linux/drivers/irqchip/irq-gic-v3-its.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#include <linux/acpi.h>
  19#include <linux/acpi_iort.h>
  20#include <linux/bitmap.h>
  21#include <linux/cpu.h>
  22#include <linux/delay.h>
  23#include <linux/dma-iommu.h>
  24#include <linux/interrupt.h>
  25#include <linux/irqdomain.h>
  26#include <linux/log2.h>
  27#include <linux/mm.h>
  28#include <linux/msi.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/of_pci.h>
  33#include <linux/of_platform.h>
  34#include <linux/percpu.h>
  35#include <linux/slab.h>
  36
  37#include <linux/irqchip.h>
  38#include <linux/irqchip/arm-gic-v3.h>
  39#include <linux/irqchip/arm-gic-v4.h>
  40
  41#include <asm/cputype.h>
  42#include <asm/exception.h>
  43
  44#include "irq-gic-common.h"
  45
  46#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
  47#define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
  48#define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
  49
  50#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
  51
  52static u32 lpi_id_bits;
  53
  54/*
  55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  56 * deal with (one configuration byte per interrupt). PENDBASE has to
  57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  58 */
  59#define LPI_NRBITS              lpi_id_bits
  60#define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
  61#define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  62
  63#define LPI_PROP_DEFAULT_PRIO   0xa0
  64
  65/*
  66 * Collection structure - just an ID, and a redistributor address to
  67 * ping. We use one per CPU as a bag of interrupts assigned to this
  68 * CPU.
  69 */
  70struct its_collection {
  71        u64                     target_address;
  72        u16                     col_id;
  73};
  74
  75/*
  76 * The ITS_BASER structure - contains memory information, cached
  77 * value of BASER register configuration and ITS page size.
  78 */
  79struct its_baser {
  80        void            *base;
  81        u64             val;
  82        u32             order;
  83        u32             psz;
  84};
  85
  86struct its_device;
  87
  88/*
  89 * The ITS structure - contains most of the infrastructure, with the
  90 * top-level MSI domain, the command queue, the collections, and the
  91 * list of devices writing to it.
  92 */
  93struct its_node {
  94        raw_spinlock_t          lock;
  95        struct list_head        entry;
  96        void __iomem            *base;
  97        phys_addr_t             phys_base;
  98        struct its_cmd_block    *cmd_base;
  99        struct its_cmd_block    *cmd_write;
 100        struct its_baser        tables[GITS_BASER_NR_REGS];
 101        struct its_collection   *collections;
 102        struct fwnode_handle    *fwnode_handle;
 103        u64                     (*get_msi_base)(struct its_device *its_dev);
 104        struct list_head        its_device_list;
 105        u64                     flags;
 106        unsigned long           list_nr;
 107        u32                     ite_size;
 108        u32                     device_ids;
 109        int                     numa_node;
 110        unsigned int            msi_domain_flags;
 111        u32                     pre_its_base; /* for Socionext Synquacer */
 112        bool                    is_v4;
 113        int                     vlpi_redist_offset;
 114};
 115
 116#define ITS_ITT_ALIGN           SZ_256
 117
 118/* The maximum number of VPEID bits supported by VLPI commands */
 119#define ITS_MAX_VPEID_BITS      (16)
 120#define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
 121
 122/* Convert page order to size in bytes */
 123#define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
 124
 125struct event_lpi_map {
 126        unsigned long           *lpi_map;
 127        u16                     *col_map;
 128        irq_hw_number_t         lpi_base;
 129        int                     nr_lpis;
 130        struct mutex            vlpi_lock;
 131        struct its_vm           *vm;
 132        struct its_vlpi_map     *vlpi_maps;
 133        int                     nr_vlpis;
 134};
 135
 136/*
 137 * The ITS view of a device - belongs to an ITS, owns an interrupt
 138 * translation table, and a list of interrupts.  If it some of its
 139 * LPIs are injected into a guest (GICv4), the event_map.vm field
 140 * indicates which one.
 141 */
 142struct its_device {
 143        struct list_head        entry;
 144        struct its_node         *its;
 145        struct event_lpi_map    event_map;
 146        void                    *itt;
 147        u32                     nr_ites;
 148        u32                     device_id;
 149};
 150
 151static struct {
 152        raw_spinlock_t          lock;
 153        struct its_device       *dev;
 154        struct its_vpe          **vpes;
 155        int                     next_victim;
 156} vpe_proxy;
 157
 158static LIST_HEAD(its_nodes);
 159static DEFINE_SPINLOCK(its_lock);
 160static struct rdists *gic_rdists;
 161static struct irq_domain *its_parent;
 162
 163static unsigned long its_list_map;
 164static u16 vmovp_seq_num;
 165static DEFINE_RAW_SPINLOCK(vmovp_lock);
 166
 167static DEFINE_IDA(its_vpeid_ida);
 168
 169#define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
 170#define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
 171#define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
 172
 173static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 174                                               u32 event)
 175{
 176        struct its_node *its = its_dev->its;
 177
 178        return its->collections + its_dev->event_map.col_map[event];
 179}
 180
 181/*
 182 * ITS command descriptors - parameters to be encoded in a command
 183 * block.
 184 */
 185struct its_cmd_desc {
 186        union {
 187                struct {
 188                        struct its_device *dev;
 189                        u32 event_id;
 190                } its_inv_cmd;
 191
 192                struct {
 193                        struct its_device *dev;
 194                        u32 event_id;
 195                } its_clear_cmd;
 196
 197                struct {
 198                        struct its_device *dev;
 199                        u32 event_id;
 200                } its_int_cmd;
 201
 202                struct {
 203                        struct its_device *dev;
 204                        int valid;
 205                } its_mapd_cmd;
 206
 207                struct {
 208                        struct its_collection *col;
 209                        int valid;
 210                } its_mapc_cmd;
 211
 212                struct {
 213                        struct its_device *dev;
 214                        u32 phys_id;
 215                        u32 event_id;
 216                } its_mapti_cmd;
 217
 218                struct {
 219                        struct its_device *dev;
 220                        struct its_collection *col;
 221                        u32 event_id;
 222                } its_movi_cmd;
 223
 224                struct {
 225                        struct its_device *dev;
 226                        u32 event_id;
 227                } its_discard_cmd;
 228
 229                struct {
 230                        struct its_collection *col;
 231                } its_invall_cmd;
 232
 233                struct {
 234                        struct its_vpe *vpe;
 235                } its_vinvall_cmd;
 236
 237                struct {
 238                        struct its_vpe *vpe;
 239                        struct its_collection *col;
 240                        bool valid;
 241                } its_vmapp_cmd;
 242
 243                struct {
 244                        struct its_vpe *vpe;
 245                        struct its_device *dev;
 246                        u32 virt_id;
 247                        u32 event_id;
 248                        bool db_enabled;
 249                } its_vmapti_cmd;
 250
 251                struct {
 252                        struct its_vpe *vpe;
 253                        struct its_device *dev;
 254                        u32 event_id;
 255                        bool db_enabled;
 256                } its_vmovi_cmd;
 257
 258                struct {
 259                        struct its_vpe *vpe;
 260                        struct its_collection *col;
 261                        u16 seq_num;
 262                        u16 its_list;
 263                } its_vmovp_cmd;
 264        };
 265};
 266
 267/*
 268 * The ITS command block, which is what the ITS actually parses.
 269 */
 270struct its_cmd_block {
 271        u64     raw_cmd[4];
 272};
 273
 274#define ITS_CMD_QUEUE_SZ                SZ_64K
 275#define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 276
 277typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 278                                                    struct its_cmd_block *,
 279                                                    struct its_cmd_desc *);
 280
 281typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 282                                              struct its_cmd_block *,
 283                                              struct its_cmd_desc *);
 284
 285static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 286{
 287        u64 mask = GENMASK_ULL(h, l);
 288        *raw_cmd &= ~mask;
 289        *raw_cmd |= (val << l) & mask;
 290}
 291
 292static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 293{
 294        its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 295}
 296
 297static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 298{
 299        its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 300}
 301
 302static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 303{
 304        its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 305}
 306
 307static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 308{
 309        its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 310}
 311
 312static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 313{
 314        its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 315}
 316
 317static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 318{
 319        its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 320}
 321
 322static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 323{
 324        its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 325}
 326
 327static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 328{
 329        its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 330}
 331
 332static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 333{
 334        its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 335}
 336
 337static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 338{
 339        its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 340}
 341
 342static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 343{
 344        its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 345}
 346
 347static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 348{
 349        its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 350}
 351
 352static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 353{
 354        its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 355}
 356
 357static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 358{
 359        its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 360}
 361
 362static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 363{
 364        its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 365}
 366
 367static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 368{
 369        its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 370}
 371
 372static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 373{
 374        its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 375}
 376
 377static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 378{
 379        /* Let's fixup BE commands */
 380        cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 381        cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 382        cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 383        cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 384}
 385
 386static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 387                                                 struct its_cmd_block *cmd,
 388                                                 struct its_cmd_desc *desc)
 389{
 390        unsigned long itt_addr;
 391        u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 392
 393        itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 394        itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 395
 396        its_encode_cmd(cmd, GITS_CMD_MAPD);
 397        its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 398        its_encode_size(cmd, size - 1);
 399        its_encode_itt(cmd, itt_addr);
 400        its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 401
 402        its_fixup_cmd(cmd);
 403
 404        return NULL;
 405}
 406
 407static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 408                                                 struct its_cmd_block *cmd,
 409                                                 struct its_cmd_desc *desc)
 410{
 411        its_encode_cmd(cmd, GITS_CMD_MAPC);
 412        its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 413        its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 414        its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 415
 416        its_fixup_cmd(cmd);
 417
 418        return desc->its_mapc_cmd.col;
 419}
 420
 421static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 422                                                  struct its_cmd_block *cmd,
 423                                                  struct its_cmd_desc *desc)
 424{
 425        struct its_collection *col;
 426
 427        col = dev_event_to_col(desc->its_mapti_cmd.dev,
 428                               desc->its_mapti_cmd.event_id);
 429
 430        its_encode_cmd(cmd, GITS_CMD_MAPTI);
 431        its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 432        its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 433        its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 434        its_encode_collection(cmd, col->col_id);
 435
 436        its_fixup_cmd(cmd);
 437
 438        return col;
 439}
 440
 441static struct its_collection *its_build_movi_cmd(struct its_node *its,
 442                                                 struct its_cmd_block *cmd,
 443                                                 struct its_cmd_desc *desc)
 444{
 445        struct its_collection *col;
 446
 447        col = dev_event_to_col(desc->its_movi_cmd.dev,
 448                               desc->its_movi_cmd.event_id);
 449
 450        its_encode_cmd(cmd, GITS_CMD_MOVI);
 451        its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 452        its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 453        its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 454
 455        its_fixup_cmd(cmd);
 456
 457        return col;
 458}
 459
 460static struct its_collection *its_build_discard_cmd(struct its_node *its,
 461                                                    struct its_cmd_block *cmd,
 462                                                    struct its_cmd_desc *desc)
 463{
 464        struct its_collection *col;
 465
 466        col = dev_event_to_col(desc->its_discard_cmd.dev,
 467                               desc->its_discard_cmd.event_id);
 468
 469        its_encode_cmd(cmd, GITS_CMD_DISCARD);
 470        its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 471        its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 472
 473        its_fixup_cmd(cmd);
 474
 475        return col;
 476}
 477
 478static struct its_collection *its_build_inv_cmd(struct its_node *its,
 479                                                struct its_cmd_block *cmd,
 480                                                struct its_cmd_desc *desc)
 481{
 482        struct its_collection *col;
 483
 484        col = dev_event_to_col(desc->its_inv_cmd.dev,
 485                               desc->its_inv_cmd.event_id);
 486
 487        its_encode_cmd(cmd, GITS_CMD_INV);
 488        its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 489        its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 490
 491        its_fixup_cmd(cmd);
 492
 493        return col;
 494}
 495
 496static struct its_collection *its_build_int_cmd(struct its_node *its,
 497                                                struct its_cmd_block *cmd,
 498                                                struct its_cmd_desc *desc)
 499{
 500        struct its_collection *col;
 501
 502        col = dev_event_to_col(desc->its_int_cmd.dev,
 503                               desc->its_int_cmd.event_id);
 504
 505        its_encode_cmd(cmd, GITS_CMD_INT);
 506        its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 507        its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 508
