        return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2346}
2347
2348static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2349                                     unsigned long phys_pfn, unsigned long nr_pages,
2350                                     int prot)
2351{
2352        return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2353}
2354
2355static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2356{
2357        unsigned long flags;
2358        struct context_entry *context;
2359        u16 did_old;
2360
2361        if (!iommu)
2362                return;
2363
2364        spin_lock_irqsave(&iommu->lock, flags);
2365        context = iommu_context_addr(iommu, bus, devfn, 0);
2366        if (!context) {
2367                spin_unlock_irqrestore(&iommu->lock, flags);
2368                return;
2369        }
2370        did_old = context_domain_id(context);
2371        context_clear_entry(context);
2372        __iommu_flush_cache(iommu, context, sizeof(*context));
2373        spin_unlock_irqrestore(&iommu->lock, flags);
2374        iommu->flush.flush_context(iommu,
2375                                   did_old,
2376                                   (((u16)bus) << 8) | devfn,
2377                                   DMA_CCMD_MASK_NOBIT,
2378                                   DMA_CCMD_DEVICE_INVL);
2379        iommu->flush.flush_iotlb(iommu,
2380                                 did_old,
2381                                 0,
2382                                 0,
2383                                 DMA_TLB_DSI_FLUSH);
2384}
2385
2386static inline void unlink_domain_info(struct device_domain_info *info)
2387{
2388        assert_spin_locked(&device_domain_lock);
2389        list_del(&info->link);
2390        list_del(&info->global);
2391        if (info->dev)
2392                info->dev->archdata.iommu = NULL;
2393}
2394
2395static void domain_remove_dev_info(struct dmar_domain *domain)
2396{
2397        struct device_domain_info *info, *tmp;
2398        unsigned long flags;
2399
2400        spin_lock_irqsave(&device_domain_lock, flags);
2401        list_for_each_entry_safe(info, tmp, &domain->devices, link)
2402                __dmar_remove_one_dev_info(info);
2403        spin_unlock_irqrestore(&device_domain_lock, flags);
2404}
2405
2406/*
2407 * find_domain
2408 * Note: we use struct device->archdata.iommu stores the info
2409 */
2410static struct dmar_domain *find_domain(struct device *dev)
2411{
2412        struct device_domain_info *info;
2413
2414        /* No lock here, assumes no domain exit in normal case */
2415        info = dev->archdata.iommu;
2416        if (likely(info))
2417                return info->domain;
2418        return NULL;
2419}
2420
2421static inline struct device_domain_info *
2422dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2423{
2424        struct device_domain_info *info;
2425
2426        list_for_each_entry(info, &device_domain_list, global)
2427                if (info->iommu->segment == segment && info->bus == bus &&
2428                    info->devfn == devfn)
2429                        return info;
2430
2431        return NULL;
2432}
2433
2434static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2435                                                    int bus, int devfn,
2436                                                    struct device *dev,
2437                                                    struct dmar_domain *domain)
2438{
2439        struct dmar_domain *found = NULL;
2440        struct device_domain_info *info;
2441        unsigned long flags;
2442        int ret;
2443
2444        info = alloc_devinfo_mem();
2445        if (!info)
2446                return NULL;
2447
2448        info->bus = bus;
2449        info->devfn = devfn;
2450        info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2451        info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2452        info->ats_qdep = 0;
2453        info->dev = dev;
2454        info->domain = domain;
2455        info->iommu = iommu;
2456
2457        if (dev && dev_is_pci(dev)) {
2458                struct pci_dev *pdev = to_pci_dev(info->dev);
2459
2460                if (ecap_dev_iotlb_support(iommu->ecap) &&
2461                    pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2462                    dmar_find_matched_atsr_unit(pdev))
2463                        info->ats_supported = 1;
2464
2465                if (ecs_enabled(iommu)) {
2466                        if (pasid_enabled(iommu)) {
2467                                int features = pci_pasid_features(pdev);
2468                                if (features >= 0)
2469                                        info->pasid_supported = features | 1;
2470                        }
2471
2472                        if (info->ats_supported && ecap_prs(iommu->ecap) &&
2473                            pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2474                                info->pri_supported = 1;
2475                }
2476        }
2477
2478        spin_lock_irqsave(&device_domain_lock, flags);
2479        if (dev)
2480                found = find_domain(dev);
2481
2482        if (!found) {
2483                struct device_domain_info *info2;
2484                info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2485                if (info2) {
2486                        found      = info2->domain;
2487                        info2->dev = dev;
2488                }
2489        }
2490
2491        if (found) {
2492                spin_unlock_irqrestore(&device_domain_lock, flags);
2493                free_devinfo_mem(info);
2494                /* Caller must free the original domain */
2495                return found;
2496        }
2497
2498        spin_lock(&iommu->lock);
2499        ret = domain_attach_iommu(domain, iommu);
2500        spin_unlock(&iommu->lock);
2501
2502        if (ret) {
2503                spin_unlock_irqrestore(&device_domain_lock, flags);
2504                free_devinfo_mem(info);
2505                return NULL;
2506        }
2507
2508        list_add(&info->link, &domain->devices);
2509        list_add(&info->global, &device_domain_list);
2510        if (dev)
2511                dev->archdata.iommu = info;
2512        spin_unlock_irqrestore(&device_domain_lock, flags);
2513
2514        if (dev && domain_context_mapping(domain, dev)) {
2515                pr_err("Domain context map for %s failed\n", dev_name(dev));
2516                dmar_remove_one_dev_info(domain, dev);
2517                return NULL;
2518        }
2519
2520        return domain;
2521}
2522
2523static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2524{
2525        *(u16 *)opaque = alias;
2526        return 0;
2527}
2528
2529static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2530{
2531        struct device_domain_info *info = NULL;
2532        struct dmar_domain *domain = NULL;
2533        struct intel_iommu *iommu;
2534        u16 req_id, dma_alias;
2535        unsigned long flags;
2536        u8 bus, devfn;
2537
2538        iommu = device_to_iommu(dev, &bus, &devfn);
2539        if (!iommu)
2540                return NULL;
2541
2542        req_id = ((u16)bus << 8) | devfn;
2543
2544        if (dev_is_pci(dev)) {
2545                struct pci_dev *pdev = to_pci_dev(dev);
2546
2547                pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2548
2549                spin_lock_irqsave(&device_domain_lock, flags);
2550                info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2551                                                      PCI_BUS_NUM(dma_alias),
2552                                                      dma_alias & 0xff);
2553                if (info) {
2554                        iommu = info->iommu;
2555                        domain = info->domain;
2556                }
2557                spin_unlock_irqrestore(&device_domain_lock, flags);
2558
2559                /* DMA alias already has a domain, use it */
2560                if (info)
2561                        goto out;
2562        }
2563
2564        /* Allocate and initialize new domain for the device */
2565        domain = alloc_domain(0);
2566        if (!domain)
2567                return NULL;
2568        if (domain_init(domain, iommu, gaw)) {
2569                domain_exit(domain);
2570                return NULL;
2571        }
2572
2573out:
2574
2575        return domain;
2576}
2577
2578static struct dmar_domain *set_domain_for_dev(struct device *dev,
2579                                              struct dmar_domain *domain)
2580{
2581        struct intel_iommu *iommu;
2582        struct dmar_domain *tmp;
2583        u16 req_id, dma_alias;
2584        u8 bus, devfn;
2585
2586        iommu = device_to_iommu(dev, &bus, &devfn);
2587        if (!iommu)
2588                return NULL;
2589
2590        req_id = ((u16)bus << 8) | devfn;
2591
2592        if (dev_is_pci(dev)) {
2593                struct pci_dev *pdev = to_pci_dev(dev);
2594
2595                pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2596
2597                /* register PCI DMA alias device */
2598                if (req_id != dma_alias) {
2599                        tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2600                                        dma_alias & 0xff, NULL, domain);
2601
2602                        if (!tmp || tmp != domain)
2603                                return tmp;
2604                }
2605        }
2606
2607        tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2608        if (!tmp || tmp != domain)
2609                return tmp;
2610
2611        return domain;
2612}
2613
2614static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2615{
2616        struct dmar_domain *domain, *tmp;
2617
2618        domain = find_domain(dev);
2619        if (domain)
2620                goto out;
2621
2622        domain = find_or_alloc_domain(dev, gaw);
2623        if (!domain)
2624                goto out;
2625
2626        tmp = set_domain_for_dev(dev, domain);
2627        if (!tmp || domain != tmp) {
2628                domain_exit(domain);
2629                domain = tmp;
2630        }
2631
2632out:
2633
2634        return domain;
2635}
2636
2637static int iommu_domain_identity_map(struct dmar_domain *domain,
2638                                     unsigned long long start,
2639                                     unsigned long long end)
2640{
2641        unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2642        unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2643
2644        if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2645                          dma_to_mm_pfn(last_vpfn))) {
2646                pr_err("Reserving iova failed\n");
2647                return -ENOMEM;
2648        }
2649
2650        pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2651        /*
2652         * RMRR range might have overlap with physical memory range,
2653         * clear it first
2654         */
2655        dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2656
2657        return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2658                                  last_vpfn - first_vpfn + 1,
2659                                  DMA_PTE_READ|DMA_PTE_WRITE);
2660}
2661
2662static int domain_prepare_identity_map(struct device *dev,
2663                                       struct dmar_domain *domain,
2664                                       unsigned long long start,
2665                                       unsigned long long end)
2666{
2667        /* For _hardware_ passthrough, don't bother. But for software
2668           passthrough, we do it anyway -- it may indicate a memory
2669           range which is reserved in E820, so which didn't get set
2670           up to start with in si_domain */
2671        if (domain == si_domain && hw_pass_through) {
2672                pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2673                        dev_name(dev), start, end);
2674                return 0;
2675        }
2676
2677        pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2678                dev_name(dev), start, end);
2679
2680        if (end < start) {
2681                WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2682                        "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2683                        dmi_get_system_info(DMI_BIOS_VENDOR),
2684                        dmi_get_system_info(DMI_BIOS_VERSION),
2685                     dmi_get_system_info(DMI_PRODUCT_VERSION));
2686                return -EIO;
2687        }
2688
2689        if (end >> agaw_to_width(domain->agaw)) {
2690                WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2691                     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2692                     agaw_to_width(domain->agaw),
2693                     dmi_get_system_info(DMI_BIOS_VENDOR),
2694                     dmi_get_system_info(DMI_BIOS_VERSION),
2695                     dmi_get_system_info(DMI_PRODUCT_VERSION));
2696                return -EIO;
2697        }
2698
2699        return iommu_domain_identity_map(domain, start, end);
2700}
2701
2702static int iommu_prepare_identity_map(struct device *dev,
2703                                      unsigned long long start,
2704                                      unsigned long long end)
2705{
2706        struct dmar_domain *domain;
2707        int ret;
2708
2709        domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2710        if (!domain)
2711                return -ENOMEM;
2712
2713        ret = domain_prepare_identity_map(dev, domain, start, end);
2714        if (ret)
2715                domain_exit(domain);
2716
2717        return ret;
2718}
2719
2720static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2721                                         struct device *dev)
2722{
2723        if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2724                return 0;
2725        return iommu_prepare_identity_map(dev, rmrr->base_address,
2726                                          rmrr->end_address);
2727}
2728
2729#ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2730static inline void iommu_prepare_isa(void)
2731{
2732        struct pci_dev *pdev;
2733        int ret;
2734
2735        pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2736        if (!pdev)
2737                return;
2738
2739        pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2740        ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2741
2742        if (ret)
2743                pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2744
2745        pci_dev_put(pdev);
2746}
2747#else
2748static inline void iommu_prepare_isa(void)
2749{
2750        return;
2751}
2752#endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2753
2754static int md_domain_init(struct dmar_domain *domain, int guest_width);
2755
2756static int __init si_domain_init(int hw)
2757{
2758        int nid, ret = 0;
2759
2760        si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2761        if (!si_domain)
2762                return -EFAULT;
2763
2764        if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2765                domain_exit(si_domain);
2766                return -EFAULT;
2767        }
2768
2769        pr_debug("Identity mapping domain allocated\n");
2770
2771        if (hw)
2772                return 0;
2773
2774        for_each_online_node(nid) {
2775                unsigned long start_pfn, end_pfn;
2776                int i;
2777
2778                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2779                        ret = iommu_domain_identity_map(si_domain,
2780                                        PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2781                        if (ret)
2782                                return ret;
2783                }
2784        }
2785
2786        return 0;
2787}
2788
2789static int identity_mapping(struct device *dev)
2790{
2791        struct device_domain_info *info;
2792
2793        if (likely(!iommu_identity_mapping))
2794                return 0;
2795
2796        info = dev->archdata.iommu;
2797        if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2798                return (info->domain == si_domain);
2799
2800        return 0;
2801}
2802
2803static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2804{
2805        struct dmar_domain *ndomain;
2806        struct intel_iommu *iommu;
2807        u8 bus, devfn;
2808
2809        iommu = device_to_iommu(dev, &bus, &devfn);
2810        if (!iommu)
2811                return -ENODEV;
2812
2813        ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2814        if (ndomain != domain)
2815                return -EBUSY;
2816
2817        return 0;
2818}
2819
2820static bool device_has_rmrr(struct device *dev)
2821{
2822        struct dmar_rmrr_unit *rmrr;
2823        struct device *tmp;
2824        int i;
2825
2826        rcu_read_lock();
2827        for_each_rmrr_units(rmrr) {
2828                /*
2829                 * Return TRUE if this RMRR contains the device that
2830                 * is passed in.
