linux/drivers/md/bcache/btree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/bcache.txt.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC             64
  92#define MAX_SAVE_PRIO           72
  93
  94#define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
  95
  96#define PTR_HASH(c, k)                                                  \
  97        (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  98
  99#define insert_lock(s, b)       ((b)->level <= (s)->lock)
 100
 101/*
 102 * These macros are for recursing down the btree - they handle the details of
 103 * locking and looking up nodes in the cache for you. They're best treated as
 104 * mere syntax when reading code that uses them.
 105 *
 106 * op->lock determines whether we take a read or a write lock at a given depth.
 107 * If you've got a read lock and find that you need a write lock (i.e. you're
 108 * going to have to split), set op->lock and return -EINTR; btree_root() will
 109 * call you again and you'll have the correct lock.
 110 */
 111
 112/**
 113 * btree - recurse down the btree on a specified key
 114 * @fn:         function to call, which will be passed the child node
 115 * @key:        key to recurse on
 116 * @b:          parent btree node
 117 * @op:         pointer to struct btree_op
 118 */
 119#define btree(fn, key, b, op, ...)                                      \
 120({                                                                      \
 121        int _r, l = (b)->level - 1;                                     \
 122        bool _w = l <= (op)->lock;                                      \
 123        struct btree *_child = bch_btree_node_get((b)->c, op, key, l,   \
 124                                                  _w, b);               \
 125        if (!IS_ERR(_child)) {                                          \
 126                _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);       \
 127                rw_unlock(_w, _child);                                  \
 128        } else                                                          \
 129                _r = PTR_ERR(_child);                                   \
 130        _r;                                                             \
 131})
 132
 133/**
 134 * btree_root - call a function on the root of the btree
 135 * @fn:         function to call, which will be passed the child node
 136 * @c:          cache set
 137 * @op:         pointer to struct btree_op
 138 */
 139#define btree_root(fn, c, op, ...)                                      \
 140({                                                                      \
 141        int _r = -EINTR;                                                \
 142        do {                                                            \
 143                struct btree *_b = (c)->root;                           \
 144                bool _w = insert_lock(op, _b);                          \
 145                rw_lock(_w, _b, _b->level);                             \
 146                if (_b == (c)->root &&                                  \
 147                    _w == insert_lock(op, _b)) {                        \
 148                        _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);   \
 149                }                                                       \
 150                rw_unlock(_w, _b);                                      \
 151                bch_cannibalize_unlock(c);                              \
 152                if (_r == -EINTR)                                       \
 153                        schedule();                                     \
 154        } while (_r == -EINTR);                                         \
 155                                                                        \
 156        finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
 157        _r;                                                             \
 158})
 159
 160static inline struct bset *write_block(struct btree *b)
 161{
 162        return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 163}
 164
 165static void bch_btree_init_next(struct btree *b)
 166{
 167        /* If not a leaf node, always sort */
 168        if (b->level && b->keys.nsets)
 169                bch_btree_sort(&b->keys, &b->c->sort);
 170        else
 171                bch_btree_sort_lazy(&b->keys, &b->c->sort);
 172
 173        if (b->written < btree_blocks(b))
 174                bch_bset_init_next(&b->keys, write_block(b),
 175                                   bset_magic(&b->c->sb));
 176
 177}