 509        its_fixup_cmd(cmd);
 510
 511        return col;
 512}
 513
 514static struct its_collection *its_build_clear_cmd(struct its_node *its,
 515                                                  struct its_cmd_block *cmd,
 516                                                  struct its_cmd_desc *desc)
 517{
 518        struct its_collection *col;
 519
 520        col = dev_event_to_col(desc->its_clear_cmd.dev,
 521                               desc->its_clear_cmd.event_id);
 522
 523        its_encode_cmd(cmd, GITS_CMD_CLEAR);
 524        its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 525        its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 526
 527        its_fixup_cmd(cmd);
 528
 529        return col;
 530}
 531
 532static struct its_collection *its_build_invall_cmd(struct its_node *its,
 533                                                   struct its_cmd_block *cmd,
 534                                                   struct its_cmd_desc *desc)
 535{
 536        its_encode_cmd(cmd, GITS_CMD_INVALL);
 537        its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 538
 539        its_fixup_cmd(cmd);
 540
 541        return NULL;
 542}
 543
 544static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 545                                             struct its_cmd_block *cmd,
 546                                             struct its_cmd_desc *desc)
 547{
 548        its_encode_cmd(cmd, GITS_CMD_VINVALL);
 549        its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 550
 551        its_fixup_cmd(cmd);
 552
 553        return desc->its_vinvall_cmd.vpe;
 554}
 555
 556static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 557                                           struct its_cmd_block *cmd,
 558                                           struct its_cmd_desc *desc)
 559{
 560        unsigned long vpt_addr;
 561        u64 target;
 562
 563        vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 564        target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 565
 566        its_encode_cmd(cmd, GITS_CMD_VMAPP);
 567        its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 568        its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 569        its_encode_target(cmd, target);
 570        its_encode_vpt_addr(cmd, vpt_addr);
 571        its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 572
 573        its_fixup_cmd(cmd);
 574
 575        return desc->its_vmapp_cmd.vpe;
 576}
 577
 578static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 579                                            struct its_cmd_block *cmd,
 580                                            struct its_cmd_desc *desc)
 581{
 582        u32 db;
 583
 584        if (desc->its_vmapti_cmd.db_enabled)
 585                db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 586        else
 587                db = 1023;
 588
 589        its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 590        its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 591        its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 592        its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 593        its_encode_db_phys_id(cmd, db);
 594        its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 595
 596        its_fixup_cmd(cmd);
 597
 598        return desc->its_vmapti_cmd.vpe;
 599}
 600
 601static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 602                                           struct its_cmd_block *cmd,
 603                                           struct its_cmd_desc *desc)
 604{
 605        u32 db;
 606
 607        if (desc->its_vmovi_cmd.db_enabled)
 608                db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 609        else
 610                db = 1023;
 611
 612        its_encode_cmd(cmd, GITS_CMD_VMOVI);
 613        its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 614        its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 615        its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 616        its_encode_db_phys_id(cmd, db);
 617        its_encode_db_valid(cmd, true);
 618
 619        its_fixup_cmd(cmd);
 620
 621        return desc->its_vmovi_cmd.vpe;
 622}
 623
 624static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 625                                           struct its_cmd_block *cmd,
 626                                           struct its_cmd_desc *desc)
 627{
 628        u64 target;
 629
 630        target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 631        its_encode_cmd(cmd, GITS_CMD_VMOVP);
 632        its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 633        its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 634        its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 635        its_encode_target(cmd, target);
 636
 637        its_fixup_cmd(cmd);
 638
 639        return desc->its_vmovp_cmd.vpe;
 640}
 641
 642static u64 its_cmd_ptr_to_offset(struct its_node *its,
 643                                 struct its_cmd_block *ptr)
 644{
 645        return (ptr - its->cmd_base) * sizeof(*ptr);
 646}
 647
 648static int its_queue_full(struct its_node *its)
 649{
 650        int widx;
 651        int ridx;
 652
 653        widx = its->cmd_write - its->cmd_base;
 654        ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 655
 656        /* This is incredibly unlikely to happen, unless the ITS locks up. */
 657        if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 658                return 1;
 659
 660        return 0;
 661}
 662
 663static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 664{
 665        struct its_cmd_block *cmd;
 666        u32 count = 1000000;    /* 1s! */
 667
 668        while (its_queue_full(its)) {
 669                count--;
 670                if (!count) {
 671                        pr_err_ratelimited("ITS queue not draining\n");
 672                        return NULL;
 673                }
 674                cpu_relax();
 675                udelay(1);
 676        }
 677
 678        cmd = its->cmd_write++;
 679
 680        /* Handle queue wrapping */
 681        if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 682                its->cmd_write = its->cmd_base;
 683
 684        /* Clear command  */
 685        cmd->raw_cmd[0] = 0;
 686        cmd->raw_cmd[1] = 0;
 687        cmd->raw_cmd[2] = 0;
 688        cmd->raw_cmd[3] = 0;
 689
 690        return cmd;
 691}
 692
 693static struct its_cmd_block *its_post_commands(struct its_node *its)
 694{
 695        u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 696
 697        writel_relaxed(wr, its->base + GITS_CWRITER);
 698
 699        return its->cmd_write;
 700}
 701
 702static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 703{
 704        /*
 705         * Make sure the commands written to memory are observable by
 706         * the ITS.
 707         */
 708        if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 709                gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 710        else
 711                dsb(ishst);
 712}
 713
 714static int its_wait_for_range_completion(struct its_node *its,
 715                                         struct its_cmd_block *from,
 716                                         struct its_cmd_block *to)
 717{
 718        u64 rd_idx, from_idx, to_idx;
 719        u32 count = 1000000;    /* 1s! */
 720
 721        from_idx = its_cmd_ptr_to_offset(its, from);
 722        to_idx = its_cmd_ptr_to_offset(its, to);
 723
 724        while (1) {
 725                rd_idx = readl_relaxed(its->base + GITS_CREADR);
 726
 727                /* Direct case */
 728                if (from_idx < to_idx && rd_idx >= to_idx)
 729                        break;
 730
 731                /* Wrapped case */
 732                if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
 733                        break;
 734
 735                count--;
 736                if (!count) {
 737                        pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
 738                                           from_idx, to_idx, rd_idx);
 739                        return -1;
 740                }
 741                cpu_relax();
 742                udelay(1);
 743        }
 744
 745        return 0;
 746}
 747
 748/* Warning, macro hell follows */
 749#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
 750void name(struct its_node *its,                                         \
 751          buildtype builder,                                            \
 752          struct its_cmd_desc *desc)                                    \
 753{                                                                       \
 754        struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
 755        synctype *sync_obj;                                             \
 756        unsigned long flags;                                            \
 757                                                                        \
 758        raw_spin_lock_irqsave(&its->lock, flags);                       \
 759                                                                        \
 760        cmd = its_allocate_entry(its);                                  \
 761        if (!cmd) {             /* We're soooooo screewed... */         \
 762                raw_spin_unlock_irqrestore(&its->lock, flags);          \
 763                return;                                                 \
 764        }                                                               \
 765        sync_obj = builder(its, cmd, desc);                             \
 766        its_flush_cmd(its, cmd);                                        \
 767                                                                        \
 768        if (sync_obj) {                                                 \
 769                sync_cmd = its_allocate_entry(its);                     \
 770                if (!sync_cmd)                                          \
 771                        goto post;                                      \
 772                                                                        \
 773                buildfn(its, sync_cmd, sync_obj);                       \
 774                its_flush_cmd(its, sync_cmd);                           \
 775        }                                                               \
 776                                                                        \
 777post:                                                                   \
 778        next_cmd = its_post_commands(its);                              \
 779        raw_spin_unlock_irqrestore(&its->lock, flags);                  \
 780                                                                        \
 781        if (its_wait_for_range_completion(its, cmd, next_cmd))          \
 782                pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
 783}
 784
 785static void its_build_sync_cmd(struct its_node *its,
 786                               struct its_cmd_block *sync_cmd,
 787                               struct its_collection *sync_col)
 788{
 789        its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 790        its_encode_target(sync_cmd, sync_col->target_address);
 791
 792        its_fixup_cmd(sync_cmd);
 793}
 794
 795static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
 796                             struct its_collection, its_build_sync_cmd)
 797
 798static void its_build_vsync_cmd(struct its_node *its,
 799                                struct its_cmd_block *sync_cmd,
 800                                struct its_vpe *sync_vpe)
 801{
 802        its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
 803        its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
 804
 805        its_fixup_cmd(sync_cmd);
 806}
 807
 808static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
 809                             struct its_vpe, its_build_vsync_cmd)
 810
 811static void its_send_int(struct its_device *dev, u32 event_id)
 812{
 813        struct its_cmd_desc desc;
 814
 815        desc.its_int_cmd.dev = dev;
 816        desc.its_int_cmd.event_id = event_id;
 817
 818        its_send_single_command(dev->its, its_build_int_cmd, &desc);
 819}
 820
 821static void its_send_clear(struct its_device *dev, u32 event_id)
 822{
 823        struct its_cmd_desc desc;
 824
 825        desc.its_clear_cmd.dev = dev;
 826        desc.its_clear_cmd.event_id = event_id;
 827
 828        its_send_single_command(dev->its, its_build_clear_cmd, &desc);
 829}
 830
 831static void its_send_inv(struct its_device *dev, u32 event_id)
 832{
 833        struct its_cmd_desc desc;
 834
 835        desc.its_inv_cmd.dev = dev;
 836        desc.its_inv_cmd.event_id = event_id;
 837
 838        its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 839}
 840
 841static void its_send_mapd(struct its_device *dev, int valid)
 842{
 843        struct its_cmd_desc desc;
 844
 845        desc.its_mapd_cmd.dev = dev;
 846        desc.its_mapd_cmd.valid = !!valid;
 847
 848        its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 849}
 850
 851static void its_send_mapc(struct its_node *its, struct its_collection *col,
 852                          int valid)
 853{
 854        struct its_cmd_desc desc;
 855
 856        desc.its_mapc_cmd.col = col;
 857        desc.its_mapc_cmd.valid = !!valid;
 858
 859        its_send_single_command(its, its_build_mapc_cmd, &desc);
 860}
 861
 862static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
 863{
 864        struct its_cmd_desc desc;
 865
 866        desc.its_mapti_cmd.dev = dev;
 867        desc.its_mapti_cmd.phys_id = irq_id;
 868        desc.its_mapti_cmd.event_id = id;
 869
 870        its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
 871}
 872
 873static void its_send_movi(struct its_device *dev,
 874                          struct its_collection *col, u32 id)
 875{
 876        struct its_cmd_desc desc;
 877
 878        desc.its_movi_cmd.dev = dev;
 879        desc.its_movi_cmd.col = col;
 880        desc.its_movi_cmd.event_id = id;
 881
 882        its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 883}
 884
 885static void its_send_discard(struct its_device *dev, u32 id)
 886{
 887        struct its_cmd_desc desc;
 888
 889        desc.its_discard_cmd.dev = dev;
 890        desc.its_discard_cmd.event_id = id;
 891
 892        its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 893}
 894
 895static void its_send_invall(struct its_node *its, struct its_collection *col)
 896{
 897        struct its_cmd_desc desc;
 898
 899        desc.its_invall_cmd.col = col;
 900
 901        its_send_single_command(its, its_build_invall_cmd, &desc);
 902}
 903
 904static void its_send_vmapti(struct its_device *dev, u32 id)
 905{
 906        struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 907        struct its_cmd_desc desc;
 908
 909        desc.its_vmapti_cmd.vpe = map->vpe;
 910        desc.its_vmapti_cmd.dev = dev;
 911        desc.its_vmapti_cmd.virt_id = map->vintid;
 912        desc.its_vmapti_cmd.event_id = id;
 913        desc.its_vmapti_cmd.db_enabled = map->db_enabled;
 914
 915        its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
 916}
 917
 918static void its_send_vmovi(struct its_device *dev, u32 id)
 919{
 920        struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 921        struct its_cmd_desc desc;
 922
 923        desc.its_vmovi_cmd.vpe = map->vpe;
 924        desc.its_vmovi_cmd.dev = dev;
 925        desc.its_vmovi_cmd.event_id = id;
 926        desc.its_vmovi_cmd.db_enabled = map->db_enabled;
 927
 928        its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
 929}
 930
 931static void its_send_vmapp(struct its_node *its,
 932                           struct its_vpe *vpe, bool valid)
 933{
 934        struct its_cmd_desc desc;
 935
 936        desc.its_vmapp_cmd.vpe = vpe;
 937        desc.its_vmapp_cmd.valid = valid;
 938        desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
 939
 940        its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
 941}
 942
 943static void its_send_vmovp(struct its_vpe *vpe)
 944{
 945        struct its_cmd_desc desc;
 946        struct its_node *its;
 947        unsigned long flags;
 948        int col_id = vpe->col_idx;
 949
 950        desc.its_vmovp_cmd.vpe = vpe;
 951        desc.its_vmovp_cmd.its_list = (u16)its_list_map;
 952
 953        if (!its_list_map) {
 954                its = list_first_entry(&its_nodes, struct its_node, entry);
 955                desc.its_vmovp_cmd.seq_num = 0;
 956                desc.its_vmovp_cmd.col = &its->collections[col_id];
 957                its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 958                return;
 959        }
 960
 961        /*
 962         * Yet another marvel of the architecture. If using the
 963         * its_list "feature", we need to make sure that all ITSs
 964         * receive all VMOVP commands in the same order. The only way
 965         * to guarantee this is to make vmovp a serialization point.