2831                 */
2832                for_each_active_dev_scope(rmrr->devices,
2833                                          rmrr->devices_cnt, i, tmp)
2834                        if (tmp == dev) {
2835                                rcu_read_unlock();
2836                                return true;
2837                        }
2838        }
2839        rcu_read_unlock();
2840        return false;
2841}
2842
2843/*
2844 * There are a couple cases where we need to restrict the functionality of
2845 * devices associated with RMRRs.  The first is when evaluating a device for
2846 * identity mapping because problems exist when devices are moved in and out
2847 * of domains and their respective RMRR information is lost.  This means that
2848 * a device with associated RMRRs will never be in a "passthrough" domain.
2849 * The second is use of the device through the IOMMU API.  This interface
2850 * expects to have full control of the IOVA space for the device.  We cannot
2851 * satisfy both the requirement that RMRR access is maintained and have an
2852 * unencumbered IOVA space.  We also have no ability to quiesce the device's
2853 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2854 * We therefore prevent devices associated with an RMRR from participating in
2855 * the IOMMU API, which eliminates them from device assignment.
2856 *
2857 * In both cases we assume that PCI USB devices with RMRRs have them largely
2858 * for historical reasons and that the RMRR space is not actively used post
2859 * boot.  This exclusion may change if vendors begin to abuse it.
2860 *
2861 * The same exception is made for graphics devices, with the requirement that
2862 * any use of the RMRR regions will be torn down before assigning the device
2863 * to a guest.
2864 */
2865static bool device_is_rmrr_locked(struct device *dev)
2866{
2867        if (!device_has_rmrr(dev))
2868                return false;
2869
2870        if (dev_is_pci(dev)) {
2871                struct pci_dev *pdev = to_pci_dev(dev);
2872
2873                if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2874                        return false;
2875        }
2876
2877        return true;
2878}
2879
2880static int iommu_should_identity_map(struct device *dev, int startup)
2881{
2882
2883        if (dev_is_pci(dev)) {
2884                struct pci_dev *pdev = to_pci_dev(dev);
2885
2886                if (device_is_rmrr_locked(dev))
2887                        return 0;
2888
2889                if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2890                        return 1;
2891
2892                if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2893                        return 1;
2894
2895                if (!(iommu_identity_mapping & IDENTMAP_ALL))
2896                        return 0;
2897
2898                /*
2899                 * We want to start off with all devices in the 1:1 domain, and
2900                 * take them out later if we find they can't access all of memory.
2901                 *
2902                 * However, we can't do this for PCI devices behind bridges,
2903                 * because all PCI devices behind the same bridge will end up
2904                 * with the same source-id on their transactions.
2905                 *
2906                 * Practically speaking, we can't change things around for these
2907                 * devices at run-time, because we can't be sure there'll be no
2908                 * DMA transactions in flight for any of their siblings.
2909                 *
2910                 * So PCI devices (unless they're on the root bus) as well as
2911                 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2912                 * the 1:1 domain, just in _case_ one of their siblings turns out
2913                 * not to be able to map all of memory.
2914                 */
2915                if (!pci_is_pcie(pdev)) {
2916                        if (!pci_is_root_bus(pdev->bus))
2917                                return 0;
2918                        if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2919                                return 0;
2920                } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2921                        return 0;
2922        } else {
2923                if (device_has_rmrr(dev))
2924                        return 0;
2925        }
2926
2927        /*
2928         * At boot time, we don't yet know if devices will be 64-bit capable.
2929         * Assume that they will — if they turn out not to be, then we can
2930         * take them out of the 1:1 domain later.
2931         */
2932        if (!startup) {
2933                /*
2934                 * If the device's dma_mask is less than the system's memory
2935                 * size then this is not a candidate for identity mapping.
2936                 */
2937                u64 dma_mask = *dev->dma_mask;
2938
2939                if (dev->coherent_dma_mask &&
2940                    dev->coherent_dma_mask < dma_mask)
2941                        dma_mask = dev->coherent_dma_mask;
2942
2943                return dma_mask >= dma_get_required_mask(dev);
2944        }
2945
2946        return 1;
2947}
2948
2949static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2950{
2951        int ret;
2952
2953        if (!iommu_should_identity_map(dev, 1))
2954                return 0;
2955
2956        ret = domain_add_dev_info(si_domain, dev);
2957        if (!ret)
2958                pr_info("%s identity mapping for device %s\n",
2959                        hw ? "Hardware" : "Software", dev_name(dev));
2960        else if (ret == -ENODEV)
2961                /* device not associated with an iommu */
2962                ret = 0;
2963
2964        return ret;
2965}
2966
2967
2968static int __init iommu_prepare_static_identity_mapping(int hw)
2969{
2970        struct pci_dev *pdev = NULL;
2971        struct dmar_drhd_unit *drhd;
2972        struct intel_iommu *iommu;
2973        struct device *dev;
2974        int i;
2975        int ret = 0;
2976
2977        for_each_pci_dev(pdev) {
2978                ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2979                if (ret)
2980                        return ret;
2981        }
2982
2983        for_each_active_iommu(iommu, drhd)
2984                for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2985                        struct acpi_device_physical_node *pn;
2986                        struct acpi_device *adev;
2987
2988                        if (dev->bus != &acpi_bus_type)
2989                                continue;
2990
2991                        adev= to_acpi_device(dev);
2992                        mutex_lock(&adev->physical_node_lock);
2993                        list_for_each_entry(pn, &adev->physical_node_list, node) {
2994                                ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2995                                if (ret)
2996                                        break;
2997                        }
2998                        mutex_unlock(&adev->physical_node_lock);
2999                        if (ret)
3000                                return ret;
3001                }
3002
3003        return 0;
3004}
3005
3006static void intel_iommu_init_qi(struct intel_iommu *iommu)
3007{
3008        /*
3009         * Start from the sane iommu hardware state.
3010         * If the queued invalidation is already initialized by us
3011         * (for example, while enabling interrupt-remapping) then
3012         * we got the things already rolling from a sane state.
3013         */
3014        if (!iommu->qi) {
3015                /*
3016                 * Clear any previous faults.
3017                 */
3018                dmar_fault(-1, iommu);
3019                /*
3020                 * Disable queued invalidation if supported and already enabled
3021                 * before OS handover.
3022                 */
3023                dmar_disable_qi(iommu);
3024        }
3025
3026        if (dmar_enable_qi(iommu)) {
3027                /*
3028                 * Queued Invalidate not enabled, use Register Based Invalidate
3029                 */
3030                iommu->flush.flush_context = __iommu_flush_context;
3031                iommu->flush.flush_iotlb = __iommu_flush_iotlb;
3032                pr_info("%s: Using Register based invalidation\n",
3033                        iommu->name);
3034        } else {
3035                iommu->flush.flush_context = qi_flush_context;
3036                iommu->flush.flush_iotlb = qi_flush_iotlb;
3037                pr_info("%s: Using Queued invalidation\n", iommu->name);
3038        }
3039}
3040
3041static int copy_context_table(struct intel_iommu *iommu,
3042                              struct root_entry *old_re,
3043                              struct context_entry **tbl,
3044                              int bus, bool ext)
3045{
3046        int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
3047        struct context_entry *new_ce = NULL, ce;
3048        struct context_entry *old_ce = NULL;
3049        struct root_entry re;
3050        phys_addr_t old_ce_phys;
3051
3052        tbl_idx = ext ? bus * 2 : bus;
3053        memcpy(&re, old_re, sizeof(re));
3054
3055        for (devfn = 0; devfn < 256; devfn++) {
3056                /* First calculate the correct index */
3057                idx = (ext ? devfn * 2 : devfn) % 256;
3058
3059                if (idx == 0) {
3060                        /* First save what we may have and clean up */
3061                        if (new_ce) {
3062                                tbl[tbl_idx] = new_ce;
3063                                __iommu_flush_cache(iommu, new_ce,
3064                                                    VTD_PAGE_SIZE);
3065                                pos = 1;
3066                        }
3067
3068                        if (old_ce)
3069                                iounmap(old_ce);
3070
3071                        ret = 0;
3072                        if (devfn < 0x80)
3073                                old_ce_phys = root_entry_lctp(&re);
3074                        else
3075                                old_ce_phys = root_entry_uctp(&re);
3076
3077                        if (!old_ce_phys) {
3078                                if (ext && devfn == 0) {
3079                                        /* No LCTP, try UCTP */
3080                                        devfn = 0x7f;
3081                                        continue;
3082                                } else {
3083                                        goto out;
3084                                }
3085                        }
3086
3087                        ret = -ENOMEM;
3088                        old_ce = memremap(old_ce_phys, PAGE_SIZE,
3089                                        MEMREMAP_WB);
3090                        if (!old_ce)
3091                                goto out;
3092
3093                        new_ce = alloc_pgtable_page(iommu->node);
3094                        if (!new_ce)
3095                                goto out_unmap;
3096
3097                        ret = 0;
3098                }
3099
3100                /* Now copy the context entry */
3101                memcpy(&ce, old_ce + idx, sizeof(ce));
3102
3103                if (!__context_present(&ce))
3104                        continue;
3105
3106                did = context_domain_id(&ce);
3107                if (did >= 0 && did < cap_ndoms(iommu->cap))
3108                        set_bit(did, iommu->domain_ids);
3109
3110                /*
3111                 * We need a marker for copied context entries. This
3112                 * marker needs to work for the old format as well as
3113                 * for extended context entries.
3114                 *
3115                 * Bit 67 of the context entry is used. In the old
3116                 * format this bit is available to software, in the
3117                 * extended format it is the PGE bit, but PGE is ignored
3118                 * by HW if PASIDs are disabled (and thus still
3119                 * available).
3120                 *
3121                 * So disable PASIDs first and then mark the entry
3122                 * copied. This means that we don't copy PASID
3123                 * translations from the old kernel, but this is fine as
3124                 * faults there are not fatal.