 178
 179/* Btree key manipulation */
 180
 181void bkey_put(struct cache_set *c, struct bkey *k)
 182{
 183        unsigned i;
 184
 185        for (i = 0; i < KEY_PTRS(k); i++)
 186                if (ptr_available(c, k, i))
 187                        atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 188}
 189
 190/* Btree IO */
 191
 192static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 193{
 194        uint64_t crc = b->key.ptr[0];
 195        void *data = (void *) i + 8, *end = bset_bkey_last(i);
 196
 197        crc = bch_crc64_update(crc, data, end - data);
 198        return crc ^ 0xffffffffffffffffULL;
 199}
 200
 201void bch_btree_node_read_done(struct btree *b)
 202{
 203        const char *err = "bad btree header";
 204        struct bset *i = btree_bset_first(b);
 205        struct btree_iter *iter;
 206
 207        iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
 208        iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 209        iter->used = 0;
 210
 211#ifdef CONFIG_BCACHE_DEBUG
 212        iter->b = &b->keys;
 213#endif
 214
 215        if (!i->seq)
 216                goto err;
 217
 218        for (;
 219             b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 220             i = write_block(b)) {
 221                err = "unsupported bset version";
 222                if (i->version > BCACHE_BSET_VERSION)
 223                        goto err;
 224
 225                err = "bad btree header";
 226                if (b->written + set_blocks(i, block_bytes(b->c)) >
 227                    btree_blocks(b))
 228                        goto err;
 229
 230                err = "bad magic";
 231                if (i->magic != bset_magic(&b->c->sb))
 232                        goto err;
 233
 234                err = "bad checksum";
 235                switch (i->version) {
 236                case 0:
 237                        if (i->csum != csum_set(i))
 238                                goto err;
 239                        break;
 240                case BCACHE_BSET_VERSION:
 241                        if (i->csum != btree_csum_set(b, i))
 242                                goto err;
 243                        break;
 244                }
 245
 246                err = "empty set";
 247                if (i != b->keys.set[0].data && !i->keys)
 248                        goto err;
 249
 250                bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 251
 252                b->written += set_blocks(i, block_bytes(b->c));
 253        }
 254
 255        err = "corrupted btree";
 256        for (i = write_block(b);
 257             bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 258             i = ((void *) i) + block_bytes(b->c))
 259                if (i->seq == b->keys.set[0].data->seq)
 260                        goto err;
 261
 262        bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 263
 264        i = b->keys.set[0].data;
 265        err = "short btree key";
 266        if (b->keys.set[0].size &&
 267            bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 268                goto err;
 269
 270        if (b->written < btree_blocks(b))
 271                bch_bset_init_next(&b->keys, write_block(b),
 272                                   bset_magic(&b->c->sb));
 273out:
 274        mempool_free(iter, b->c->fill_iter);
 275        return;
 276err:
 277        set_btree_node_io_error(b);
 278        bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 279                            err, PTR_BUCKET_NR(b->c, &b->key, 0),
 280                            bset_block_offset(b, i), i->keys);
 281        goto out;
 282}
 283
 284static void btree_node_read_endio(struct bio *bio)
 285{
 286        struct closure *cl = bio->bi_private;
 287        closure_put(cl);
 288}
 289
 290static void bch_btree_node_read(struct btree *b)
 291{
 292        uint64_t start_time = local_clock();
 293        struct closure cl;
 294        struct bio *bio;
 295
 296        trace_bcache_btree_read(b);
 297
 298        closure_init_stack(&cl);
 299
 300        bio = bch_bbio_alloc(b->c);
 301        bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 302        bio->bi_end_io  = btree_node_read_endio;
 303        bio->bi_private = &cl;
 304        bio->bi_opf = REQ_OP_READ | REQ_META;
 305
 306        bch_bio_map(bio, b->keys.set[0].data);
 307
 308        bch_submit_bbio(bio, b->c, &b->key, 0);
 309        closure_sync(&cl);
 310
 311        if (bio->bi_status)
 312                set_btree_node_io_error(b);
 313
 314        bch_bbio_free(bio, b->c);
 315