 966         *
 967         * Wall <-- Head.
 968         */
 969        raw_spin_lock_irqsave(&vmovp_lock, flags);
 970
 971        desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
 972
 973        /* Emit VMOVPs */
 974        list_for_each_entry(its, &its_nodes, entry) {
 975                if (!its->is_v4)
 976                        continue;
 977
 978                if (!vpe->its_vm->vlpi_count[its->list_nr])
 979                        continue;
 980
 981                desc.its_vmovp_cmd.col = &its->collections[col_id];
 982                its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 983        }
 984
 985        raw_spin_unlock_irqrestore(&vmovp_lock, flags);
 986}
 987
 988static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
 989{
 990        struct its_cmd_desc desc;
 991
 992        desc.its_vinvall_cmd.vpe = vpe;
 993        its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
 994}
 995
 996/*
 997 * irqchip functions - assumes MSI, mostly.
 998 */
 999
1000static inline u32 its_get_event_id(struct irq_data *d)
1001{
1002        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1003        return d->hwirq - its_dev->event_map.lpi_base;
1004}
1005
1006static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1007{
1008        irq_hw_number_t hwirq;
1009        struct page *prop_page;
1010        u8 *cfg;
1011
1012        if (irqd_is_forwarded_to_vcpu(d)) {
1013                struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1014                u32 event = its_get_event_id(d);
1015                struct its_vlpi_map *map;
1016
1017                prop_page = its_dev->event_map.vm->vprop_page;
1018                map = &its_dev->event_map.vlpi_maps[event];
1019                hwirq = map->vintid;
1020
1021                /* Remember the updated property */
1022                map->properties &= ~clr;
1023                map->properties |= set | LPI_PROP_GROUP1;
1024        } else {
1025                prop_page = gic_rdists->prop_page;
1026                hwirq = d->hwirq;
1027        }
1028
1029        cfg = page_address(prop_page) + hwirq - 8192;
1030        *cfg &= ~clr;
1031        *cfg |= set | LPI_PROP_GROUP1;
1032
1033        /*
1034         * Make the above write visible to the redistributors.
1035         * And yes, we're flushing exactly: One. Single. Byte.
1036         * Humpf...
1037         */
1038        if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1039                gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1040        else
1041                dsb(ishst);
1042}
1043
1044static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1045{
1046        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1047
1048        lpi_write_config(d, clr, set);
1049        its_send_inv(its_dev, its_get_event_id(d));
1050}
1051
1052static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1053{
1054        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1055        u32 event = its_get_event_id(d);
1056
1057        if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1058                return;
1059
1060        its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1061
1062        /*
1063         * More fun with the architecture:
1064         *
1065         * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1066         * value or to 1023, depending on the enable bit. But that
1067         * would be issueing a mapping for an /existing/ DevID+EventID
1068         * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1069         * to the /same/ vPE, using this opportunity to adjust the
1070         * doorbell. Mouahahahaha. We loves it, Precious.
1071         */
1072        its_send_vmovi(its_dev, event);
1073}
1074
1075static void its_mask_irq(struct irq_data *d)
1076{
1077        if (irqd_is_forwarded_to_vcpu(d))
1078                its_vlpi_set_doorbell(d, false);
1079
1080        lpi_update_config(d, LPI_PROP_ENABLED, 0);
1081}
1082
1083static void its_unmask_irq(struct irq_data *d)
1084{
1085        if (irqd_is_forwarded_to_vcpu(d))
1086                its_vlpi_set_doorbell(d, true);
1087
1088        lpi_update_config(d, 0, LPI_PROP_ENABLED);
1089}
1090
1091static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1092                            bool force)
1093{
1094        unsigned int cpu;
1095        const struct cpumask *cpu_mask = cpu_online_mask;
1096        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1097        struct its_collection *target_col;
1098        u32 id = its_get_event_id(d);
1099
1100        /* A forwarded interrupt should use irq_set_vcpu_affinity */
1101        if (irqd_is_forwarded_to_vcpu(d))
1102                return -EINVAL;
1103
1104       /* lpi cannot be routed to a redistributor that is on a foreign node */
1105        if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1106                if (its_dev->its->numa_node >= 0) {
1107                        cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1108                        if (!cpumask_intersects(mask_val, cpu_mask))
1109                                return -EINVAL;
1110                }
1111        }
1112
1113        cpu = cpumask_any_and(mask_val, cpu_mask);
1114
1115        if (cpu >= nr_cpu_ids)
1116                return -EINVAL;
1117
1118        /* don't set the affinity when the target cpu is same as current one */
1119        if (cpu != its_dev->event_map.col_map[id]) {
1120                target_col = &its_dev->its->collections[cpu];
1121                its_send_movi(its_dev, target_col, id);
1122                its_dev->event_map.col_map[id] = cpu;
1123                irq_data_update_effective_affinity(d, cpumask_of(cpu));
1124        }
1125
1126        return IRQ_SET_MASK_OK_DONE;
1127}
1128
1129static u64 its_irq_get_msi_base(struct its_device *its_dev)
1130{
1131        struct its_node *its = its_dev->its;
1132
1133        return its->phys_base + GITS_TRANSLATER;
1134}
1135
1136static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1137{
1138        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1139        struct its_node *its;
1140        u64 addr;
1141
1142        its = its_dev->its;
1143        addr = its->get_msi_base(its_dev);
1144
1145        msg->address_lo         = lower_32_bits(addr);
1146        msg->address_hi         = upper_32_bits(addr);
1147        msg->data               = its_get_event_id(d);
1148
1149        iommu_dma_map_msi_msg(d->irq, msg);
1150}
1151
1152static int its_irq_set_irqchip_state(struct irq_data *d,
1153                                     enum irqchip_irq_state which,
1154                                     bool state)
1155{
1156        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1157        u32 event = its_get_event_id(d);
1158
1159        if (which != IRQCHIP_STATE_PENDING)
1160                return -EINVAL;
1161
1162        if (state)
1163                its_send_int(its_dev, event);
1164        else
1165                its_send_clear(its_dev, event);
1166
1167        return 0;
1168}
1169
1170static void its_map_vm(struct its_node *its, struct its_vm *vm)
1171{
1172        unsigned long flags;
1173
1174        /* Not using the ITS list? Everything is always mapped. */
1175        if (!its_list_map)
1176                return;
1177
1178        raw_spin_lock_irqsave(&vmovp_lock, flags);
1179
1180        /*
1181         * If the VM wasn't mapped yet, iterate over the vpes and get
1182         * them mapped now.
1183         */
1184        vm->vlpi_count[its->list_nr]++;
1185
1186        if (vm->vlpi_count[its->list_nr] == 1) {
1187                int i;
1188
1189                for (i = 0; i < vm->nr_vpes; i++) {
1190                        struct its_vpe *vpe = vm->vpes[i];
1191                        struct irq_data *d = irq_get_irq_data(vpe->irq);
1192
1193                        /* Map the VPE to the first possible CPU */
1194                        vpe->col_idx = cpumask_first(cpu_online_mask);
1195                        its_send_vmapp(its, vpe, true);
1196                        its_send_vinvall(its, vpe);
1197                        irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1198                }
1199        }
1200
1201        raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1202}
1203
1204static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1205{
1206        unsigned long flags;
1207
1208        /* Not using the ITS list? Everything is always mapped. */
1209        if (!its_list_map)
1210                return;
1211
1212        raw_spin_lock_irqsave(&vmovp_lock, flags);
1213
1214        if (!--vm->vlpi_count[its->list_nr]) {
1215                int i;
1216
1217                for (i = 0; i < vm->nr_vpes; i++)
1218                        its_send_vmapp(its, vm->vpes[i], false);
1219        }
1220
1221        raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1222}
1223
1224static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1225{
1226        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1227        u32 event = its_get_event_id(d);
1228        int ret = 0;
1229
1230        if (!info->map)
1231                return -EINVAL;
1232
1233        mutex_lock(&its_dev->event_map.vlpi_lock);
1234
1235        if (!its_dev->event_map.vm) {
1236                struct its_vlpi_map *maps;
1237
1238                maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1239                               GFP_KERNEL);
1240                if (!maps) {
1241                        ret = -ENOMEM;
1242                        goto out;
1243                }
1244
1245                its_dev->event_map.vm = info->map->vm;
1246                its_dev->event_map.vlpi_maps = maps;
1247        } else if (its_dev->event_map.vm != info->map->vm) {
1248                ret = -EINVAL;
1249                goto out;
1250        }
1251
1252        /* Get our private copy of the mapping information */
1253        its_dev->event_map.vlpi_maps[event] = *info->map;
1254
1255        if (irqd_is_forwarded_to_vcpu(d)) {
1256                /* Already mapped, move it around */
1257                its_send_vmovi(its_dev, event);
1258        } else {
1259                /* Ensure all the VPEs are mapped on this ITS */
1260                its_map_vm(its_dev->its, info->map->vm);
1261
1262                /*
1263                 * Flag the interrupt as forwarded so that we can
1264                 * start poking the virtual property table.
1265                 */
1266                irqd_set_forwarded_to_vcpu(d);
1267
1268                /* Write out the property to the prop table */
1269                lpi_write_config(d, 0xff, info->map->properties);
1270
1271                /* Drop the physical mapping */
1272                its_send_discard(its_dev, event);
1273
1274                /* and install the virtual one */
1275                its_send_vmapti(its_dev, event);
1276
1277                /* Increment the number of VLPIs */
1278                its_dev->event_map.nr_vlpis++;
1279        }
1280
1281out:
1282        mutex_unlock(&its_dev->event_map.vlpi_lock);
1283        return ret;
1284}
1285
1286static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1287{
1288        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1289        u32 event = its_get_event_id(d);
1290        int ret = 0;
1291
1292        mutex_lock(&its_dev->event_map.vlpi_lock);
1293
1294        if (!its_dev->event_map.vm ||
1295            !its_dev->event_map.vlpi_maps[event].vm) {
1296                ret = -EINVAL;
1297                goto out;
1298        }
1299
1300        /* Copy our mapping information to the incoming request */
1301        *info->map = its_dev->event_map.vlpi_maps[event];
1302
1303out:
1304        mutex_unlock(&its_dev->event_map.vlpi_lock);
1305        return ret;
1306}
1307
1308static int its_vlpi_unmap(struct irq_data *d)
1309{
1310        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1311        u32 event = its_get_event_id(d);
1312        int ret = 0;
1313
1314        mutex_lock(&its_dev->event_map.vlpi_lock);
1315
1316        if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1317                ret = -EINVAL;
1318                goto out;
1319        }
1320
1321        /* Drop the virtual mapping */
1322        its_send_discard(its_dev, event);
1323
1324        /* and restore the physical one */
1325        irqd_clr_forwarded_to_vcpu(d);
1326        its_send_mapti(its_dev, d->hwirq, event);
1327        lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1328                                    LPI_PROP_ENABLED |
1329                                    LPI_PROP_GROUP1));
1330
1331        /* Potentially unmap the VM from this ITS */
1332        its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1333
1334        /*
1335         * Drop the refcount and make the device available again if
1336         * this was the last VLPI.