3125                 */
3126                context_clear_pasid_enable(&ce);
3127                context_set_copied(&ce);
3128
3129                new_ce[idx] = ce;
3130        }
3131
3132        tbl[tbl_idx + pos] = new_ce;
3133
3134        __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3135
3136out_unmap:
3137        memunmap(old_ce);
3138
3139out:
3140        return ret;
3141}
3142
3143static int copy_translation_tables(struct intel_iommu *iommu)
3144{
3145        struct context_entry **ctxt_tbls;
3146        struct root_entry *old_rt;
3147        phys_addr_t old_rt_phys;
3148        int ctxt_table_entries;
3149        unsigned long flags;
3150        u64 rtaddr_reg;
3151        int bus, ret;
3152        bool new_ext, ext;
3153
3154        rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3155        ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3156        new_ext    = !!ecap_ecs(iommu->ecap);
3157
3158        /*
3159         * The RTT bit can only be changed when translation is disabled,
3160         * but disabling translation means to open a window for data
3161         * corruption. So bail out and don't copy anything if we would
3162         * have to change the bit.
3163         */
3164        if (new_ext != ext)
3165                return -EINVAL;
3166
3167        old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3168        if (!old_rt_phys)
3169                return -EINVAL;
3170
3171        old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3172        if (!old_rt)
3173                return -ENOMEM;
3174
3175        /* This is too big for the stack - allocate it from slab */
3176        ctxt_table_entries = ext ? 512 : 256;
3177        ret = -ENOMEM;
3178        ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3179        if (!ctxt_tbls)
3180                goto out_unmap;
3181
3182        for (bus = 0; bus < 256; bus++) {
3183                ret = copy_context_table(iommu, &old_rt[bus],
3184                                         ctxt_tbls, bus, ext);
3185                if (ret) {
3186                        pr_err("%s: Failed to copy context table for bus %d\n",
3187                                iommu->name, bus);
3188                        continue;
3189                }
3190        }
3191
3192        spin_lock_irqsave(&iommu->lock, flags);
3193
3194        /* Context tables are copied, now write them to the root_entry table */
3195        for (bus = 0; bus < 256; bus++) {
3196                int idx = ext ? bus * 2 : bus;
3197                u64 val;
3198
3199                if (ctxt_tbls[idx]) {
3200                        val = virt_to_phys(ctxt_tbls[idx]) | 1;
3201                        iommu->root_entry[bus].lo = val;
3202                }
3203
3204                if (!ext || !ctxt_tbls[idx + 1])
3205                        continue;
3206
3207                val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3208                iommu->root_entry[bus].hi = val;
3209        }
3210
3211        spin_unlock_irqrestore(&iommu->lock, flags);
3212
3213        kfree(ctxt_tbls);
3214
3215        __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3216
3217        ret = 0;
3218
3219out_unmap:
3220        memunmap(old_rt);
3221
3222        return ret;
3223}
3224
3225static int __init init_dmars(void)
3226{
3227        struct dmar_drhd_unit *drhd;
3228        struct dmar_rmrr_unit *rmrr;
3229        bool copied_tables = false;
3230        struct device *dev;
3231        struct intel_iommu *iommu;
3232        int i, ret;
3233
3234        /*
3235         * for each drhd
3236         *    allocate root
3237         *    initialize and program root entry to not present
3238         * endfor
3239         */
3240        for_each_drhd_unit(drhd) {
3241                /*
3242                 * lock not needed as this is only incremented in the single
3243                 * threaded kernel __init code path all other access are read
3244                 * only
3245                 */
3246                if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3247                        g_num_of_iommus++;
3248                        continue;
3249                }
3250                pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3251        }
3252
3253        /* Preallocate enough resources for IOMMU hot-addition */
3254        if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3255                g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3256
3257        g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3258                        GFP_KERNEL);
3259        if (!g_iommus) {
3260                pr_err("Allocating global iommu array failed\n");
3261                ret = -ENOMEM;
3262                goto error;
3263        }
3264
3265        for_each_active_iommu(iommu, drhd) {
3266                g_iommus[iommu->seq_id] = iommu;
3267
3268                intel_iommu_init_qi(iommu);
3269
3270                ret = iommu_init_domains(iommu);
3271                if (ret)
3272                        goto free_iommu;
3273
3274                init_translation_status(iommu);
3275
3276                if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3277                        iommu_disable_translation(iommu);
3278                        clear_translation_pre_enabled(iommu);
3279                        pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3280                                iommu->name);
3281                }
3282
3283                /*
3284                 * TBD:
3285                 * we could share the same root & context tables
3286                 * among all IOMMU's. Need to Split it later.
3287                 */
3288                ret = iommu_alloc_root_entry(iommu);
3289                if (ret)
3290                        goto free_iommu;
3291
3292                if (translation_pre_enabled(iommu)) {
3293                        pr_info("Translation already enabled - trying to copy translation structures\n");
3294
3295                        ret = copy_translation_tables(iommu);
3296                        if (ret) {
3297                                /*
3298                                 * We found the IOMMU with translation
3299                                 * enabled - but failed to copy over the
3300                                 * old root-entry table. Try to proceed
3301                                 * by disabling translation now and
3302                                 * allocating a clean root-entry table.
3303                                 * This might cause DMAR faults, but
3304                                 * probably the dump will still succeed.
3305                                 */
3306                                pr_err("Failed to copy translation tables from previous kernel for %s\n",
3307                                       iommu->name);
3308                                iommu_disable_translation(iommu);
3309                                clear_translation_pre_enabled(iommu);
3310                        } else {
3311                                pr_info("Copied translation tables from previous kernel for %s\n",
3312                                        iommu->name);
3313                                copied_tables = true;
3314                        }
3315                }
3316
3317                if (!ecap_pass_through(iommu->ecap))
3318                        hw_pass_through = 0;
3319#ifdef CONFIG_INTEL_IOMMU_SVM
3320                if (pasid_enabled(iommu))
3321                        intel_svm_alloc_pasid_tables(iommu);
3322#endif
3323        }
3324
3325        /*
3326         * Now that qi is enabled on all iommus, set the root entry and flush
3327         * caches. This is required on some Intel X58 chipsets, otherwise the
3328         * flush_context function will loop forever and the boot hangs.
3329         */
3330        for_each_active_iommu(iommu, drhd) {
3331                iommu_flush_write_buffer(iommu);
3332                iommu_set_root_entry(iommu);
3333                iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3334                iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3335        }
3336
3337        if (iommu_pass_through)
3338                iommu_identity_mapping |= IDENTMAP_ALL;
3339
3340#ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3341        iommu_identity_mapping |= IDENTMAP_GFX;
3342#endif
3343
3344        check_tylersburg_isoch();
3345
3346        if (iommu_identity_mapping) {
3347                ret = si_domain_init(hw_pass_through);
3348                if (ret)
3349                        goto free_iommu;
3350        }
3351
3352
3353        /*
3354         * If we copied translations from a previous kernel in the kdump
3355         * case, we can not assign the devices to domains now, as that
3356         * would eliminate the old mappings. So skip this part and defer
3357         * the assignment to device driver initialization time.
3358         */
3359        if (copied_tables)
3360                goto domains_done;
3361
3362        /*
3363         * If pass through is not set or not enabled, setup context entries for
3364         * identity mappings for rmrr, gfx, and isa and may fall back to static
3365         * identity mapping if iommu_identity_mapping is set.
3366         */
3367        if (iommu_identity_mapping) {
3368                ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3369                if (ret) {
3370                        pr_crit("Failed to setup IOMMU pass-through\n");
3371                        goto free_iommu;
3372                }
3373        }
3374        /*
3375         * For each rmrr
3376         *   for each dev attached to rmrr
3377         *   do
3378         *     locate drhd for dev, alloc domain for dev
3379         *     allocate free domain
3380         *     allocate page table entries for rmrr
3381         *     if context not allocated for bus
3382         *           allocate and init context
3383         *           set present in root table for this bus
3384         *     init context with domain, translation etc
3385         *    endfor
3386         * endfor
3387         */
3388        pr_info("Setting RMRR:\n");
3389        for_each_rmrr_units(rmrr) {
3390                /* some BIOS lists non-exist devices in DMAR table. */
3391                for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3392                                          i, dev) {
3393                        ret = iommu_prepare_rmrr_dev(rmrr, dev);
3394                        if (ret)
3395                                pr_err("Mapping reserved region failed\n");
3396                }
3397        }
3398
3399        iommu_prepare_isa();
3400
3401domains_done:
3402
3403        /*
3404         * for each drhd
3405         *   enable fault log
3406         *   global invalidate context cache
3407         *   global invalidate iotlb
3408         *   enable translation
3409         */
3410        for_each_iommu(iommu, drhd) {
3411                if (drhd->ignored) {
3412                        /*
3413                         * we always have to disable PMRs or DMA may fail on
3414                         * this device
3415                         */
3416                        if (force_on)
3417                                iommu_disable_protect_mem_regions(iommu);
3418                        continue;
3419                }
3420
3421                iommu_flush_write_buffer(iommu);
3422
3423#ifdef CONFIG_INTEL_IOMMU_SVM
3424                if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3425                        ret = intel_svm_enable_prq(iommu);
3426                        if (ret)
3427                                goto free_iommu;
3428                }
3429#endif
3430                ret = dmar_set_interrupt(iommu);
3431                if (ret)
3432                        goto free_iommu;
3433
3434                if (!translation_pre_enabled(iommu))
3435                        iommu_enable_translation(iommu);
3436
3437                iommu_disable_protect_mem_regions(iommu);
3438        }
3439
3440        return 0;
3441
3442free_iommu:
3443        for_each_active_iommu(iommu, drhd) {
3444                disable_dmar_iommu(iommu);
3445                free_dmar_iommu(iommu);
3446        }
3447
3448        kfree(g_iommus);
3449
3450error:
3451        return ret;
3452}
3453
3454/* This takes a number of _MM_ pages, not VTD pages */
3455static unsigned long intel_alloc_iova(struct device *dev,
3456                                     struct dmar_domain *domain,
3457                                     unsigned long nrpages, uint64_t dma_mask)
3458{
3459        unsigned long iova_pfn = 0;
3460
3461        /* Restrict dma_mask to the width that the iommu can handle */
3462        dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3463        /* Ensure we reserve the whole size-aligned region */
3464        nrpages = __roundup_pow_of_two(nrpages);
3465
3466        if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3467                /*
3468                 * First try to allocate an io virtual address in
3469                 * DMA_BIT_MASK(32) and if that fails then try allocating
3470                 * from higher range
3471                 */
3472                iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3473                                           IOVA_PFN(DMA_BIT_MASK(32)), false);
3474                if (iova_pfn)
3475                        return iova_pfn;
3476        }
3477        iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3478                                   IOVA_PFN(dma_mask), true);
3479        if (unlikely(!iova_pfn)) {
3480                pr_err("Allocating %ld-page iova for %s failed",
3481                       nrpages, dev_name(dev));
3482                return 0;
3483        }
3484
3485        return iova_pfn;
3486}
3487
3488static struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3489{
3490        struct dmar_domain *domain, *tmp;
3491        struct dmar_rmrr_unit *rmrr;
3492        struct device *i_dev;
3493        int i, ret;
3494
3495        domain = find_domain(dev);
3496        if (domain)
3497                goto out;
3498
3499        domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3500        if (!domain)
3501                goto out;
3502
3503        /* We have a new domain - setup possible RMRRs for the device */
3504        rcu_read_lock();
3505        for_each_rmrr_units(rmrr) {
3506                for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3507                                          i, i_dev) {
3508                        if (i_dev != dev)
3509                                continue;
3510
3511                        ret = domain_prepare_identity_map(dev, domain,
3512                                                          rmrr->base_address,
3513                                                          rmrr->end_address);
3514                        if (ret)
3515                                dev_err(dev, "Mapping reserved region failed\n");
3516                }
3517        }
3518        rcu_read_unlock();
3519
3520        tmp = set_domain_for_dev(dev, domain);
3521        if (!tmp || domain != tmp) {
3522                domain_exit(domain);
3523                domain = tmp;
3524        }
3525
3526out:
3527
3528        if (!domain)
3529                pr_err("Allocating domain for %s failed\n", dev_name(dev));
3530
3531
3532        return domain;
3533}
3534
3535/* Check if the dev needs to go through non-identity map and unmap process.*/
3536static int iommu_no_mapping(struct device *dev)
3537{
3538        int found;
3539
3540        if (iommu_dummy(dev))
3541                return 1;
3542
3543        if (!iommu_identity_mapping)
3544                return 0;
3545
3546        found = identity_mapping(dev);
3547        if (found) {
3548                if (iommu_should_identity_map(dev, 0))
3549                        return 1;
3550                else {
3551                        /*
3552                         * 32 bit DMA is removed from si_domain and fall back
3553                         * to non-identity mapping.