 316        if (btree_node_io_error(b))
 317                goto err;
 318
 319        bch_btree_node_read_done(b);
 320        bch_time_stats_update(&b->c->btree_read_time, start_time);
 321
 322        return;
 323err:
 324        bch_cache_set_error(b->c, "io error reading bucket %zu",
 325                            PTR_BUCKET_NR(b->c, &b->key, 0));
 326}
 327
 328static void btree_complete_write(struct btree *b, struct btree_write *w)
 329{
 330        if (w->prio_blocked &&
 331            !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 332                wake_up_allocators(b->c);
 333
 334        if (w->journal) {
 335                atomic_dec_bug(w->journal);
 336                __closure_wake_up(&b->c->journal.wait);
 337        }
 338
 339        w->prio_blocked = 0;
 340        w->journal      = NULL;
 341}
 342
 343static void btree_node_write_unlock(struct closure *cl)
 344{
 345        struct btree *b = container_of(cl, struct btree, io);
 346
 347        up(&b->io_mutex);
 348}
 349
 350static void __btree_node_write_done(struct closure *cl)
 351{
 352        struct btree *b = container_of(cl, struct btree, io);
 353        struct btree_write *w = btree_prev_write(b);
 354
 355        bch_bbio_free(b->bio, b->c);
 356        b->bio = NULL;
 357        btree_complete_write(b, w);
 358
 359        if (btree_node_dirty(b))
 360                schedule_delayed_work(&b->work, 30 * HZ);
 361
 362        closure_return_with_destructor(cl, btree_node_write_unlock);
 363}
 364
 365static void btree_node_write_done(struct closure *cl)
 366{
 367        struct btree *b = container_of(cl, struct btree, io);
 368
 369        bio_free_pages(b->bio);
 370        __btree_node_write_done(cl);
 371}
 372
 373static void btree_node_write_endio(struct bio *bio)
 374{
 375        struct closure *cl = bio->bi_private;
 376        struct btree *b = container_of(cl, struct btree, io);
 377
 378        if (bio->bi_status)
 379                set_btree_node_io_error(b);
 380
 381        bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 382        closure_put(cl);
 383}
 384
 385static void do_btree_node_write(struct btree *b)
 386{
 387        struct closure *cl = &b->io;
 388        struct bset *i = btree_bset_last(b);
 389        BKEY_PADDED(key) k;
 390
 391        i->version      = BCACHE_BSET_VERSION;
 392        i->csum         = btree_csum_set(b, i);
 393
 394        BUG_ON(b->bio);
 395        b->bio = bch_bbio_alloc(b->c);
 396
 397        b->bio->bi_end_io       = btree_node_write_endio;
 398        b->bio->bi_private      = cl;
 399        b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
 400        b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
 401        bch_bio_map(b->bio, i);
 402
 403        /*
 404         * If we're appending to a leaf node, we don't technically need FUA -
 405         * this write just needs to be persisted before the next journal write,
 406         * which will be marked FLUSH|FUA.
 407         *
 408         * Similarly if we're writing a new btree root - the pointer is going to
 409         * be in the next journal entry.
 410         *
 411         * But if we're writing a new btree node (that isn't a root) or
 412         * appending to a non leaf btree node, we need either FUA or a flush
 413         * when we write the parent with the new pointer. FUA is cheaper than a
 414         * flush, and writes appending to leaf nodes aren't blocking anything so
 415         * just make all btree node writes FUA to keep things sane.
 416         */
 417
 418        bkey_copy(&k.key, &b->key);
 419        SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 420                       bset_sector_offset(&b->keys, i));
 421
 422        if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 423                int j;
 424                struct bio_vec *bv;
 425                void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 426
 427                bio_for_each_segment_all(bv, b->bio, j)
 428                        memcpy(page_address(bv->bv_page),
 429                               base + j * PAGE_SIZE, PAGE_SIZE);
 430
 431                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 432
 433                continue_at(cl, btree_node_write_done, NULL);
 434        } else {
 435                /* No problem for multipage bvec since the bio is just allocated */
 436                b->bio->bi_vcnt = 0;
 437                bch_bio_map(b->bio, i);
 438
 439                bch_submit_bbio(b->bio, b->c, &k.key, 0);
 440
 441                closure_sync(cl);