1337         */
1338        if (!--its_dev->event_map.nr_vlpis) {
1339                its_dev->event_map.vm = NULL;
1340                kfree(its_dev->event_map.vlpi_maps);
1341        }
1342
1343out:
1344        mutex_unlock(&its_dev->event_map.vlpi_lock);
1345        return ret;
1346}
1347
1348static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1349{
1350        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1351
1352        if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1353                return -EINVAL;
1354
1355        if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1356                lpi_update_config(d, 0xff, info->config);
1357        else
1358                lpi_write_config(d, 0xff, info->config);
1359        its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1360
1361        return 0;
1362}
1363
1364static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1365{
1366        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1367        struct its_cmd_info *info = vcpu_info;
1368
1369        /* Need a v4 ITS */
1370        if (!its_dev->its->is_v4)
1371                return -EINVAL;
1372
1373        /* Unmap request? */
1374        if (!info)
1375                return its_vlpi_unmap(d);
1376
1377        switch (info->cmd_type) {
1378        case MAP_VLPI:
1379                return its_vlpi_map(d, info);
1380
1381        case GET_VLPI:
1382                return its_vlpi_get(d, info);
1383
1384        case PROP_UPDATE_VLPI:
1385        case PROP_UPDATE_AND_INV_VLPI:
1386                return its_vlpi_prop_update(d, info);
1387
1388        default:
1389                return -EINVAL;
1390        }
1391}
1392
1393static struct irq_chip its_irq_chip = {
1394        .name                   = "ITS",
1395        .irq_mask               = its_mask_irq,
1396        .irq_unmask             = its_unmask_irq,
1397        .irq_eoi                = irq_chip_eoi_parent,
1398        .irq_set_affinity       = its_set_affinity,
1399        .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1400        .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1401        .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1402};
1403
1404/*
1405 * How we allocate LPIs:
1406 *
1407 * The GIC has id_bits bits for interrupt identifiers. From there, we
1408 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1409 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1410 * bits to the right.
1411 *
1412 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1413 */
1414#define IRQS_PER_CHUNK_SHIFT    5
1415#define IRQS_PER_CHUNK          (1UL << IRQS_PER_CHUNK_SHIFT)
1416#define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
1417
1418static unsigned long *lpi_bitmap;
1419static u32 lpi_chunks;
1420static DEFINE_SPINLOCK(lpi_lock);
1421
1422static int its_lpi_to_chunk(int lpi)
1423{
1424        return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1425}
1426
1427static int its_chunk_to_lpi(int chunk)
1428{
1429        return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1430}
1431
1432static int __init its_lpi_init(u32 id_bits)
1433{
1434        lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1435
1436        lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1437                             GFP_KERNEL);
1438        if (!lpi_bitmap) {
1439                lpi_chunks = 0;
1440                return -ENOMEM;
1441        }
1442
1443        pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1444        return 0;
1445}
1446
1447static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1448{
1449        unsigned long *bitmap = NULL;
1450        int chunk_id;
1451        int nr_chunks;
1452        int i;
1453
1454        nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1455
1456        spin_lock(&lpi_lock);
1457
1458        do {
1459                chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1460                                                      0, nr_chunks, 0);
1461                if (chunk_id < lpi_chunks)
1462                        break;
1463
1464                nr_chunks--;
1465        } while (nr_chunks > 0);
1466
1467        if (!nr_chunks)
1468                goto out;
1469
1470        bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1471                         GFP_ATOMIC);
1472        if (!bitmap)
1473                goto out;
1474
1475        for (i = 0; i < nr_chunks; i++)
1476                set_bit(chunk_id + i, lpi_bitmap);
1477
1478        *base = its_chunk_to_lpi(chunk_id);
1479        *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1480
1481out:
1482        spin_unlock(&lpi_lock);
1483
1484        if (!bitmap)
1485                *base = *nr_ids = 0;
1486
1487        return bitmap;
1488}
1489
1490static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1491{
1492        int lpi;
1493
1494        spin_lock(&lpi_lock);
1495
1496        for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1497                int chunk = its_lpi_to_chunk(lpi);
1498
1499                BUG_ON(chunk > lpi_chunks);
1500                if (test_bit(chunk, lpi_bitmap)) {
1501                        clear_bit(chunk, lpi_bitmap);
1502                } else {
1503                        pr_err("Bad LPI chunk %d\n", chunk);
1504                }
1505        }
1506
1507        spin_unlock(&lpi_lock);
1508
1509        kfree(bitmap);
1510}
1511
1512static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1513{
1514        struct page *prop_page;
1515
1516        prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1517        if (!prop_page)
1518                return NULL;
1519
1520        /* Priority 0xa0, Group-1, disabled */
1521        memset(page_address(prop_page),
1522               LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1523               LPI_PROPBASE_SZ);
1524
1525        /* Make sure the GIC will observe the written configuration */
1526        gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1527
1528        return prop_page;
1529}
1530
1531static void its_free_prop_table(struct page *prop_page)
1532{
1533        free_pages((unsigned long)page_address(prop_page),
1534                   get_order(LPI_PROPBASE_SZ));
1535}
1536
1537static int __init its_alloc_lpi_tables(void)
1538{
1539        phys_addr_t paddr;
1540
1541        lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1542        gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1543        if (!gic_rdists->prop_page) {
1544                pr_err("Failed to allocate PROPBASE\n");
1545                return -ENOMEM;
1546        }
1547
1548        paddr = page_to_phys(gic_rdists->prop_page);
1549        pr_info("GIC: using LPI property table @%pa\n", &paddr);
1550
1551        return its_lpi_init(lpi_id_bits);
1552}
1553
1554static const char *its_base_type_string[] = {
1555        [GITS_BASER_TYPE_DEVICE]        = "Devices",
1556        [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
1557        [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
1558        [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
1559        [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
1560        [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
1561        [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
1562};
1563
1564static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1565{
1566        u32 idx = baser - its->tables;
1567
1568        return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1569}
1570
1571static void its_write_baser(struct its_node *its, struct its_baser *baser,
1572                            u64 val)
1573{
1574        u32 idx = baser - its->tables;
1575
1576        gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1577        baser->val = its_read_baser(its, baser);
1578}
1579
1580static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1581                           u64 cache, u64 shr, u32 psz, u32 order,
1582                           bool indirect)
1583{
1584        u64 val = its_read_baser(its, baser);
1585        u64 esz = GITS_BASER_ENTRY_SIZE(val);
1586        u64 type = GITS_BASER_TYPE(val);
1587        u64 baser_phys, tmp;
1588        u32 alloc_pages;
1589        void *base;
1590
1591retry_alloc_baser:
1592        alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1593        if (alloc_pages > GITS_BASER_PAGES_MAX) {
1594                pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1595                        &its->phys_base, its_base_type_string[type],
1596                        alloc_pages, GITS_BASER_PAGES_MAX);
1597                alloc_pages = GITS_BASER_PAGES_MAX;
1598                order = get_order(GITS_BASER_PAGES_MAX * psz);
1599        }
1600
1601        base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1602        if (!base)
1603                return -ENOMEM;
1604
1605        baser_phys = virt_to_phys(base);
1606
1607        /* Check if the physical address of the memory is above 48bits */
1608        if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1609
1610                /* 52bit PA is supported only when PageSize=64K */
1611                if (psz != SZ_64K) {
1612                        pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1613                        free_pages((unsigned long)base, order);
1614                        return -ENXIO;
1615                }
1616
1617                /* Convert 52bit PA to 48bit field */
1618                baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1619        }
1620
1621retry_baser:
1622        val = (baser_phys                                        |
1623                (type << GITS_BASER_TYPE_SHIFT)                  |
1624                ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
1625                ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
1626                cache                                            |
1627                shr                                              |
1628                GITS_BASER_VALID);
1629
1630        val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
1631
1632        switch (psz) {
1633        case SZ_4K:
1634                val |= GITS_BASER_PAGE_SIZE_4K;
1635                break;
1636        case SZ_16K:
1637                val |= GITS_BASER_PAGE_SIZE_16K;
1638                break;
1639        case SZ_64K:
1640                val |= GITS_BASER_PAGE_SIZE_64K;
1641                break;
1642        }
1643
1644        its_write_baser(its, baser, val);
1645        tmp = baser->val;
1646
1647        if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1648                /*
1649                 * Shareability didn't stick. Just use
1650                 * whatever the read reported, which is likely
1651                 * to be the only thing this redistributor
1652                 * supports. If that's zero, make it
1653                 * non-cacheable as well.
1654                 */
1655                shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1656                if (!shr) {
1657                        cache = GITS_BASER_nC;
1658                        gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1659                }
1660                goto retry_baser;
1661        }
1662
1663        if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1664                /*
1665                 * Page size didn't stick. Let's try a smaller
1666                 * size and retry. If we reach 4K, then
1667                 * something is horribly wrong...
1668                 */
1669                free_pages((unsigned long)base, order);
1670                baser->base = NULL;
1671
1672                switch (psz) {
1673                case SZ_16K:
1674                        psz = SZ_4K;
1675                        goto retry_alloc_baser;
1676                case SZ_64K:
1677                        psz = SZ_16K;
1678                        goto retry_alloc_baser;
1679                }
1680        }
1681
1682        if (val != tmp) {
1683                pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1684                       &its->phys_base, its_base_type_string[type],
1685                       val, tmp);
1686                free_pages((unsigned long)base, order);
1687                return -ENXIO;
1688        }
1689
1690        baser->order = order;
1691        baser->base = base;
1692        baser->psz = psz;
1693        tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1694
1695        pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1696                &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1697                its_base_type_string[type],
1698                (unsigned long)virt_to_phys(base),
1699                indirect ? "indirect" : "flat", (int)esz,
1700                psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1701
1702        return 0;
1703}
1704
1705static bool its_parse_indirect_baser(struct its_node *its,
1706                                     struct its_baser *baser,
1707                                     u32 psz, u32 *order, u32 ids)
1708{
1709        u64 tmp = its_read_baser(its, baser);
1710        u64 type = GITS_BASER_TYPE(tmp);
1711        u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1712        u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1713        u32 new_order = *order;
1714        bool indirect = false;
1715
1716        /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1717        if ((esz << ids) > (psz * 2)) {
1718                /*
1719                 * Find out whether hw supports a single or two-level table by
1720                 * table by reading bit at offset '62' after writing '1' to it.
1721                 */
1722                its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1723                indirect = !!(baser->val & GITS_BASER_INDIRECT);
1724
1725                if (indirect) {
1726                        /*
1727                         * The size of the lvl2 table is equal to ITS page size
1728                         * which is 'psz'. For computing lvl1 table size,
1729                         * subtract ID bits that sparse lvl2 table from 'ids'
1730                         * which is reported by ITS hardware times lvl1 table
1731                         * entry size.
1732                         */
1733                        ids -= ilog2(psz / (int)esz);
1734                        esz = GITS_LVL1_ENTRY_SIZE;
1735                }
1736        }
1737
1738        /*
1739         * Allocate as many entries as required to fit the
1740         * range of device IDs that the ITS can grok... The ID
1741         * space being incredibly sparse, this results in a
1742         * massive waste of memory if two-level device table
1743         * feature is not supported by hardware.