3554                         */
3555                        dmar_remove_one_dev_info(si_domain, dev);
3556                        pr_info("32bit %s uses non-identity mapping\n",
3557                                dev_name(dev));
3558                        return 0;
3559                }
3560        } else {
3561                /*
3562                 * In case of a detached 64 bit DMA device from vm, the device
3563                 * is put into si_domain for identity mapping.
3564                 */
3565                if (iommu_should_identity_map(dev, 0)) {
3566                        int ret;
3567                        ret = domain_add_dev_info(si_domain, dev);
3568                        if (!ret) {
3569                                pr_info("64bit %s uses identity mapping\n",
3570                                        dev_name(dev));
3571                                return 1;
3572                        }
3573                }
3574        }
3575
3576        return 0;
3577}
3578
3579static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3580                                     size_t size, int dir, u64 dma_mask)
3581{
3582        struct dmar_domain *domain;
3583        phys_addr_t start_paddr;
3584        unsigned long iova_pfn;
3585        int prot = 0;
3586        int ret;
3587        struct intel_iommu *iommu;
3588        unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3589
3590        BUG_ON(dir == DMA_NONE);
3591
3592        if (iommu_no_mapping(dev))
3593                return paddr;
3594
3595        domain = get_valid_domain_for_dev(dev);
3596        if (!domain)
3597                return 0;
3598
3599        iommu = domain_get_iommu(domain);
3600        size = aligned_nrpages(paddr, size);
3601
3602        iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3603        if (!iova_pfn)
3604                goto error;
3605
3606        /*
3607         * Check if DMAR supports zero-length reads on write only
3608         * mappings..
3609         */
3610        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3611                        !cap_zlr(iommu->cap))
3612                prot |= DMA_PTE_READ;
3613        if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3614                prot |= DMA_PTE_WRITE;
3615        /*
3616         * paddr - (paddr + size) might be partial page, we should map the whole
3617         * page.  Note: if two part of one page are separately mapped, we
3618         * might have two guest_addr mapping to the same host paddr, but this
3619         * is not a big problem
3620         */
3621        ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3622                                 mm_to_dma_pfn(paddr_pfn), size, prot);
3623        if (ret)
3624                goto error;
3625
3626        /* it's a non-present to present mapping. Only flush if caching mode */
3627        if (cap_caching_mode(iommu->cap))
3628                iommu_flush_iotlb_psi(iommu, domain,
3629                                      mm_to_dma_pfn(iova_pfn),
3630                                      size, 0, 1);
3631        else
3632                iommu_flush_write_buffer(iommu);
3633
3634        start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3635        start_paddr += paddr & ~PAGE_MASK;
3636        return start_paddr;
3637
3638error:
3639        if (iova_pfn)
3640                free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3641        pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3642                dev_name(dev), size, (unsigned long long)paddr, dir);
3643        return 0;
3644}
3645
3646static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3647                                 unsigned long offset, size_t size,
3648                                 enum dma_data_direction dir,
3649                                 unsigned long attrs)
3650{
3651        return __intel_map_single(dev, page_to_phys(page) + offset, size,
3652                                  dir, *dev->dma_mask);
3653}
3654
3655static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3656{
3657        struct dmar_domain *domain;
3658        unsigned long start_pfn, last_pfn;
3659        unsigned long nrpages;
3660        unsigned long iova_pfn;
3661        struct intel_iommu *iommu;
3662        struct page *freelist;
3663
3664        if (iommu_no_mapping(dev))
3665                return;
3666
3667        domain = find_domain(dev);
3668        BUG_ON(!domain);
3669
3670        iommu = domain_get_iommu(domain);
3671
3672        iova_pfn = IOVA_PFN(dev_addr);
3673
3674        nrpages = aligned_nrpages(dev_addr, size);
3675        start_pfn = mm_to_dma_pfn(iova_pfn);
3676        last_pfn = start_pfn + nrpages - 1;
3677
3678        pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3679                 dev_name(dev), start_pfn, last_pfn);
3680
3681        freelist = domain_unmap(domain, start_pfn, last_pfn);
3682
3683        if (intel_iommu_strict) {
3684                iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3685                                      nrpages, !freelist, 0);
3686                /* free iova */
3687                free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3688                dma_free_pagelist(freelist);
3689        } else {
3690                queue_iova(&domain->iovad, iova_pfn, nrpages,
3691                           (unsigned long)freelist);
3692                /*
3693                 * queue up the release of the unmap to save the 1/6th of the
3694                 * cpu used up by the iotlb flush operation...
3695                 */
3696        }
3697}
3698
3699static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3700                             size_t size, enum dma_data_direction dir,
3701                             unsigned long attrs)
3702{
3703        intel_unmap(dev, dev_addr, size);
3704}
3705
3706static void *intel_alloc_coherent(struct device *dev, size_t size,
3707                                  dma_addr_t *dma_handle, gfp_t flags,
3708                                  unsigned long attrs)
3709{
3710        struct page *page = NULL;
3711        int order;
3712
3713        size = PAGE_ALIGN(size);
3714        order = get_order(size);
3715
3716        if (!iommu_no_mapping(dev))
3717                flags &= ~(GFP_DMA | GFP_DMA32);
3718        else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3719                if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3720                        flags |= GFP_DMA;
3721                else
3722                        flags |= GFP_DMA32;
3723        }
3724
3725        if (gfpflags_allow_blocking(flags)) {
3726                unsigned int count = size >> PAGE_SHIFT;
3727
3728                page = dma_alloc_from_contiguous(dev, count, order, flags);
3729                if (page && iommu_no_mapping(dev) &&
3730                    page_to_phys(page) + size > dev->coherent_dma_mask) {
3731                        dma_release_from_contiguous(dev, page, count);
3732                        page = NULL;
3733                }
3734        }
3735
3736        if (!page)
3737                page = alloc_pages(flags, order);
3738        if (!page)
3739                return NULL;
3740        memset(page_address(page), 0, size);
3741
3742        *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3743                                         DMA_BIDIRECTIONAL,
3744                                         dev->coherent_dma_mask);
3745        if (*dma_handle)
3746                return page_address(page);
3747        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3748                __free_pages(page, order);
3749
3750        return NULL;
3751}
3752
3753static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3754                                dma_addr_t dma_handle, unsigned long attrs)
3755{
3756        int order;
3757        struct page *page = virt_to_page(vaddr);
3758
3759        size = PAGE_ALIGN(size);
3760        order = get_order(size);
3761
3762        intel_unmap(dev, dma_handle, size);
3763        if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3764                __free_pages(page, order);
3765}
3766
3767static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3768                           int nelems, enum dma_data_direction dir,
3769                           unsigned long attrs)
3770{
3771        dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3772        unsigned long nrpages = 0;
3773        struct scatterlist *sg;
3774        int i;
3775
3776        for_each_sg(sglist, sg, nelems, i) {
3777                nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3778        }
3779
3780        intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3781}
3782
3783static int intel_nontranslate_map_sg(struct device *hddev,
3784        struct scatterlist *sglist, int nelems, int dir)
3785{
3786        int i;
3787        struct scatterlist *sg;
3788
3789        for_each_sg(sglist, sg, nelems, i) {
3790                BUG_ON(!sg_page(sg));
3791                sg->dma_address = sg_phys(sg);
3792                sg->dma_length = sg->length;
3793        }
3794        return nelems;
3795}
3796
3797static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3798                        enum dma_data_direction dir, unsigned long attrs)
3799{
3800        int i;
3801        struct dmar_domain *domain;
3802        size_t size = 0;
3803        int prot = 0;
3804        unsigned long iova_pfn;
3805        int ret;
3806        struct scatterlist *sg;
3807        unsigned long start_vpfn;
3808        struct intel_iommu *iommu;
3809
3810        BUG_ON(dir == DMA_NONE);
3811        if (iommu_no_mapping(dev))
3812                return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3813
3814        domain = get_valid_domain_for_dev(dev);
3815        if (!domain)
3816                return 0;
3817
3818        iommu = domain_get_iommu(domain);
3819
3820        for_each_sg(sglist, sg, nelems, i)
3821                size += aligned_nrpages(sg->offset, sg->length);
3822
3823        iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3824                                *dev->dma_mask);
3825        if (!iova_pfn) {
3826                sglist->dma_length = 0;
3827                return 0;
3828        }
3829
3830        /*
3831         * Check if DMAR supports zero-length reads on write only
3832         * mappings..
3833         */
3834        if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3835                        !cap_zlr(iommu->cap))
3836                prot |= DMA_PTE_READ;
3837        if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3838                prot |= DMA_PTE_WRITE;
3839
3840        start_vpfn = mm_to_dma_pfn(iova_pfn);
3841
3842        ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3843        if (unlikely(ret)) {
3844                dma_pte_free_pagetable(domain, start_vpfn,
3845                                       start_vpfn + size - 1,
3846                                       agaw_to_level(domain->agaw) + 1);
3847                free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3848                return 0;
3849        }
3850
3851        /* it's a non-present to present mapping. Only flush if caching mode */
3852        if (cap_caching_mode(iommu->cap))
3853                iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3854        else
3855                iommu_flush_write_buffer(iommu);
3856
3857        return nelems;
3858}
3859
3860static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3861{
3862        return !dma_addr;
3863}
3864
3865const struct dma_map_ops intel_dma_ops = {
3866        .alloc = intel_alloc_coherent,
3867        .free = intel_free_coherent,
3868        .map_sg = intel_map_sg,
3869        .unmap_sg = intel_unmap_sg,
3870        .map_page = intel_map_page,
3871        .unmap_page = intel_unmap_page,
3872        .mapping_error = intel_mapping_error,
3873#ifdef CONFIG_X86
3874        .dma_supported = x86_dma_supported,
3875#endif
3876};
3877
3878static inline int iommu_domain_cache_init(void)
3879{
3880        int ret = 0;
3881
3882        iommu_domain_cache = kmem_cache_create("iommu_domain",
3883                                         sizeof(struct dmar_domain),
3884                                         0,
3885                                         SLAB_HWCACHE_ALIGN,
3886
3887                                         NULL);
3888        if (!iommu_domain_cache) {
3889                pr_err("Couldn't create iommu_domain cache\n");
3890                ret = -ENOMEM;
3891        }
3892
3893        return ret;
3894}
3895
3896static inline int iommu_devinfo_cache_init(void)
3897{
3898        int ret = 0;
3899
3900        iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3901                                         sizeof(struct device_domain_info),
3902                                         0,
3903                                         SLAB_HWCACHE_ALIGN,
3904                                         NULL);
3905        if (!iommu_devinfo_cache) {
3906                pr_err("Couldn't create devinfo cache\n");
3907                ret = -ENOMEM;
3908        }
3909
3910        return ret;
3911}
3912
3913static int __init iommu_init_mempool(void)
3914{
3915        int ret;
3916        ret = iova_cache_get();
3917        if (ret)
3918                return ret;
3919
3920        ret = iommu_domain_cache_init();
3921        if (ret)
3922                goto domain_error;
3923
3924        ret = iommu_devinfo_cache_init();
3925        if (!ret)
3926                return ret;
3927
3928        kmem_cache_destroy(iommu_domain_cache);
3929domain_error:
3930        iova_cache_put();
3931
3932        return -ENOMEM;
3933}
3934
3935static void __init iommu_exit_mempool(void)
3936{
3937        kmem_cache_destroy(iommu_devinfo_cache);
3938        kmem_cache_destroy(iommu_domain_cache);
3939        iova_cache_put();
3940}
3941
3942static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3943{
3944        struct dmar_drhd_unit *drhd;
3945        u32 vtbar;
3946        int rc;
3947
3948        /* We know that this device on this chipset has its own IOMMU.