1744         */
1745        new_order = max_t(u32, get_order(esz << ids), new_order);
1746        if (new_order >= MAX_ORDER) {
1747                new_order = MAX_ORDER - 1;
1748                ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1749                pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1750                        &its->phys_base, its_base_type_string[type],
1751                        its->device_ids, ids);
1752        }
1753
1754        *order = new_order;
1755
1756        return indirect;
1757}
1758
1759static void its_free_tables(struct its_node *its)
1760{
1761        int i;
1762
1763        for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1764                if (its->tables[i].base) {
1765                        free_pages((unsigned long)its->tables[i].base,
1766                                   its->tables[i].order);
1767                        its->tables[i].base = NULL;
1768                }
1769        }
1770}
1771
1772static int its_alloc_tables(struct its_node *its)
1773{
1774        u64 shr = GITS_BASER_InnerShareable;
1775        u64 cache = GITS_BASER_RaWaWb;
1776        u32 psz = SZ_64K;
1777        int err, i;
1778
1779        if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1780                /* erratum 24313: ignore memory access type */
1781                cache = GITS_BASER_nCnB;
1782
1783        for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1784                struct its_baser *baser = its->tables + i;
1785                u64 val = its_read_baser(its, baser);
1786                u64 type = GITS_BASER_TYPE(val);
1787                u32 order = get_order(psz);
1788                bool indirect = false;
1789
1790                switch (type) {
1791                case GITS_BASER_TYPE_NONE:
1792                        continue;
1793
1794                case GITS_BASER_TYPE_DEVICE:
1795                        indirect = its_parse_indirect_baser(its, baser,
1796                                                            psz, &order,
1797                                                            its->device_ids);
1798                case GITS_BASER_TYPE_VCPU:
1799                        indirect = its_parse_indirect_baser(its, baser,
1800                                                            psz, &order,
1801                                                            ITS_MAX_VPEID_BITS);
1802                        break;
1803                }
1804
1805                err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1806                if (err < 0) {
1807                        its_free_tables(its);
1808                        return err;
1809                }
1810
1811                /* Update settings which will be used for next BASERn */
1812                psz = baser->psz;
1813                cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1814                shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1815        }
1816
1817        return 0;
1818}
1819
1820static int its_alloc_collections(struct its_node *its)
1821{
1822        its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1823                                   GFP_KERNEL);
1824        if (!its->collections)
1825                return -ENOMEM;
1826
1827        return 0;
1828}
1829
1830static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1831{
1832        struct page *pend_page;
1833        /*
1834         * The pending pages have to be at least 64kB aligned,
1835         * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1836         */
1837        pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1838                                get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1839        if (!pend_page)
1840                return NULL;
1841
1842        /* Make sure the GIC will observe the zero-ed page */
1843        gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1844
1845        return pend_page;
1846}
1847
1848static void its_free_pending_table(struct page *pt)
1849{
1850        free_pages((unsigned long)page_address(pt),
1851                   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1852}
1853
1854static void its_cpu_init_lpis(void)
1855{
1856        void __iomem *rbase = gic_data_rdist_rd_base();
1857        struct page *pend_page;
1858        u64 val, tmp;
1859
1860        /* If we didn't allocate the pending table yet, do it now */
1861        pend_page = gic_data_rdist()->pend_page;
1862        if (!pend_page) {
1863                phys_addr_t paddr;
1864
1865                pend_page = its_allocate_pending_table(GFP_NOWAIT);
1866                if (!pend_page) {
1867                        pr_err("Failed to allocate PENDBASE for CPU%d\n",
1868                               smp_processor_id());
1869                        return;
1870                }
1871
1872                paddr = page_to_phys(pend_page);
1873                pr_info("CPU%d: using LPI pending table @%pa\n",
1874                        smp_processor_id(), &paddr);
1875                gic_data_rdist()->pend_page = pend_page;
1876        }
1877
1878        /* Disable LPIs */
1879        val = readl_relaxed(rbase + GICR_CTLR);
1880        val &= ~GICR_CTLR_ENABLE_LPIS;
1881        writel_relaxed(val, rbase + GICR_CTLR);
1882
1883        /*
1884         * Make sure any change to the table is observable by the GIC.
1885         */
1886        dsb(sy);
1887
1888        /* set PROPBASE */
1889        val = (page_to_phys(gic_rdists->prop_page) |
1890               GICR_PROPBASER_InnerShareable |
1891               GICR_PROPBASER_RaWaWb |
1892               ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1893
1894        gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1895        tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1896
1897        if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1898                if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1899                        /*
1900                         * The HW reports non-shareable, we must
1901                         * remove the cacheability attributes as
1902                         * well.
1903                         */
1904                        val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1905                                 GICR_PROPBASER_CACHEABILITY_MASK);
1906                        val |= GICR_PROPBASER_nC;
1907                        gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1908                }
1909                pr_info_once("GIC: using cache flushing for LPI property table\n");
1910                gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1911        }
1912
1913        /* set PENDBASE */
1914        val = (page_to_phys(pend_page) |
1915               GICR_PENDBASER_InnerShareable |
1916               GICR_PENDBASER_RaWaWb);
1917
1918        gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1919        tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1920
1921        if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1922                /*
1923                 * The HW reports non-shareable, we must remove the
1924                 * cacheability attributes as well.
1925                 */
1926                val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1927                         GICR_PENDBASER_CACHEABILITY_MASK);
1928                val |= GICR_PENDBASER_nC;
1929                gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1930        }
1931
1932        /* Enable LPIs */
1933        val = readl_relaxed(rbase + GICR_CTLR);
1934        val |= GICR_CTLR_ENABLE_LPIS;
1935        writel_relaxed(val, rbase + GICR_CTLR);
1936
1937        /* Make sure the GIC has seen the above */
1938        dsb(sy);
1939}
1940
1941static void its_cpu_init_collection(void)
1942{
1943        struct its_node *its;
1944        int cpu;
1945
1946        spin_lock(&its_lock);
1947        cpu = smp_processor_id();
1948
1949        list_for_each_entry(its, &its_nodes, entry) {
1950                u64 target;
1951
1952                /* avoid cross node collections and its mapping */
1953                if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1954                        struct device_node *cpu_node;
1955
1956                        cpu_node = of_get_cpu_node(cpu, NULL);
1957                        if (its->numa_node != NUMA_NO_NODE &&
1958                                its->numa_node != of_node_to_nid(cpu_node))
1959                                continue;
1960                }
1961
1962                /*
1963                 * We now have to bind each collection to its target
1964                 * redistributor.
1965                 */
1966                if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1967                        /*
1968                         * This ITS wants the physical address of the
1969                         * redistributor.
1970                         */
1971                        target = gic_data_rdist()->phys_base;
1972                } else {
1973                        /*
1974                         * This ITS wants a linear CPU number.
1975                         */
1976                        target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1977                        target = GICR_TYPER_CPU_NUMBER(target) << 16;
1978                }
1979
1980                /* Perform collection mapping */
1981                its->collections[cpu].target_address = target;
1982                its->collections[cpu].col_id = cpu;
1983
1984                its_send_mapc(its, &its->collections[cpu], 1);
1985                its_send_invall(its, &its->collections[cpu]);
1986        }
1987
1988        spin_unlock(&its_lock);
1989}
1990
1991static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1992{
1993        struct its_device *its_dev = NULL, *tmp;
1994        unsigned long flags;
1995
1996        raw_spin_lock_irqsave(&its->lock, flags);
1997
1998        list_for_each_entry(tmp, &its->its_device_list, entry) {
1999                if (tmp->device_id == dev_id) {
2000                        its_dev = tmp;
2001                        break;
2002                }
2003        }
2004
2005        raw_spin_unlock_irqrestore(&its->lock, flags);
2006
2007        return its_dev;
2008}
2009
2010static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2011{
2012        int i;
2013
2014        for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2015                if (GITS_BASER_TYPE(its->tables[i].val) == type)
2016                        return &its->tables[i];
2017        }
2018
2019        return NULL;
2020}
2021
2022static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2023{
2024        struct page *page;
2025        u32 esz, idx;
2026        __le64 *table;
2027
2028        /* Don't allow device id that exceeds single, flat table limit */
2029        esz = GITS_BASER_ENTRY_SIZE(baser->val);
2030        if (!(baser->val & GITS_BASER_INDIRECT))
2031                return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2032
2033        /* Compute 1st level table index & check if that exceeds table limit */
2034        idx = id >> ilog2(baser->psz / esz);
2035        if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2036                return false;
2037
2038        table = baser->base;
2039
2040        /* Allocate memory for 2nd level table */
2041        if (!table[idx]) {
2042                page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2043                if (!page)
2044                        return false;
2045
2046                /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2047                if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2048                        gic_flush_dcache_to_poc(page_address(page), baser->psz);
2049
2050                table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2051
2052                /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2053                if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2054                        gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2055
2056                /* Ensure updated table contents are visible to ITS hardware */
2057                dsb(sy);
2058        }
2059
2060        return true;
2061}
2062
2063static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2064{
2065        struct its_baser *baser;
2066
2067        baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2068
2069        /* Don't allow device id that exceeds ITS hardware limit */
2070        if (!baser)
2071                return (ilog2(dev_id) < its->device_ids);
2072
2073        return its_alloc_table_entry(baser, dev_id);
2074}
2075
2076static bool its_alloc_vpe_table(u32 vpe_id)
2077{
2078        struct its_node *its;
2079
2080        /*
2081         * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2082         * could try and only do it on ITSs corresponding to devices
2083         * that have interrupts targeted at this VPE, but the
2084         * complexity becomes crazy (and you have tons of memory
2085         * anyway, right?).
2086         */
2087        list_for_each_entry(its, &its_nodes, entry) {
2088                struct its_baser *baser;
2089
2090                if (!its->is_v4)
2091                        continue;
2092
2093                baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2094                if (!baser)
2095                        return false;
2096
2097                if (!its_alloc_table_entry(baser, vpe_id))
2098                        return false;
2099        }
2100
2101        return true;
2102}
2103
2104static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2105                                            int nvecs, bool alloc_lpis)
2106{
2107        struct its_device *dev;
2108        unsigned long *lpi_map = NULL;
2109        unsigned long flags;
2110        u16 *col_map = NULL;
2111        void *itt;
2112        int lpi_base;
2113        int nr_lpis;
2114        int nr_ites;
2115        int sz;
2116
2117        if (!its_alloc_device_table(its, dev_id))
2118                return NULL;
2119
2120        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2121        /*
2122         * We allocate at least one chunk worth of LPIs bet device,
2123         * and thus that many ITEs. The device may require less though.
2124         */
2125        nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2126        sz = nr_ites * its->ite_size;
2127        sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2128        itt = kzalloc(sz, GFP_KERNEL);
2129        if (alloc_lpis) {
2130                lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2131                if (lpi_map)
2132                        col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2133                                          GFP_KERNEL);
2134        } else {
2135                col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2136                nr_lpis = 0;
2137                lpi_base = 0;
2138        }
2139
2140        if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2141                kfree(dev);
2142                kfree(itt);
2143                kfree(lpi_map);
2144                kfree(col_map);
2145                return NULL;
2146        }
2147
2148        gic_flush_dcache_to_poc(itt, sz);
2149
2150        dev->its = its;
2151        dev->itt = itt;
2152        dev->nr_ites = nr_ites;
2153        dev->event_map.lpi_map = lpi_map;
2154        dev->event_map.col_map = col_map;
2155        dev->event_map.lpi_base = lpi_base;
2156        dev->event_map.nr_lpis = nr_lpis;
2157        mutex_init(&dev->event_map.vlpi_lock);
2158        dev->device_id = dev_id;
2159        INIT_LIST_HEAD(&dev->entry);
2160
2161        raw_spin_lock_irqsave(&its->lock, flags);
2162        list_add(&dev->entry, &its->its_device_list);
2163        raw_spin_unlock_irqrestore(&its->lock, flags);
2164
2165        /* Map device to its ITT */
2166        its_send_mapd(dev, 1);
2167
2168        return dev;
2169}
2170
2171static void its_free_device(struct its_device *its_dev)
2172{
2173        unsigned long flags;
2174
2175        raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2176        list_del(&its_dev->entry);
2177        raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2178        kfree(its_dev->itt);
2179        kfree(its_dev);
2180}
2181
2182static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2183{
2184        int idx;
2185
2186        idx = find_first_zero_bit(dev->event_map.lpi_map,
2187                                  dev->event_map.nr_lpis);
2188        if (idx == dev->event_map.nr_lpis)
2189                return -ENOSPC;
2190
2191        *hwirq = dev->event_map.lpi_base + idx;
2192        set_bit(idx, dev->event_map.lpi_map);
2193
2194        return 0;
2195}
2196
2197static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2198                           int nvec, msi_alloc_info_t *info)
2199{
2200        struct its_node *its;
2201        struct its_device *its_dev;
2202        struct msi_domain_info *msi_info;
2203        u32 dev_id;
2204
2205        /*
2206         * We ignore "dev" entierely, and rely on the dev_id that has
2207         * been passed via the scratchpad. This limits this domain's
2208         * usefulness to upper layers that definitely know that they
2209         * are built on top of the ITS.
2210         */
2211        dev_id = info->scratchpad[0].ul;
2212
2213        msi_info = msi_get_domain_info(domain);
2214        its = msi_info->data;
2215
2216        if (!gic_rdists->has_direct_lpi &&
2217            vpe_proxy.dev &&
2218            vpe_proxy.dev->its == its &&
2219            dev_id == vpe_proxy.dev->device_id) {
2220                /* Bad luck. Get yourself a better implementation */
2221                WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2222                          dev_id);
2223                return -EINVAL;
2224        }
2225
2226        its_dev = its_find_device(its, dev_id);
2227        if (its_dev) {
2228                /*
2229                 * We already have seen this ID, probably through
2230                 * another alias (PCI bridge of some sort). No need to
2231                 * create the device.