3949         * If we find it under a different IOMMU, then the BIOS is lying
3950         * to us. Hope that the IOMMU for this device is actually
3951         * disabled, and it needs no translation...
3952         */
3953        rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3954        if (rc) {
3955                /* "can't" happen */
3956                dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3957                return;
3958        }
3959        vtbar &= 0xffff0000;
3960
3961        /* we know that the this iommu should be at offset 0xa000 from vtbar */
3962        drhd = dmar_find_matched_drhd_unit(pdev);
3963        if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3964                            TAINT_FIRMWARE_WORKAROUND,
3965                            "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3966                pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3967}
3968DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3969
3970static void __init init_no_remapping_devices(void)
3971{
3972        struct dmar_drhd_unit *drhd;
3973        struct device *dev;
3974        int i;
3975
3976        for_each_drhd_unit(drhd) {
3977                if (!drhd->include_all) {
3978                        for_each_active_dev_scope(drhd->devices,
3979                                                  drhd->devices_cnt, i, dev)
3980                                break;
3981                        /* ignore DMAR unit if no devices exist */
3982                        if (i == drhd->devices_cnt)
3983                                drhd->ignored = 1;
3984                }
3985        }
3986
3987        for_each_active_drhd_unit(drhd) {
3988                if (drhd->include_all)
3989                        continue;
3990
3991                for_each_active_dev_scope(drhd->devices,
3992                                          drhd->devices_cnt, i, dev)
3993                        if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
3994                                break;
3995                if (i < drhd->devices_cnt)
3996                        continue;
3997
3998                /* This IOMMU has *only* gfx devices. Either bypass it or
3999                   set the gfx_mapped flag, as appropriate */
4000                if (dmar_map_gfx) {
4001                        intel_iommu_gfx_mapped = 1;
4002                } else {
4003                        drhd->ignored = 1;
4004                        for_each_active_dev_scope(drhd->devices,
4005                                                  drhd->devices_cnt, i, dev)
4006                                dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4007                }
4008        }
4009}
4010
4011#ifdef CONFIG_SUSPEND
4012static int init_iommu_hw(void)
4013{
4014        struct dmar_drhd_unit *drhd;
4015        struct intel_iommu *iommu = NULL;
4016
4017        for_each_active_iommu(iommu, drhd)
4018                if (iommu->qi)
4019                        dmar_reenable_qi(iommu);
4020
4021        for_each_iommu(iommu, drhd) {
4022                if (drhd->ignored) {
4023                        /*
4024                         * we always have to disable PMRs or DMA may fail on
4025                         * this device
4026                         */
4027                        if (force_on)
4028                                iommu_disable_protect_mem_regions(iommu);
4029                        continue;
4030                }
4031        
4032                iommu_flush_write_buffer(iommu);
4033
4034                iommu_set_root_entry(iommu);
4035
4036                iommu->flush.flush_context(iommu, 0, 0, 0,
4037                                           DMA_CCMD_GLOBAL_INVL);
4038                iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4039                iommu_enable_translation(iommu);
4040                iommu_disable_protect_mem_regions(iommu);
4041        }
4042
4043        return 0;
4044}
4045
4046static void iommu_flush_all(void)
4047{
4048        struct dmar_drhd_unit *drhd;
4049        struct intel_iommu *iommu;
4050
4051        for_each_active_iommu(iommu, drhd) {
4052                iommu->flush.flush_context(iommu, 0, 0, 0,
4053                                           DMA_CCMD_GLOBAL_INVL);
4054                iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4055                                         DMA_TLB_GLOBAL_FLUSH);
4056        }
4057}
4058
4059static int iommu_suspend(void)
4060{
4061        struct dmar_drhd_unit *drhd;
4062        struct intel_iommu *iommu = NULL;
4063        unsigned long flag;
4064
4065        for_each_active_iommu(iommu, drhd) {
4066                iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4067                                                 GFP_ATOMIC);
4068                if (!iommu->iommu_state)
4069                        goto nomem;
4070        }
4071
4072        iommu_flush_all();
4073
4074        for_each_active_iommu(iommu, drhd) {
4075                iommu_disable_translation(iommu);
4076
4077                raw_spin_lock_irqsave(&iommu->register_lock, flag);
4078
4079                iommu->iommu_state[SR_DMAR_FECTL_REG] =
4080                        readl(iommu->reg + DMAR_FECTL_REG);
4081                iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4082                        readl(iommu->reg + DMAR_FEDATA_REG);
4083                iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4084                        readl(iommu->reg + DMAR_FEADDR_REG);
4085                iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4086                        readl(iommu->reg + DMAR_FEUADDR_REG);
4087
4088                raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4089        }
4090        return 0;
4091
4092nomem:
4093        for_each_active_iommu(iommu, drhd)
4094                kfree(iommu->iommu_state);
4095
4096        return -ENOMEM;
4097}
4098
4099static void iommu_resume(void)
4100{
4101        struct dmar_drhd_unit *drhd;
4102        struct intel_iommu *iommu = NULL;
4103        unsigned long flag;
4104
4105        if (init_iommu_hw()) {
4106                if (force_on)
4107                        panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4108                else
4109                        WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4110                return;
4111        }
4112
4113        for_each_active_iommu(iommu, drhd) {
4114
4115                raw_spin_lock_irqsave(&iommu->register_lock, flag);
4116
4117                writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4118                        iommu->reg + DMAR_FECTL_REG);
4119                writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4120                        iommu->reg + DMAR_FEDATA_REG);
4121                writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4122                        iommu->reg + DMAR_FEADDR_REG);
4123                writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4124                        iommu->reg + DMAR_FEUADDR_REG);
4125
4126                raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4127        }
4128
4129        for_each_active_iommu(iommu, drhd)
4130                kfree(iommu->iommu_state);
4131}
4132
4133static struct syscore_ops iommu_syscore_ops = {
4134        .resume         = iommu_resume,
4135        .suspend        = iommu_suspend,
4136};
4137
4138static void __init init_iommu_pm_ops(void)
4139{
4140        register_syscore_ops(&iommu_syscore_ops);
4141}
4142
4143#else
4144static inline void init_iommu_pm_ops(void) {}
4145#endif  /* CONFIG_PM */
4146
4147
4148int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4149{
4150        struct acpi_dmar_reserved_memory *rmrr;
4151        int prot = DMA_PTE_READ|DMA_PTE_WRITE;
4152        struct dmar_rmrr_unit *rmrru;
4153        size_t length;
4154
4155        rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4156        if (!rmrru)
4157                goto out;
4158
4159        rmrru->hdr = header;
4160        rmrr = (struct acpi_dmar_reserved_memory *)header;
4161        rmrru->base_address = rmrr->base_address;
4162        rmrru->end_address = rmrr->end_address;
4163
4164        length = rmrr->end_address - rmrr->base_address + 1;
4165        rmrru->resv = iommu_alloc_resv_region(rmrr->base_address, length, prot,
4166                                              IOMMU_RESV_DIRECT);
4167        if (!rmrru->resv)
4168                goto free_rmrru;
4169
4170        rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4171                                ((void *)rmrr) + rmrr->header.length,
4172                                &rmrru->devices_cnt);
4173        if (rmrru->devices_cnt && rmrru->devices == NULL)
4174                goto free_all;
4175
4176        list_add(&rmrru->list, &dmar_rmrr_units);
4177
4178        return 0;
4179free_all:
4180        kfree(rmrru->resv);
4181free_rmrru:
4182        kfree(rmrru);
4183out:
4184        return -ENOMEM;
4185}
4186
4187static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4188{
4189        struct dmar_atsr_unit *atsru;
4190        struct acpi_dmar_atsr *tmp;
4191
4192        list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4193                tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4194                if (atsr->segment != tmp->segment)
4195                        continue;
4196                if (atsr->header.length != tmp->header.length)
4197                        continue;
4198                if (memcmp(atsr, tmp, atsr->header.length) == 0)
4199                        return atsru;
4200        }
4201
4202        return NULL;
4203}
4204
4205int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4206{
4207        struct acpi_dmar_atsr *atsr;
4208        struct dmar_atsr_unit *atsru;
4209
4210        if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
4211                return 0;
4212
4213        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4214        atsru = dmar_find_atsr(atsr);
4215        if (atsru)
4216                return 0;
4217
4218        atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4219        if (!atsru)
4220                return -ENOMEM;
4221
4222        /*
4223         * If memory is allocated from slab by ACPI _DSM method, we need to
4224         * copy the memory content because the memory buffer will be freed
4225         * on return.
4226         */
4227        atsru->hdr = (void *)(atsru + 1);
4228        memcpy(atsru->hdr, hdr, hdr->length);
4229        atsru->include_all = atsr->flags & 0x1;
4230        if (!atsru->include_all) {
4231                atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4232                                (void *)atsr + atsr->header.length,
4233                                &atsru->devices_cnt);
4234                if (atsru->devices_cnt && atsru->devices == NULL) {
4235                        kfree(atsru);
4236                        return -ENOMEM;
4237                }
4238        }
4239
4240        list_add_rcu(&atsru->list, &dmar_atsr_units);
4241
4242        return 0;
4243}
4244
4245static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4246{
4247        dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4248        kfree(atsru);
4249}
4250
4251int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4252{
4253        struct acpi_dmar_atsr *atsr;
4254        struct dmar_atsr_unit *atsru;
4255
4256        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4257        atsru = dmar_find_atsr(atsr);
4258        if (atsru) {
4259                list_del_rcu(&atsru->list);
4260                synchronize_rcu();
4261                intel_iommu_free_atsr(atsru);
4262        }
4263
4264        return 0;
4265}
4266
4267int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4268{
4269        int i;
4270        struct device *dev;
4271        struct acpi_dmar_atsr *atsr;
4272        struct dmar_atsr_unit *atsru;
4273
4274        atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4275        atsru = dmar_find_atsr(atsr);
4276        if (!atsru)
4277                return 0;
4278
4279        if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4280                for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4281                                          i, dev)
4282                        return -EBUSY;
4283        }
4284
4285        return 0;
4286}
4287
4288static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4289{
4290        int sp, ret = 0;
4291        struct intel_iommu *iommu = dmaru->iommu;
4292
4293        if (g_iommus[iommu->seq_id])
4294                return 0;
4295
4296        if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4297                pr_warn("%s: Doesn't support hardware pass through.\n",
4298                        iommu->name);
4299                return -ENXIO;
4300        }
4301        if (!ecap_sc_support(iommu->ecap) &&
4302            domain_update_iommu_snooping(iommu)) {
4303                pr_warn("%s: Doesn't support snooping.\n",
4304                        iommu->name);
4305                return -ENXIO;
4306        }
4307        sp = domain_update_iommu_superpage(iommu) - 1;
4308        if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4309                pr_warn("%s: Doesn't support large page.\n",
4310                        iommu->name);
4311                return -ENXIO;
4312        }
4313
4314        /*
4315         * Disable translation if already enabled prior to OS handover.
4316         */
4317        if (iommu->gcmd & DMA_GCMD_TE)
4318                iommu_disable_translation(iommu);
4319
4320        g_iommus[iommu->seq_id] = iommu;
4321        ret = iommu_init_domains(iommu);
4322        if (ret == 0)
4323                ret = iommu_alloc_root_entry(iommu);
4324        if (ret)
4325                goto out;
4326
4327#ifdef CONFIG_INTEL_IOMMU_SVM
4328        if (pasid_enabled(iommu))
4329                intel_svm_alloc_pasid_tables(iommu);
4330#endif
4331
4332        if (dmaru->ignored) {
4333                /*
4334                 * we always have to disable PMRs or DMA may fail on this device
4335                 */
4336                if (force_on)
4337                        iommu_disable_protect_mem_regions(iommu);
4338                return 0;
4339        }
4340
4341        intel_iommu_init_qi(iommu);
4342        iommu_flush_write_buffer(iommu);
4343
4344#ifdef CONFIG_INTEL_IOMMU_SVM
4345        if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4346                ret = intel_svm_enable_prq(iommu);
4347                if (ret)
4348                        goto disable_iommu;
4349        }
4350#endif
4351        ret = dmar_set_interrupt(iommu);
4352        if (ret)
4353                goto disable_iommu;
4354
4355        iommu_set_root_entry(iommu);
4356        iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4357        iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4358        iommu_enable_translation(iommu);
4359
4360        iommu_disable_protect_mem_regions(iommu);
4361        return 0;
4362
4363disable_iommu:
4364        disable_dmar_iommu(iommu);
4365out:
4366        free_dmar_iommu(iommu);
4367        return ret;
4368}
4369
4370int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4371{
4372        int ret = 0;
4373        struct intel_iommu *iommu = dmaru->iommu;
4374
4375        if (!intel_iommu_enabled)
4376                return 0;
4377        if (iommu == NULL)
4378                return -EINVAL;
4379
4380        if (insert) {
4381                ret = intel_iommu_add(dmaru);
4382        } else {
4383                disable_dmar_iommu(iommu);
4384                free_dmar_iommu(iommu);
4385        }
4386
4387        return ret;
4388}
4389
4390static void intel_iommu_free_dmars(void)
4391{
4392        struct dmar_rmrr_unit *rmrru, *rmrr_n;
4393        struct dmar_atsr_unit *atsru, *atsr_n;
4394
4395        list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4396                list_del(&rmrru->list);
4397                dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4398                kfree(rmrru->resv);
4399                kfree(rmrru);
4400        }
4401
4402        list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4403                list_del(&atsru->list);
4404                intel_iommu_free_atsr(atsru);
4405        }
4406}
4407
4408int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4409{
4410        int i, ret = 1;
4411        struct pci_bus *bus;
4412        struct pci_dev *bridge = NULL;
4413        struct device *tmp;
4414        struct acpi_dmar_atsr *atsr;
4415        struct dmar_atsr_unit *atsru;
4416
4417        dev = pci_physfn(dev);
4418        for (bus = dev->bus; bus; bus = bus->parent) {
4419                bridge = bus->self;
4420                /* If it's an integrated device, allow ATS */
4421                if (!bridge)
4422                        return 1;
4423                /* Connected via non-PCIe: no ATS */
4424                if (!pci_is_pcie(bridge) ||
4425                    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4426                        return 0;
4427                /* If we found the root port, look it up in the ATSR */
4428                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4429                        break;
4430        }
4431
4432        rcu_read_lock();
4433        list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4434                atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4435                if (atsr->segment != pci_domain_nr(dev->bus))
4436                        continue;
4437
4438                for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4439                        if (tmp == &bridge->dev)
4440                                goto out;
4441
4442                if (atsru->include_all)
4443                        goto out;
4444        }
4445        ret = 0;
4446out:
4447        rcu_read_unlock();
4448
4449        return ret;
4450}
4451
4452int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4453{
4454        int ret = 0;
4455        struct dmar_rmrr_unit *rmrru;
4456        struct dmar_atsr_unit *atsru;
4457        struct acpi_dmar_atsr *atsr;
4458        struct acpi_dmar_reserved_memory *rmrr;
4459
4460        if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
4461                return 0;
4462
4463        list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4464                rmrr = container_of(rmrru->hdr,
4465                                    struct acpi_dmar_reserved_memory, header);
4466                if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4467                        ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4468                                ((void *)rmrr) + rmrr->header.length,
4469                                rmrr->segment, rmrru->devices,
4470                                rmrru->devices_cnt);
4471                        if(ret < 0)
4472                                return ret;
4473                } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4474                        dmar_remove_dev_scope(info, rmrr->segment,
4475                                rmrru->devices, rmrru->devices_cnt);
4476                }
4477        }
4478
4479        list_for_each_entry(atsru, &dmar_atsr_units, list) {
4480                if (atsru->include_all)
4481                        continue;
4482
4483                atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4484                if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4485                        ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4486                                        (void *)atsr + atsr->header.length,
4487                                        atsr->segment, atsru->devices,
4488                                        atsru->devices_cnt);
4489                        if (ret > 0)
4490                                break;
4491                        else if(ret < 0)
4492                                return ret;
4493                } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4494                        if (dmar_remove_dev_scope(info, atsr->segment,
4495                                        atsru->devices, atsru->devices_cnt))
4496                                break;
4497                }
4498        }
4499
4500        return 0;
4501}
4502
4503/*
4504 * Here we only respond to action of unbound device from driver.
4505 *
4506 * Added device is not attached to its DMAR domain here yet. That will happen
4507 * when mapping the device to iova.
4508 */
4509static int device_notifier(struct notifier_block *nb,
4510                                  unsigned long action, void *data)
4511{
4512        struct device *dev = data;
4513        struct dmar_domain *domain;
4514
4515        if (iommu_dummy(dev))
4516                return 0;
4517
4518        if (action != BUS_NOTIFY_REMOVED_DEVICE)
4519                return 0;
4520
4521        domain = find_domain(dev);
4522        if (!domain)
4523                return 0;
4524
4525        dmar_remove_one_dev_info(domain, dev);
4526        if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4527                domain_exit(domain);
4528
4529        return 0;
4530}
4531
4532static struct notifier_block device_nb = {
4533        .notifier_call = device_notifier,
4534};
4535
4536static int intel_iommu_memory_notifier(struct notifier_block *nb,
4537                                       unsigned long val, void *v)
4538{
4539        struct memory_notify *mhp = v;
4540        unsigned long long start, end;
4541        unsigned long start_vpfn, last_vpfn;
4542
4543        switch (val) {
4544        case MEM_GOING_ONLINE:
4545                start = mhp->start_pfn << PAGE_SHIFT;
4546                end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4547                if (iommu_domain_identity_map(si_domain, start, end)) {
4548                        pr_warn("Failed to build identity map for [%llx-%llx]\n",
4549                                start, end);
4550                        return NOTIFY_BAD;
4551                }
4552                break;
4553
4554        case MEM_OFFLINE:
4555        case MEM_CANCEL_ONLINE:
4556                start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4557                last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4558                while (start_vpfn <= last_vpfn) {
4559                        struct iova *iova;
4560                        struct dmar_drhd_unit *drhd;
4561                        struct intel_iommu *iommu;
4562                        struct page *freelist;
4563
4564                        iova = find_iova(&si_domain->iovad, start_vpfn);
4565                        if (iova == NULL) {
4566                                pr_debug("Failed get IOVA for PFN %lx\n",
4567                                         start_vpfn);
4568                                break;
4569                        }
4570
4571                        iova = split_and_remove_iova(&si_domain->iovad, iova,
4572                                                     start_vpfn, last_vpfn);
4573                        if (iova == NULL) {
4574                                pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4575                                        start_vpfn, last_vpfn);
4576                                return NOTIFY_BAD;
4577                        }
4578
4579                        freelist = domain_unmap(si_domain, iova->pfn_lo,
4580                                               iova->pfn_hi);
4581
4582                        rcu_read_lock();
4583                        for_each_active_iommu(iommu, drhd)
4584                                iommu_flush_iotlb_psi(iommu, si_domain,
4585                                        iova->pfn_lo, iova_size(iova),
4586                                        !freelist, 0);
4587                        rcu_read_unlock();
4588                        dma_free_pagelist(freelist);
4589
4590                        start_vpfn = iova->pfn_hi + 1;
4591                        free_iova_mem(iova);
4592                }
4593                break;
4594        }
4595
4596        return NOTIFY_OK;
4597}
4598
4599static struct notifier_block intel_iommu_memory_nb = {
4600        .notifier_call = intel_iommu_memory_notifier,
4601        .priority = 0
4602};
4603
4604static void free_all_cpu_cached_iovas(unsigned int cpu)
4605{
4606        int i;
4607
4608        for (i = 0; i < g_num_of_iommus; i++) {
4609                struct intel_iommu *iommu = g_iommus[i];
4610                struct dmar_domain *domain;
4611                int did;
4612
4613                if (!iommu)
4614                        continue;
4615
4616                for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4617                        domain = get_iommu_domain(iommu, (u16)did);
4618
4619                        if (!domain)
4620                                continue;
4621                        free_cpu_cached_iovas(cpu, &domain->iovad);
4622                }
4623        }
4624}
4625
4626static int intel_iommu_cpu_dead(unsigned int cpu)
4627{
4628        free_all_cpu_cached_iovas(cpu);
4629        return 0;
4630}
4631
4632static void intel_disable_iommus(void)
4633{
4634        struct intel_iommu *iommu = NULL;
4635        struct dmar_drhd_unit *drhd;
4636
4637        for_each_iommu(iommu, drhd)
4638                iommu_disable_translation(iommu);
4639}
4640
4641static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
4642{
4643        struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
4644
4645        return container_of(iommu_dev, struct intel_iommu, iommu);
4646}
4647
4648static ssize_t intel_iommu_show_version(struct device *dev,
4649                                        struct device_attribute *attr,
4650                                        char *buf)
4651{
4652        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4653        u32 ver = readl(iommu->reg + DMAR_VER_REG);
4654        return sprintf(buf, "%d:%d\n",
4655                       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4656}
4657static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4658
4659static ssize_t intel_iommu_show_address(struct device *dev,
4660                                        struct device_attribute *attr,
4661                                        char *buf)
4662{
4663        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4664        return sprintf(buf, "%llx\n", iommu->reg_phys);
4665}
4666static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4667
4668static ssize_t intel_iommu_show_cap(struct device *dev,
4669                                    struct device_attribute *attr,
4670                                    char *buf)
4671{
4672        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4673        return sprintf(buf, "%llx\n", iommu->cap);
4674}
4675static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4676
4677static ssize_t intel_iommu_show_ecap(struct device *dev,
4678                                    struct device_attribute *attr,
4679                                    char *buf)
4680{
4681        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4682        return sprintf(buf, "%llx\n", iommu->ecap);
4683}
4684static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4685
4686static ssize_t intel_iommu_show_ndoms(struct device *dev,
4687                                      struct device_attribute *attr,
4688                                      char *buf)
4689{
4690        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4691        return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4692}
4693static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4694
4695static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4696                                           struct device_attribute *attr,
4697                                           char *buf)
4698{
4699        struct intel_iommu *iommu = dev_to_intel_iommu(dev);
4700        return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4701                                                  cap_ndoms(iommu->cap)));
4702}
4703static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4704
4705static struct attribute *intel_iommu_attrs[] = {
4706        &dev_attr_version.attr,
4707        &dev_attr_address.attr,
4708        &dev_attr_cap.attr,
4709        &dev_attr_ecap.attr,
4710        &dev_attr_domains_supported.attr,
4711        &dev_attr_domains_used.attr,
4712        NULL,
4713};
4714
4715static struct attribute_group intel_iommu_group = {
4716        .name = "intel-iommu",
4717        .attrs = intel_iommu_attrs,
4718};
4719
4720const struct attribute_group *intel_iommu_groups[] = {
4721        &intel_iommu_group,
4722        NULL,
4723};
4724
4725int __init intel_iommu_init(void)
4726{
4727        int ret = -ENODEV;
4728        struct dmar_drhd_unit *drhd;
4729        struct intel_iommu *iommu;
4730
4731        /* VT-d is required for a TXT/tboot launch, so enforce that */
4732        force_on = tboot_force_iommu();
4733
4734        if (iommu_init_mempool()) {
4735                if (force_on)
4736                        panic("tboot: Failed to initialize iommu memory\n");
4737                return -ENOMEM;
4738        }
4739
4740        down_write(&dmar_global_lock);
4741        if (dmar_table_init()) {
4742                if (force_on)
4743                        panic("tboot: Failed to initialize DMAR table\n");
4744                goto out_free_dmar;
4745        }
4746
4747        if (dmar_dev_scope_init() < 0) {
4748                if (force_on)
4749                        panic("tboot: Failed to initialize DMAR device scope\n");
4750                goto out_free_dmar;
4751        }
4752
4753        up_write(&dmar_global_lock);
4754
4755        /*
4756         * The bus notifier takes the dmar_global_lock, so lockdep will
4757         * complain later when we register it under the lock.