2232                 */
2233                pr_debug("Reusing ITT for devID %x\n", dev_id);
2234                goto out;
2235        }
2236
2237        its_dev = its_create_device(its, dev_id, nvec, true);
2238        if (!its_dev)
2239                return -ENOMEM;
2240
2241        pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2242out:
2243        info->scratchpad[0].ptr = its_dev;
2244        return 0;
2245}
2246
2247static struct msi_domain_ops its_msi_domain_ops = {
2248        .msi_prepare    = its_msi_prepare,
2249};
2250
2251static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2252                                    unsigned int virq,
2253                                    irq_hw_number_t hwirq)
2254{
2255        struct irq_fwspec fwspec;
2256
2257        if (irq_domain_get_of_node(domain->parent)) {
2258                fwspec.fwnode = domain->parent->fwnode;
2259                fwspec.param_count = 3;
2260                fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2261                fwspec.param[1] = hwirq;
2262                fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2263        } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2264                fwspec.fwnode = domain->parent->fwnode;
2265                fwspec.param_count = 2;
2266                fwspec.param[0] = hwirq;
2267                fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2268        } else {
2269                return -EINVAL;
2270        }
2271
2272        return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2273}
2274
2275static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2276                                unsigned int nr_irqs, void *args)
2277{
2278        msi_alloc_info_t *info = args;
2279        struct its_device *its_dev = info->scratchpad[0].ptr;
2280        irq_hw_number_t hwirq;
2281        int err;
2282        int i;
2283
2284        for (i = 0; i < nr_irqs; i++) {
2285                err = its_alloc_device_irq(its_dev, &hwirq);
2286                if (err)
2287                        return err;
2288
2289                err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2290                if (err)
2291                        return err;
2292
2293                irq_domain_set_hwirq_and_chip(domain, virq + i,
2294                                              hwirq, &its_irq_chip, its_dev);
2295                irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2296                pr_debug("ID:%d pID:%d vID:%d\n",
2297                         (int)(hwirq - its_dev->event_map.lpi_base),
2298                         (int) hwirq, virq + i);
2299        }
2300
2301        return 0;
2302}
2303
2304static int its_irq_domain_activate(struct irq_domain *domain,
2305                                   struct irq_data *d, bool reserve)
2306{
2307        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2308        u32 event = its_get_event_id(d);
2309        const struct cpumask *cpu_mask = cpu_online_mask;
2310        int cpu;
2311
2312        /* get the cpu_mask of local node */
2313        if (its_dev->its->numa_node >= 0)
2314                cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2315
2316        /* Bind the LPI to the first possible CPU */
2317        cpu = cpumask_first(cpu_mask);
2318        its_dev->event_map.col_map[event] = cpu;
2319        irq_data_update_effective_affinity(d, cpumask_of(cpu));
2320
2321        /* Map the GIC IRQ and event to the device */
2322        its_send_mapti(its_dev, d->hwirq, event);
2323        return 0;
2324}
2325
2326static void its_irq_domain_deactivate(struct irq_domain *domain,
2327                                      struct irq_data *d)
2328{
2329        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2330        u32 event = its_get_event_id(d);
2331
2332        /* Stop the delivery of interrupts */
2333        its_send_discard(its_dev, event);
2334}
2335
2336static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2337                                unsigned int nr_irqs)
2338{
2339        struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2340        struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2341        int i;
2342
2343        for (i = 0; i < nr_irqs; i++) {
2344                struct irq_data *data = irq_domain_get_irq_data(domain,
2345                                                                virq + i);
2346                u32 event = its_get_event_id(data);
2347
2348                /* Mark interrupt index as unused */
2349                clear_bit(event, its_dev->event_map.lpi_map);
2350
2351                /* Nuke the entry in the domain */
2352                irq_domain_reset_irq_data(data);
2353        }
2354
2355        /* If all interrupts have been freed, start mopping the floor */
2356        if (bitmap_empty(its_dev->event_map.lpi_map,
2357                         its_dev->event_map.nr_lpis)) {
2358                its_lpi_free_chunks(its_dev->event_map.lpi_map,
2359                                    its_dev->event_map.lpi_base,
2360                                    its_dev->event_map.nr_lpis);
2361                kfree(its_dev->event_map.col_map);
2362
2363                /* Unmap device/itt */
2364                its_send_mapd(its_dev, 0);
2365                its_free_device(its_dev);
2366        }
2367
2368        irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2369}
2370
2371static const struct irq_domain_ops its_domain_ops = {
2372        .alloc                  = its_irq_domain_alloc,
2373        .free                   = its_irq_domain_free,
2374        .activate               = its_irq_domain_activate,
2375        .deactivate             = its_irq_domain_deactivate,
2376};
2377
2378/*
2379 * This is insane.
2380 *
2381 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2382 * likely), the only way to perform an invalidate is to use a fake
2383 * device to issue an INV command, implying that the LPI has first
2384 * been mapped to some event on that device. Since this is not exactly
2385 * cheap, we try to keep that mapping around as long as possible, and
2386 * only issue an UNMAP if we're short on available slots.
2387 *
2388 * Broken by design(tm).
2389 */
2390static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2391{
2392        /* Already unmapped? */
2393        if (vpe->vpe_proxy_event == -1)
2394                return;
2395
2396        its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2397        vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2398
2399        /*
2400         * We don't track empty slots at all, so let's move the
2401         * next_victim pointer if we can quickly reuse that slot
2402         * instead of nuking an existing entry. Not clear that this is
2403         * always a win though, and this might just generate a ripple
2404         * effect... Let's just hope VPEs don't migrate too often.
2405         */
2406        if (vpe_proxy.vpes[vpe_proxy.next_victim])
2407                vpe_proxy.next_victim = vpe->vpe_proxy_event;
2408
2409        vpe->vpe_proxy_event = -1;
2410}
2411
2412static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2413{
2414        if (!gic_rdists->has_direct_lpi) {
2415                unsigned long flags;
2416
2417                raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2418                its_vpe_db_proxy_unmap_locked(vpe);
2419                raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2420        }
2421}
2422
2423static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2424{
2425        /* Already mapped? */
2426        if (vpe->vpe_proxy_event != -1)
2427                return;
2428
2429        /* This slot was already allocated. Kick the other VPE out. */
2430        if (vpe_proxy.vpes[vpe_proxy.next_victim])
2431                its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2432
2433        /* Map the new VPE instead */
2434        vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2435        vpe->vpe_proxy_event = vpe_proxy.next_victim;
2436        vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2437
2438        vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2439        its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2440}
2441
2442static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2443{
2444        unsigned long flags;
2445        struct its_collection *target_col;
2446
2447        if (gic_rdists->has_direct_lpi) {
2448                void __iomem *rdbase;
2449
2450                rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2451                gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2452                while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2453                        cpu_relax();
2454
2455                return;
2456        }
2457
2458        raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2459
2460        its_vpe_db_proxy_map_locked(vpe);
2461
2462        target_col = &vpe_proxy.dev->its->collections[to];
2463        its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2464        vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2465
2466        raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2467}
2468
2469static int its_vpe_set_affinity(struct irq_data *d,
2470                                const struct cpumask *mask_val,
2471                                bool force)
2472{
2473        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2474        int cpu = cpumask_first(mask_val);
2475
2476        /*
2477         * Changing affinity is mega expensive, so let's be as lazy as
2478         * we can and only do it if we really have to. Also, if mapped
2479         * into the proxy device, we need to move the doorbell
2480         * interrupt to its new location.
2481         */
2482        if (vpe->col_idx != cpu) {
2483                int from = vpe->col_idx;
2484
2485                vpe->col_idx = cpu;
2486                its_send_vmovp(vpe);
2487                its_vpe_db_proxy_move(vpe, from, cpu);
2488        }
2489
2490        irq_data_update_effective_affinity(d, cpumask_of(cpu));
2491
2492        return IRQ_SET_MASK_OK_DONE;
2493}
2494
2495static void its_vpe_schedule(struct its_vpe *vpe)
2496{
2497        void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2498        u64 val;
2499
2500        /* Schedule the VPE */
2501        val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2502                GENMASK_ULL(51, 12);
2503        val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2504        val |= GICR_VPROPBASER_RaWb;
2505        val |= GICR_VPROPBASER_InnerShareable;
2506        gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2507
2508        val  = virt_to_phys(page_address(vpe->vpt_page)) &
2509                GENMASK_ULL(51, 16);
2510        val |= GICR_VPENDBASER_RaWaWb;
2511        val |= GICR_VPENDBASER_NonShareable;
2512        /*
2513         * There is no good way of finding out if the pending table is
2514         * empty as we can race against the doorbell interrupt very
2515         * easily. So in the end, vpe->pending_last is only an
2516         * indication that the vcpu has something pending, not one
2517         * that the pending table is empty. A good implementation
2518         * would be able to read its coarse map pretty quickly anyway,
2519         * making this a tolerable issue.
2520         */
2521        val |= GICR_VPENDBASER_PendingLast;
2522        val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2523        val |= GICR_VPENDBASER_Valid;
2524        gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2525}
2526
2527static void its_vpe_deschedule(struct its_vpe *vpe)
2528{
2529        void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2530        u32 count = 1000000;    /* 1s! */
2531        bool clean;
2532        u64 val;
2533
2534        /* We're being scheduled out */
2535        val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2536        val &= ~GICR_VPENDBASER_Valid;
2537        gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2538
2539        do {
2540                val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2541                clean = !(val & GICR_VPENDBASER_Dirty);
2542                if (!clean) {
2543                        count--;
2544                        cpu_relax();
2545                        udelay(1);
2546                }
2547        } while (!clean && count);
2548
2549        if (unlikely(!clean && !count)) {
2550                pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2551                vpe->idai = false;
2552                vpe->pending_last = true;
2553        } else {
2554                vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2555                vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2556        }
2557}
2558
2559static void its_vpe_invall(struct its_vpe *vpe)
2560{
2561        struct its_node *its;
2562
2563        list_for_each_entry(its, &its_nodes, entry) {
2564                if (!its->is_v4)
2565                        continue;
2566
2567                if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2568                        continue;
2569
2570                /*
2571                 * Sending a VINVALL to a single ITS is enough, as all
2572                 * we need is to reach the redistributors.
2573                 */
2574                its_send_vinvall(its, vpe);
2575                return;
2576        }
2577}
2578
2579static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2580{
2581        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2582        struct its_cmd_info *info = vcpu_info;
2583
2584        switch (info->cmd_type) {
2585        case SCHEDULE_VPE:
2586                its_vpe_schedule(vpe);
2587                return 0;
2588
2589        case DESCHEDULE_VPE:
2590                its_vpe_deschedule(vpe);
2591                return 0;
2592
2593        case INVALL_VPE:
2594                its_vpe_invall(vpe);
2595                return 0;
2596
2597        default:
2598                return -EINVAL;
2599        }
2600}
2601
2602static void its_vpe_send_cmd(struct its_vpe *vpe,
2603                             void (*cmd)(struct its_device *, u32))
2604{
2605        unsigned long flags;
2606
2607        raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2608
2609        its_vpe_db_proxy_map_locked(vpe);
2610        cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2611
2612        raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2613}
2614
2615static void its_vpe_send_inv(struct irq_data *d)
2616{
2617        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2618
2619        if (gic_rdists->has_direct_lpi) {
2620                void __iomem *rdbase;
2621
2622                rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2623                gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2624                while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2625                        cpu_relax();
2626        } else {
2627                its_vpe_send_cmd(vpe, its_send_inv);
2628        }
2629}
2630
2631static void its_vpe_mask_irq(struct irq_data *d)
2632{
2633        /*
2634         * We need to unmask the LPI, which is described by the parent
2635         * irq_data. Instead of calling into the parent (which won't
2636         * exactly do the right thing, let's simply use the
2637         * parent_data pointer. Yes, I'm naughty.
2638         */
2639        lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2640        its_vpe_send_inv(d);
2641}
2642
2643static void its_vpe_unmask_irq(struct irq_data *d)
2644{
2645        /* Same hack as above... */
2646        lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2647        its_vpe_send_inv(d);
2648}
2649
2650static int its_vpe_set_irqchip_state(struct irq_data *d,
2651                                     enum irqchip_irq_state which,
2652                                     bool state)
2653{
2654        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2655
2656        if (which != IRQCHIP_STATE_PENDING)
2657                return -EINVAL;
2658
2659        if (gic_rdists->has_direct_lpi) {
2660                void __iomem *rdbase;
2661
2662                rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2663                if (state) {
2664                        gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2665                } else {
2666                        gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2667                        while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2668                                cpu_relax();
2669                }
2670        } else {
2671                if (state)
2672                        its_vpe_send_cmd(vpe, its_send_int);
2673                else
2674                        its_vpe_send_cmd(vpe, its_send_clear);
2675        }
2676
2677        return 0;
2678}
2679
2680static struct irq_chip its_vpe_irq_chip = {
2681        .name                   = "GICv4-vpe",
2682        .irq_mask               = its_vpe_mask_irq,
2683        .irq_unmask             = its_vpe_unmask_irq,
2684        .irq_eoi                = irq_chip_eoi_parent,
2685        .irq_set_affinity       = its_vpe_set_affinity,
2686        .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
2687        .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
2688};
2689
2690static int its_vpe_id_alloc(void)
2691{
2692        return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2693}
2694
2695static void its_vpe_id_free(u16 id)
2696{
2697        ida_simple_remove(&its_vpeid_ida, id);
2698}
2699
2700static int its_vpe_init(struct its_vpe *vpe)
2701{
2702        struct page *vpt_page;
2703        int vpe_id;
2704
2705        /* Allocate vpe_id */
2706        vpe_id = its_vpe_id_alloc();
2707        if (vpe_id < 0)
2708                return vpe_id;
2709
2710        /* Allocate VPT */
2711        vpt_page = its_allocate_pending_table(GFP_KERNEL);
2712        if (!vpt_page) {
2713                its_vpe_id_free(vpe_id);
2714                return -ENOMEM;
2715        }
2716
2717        if (!its_alloc_vpe_table(vpe_id)) {
2718                its_vpe_id_free(vpe_id);
2719                its_free_pending_table(vpe->vpt_page);
2720                return -ENOMEM;
2721        }
2722
2723        vpe->vpe_id = vpe_id;
2724        vpe->vpt_page = vpt_page;
2725        vpe->vpe_proxy_event = -1;
2726
2727        return 0;
2728}
2729
2730static void its_vpe_teardown(struct its_vpe *vpe)
2731{
2732        its_vpe_db_proxy_unmap(vpe);
2733        its_vpe_id_free(vpe->vpe_id);
2734        its_free_pending_table(vpe->vpt_page);
2735}
2736
2737static void its_vpe_irq_domain_free(struct irq_domain *domain,
2738                                    unsigned int virq,
2739                                    unsigned int nr_irqs)
2740{
2741        struct its_vm *vm = domain->host_data;
2742        int i;
2743
2744        irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2745
2746        for (i = 0; i < nr_irqs; i++) {
2747                struct irq_data *data = irq_domain_get_irq_data(domain,
2748                                                                virq + i);
2749                struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2750
2751                BUG_ON(vm != vpe->its_vm);
2752
2753                clear_bit(data->hwirq, vm->db_bitmap);
2754                its_vpe_teardown(vpe);
2755                irq_domain_reset_irq_data(data);
2756        }
2757
2758        if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2759                its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2760                its_free_prop_table(vm->vprop_page);
2761        }
2762}
2763
2764static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2765                                    unsigned int nr_irqs, void *args)
2766{
2767        struct its_vm *vm = args;
2768        unsigned long *bitmap;
2769        struct page *vprop_page;
2770        int base, nr_ids, i, err = 0;
2771
2772        BUG_ON(!vm);
2773
2774        bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2775        if (!bitmap)
2776                return -ENOMEM;
2777
2778        if (nr_ids < nr_irqs) {
2779                its_lpi_free_chunks(bitmap, base, nr_ids);
2780                return -ENOMEM;
2781        }
2782
2783        vprop_page = its_allocate_prop_table(GFP_KERNEL);
2784        if (!vprop_page) {
2785                its_lpi_free_chunks(bitmap, base, nr_ids);
2786                return -ENOMEM;
2787        }
2788
2789        vm->db_bitmap = bitmap;
2790        vm->db_lpi_base = base;
2791        vm->nr_db_lpis = nr_ids;
2792        vm->vprop_page = vprop_page;
2793
2794        for (i = 0; i < nr_irqs; i++) {
2795                vm->vpes[i]->vpe_db_lpi = base + i;
2796                err = its_vpe_init(vm->vpes[i]);
2797                if (err)
2798                        break;
2799                err = its_irq_gic_domain_alloc(domain, virq + i,
2800                                               vm->vpes[i]->vpe_db_lpi);
2801                if (err)
2802                        break;
2803                irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2804                                              &its_vpe_irq_chip, vm->vpes[i]);
2805                set_bit(i, bitmap);
2806        }
2807
2808        if (err) {
2809                if (i > 0)
2810                        its_vpe_irq_domain_free(domain, virq, i - 1);
2811
2812                its_lpi_free_chunks(bitmap, base, nr_ids);
2813                its_free_prop_table(vprop_page);
2814        }
2815
2816        return err;
2817}
2818
2819static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2820                                       struct irq_data *d, bool reserve)
2821{
2822        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2823        struct its_node *its;
2824
2825        /* If we use the list map, we issue VMAPP on demand... */
2826        if (its_list_map)
2827                return 0;
2828
2829        /* Map the VPE to the first possible CPU */
2830        vpe->col_idx = cpumask_first(cpu_online_mask);
2831
2832        list_for_each_entry(its, &its_nodes, entry) {
2833                if (!its->is_v4)
2834                        continue;
2835
2836                its_send_vmapp(its, vpe, true);
2837                its_send_vinvall(its, vpe);
2838        }
2839
2840        irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2841
2842        return 0;
2843}
2844
2845static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2846                                          struct irq_data *d)
2847{
2848        struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2849        struct its_node *its;
2850
2851        /*
2852         * If we use the list map, we unmap the VPE once no VLPIs are
2853         * associated with the VM.
2854         */
2855        if (its_list_map)
2856                return;
2857
2858        list_for_each_entry(its, &its_nodes, entry) {
2859                if (!its->is_v4)
2860                        continue;
2861
2862                its_send_vmapp(its, vpe, false);
2863        }
2864}
2865
2866static const struct irq_domain_ops its_vpe_domain_ops = {
2867        .alloc                  = its_vpe_irq_domain_alloc,
2868        .free                   = its_vpe_irq_domain_free,
2869        .activate               = its_vpe_irq_domain_activate,
2870        .deactivate             = its_vpe_irq_domain_deactivate,
2871};
2872
2873static int its_force_quiescent(void __iomem *base)
2874{
2875        u32 count = 1000000;    /* 1s */
2876        u32 val;
2877
2878        val = readl_relaxed(base + GITS_CTLR);
2879        /*
2880         * GIC architecture specification requires the ITS to be both
2881         * disabled and quiescent for writes to GITS_BASER<n> or
2882         * GITS_CBASER to not have UNPREDICTABLE results.
2883         */
2884        if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2885                return 0;
2886
2887        /* Disable the generation of all interrupts to this ITS */
2888        val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2889        writel_relaxed(val, base + GITS_CTLR);
2890
2891        /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2892        while (1) {
2893                val = readl_relaxed(base + GITS_CTLR);
2894                if (val & GITS_CTLR_QUIESCENT)
2895                        return 0;
2896
2897                count--;
2898                if (!count)
2899                        return -EBUSY;
2900
2901                cpu_relax();
2902                udelay(1);
2903        }
2904}
2905
2906static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2907{
2908        struct its_node *its = data;
2909
2910        /* erratum 22375: only alloc 8MB table size */
2911        its->device_ids = 0x14;         /* 20 bits, 8MB */
2912        its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2913
2914        return true;
2915}
2916
2917static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2918{
2919        struct its_node *its = data;
2920
2921        its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2922
2923        return true;
2924}
2925
2926static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2927{
2928        struct its_node *its = data;
2929
2930        /* On QDF2400, the size of the ITE is 16Bytes */
2931        its->ite_size = 16;
2932
2933        return true;
2934}
2935
2936static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2937{
2938        struct its_node *its = its_dev->its;
2939
2940        /*
2941         * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2942         * which maps 32-bit writes targeted at a separate window of
2943         * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2944         * with device ID taken from bits [device_id_bits + 1:2] of
2945         * the window offset.
2946         */
2947        return its->pre_its_base + (its_dev->device_id << 2);
2948}
2949
2950static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2951{
2952        struct its_node *its = data;
2953        u32 pre_its_window[2];
2954        u32 ids;
2955
2956        if (!fwnode_property_read_u32_array(its->fwnode_handle,
2957                                           "socionext,synquacer-pre-its",
2958                                           pre_its_window,
2959                                           ARRAY_SIZE(pre_its_window))) {
2960
2961                its->pre_its_base = pre_its_window[0];
2962                its->get_msi_base = its_irq_get_msi_base_pre_its;
2963
2964                ids = ilog2(pre_its_window[1]) - 2;
2965                if (its->device_ids > ids)
2966                        its->device_ids = ids;
2967
2968                /* the pre-ITS breaks isolation, so disable MSI remapping */
2969                its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2970                return true;
2971        }
2972        return false;
2973}
2974
2975static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2976{
2977        struct its_node *its = data;
2978
2979        /*
2980         * Hip07 insists on using the wrong address for the VLPI
2981         * page. Trick it into doing the right thing...
2982         */
2983        its->vlpi_redist_offset = SZ_128K;
2984        return true;
2985}
2986
2987static const struct gic_quirk its_quirks[] = {
2988#ifdef CONFIG_CAVIUM_ERRATUM_22375
2989        {
2990                .desc   = "ITS: Cavium errata 22375, 24313",
2991                .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
2992                .mask   = 0xffff0fff,
2993                .init   = its_enable_quirk_cavium_22375,
2994        },
2995#endif
2996#ifdef CONFIG_CAVIUM_ERRATUM_23144
2997        {
2998                .desc   = "ITS: Cavium erratum 23144",
2999                .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
3000                .mask   = 0xffff0fff,
3001                .init   = its_enable_quirk_cavium_23144,
3002        },
3003#endif
3004#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3005        {
3006                .desc   = "ITS: QDF2400 erratum 0065",
3007                .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
3008                .mask   = 0xffffffff,
3009                .init   = its_enable_quirk_qdf2400_e0065,
3010        },
3011#endif
3012#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3013        {
3014                /*
3015                 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3016                 * implementation, but with a 'pre-ITS' added that requires
3017                 * special handling in software.
3018                 */
3019                .desc   = "ITS: Socionext Synquacer pre-ITS",
3020                .iidr   = 0x0001143b,
3021                .mask   = 0xffffffff,
3022                .init   = its_enable_quirk_socionext_synquacer,
3023        },
3024#endif
3025#ifdef CONFIG_HISILICON_ERRATUM_161600802
3026        {
3027                .desc   = "ITS: Hip07 erratum 161600802",
3028                .iidr   = 0x00000004,
3029                .mask   = 0xffffffff,
3030                .init   = its_enable_quirk_hip07_161600802,
3031        },
3032#endif
3033        {
3034        }
3035};
3036
3037static void its_enable_quirks(struct its_node *its)
3038{
3039        u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3040
3041        gic_enable_quirks(iidr, its_quirks, its);
3042}
3043
3044static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3045{
3046        struct irq_domain *inner_domain;
3047        struct msi_domain_info *info;
3048
3049        info = kzalloc(sizeof(*info), GFP_KERNEL);
3050        if (!info)
3051                return -ENOMEM;
3052
3053        inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3054        if (!inner_domain) {
3055                kfree(info);
3056                return -ENOMEM;
3057        }
3058
3059        inner_domain->parent = its_parent;
3060        irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3061        inner_domain->flags |= its->msi_domain_flags;
3062        info->ops = &its_msi_domain_ops;
3063        info->data = its;
3064        inner_domain->host_data = info;
3065
3066        return 0;
3067}
3068
3069static int its_init_vpe_domain(void)
3070{
3071        struct its_node *its;
3072        u32 devid;
3073        int entries;
3074
3075        if (gic_rdists->has_direct_lpi) {
3076                pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3077                return 0;
3078        }
3079
3080        /* Any ITS will do, even if not v4 */
3081        its = list_first_entry(&its_nodes, struct its_node, entry);
3082
3083        entries = roundup_pow_of_two(nr_cpu_ids);
3084        vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3085                                 GFP_KERNEL);
3086        if (!vpe_proxy.vpes) {
3087                pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3088                return -ENOMEM;
3089        }
3090
3091        /* Use the last possible DevID */
3092        devid = GENMASK(its->device_ids - 1, 0);
3093        vpe_proxy.dev = its_create_device(its, devid, entries, false);
3094        if (!vpe_proxy.dev) {
3095                kfree(vpe_proxy.vpes);
3096                pr_err("ITS: Can't allocate GICv4 proxy device\n");
3097                return -ENOMEM;
3098        }
3099
3100        BUG_ON(entries > vpe_proxy.dev->nr_ites);
3101
3102        raw_spin_lock_init(&vpe_proxy.lock);
3103        vpe_proxy.next_victim = 0;
3104        pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3105                devid, vpe_proxy.dev->nr_ites);
3106
3107        return 0;
3108}
3109
3110static int __init its_compute_its_list_map(struct resource *res,
3111                                           void __iomem *its_base)
3112{
3113        int its_number;
3114        u32 ctlr;
3115
3116        /*
3117         * This is assumed to be done early enough that we're
3118         * guaranteed to be single-threaded, hence no
3119         * locking. Should this change, we should address
3120         * this.