4758         */
4759        dmar_register_bus_notifier();
4760
4761        down_write(&dmar_global_lock);
4762
4763        if (no_iommu || dmar_disabled) {
4764                /*
4765                 * We exit the function here to ensure IOMMU's remapping and
4766                 * mempool aren't setup, which means that the IOMMU's PMRs
4767                 * won't be disabled via the call to init_dmars(). So disable
4768                 * it explicitly here. The PMRs were setup by tboot prior to
4769                 * calling SENTER, but the kernel is expected to reset/tear
4770                 * down the PMRs.
4771                 */
4772                if (intel_iommu_tboot_noforce) {
4773                        for_each_iommu(iommu, drhd)
4774                                iommu_disable_protect_mem_regions(iommu);
4775                }
4776
4777                /*
4778                 * Make sure the IOMMUs are switched off, even when we
4779                 * boot into a kexec kernel and the previous kernel left
4780                 * them enabled
4781                 */
4782                intel_disable_iommus();
4783                goto out_free_dmar;
4784        }
4785
4786        if (list_empty(&dmar_rmrr_units))
4787                pr_info("No RMRR found\n");
4788
4789        if (list_empty(&dmar_atsr_units))
4790                pr_info("No ATSR found\n");
4791
4792        if (dmar_init_reserved_ranges()) {
4793                if (force_on)
4794                        panic("tboot: Failed to reserve iommu ranges\n");
4795                goto out_free_reserved_range;
4796        }
4797
4798        init_no_remapping_devices();
4799
4800        ret = init_dmars();
4801        if (ret) {
4802                if (force_on)
4803                        panic("tboot: Failed to initialize DMARs\n");
4804                pr_err("Initialization failed\n");
4805                goto out_free_reserved_range;
4806        }
4807        up_write(&dmar_global_lock);
4808        pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4809
4810#if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4811        swiotlb = 0;
4812#endif
4813        dma_ops = &intel_dma_ops;
4814
4815        init_iommu_pm_ops();
4816
4817        for_each_active_iommu(iommu, drhd) {
4818                iommu_device_sysfs_add(&iommu->iommu, NULL,
4819                                       intel_iommu_groups,
4820                                       "%s", iommu->name);
4821                iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
4822                iommu_device_register(&iommu->iommu);
4823        }
4824
4825        bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4826        bus_register_notifier(&pci_bus_type, &device_nb);
4827        if (si_domain && !hw_pass_through)
4828                register_memory_notifier(&intel_iommu_memory_nb);
4829        cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4830                          intel_iommu_cpu_dead);
4831        intel_iommu_enabled = 1;
4832
4833        return 0;
4834
4835out_free_reserved_range:
4836        put_iova_domain(&reserved_iova_list);
4837out_free_dmar:
4838        intel_iommu_free_dmars();
4839        up_write(&dmar_global_lock);
4840        iommu_exit_mempool();
4841        return ret;
4842}
4843
4844static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4845{
4846        struct intel_iommu *iommu = opaque;
4847
4848        domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4849        return 0;
4850}
4851
4852/*
4853 * NB - intel-iommu lacks any sort of reference counting for the users of
4854 * dependent devices.  If multiple endpoints have intersecting dependent
4855 * devices, unbinding the driver from any one of them will possibly leave
4856 * the others unable to operate.
4857 */
4858static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4859{
4860        if (!iommu || !dev || !dev_is_pci(dev))
4861                return;
4862
4863        pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4864}
4865
4866static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4867{
4868        struct intel_iommu *iommu;
4869        unsigned long flags;
4870
4871        assert_spin_locked(&device_domain_lock);
4872
4873        if (WARN_ON(!info))
4874                return;
4875
4876        iommu = info->iommu;
4877
4878        if (info->dev) {
4879                iommu_disable_dev_iotlb(info);
4880                domain_context_clear(iommu, info->dev);
4881        }
4882
4883        unlink_domain_info(info);
4884
4885        spin_lock_irqsave(&iommu->lock, flags);
4886        domain_detach_iommu(info->domain, iommu);
4887        spin_unlock_irqrestore(&iommu->lock, flags);
4888
4889        free_devinfo_mem(info);
4890}
4891
4892static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4893                                     struct device *dev)
4894{
4895        struct device_domain_info *info;
4896        unsigned long flags;
4897
4898        spin_lock_irqsave(&device_domain_lock, flags);
4899        info = dev->archdata.iommu;
4900        __dmar_remove_one_dev_info(info);
4901        spin_unlock_irqrestore(&device_domain_lock, flags);
4902}
4903
4904static int md_domain_init(struct dmar_domain *domain, int guest_width)
4905{
4906        int adjust_width;
4907
4908        init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
4909        domain_reserve_special_ranges(domain);
4910
4911        /* calculate AGAW */
4912        domain->gaw = guest_width;
4913        adjust_width = guestwidth_to_adjustwidth(guest_width);
4914        domain->agaw = width_to_agaw(adjust_width);
4915
4916        domain->iommu_coherency = 0;
4917        domain->iommu_snooping = 0;
4918        domain->iommu_superpage = 0;
4919        domain->max_addr = 0;
4920
4921        /* always allocate the top pgd */
4922        domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4923        if (!domain->pgd)
4924                return -ENOMEM;
4925        domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4926        return 0;
4927}
4928
4929static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4930{
4931        struct dmar_domain *dmar_domain;
4932        struct iommu_domain *domain;
4933
4934        if (type != IOMMU_DOMAIN_UNMANAGED)
4935                return NULL;
4936
4937        dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4938        if (!dmar_domain) {
4939                pr_err("Can't allocate dmar_domain\n");
4940                return NULL;
4941        }
4942        if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4943                pr_err("Domain initialization failed\n");
4944                domain_exit(dmar_domain);
4945                return NULL;
4946        }
4947        domain_update_iommu_cap(dmar_domain);
4948
4949        domain = &dmar_domain->domain;
4950        domain->geometry.aperture_start = 0;
4951        domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4952        domain->geometry.force_aperture = true;
4953
4954        return domain;
4955}
4956
4957static void intel_iommu_domain_free(struct iommu_domain *domain)
4958{
4959        domain_exit(to_dmar_domain(domain));
4960}
4961
4962static int intel_iommu_attach_device(struct iommu_domain *domain,
4963                                     struct device *dev)
4964{
4965        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4966        struct intel_iommu *iommu;
4967        int addr_width;
4968        u8 bus, devfn;
4969
4970        if (device_is_rmrr_locked(dev)) {
4971                dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4972                return -EPERM;
4973        }
4974
4975        /* normally dev is not mapped */
4976        if (unlikely(domain_context_mapped(dev))) {
4977                struct dmar_domain *old_domain;
4978
4979                old_domain = find_domain(dev);
4980                if (old_domain) {
4981                        rcu_read_lock();
4982                        dmar_remove_one_dev_info(old_domain, dev);
4983                        rcu_read_unlock();
4984
4985                        if (!domain_type_is_vm_or_si(old_domain) &&
4986                             list_empty(&old_domain->devices))
4987                                domain_exit(old_domain);
4988                }
4989        }
4990
4991        iommu = device_to_iommu(dev, &bus, &devfn);
4992        if (!iommu)
4993                return -ENODEV;
4994
4995        /* check if this iommu agaw is sufficient for max mapped address */
4996        addr_width = agaw_to_width(iommu->agaw);
4997        if (addr_width > cap_mgaw(iommu->cap))
4998                addr_width = cap_mgaw(iommu->cap);
4999
5000        if (dmar_domain->max_addr > (1LL << addr_width)) {
5001                pr_err("%s: iommu width (%d) is not "
5002                       "sufficient for the mapped address (%llx)\n",
5003                       __func__, addr_width, dmar_domain->max_addr);
5004                return -EFAULT;
5005        }
5006        dmar_domain->gaw = addr_width;
5007
5008        /*
5009         * Knock out extra levels of page tables if necessary
5010         */
5011        while (iommu->agaw < dmar_domain->agaw) {
5012                struct dma_pte *pte;
5013
5014                pte = dmar_domain->pgd;
5015                if (dma_pte_present(pte)) {
5016                        dmar_domain->pgd = (struct dma_pte *)
5017                                phys_to_virt(dma_pte_addr(pte));
5018                        free_pgtable_page(pte);
5019                }
5020                dmar_domain->agaw--;
5021        }
5022
5023        return domain_add_dev_info(dmar_domain, dev);
5024}
5025
5026static void intel_iommu_detach_device(struct iommu_domain *domain,
5027                                      struct device *dev)
5028{
5029        dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5030}
5031
5032static int intel_iommu_map(struct iommu_domain *domain,
5033                           unsigned long iova, phys_addr_t hpa,
5034                           size_t size, int iommu_prot)
5035{
5036        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5037        u64 max_addr;
5038        int prot = 0;
5039        int ret;
5040
5041        if (iommu_prot & IOMMU_READ)
5042                prot |= DMA_PTE_READ;
5043        if (iommu_prot & IOMMU_WRITE)
5044                prot |= DMA_PTE_WRITE;
5045        if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5046                prot |= DMA_PTE_SNP;
5047
5048        max_addr = iova + size;
5049        if (dmar_domain->max_addr < max_addr) {
5050                u64 end;
5051
5052                /* check if minimum agaw is sufficient for mapped address */
5053                end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5054                if (end < max_addr) {
5055                        pr_err("%s: iommu width (%d) is not "
5056                               "sufficient for the mapped address (%llx)\n",
5057                               __func__, dmar_domain->gaw, max_addr);
5058                        return -EFAULT;
5059                }
5060                dmar_domain->max_addr = max_addr;
5061        }
5062        /* Round up size to next multiple of PAGE_SIZE, if it and
5063           the low bits of hpa would take us onto the next page */
5064        size = aligned_nrpages(hpa, size);
5065        ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5066                                 hpa >> VTD_PAGE_SHIFT, size, prot);
5067        return ret;
5068}
5069
5070static size_t intel_iommu_unmap(struct iommu_domain *domain,
5071                                unsigned long iova, size_t size)
5072{
5073        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5074        struct page *freelist = NULL;
5075        struct intel_iommu *iommu;
5076        unsigned long start_pfn, last_pfn;
5077        unsigned int npages;
5078        int iommu_id, level = 0;
5079
5080        /* Cope with horrid API which requires us to unmap more than the
5081           size argument if it happens to be a large-page mapping. */
5082        BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5083
5084        if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5085                size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5086
5087        start_pfn = iova >> VTD_PAGE_SHIFT;
5088        last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5089
5090        freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5091
5092        npages = last_pfn - start_pfn + 1;
5093
5094        for_each_domain_iommu(iommu_id, dmar_domain) {
5095                iommu = g_iommus[iommu_id];
5096
5097                iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5098                                      start_pfn, npages, !freelist, 0);
5099        }
5100
5101        dma_free_pagelist(freelist);
5102
5103        if (dmar_domain->max_addr == iova + size)
5104                dmar_domain->max_addr = iova;
5105
5106        return size;
5107}
5108
5109static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5110                                            dma_addr_t iova)
5111{
5112        struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5113        struct dma_pte *pte;
5114        int level = 0;
5115        u64 phys = 0;
5116
5117        pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5118        if (pte)
5119                phys = dma_pte_addr(pte);
5120
5121        return phys;
5122}
5123
5124static bool intel_iommu_capable(enum iommu_cap cap)
5125{
5126        if (cap == IOMMU_CAP_CACHE_COHERENCY)
5127                return domain_update_iommu_snooping(NULL) == 1;
5128        if (cap == IOMMU_CAP_INTR_REMAP)
5129                return irq_remapping_enabled == 1;
5130
5131        return false;
5132}
5133
5134static int intel_iommu_add_device(struct device *dev)
5135{
5136        struct intel_iommu *iommu;
5137        struct iommu_group *group;
5138        u8 bus, devfn;
5139
5140        iommu = device_to_iommu(dev, &bus, &devfn);
5141        if (!iommu)
5142                return -ENODEV;
5143
5144        iommu_device_link(&iommu->iommu, dev);
5145
5146        group = iommu_group_get_for_dev(dev);
5147
5148        if (IS_ERR(group))
5149                return PTR_ERR(group);
5150
5151        iommu_group_put(group);
5152        return 0;
5153}
5154
5155static void intel_iommu_remove_device(struct device *dev)
5156{
5157        struct intel_iommu *iommu;
5158        u8 bus, devfn;
5159
5160        iommu = device_to_iommu(dev, &bus, &devfn);
5161        if (!iommu)
5162                return;
5163
5164        iommu_group_remove_device(dev);
5165
5166        iommu_device_unlink(&iommu->iommu, dev);
5167}
5168
5169static void intel_iommu_get_resv_regions(struct device *device,
5170                                         struct list_head *head)
5171{
5172        struct iommu_resv_region *reg;
5173        struct dmar_rmrr_unit *rmrr;
5174        struct device *i_dev;
5175        int i;
5176
5177        rcu_read_lock();
5178        for_each_rmrr_units(rmrr) {
5179                for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
5180                                          i, i_dev) {
5181                        if (i_dev != device)
5182                                continue;
5183
5184                        list_add_tail(&rmrr->resv->list, head);
5185                }
5186        }
5187        rcu_read_unlock();
5188
5189        reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
5190                                      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
5191                                      0, IOMMU_RESV_MSI);
5192        if (!reg)
5193                return;
5194        list_add_tail(&reg->list, head);
5195}
5196
5197static void intel_iommu_put_resv_regions(struct device *dev,
5198                                         struct list_head *head)
5199{
5200        struct iommu_resv_region *entry, *next;
5201
5202        list_for_each_entry_safe(entry, next, head, list) {
5203                if (entry->type == IOMMU_RESV_RESERVED)
5204                        kfree(entry);
5205        }
5206}
5207
5208#ifdef CONFIG_INTEL_IOMMU_SVM
5209#define MAX_NR_PASID_BITS (20)
5210static inline unsigned long intel_iommu_get_pts(struct intel_iommu *iommu)
5211{
5212        /*
5213         * Convert ecap_pss to extend context entry pts encoding, also
5214         * respect the soft pasid_max value set by the iommu.
5215         * - number of PASID bits = ecap_pss + 1
5216         * - number of PASID table entries = 2^(pts + 5)
5217         * Therefore, pts = ecap_pss - 4
5218         * e.g. KBL ecap_pss = 0x13, PASID has 20 bits, pts = 15
5219         */
5220        if (ecap_pss(iommu->ecap) < 5)
5221                return 0;
5222
5223        /* pasid_max is encoded as actual number of entries not the bits */
5224        return find_first_bit((unsigned long *)&iommu->pasid_max,
5225                        MAX_NR_PASID_BITS) - 5;
5226}
5227
5228int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5229{
5230        struct device_domain_info *info;
5231        struct context_entry *context;
5232        struct dmar_domain *domain;
5233        unsigned long flags;
5234        u64 ctx_lo;
5235        int ret;
5236
5237        domain = get_valid_domain_for_dev(sdev->dev);
5238        if (!domain)
5239                return -EINVAL;
5240
5241        spin_lock_irqsave(&device_domain_lock, flags);
5242        spin_lock(&iommu->lock);
5243
5244        ret = -EINVAL;
5245        info = sdev->dev->archdata.iommu;
5246        if (!info || !info->pasid_supported)
5247                goto out;
5248
5249        context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5250        if (WARN_ON(!context))
5251                goto out;
5252
5253        ctx_lo = context[0].lo;
5254
5255        sdev->did = domain->iommu_did[iommu->seq_id];
5256        sdev->sid = PCI_DEVID(info->bus, info->devfn);
5257
5258        if (!(ctx_lo & CONTEXT_PASIDE)) {
5259                if (iommu->pasid_state_table)
5260                        context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5261                context[1].lo = (u64)virt_to_phys(iommu->pasid_table) |
5262                        intel_iommu_get_pts(iommu);
5263
5264                wmb();
5265                /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5266                 * extended to permit requests-with-PASID if the PASIDE bit
5267                 * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5268                 * however, the PASIDE bit is ignored and requests-with-PASID
5269                 * are unconditionally blocked. Which makes less sense.
5270                 * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5271                 * "guest mode" translation types depending on whether ATS
5272                 * is available or not. Annoyingly, we can't use the new
5273                 * modes *unless* PASIDE is set. */
5274                if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5275                        ctx_lo &= ~CONTEXT_TT_MASK;
5276                        if (info->ats_supported)
5277                                ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5278                        else
5279                                ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5280                }
5281                ctx_lo |= CONTEXT_PASIDE;
5282                if (iommu->pasid_state_table)
5283                        ctx_lo |= CONTEXT_DINVE;
5284                if (info->pri_supported)
5285                        ctx_lo |= CONTEXT_PRS;
5286                context[0].lo = ctx_lo;
5287                wmb();
5288                iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5289                                           DMA_CCMD_MASK_NOBIT,
5290                                           DMA_CCMD_DEVICE_INVL);
5291        }
5292
5293        /* Enable PASID support in the device, if it wasn't already */
5294        if (!info->pasid_enabled)
5295                iommu_enable_dev_iotlb(info);
5296
5297        if (info->ats_enabled) {
5298                sdev->dev_iotlb = 1;
5299                sdev->qdep = info->ats_qdep;
5300                if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5301                        sdev->qdep = 0;
5302        }
5303        ret = 0;
5304
5305 out:
5306        spin_unlock(&iommu->lock);
5307        spin_unlock_irqrestore(&device_domain_lock, flags);
5308
5309        return ret;
5310}
5311
5312struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5313{
5314        struct intel_iommu *iommu;
5315        u8 bus, devfn;
5316
5317        if (iommu_dummy(dev)) {
5318                dev_warn(dev,
5319                         "No IOMMU translation for device; cannot enable SVM\n");
5320                return NULL;
5321        }
5322
5323        iommu = device_to_iommu(dev, &bus, &devfn);
5324        if ((!iommu)) {
5325                dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5326                return NULL;
5327        }
5328
5329        if (!iommu->pasid_table) {
5330                dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5331                return NULL;
5332        }
5333
5334        return iommu;
5335}
5336#endif /* CONFIG_INTEL_IOMMU_SVM */
5337
5338const struct iommu_ops intel_iommu_ops = {
5339        .capable                = intel_iommu_capable,
5340        .domain_alloc           = intel_iommu_domain_alloc,
5341        .domain_free            = intel_iommu_domain_free,
5342        .attach_dev             = intel_iommu_attach_device,
5343        .detach_dev             = intel_iommu_detach_device,
5344        .map                    = intel_iommu_map,
5345        .unmap                  = intel_iommu_unmap,
5346        .map_sg                 = default_iommu_map_sg,
5347        .iova_to_phys           = intel_iommu_iova_to_phys,
5348        .add_device             = intel_iommu_add_device,
5349        .remove_device          = intel_iommu_remove_device,
5350        .get_resv_regions       = intel_iommu_get_resv_regions,
5351        .put_resv_regions       = intel_iommu_put_resv_regions,
5352        .device_group           = pci_device_group,
5353        .pgsize_bitmap          = INTEL_IOMMU_PGSIZES,
5354};
5355
5356static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5357{
5358        /* G4x/GM45 integrated gfx dmar support is totally busted. */
5359        pr_info("Disabling IOMMU for graphics on this chipset\n");
5360        dmar_map_gfx = 0;
5361}
5362
5363DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5364DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5365DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5366DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5367DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5368DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5369DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5370
5371static void quirk_iommu_rwbf(struct pci_dev *dev)
5372{
5373        /*
5374         * Mobile 4 Series Chipset neglects to set RWBF capability,
5375         * but needs it. Same seems to hold for the desktop versions.
5376         */
5377        pr_info("Forcing write-buffer flush capability\n");
5378        rwbf_quirk = 1;
5379}
5380
5381DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5382DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5383DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5384DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5385DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5386DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5387DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5388
5389#define GGC 0x52
5390#define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5391#define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5392#define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5393#define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5394#define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5395#define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5396#define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5397#define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5398
5399static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5400{
5401        unsigned short ggc;
5402
5403        if (pci_read_config_word(dev, GGC, &ggc))
5404                return;
5405
5406        if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5407                pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5408                dmar_map_gfx = 0;
5409        } else if (dmar_map_gfx) {
5410                /* we have to ensure the gfx device is idle before we flush */
5411                pr_info("Disabling batched IOTLB flush on Ironlake\n");
5412                intel_iommu_strict = 1;
5413       }
5414}
5415DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5416DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5417DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5418DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5419
5420/* On Tylersburg chipsets, some BIOSes have been known to enable the
5421   ISOCH DMAR unit for the Azalia sound device, but not give it any
5422   TLB entries, which causes it to deadlock. Check for that.  We do
5423   this in a function called from init_dmars(), instead of in a PCI
5424   quirk, because we don't want to print the obnoxious "BIOS broken"
5425   message if VT-d is actually disabled.
5426*/
5427static void __init check_tylersburg_isoch(void)
5428{
5429        struct pci_dev *pdev;
5430        uint32_t vtisochctrl;
5431
5432        /* If there's no Azalia in the system anyway, forget it. */
5433        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5434        if (!pdev)
5435                return;
5436        pci_dev_put(pdev);
5437
5438        /* System Management Registers. Might be hidden, in which case
5439           we can't do the sanity check. But that's OK, because the
5440           known-broken BIOSes _don't_ actually hide it, so far. */
5441        pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5442        if (!pdev)
5443                return;
5444
5445        if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5446                pci_dev_put(pdev);
5447                return;
5448        }
5449
5450        pci_dev_put(pdev);
5451
5452        /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5453        if (vtisochctrl & 1)
5454                return;
5455
5456        /* Drop all bits other than the number of TLB entries */
5457        vtisochctrl &= 0x1c;
5458
5459        /* If we have the recommended number of TLB entries (16), fine. */
5460        if (vtisochctrl == 0x10)
5461                return;
5462
5463        /* Zero TLB entries? You get to ride the short bus to school. */
5464        if (!vtisochctrl) {
5465                WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5466                     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5467                     dmi_get_system_info(DMI_BIOS_VENDOR),
5468                     dmi_get_system_info(DMI_BIOS_VERSION),
5469                     dmi_get_system_info(DMI_PRODUCT_VERSION));
5470                iommu_identity_mapping |= IDENTMAP_AZALIA;
5471                return;
5472        }
5473
5474        pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5475               vtisochctrl);
5476}
5477