3121         */
3122        its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3123        if (its_number >= GICv4_ITS_LIST_MAX) {
3124                pr_err("ITS@%pa: No ITSList entry available!\n",
3125                       &res->start);
3126                return -EINVAL;
3127        }
3128
3129        ctlr = readl_relaxed(its_base + GITS_CTLR);
3130        ctlr &= ~GITS_CTLR_ITS_NUMBER;
3131        ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3132        writel_relaxed(ctlr, its_base + GITS_CTLR);
3133        ctlr = readl_relaxed(its_base + GITS_CTLR);
3134        if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3135                its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3136                its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3137        }
3138
3139        if (test_and_set_bit(its_number, &its_list_map)) {
3140                pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3141                       &res->start, its_number);
3142                return -EINVAL;
3143        }
3144
3145        return its_number;
3146}
3147
3148static int __init its_probe_one(struct resource *res,
3149                                struct fwnode_handle *handle, int numa_node)
3150{
3151        struct its_node *its;
3152        void __iomem *its_base;
3153        u32 val, ctlr;
3154        u64 baser, tmp, typer;
3155        int err;
3156
3157        its_base = ioremap(res->start, resource_size(res));
3158        if (!its_base) {
3159                pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3160                return -ENOMEM;
3161        }
3162
3163        val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3164        if (val != 0x30 && val != 0x40) {
3165                pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3166                err = -ENODEV;
3167                goto out_unmap;
3168        }
3169
3170        err = its_force_quiescent(its_base);
3171        if (err) {
3172                pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3173                goto out_unmap;
3174        }
3175
3176        pr_info("ITS %pR\n", res);
3177
3178        its = kzalloc(sizeof(*its), GFP_KERNEL);
3179        if (!its) {
3180                err = -ENOMEM;
3181                goto out_unmap;
3182        }
3183
3184        raw_spin_lock_init(&its->lock);
3185        INIT_LIST_HEAD(&its->entry);
3186        INIT_LIST_HEAD(&its->its_device_list);
3187        typer = gic_read_typer(its_base + GITS_TYPER);
3188        its->base = its_base;
3189        its->phys_base = res->start;
3190        its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3191        its->device_ids = GITS_TYPER_DEVBITS(typer);
3192        its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3193        if (its->is_v4) {
3194                if (!(typer & GITS_TYPER_VMOVP)) {
3195                        err = its_compute_its_list_map(res, its_base);
3196                        if (err < 0)
3197                                goto out_free_its;
3198
3199                        its->list_nr = err;
3200
3201                        pr_info("ITS@%pa: Using ITS number %d\n",
3202                                &res->start, err);
3203                } else {
3204                        pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3205                }
3206        }
3207
3208        its->numa_node = numa_node;
3209
3210        its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3211                                                get_order(ITS_CMD_QUEUE_SZ));
3212        if (!its->cmd_base) {
3213                err = -ENOMEM;
3214                goto out_free_its;
3215        }
3216        its->cmd_write = its->cmd_base;
3217        its->fwnode_handle = handle;
3218        its->get_msi_base = its_irq_get_msi_base;
3219        its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3220
3221        its_enable_quirks(its);
3222
3223        err = its_alloc_tables(its);
3224        if (err)
3225                goto out_free_cmd;
3226
3227        err = its_alloc_collections(its);
3228        if (err)
3229                goto out_free_tables;
3230
3231        baser = (virt_to_phys(its->cmd_base)    |
3232                 GITS_CBASER_RaWaWb             |
3233                 GITS_CBASER_InnerShareable     |
3234                 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3235                 GITS_CBASER_VALID);
3236
3237        gits_write_cbaser(baser, its->base + GITS_CBASER);
3238        tmp = gits_read_cbaser(its->base + GITS_CBASER);
3239
3240        if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3241                if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3242                        /*
3243                         * The HW reports non-shareable, we must
3244                         * remove the cacheability attributes as
3245                         * well.
3246                         */
3247                        baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3248                                   GITS_CBASER_CACHEABILITY_MASK);
3249                        baser |= GITS_CBASER_nC;
3250                        gits_write_cbaser(baser, its->base + GITS_CBASER);
3251                }
3252                pr_info("ITS: using cache flushing for cmd queue\n");
3253                its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3254        }
3255
3256        gits_write_cwriter(0, its->base + GITS_CWRITER);
3257        ctlr = readl_relaxed(its->base + GITS_CTLR);
3258        ctlr |= GITS_CTLR_ENABLE;
3259        if (its->is_v4)
3260                ctlr |= GITS_CTLR_ImDe;
3261        writel_relaxed(ctlr, its->base + GITS_CTLR);
3262
3263        err = its_init_domain(handle, its);
3264        if (err)
3265                goto out_free_tables;
3266
3267        spin_lock(&its_lock);
3268        list_add(&its->entry, &its_nodes);
3269        spin_unlock(&its_lock);
3270
3271        return 0;
3272
3273out_free_tables:
3274        its_free_tables(its);
3275out_free_cmd:
3276        free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3277out_free_its:
3278        kfree(its);
3279out_unmap:
3280        iounmap(its_base);
3281        pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3282        return err;
3283}
3284
3285static bool gic_rdists_supports_plpis(void)
3286{
3287        return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3288}
3289
3290int its_cpu_init(void)
3291{
3292        if (!list_empty(&its_nodes)) {
3293                if (!gic_rdists_supports_plpis()) {
3294                        pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3295                        return -ENXIO;
3296                }
3297                its_cpu_init_lpis();
3298                its_cpu_init_collection();
3299        }
3300
3301        return 0;
3302}
3303
3304static const struct of_device_id its_device_id[] = {
3305        {       .compatible     = "arm,gic-v3-its",     },
3306        {},
3307};
3308
3309static int __init its_of_probe(struct device_node *node)
3310{
3311        struct device_node *np;
3312        struct resource res;
3313
3314        for (np = of_find_matching_node(node, its_device_id); np;
3315             np = of_find_matching_node(np, its_device_id)) {
3316                if (!of_device_is_available(np))
3317                        continue;
3318                if (!of_property_read_bool(np, "msi-controller")) {
3319                        pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3320                                np);
3321                        continue;
3322                }
3323
3324                if (of_address_to_resource(np, 0, &res)) {
3325                        pr_warn("%pOF: no regs?\n", np);
3326                        continue;
3327                }
3328
3329                its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3330        }
3331        return 0;
3332}
3333
3334#ifdef CONFIG_ACPI
3335
3336#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3337
3338#ifdef CONFIG_ACPI_NUMA
3339struct its_srat_map {
3340        /* numa node id */
3341        u32     numa_node;
3342        /* GIC ITS ID */
3343        u32     its_id;
3344};
3345
3346static struct its_srat_map *its_srat_maps __initdata;
3347static int its_in_srat __initdata;
3348
3349static int __init acpi_get_its_numa_node(u32 its_id)
3350{
3351        int i;
3352
3353        for (i = 0; i < its_in_srat; i++) {
3354                if (its_id == its_srat_maps[i].its_id)
3355                        return its_srat_maps[i].numa_node;
3356        }
3357        return NUMA_NO_NODE;
3358}
3359
3360static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3361                                          const unsigned long end)
3362{
3363        return 0;
3364}
3365
3366static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3367                         const unsigned long end)
3368{
3369        int node;
3370        struct acpi_srat_gic_its_affinity *its_affinity;
3371
3372        its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3373        if (!its_affinity)
3374                return -EINVAL;
3375
3376        if (its_affinity->header.length < sizeof(*its_affinity)) {
3377                pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3378                        its_affinity->header.length);
3379                return -EINVAL;
3380        }
3381
3382        node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3383
3384        if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3385                pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3386                return 0;
3387        }
3388
3389        its_srat_maps[its_in_srat].numa_node = node;
3390        its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3391        its_in_srat++;
3392        pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3393                its_affinity->proximity_domain, its_affinity->its_id, node);
3394
3395        return 0;
3396}
3397
3398static void __init acpi_table_parse_srat_its(void)
3399{
3400        int count;
3401
3402        count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3403                        sizeof(struct acpi_table_srat),
3404                        ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3405                        gic_acpi_match_srat_its, 0);
3406        if (count <= 0)
3407                return;
3408
3409        its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3410                                GFP_KERNEL);
3411        if (!its_srat_maps) {
3412                pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3413                return;
3414        }
3415
3416        acpi_table_parse_entries(ACPI_SIG_SRAT,
3417                        sizeof(struct acpi_table_srat),
3418                        ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3419                        gic_acpi_parse_srat_its, 0);
3420}
3421
3422/* free the its_srat_maps after ITS probing */
3423static void __init acpi_its_srat_maps_free(void)
3424{
3425        kfree(its_srat_maps);
3426}
3427#else
3428static void __init acpi_table_parse_srat_its(void)      { }
3429static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3430static void __init acpi_its_srat_maps_free(void) { }
3431#endif
3432
3433static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3434                                          const unsigned long end)
3435{
3436        struct acpi_madt_generic_translator *its_entry;
3437        struct fwnode_handle *dom_handle;
3438        struct resource res;
3439        int err;
3440
3441        its_entry = (struct acpi_madt_generic_translator *)header;
3442        memset(&res, 0, sizeof(res));
3443        res.start = its_entry->base_address;
3444        res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3445        res.flags = IORESOURCE_MEM;
3446
3447        dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3448        if (!dom_handle) {
3449                pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3450                       &res.start);
3451                return -ENOMEM;
3452        }
3453
3454        err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3455        if (err) {
3456                pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3457                       &res.start, its_entry->translation_id);
3458                goto dom_err;
3459        }
3460
3461        err = its_probe_one(&res, dom_handle,
3462                        acpi_get_its_numa_node(its_entry->translation_id));
3463        if (!err)
3464                return 0;
3465
3466        iort_deregister_domain_token(its_entry->translation_id);
3467dom_err:
3468        irq_domain_free_fwnode(dom_handle);
3469        return err;
3470}
3471
3472static void __init its_acpi_probe(void)
3473{
3474        acpi_table_parse_srat_its();
3475        acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3476                              gic_acpi_parse_madt_its, 0);
3477        acpi_its_srat_maps_free();
3478}
3479#else
3480static void __init its_acpi_probe(void) { }
3481#endif
3482
3483int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3484                    struct irq_domain *parent_domain)
3485{
3486        struct device_node *of_node;
3487        struct its_node *its;
3488        bool has_v4 = false;
3489        int err;
3490
3491        its_parent = parent_domain;
3492        of_node = to_of_node(handle);
3493        if (of_node)
3494                its_of_probe(of_node);
3495        else
3496                its_acpi_probe();
3497
3498        if (list_empty(&its_nodes)) {
3499                pr_warn("ITS: No ITS available, not enabling LPIs\n");
3500                return -ENXIO;
3501        }
3502
3503        gic_rdists = rdists;
3504        err = its_alloc_lpi_tables();
3505        if (err)
3506                return err;
3507
3508        list_for_each_entry(its, &its_nodes, entry)
3509                has_v4 |= its->is_v4;
3510
3511        if (has_v4 & rdists->has_vlpis) {
3512                if (its_init_vpe_domain() ||
3513                    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3514                        rdists->has_vlpis = false;
3515                        pr_err("ITS: Disabling GICv4 support\n");
3516                }
3517        }
3518
3519        return 0;
3520}
3521