 442                continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 443        }
 444}
 445
 446void __bch_btree_node_write(struct btree *b, struct closure *parent)
 447{
 448        struct bset *i = btree_bset_last(b);
 449
 450        lockdep_assert_held(&b->write_lock);
 451
 452        trace_bcache_btree_write(b);
 453
 454        BUG_ON(current->bio_list);
 455        BUG_ON(b->written >= btree_blocks(b));
 456        BUG_ON(b->written && !i->keys);
 457        BUG_ON(btree_bset_first(b)->seq != i->seq);
 458        bch_check_keys(&b->keys, "writing");
 459
 460        cancel_delayed_work(&b->work);
 461
 462        /* If caller isn't waiting for write, parent refcount is cache set */
 463        down(&b->io_mutex);
 464        closure_init(&b->io, parent ?: &b->c->cl);
 465
 466        clear_bit(BTREE_NODE_dirty,      &b->flags);
 467        change_bit(BTREE_NODE_write_idx, &b->flags);
 468
 469        do_btree_node_write(b);
 470
 471        atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 472                        &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 473
 474        b->written += set_blocks(i, block_bytes(b->c));
 475}
 476
 477void bch_btree_node_write(struct btree *b, struct closure *parent)
 478{
 479        unsigned nsets = b->keys.nsets;
 480
 481        lockdep_assert_held(&b->lock);
 482
 483        __bch_btree_node_write(b, parent);
 484
 485        /*
 486         * do verify if there was more than one set initially (i.e. we did a
 487         * sort) and we sorted down to a single set:
 488         */
 489        if (nsets && !b->keys.nsets)
 490                bch_btree_verify(b);
 491
 492        bch_btree_init_next(b);
 493}
 494
 495static void bch_btree_node_write_sync(struct btree *b)
 496{
 497        struct closure cl;
 498
 499        closure_init_stack(&cl);
 500
 501        mutex_lock(&b->write_lock);
 502        bch_btree_node_write(b, &cl);
 503        mutex_unlock(&b->write_lock);
 504
 505        closure_sync(&cl);
 506}
 507
 508static void btree_node_write_work(struct work_struct *w)
 509{
 510        struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 511
 512        mutex_lock(&b->write_lock);
 513        if (btree_node_dirty(b))
 514                __bch_btree_node_write(b, NULL);
 515        mutex_unlock(&b->write_lock);
 516}
 517
 518static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 519{
 520        struct bset *i = btree_bset_last(b);
 521        struct btree_write *w = btree_current_write(b);
 522
 523        lockdep_assert_held(&b->write_lock);
 524
 525        BUG_ON(!b->written);
 526        BUG_ON(!i->keys);
 527
 528        if (!btree_node_dirty(b))
 529                schedule_delayed_work(&b->work, 30 * HZ);
 530
 531        set_btree_node_dirty(b);
 532
 533        if (journal_ref) {
 534                if (w->journal &&
 535                    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 536                        atomic_dec_bug(w->journal);
 537                        w->journal = NULL;
 538                }
 539
 540                if (!w->journal) {
 541                        w->journal = journal_ref;
 542                        atomic_inc(w->journal);
 543                }
 544        }
 545
 546        /* Force write if set is too big */
 547        if (set_bytes(i) > PAGE_SIZE - 48 &&
 548            !current->bio_list)
 549                bch_btree_node_write(b, NULL);
 550}
 551
 552/*
 553 * Btree in memory cache - allocation/freeing
 554 * mca -> memory cache
 555 */
 556
 557#define mca_reserve(c)  (((c->root && c->root->level)           \
 558                          ? c->root->level : 1) * 8 + 16)
 559#define mca_can_free(c)                                         \
 560        max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 561
 562static void mca_data_free(struct btree *b)
 563{
 564        BUG_ON(b->io_mutex.count != 1);
 565
 566        bch_btree_keys_free(&b->keys);
 567
 568        b->c->btree_cache_used--;
 569        list_move(&b->list, &b->c->btree_cache_freed);
 570}
 571
 572static void mca_bucket_free(struct btree *b)
 573{
 574        BUG_ON(btree_node_dirty(b));
 575
 576        b->key.ptr[0] = 0;
 577        hlist_del_init_rcu(&b->hash);
 578        list_move(&b->list, &b->c->btree_cache_freeable);
 579}
 580
 581static unsigned btree_order(struct bkey *k)
 582{
 583        return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 584}
 585
 586static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 587{
 588        if (!bch_btree_keys_alloc(&b->keys,
 589                                  max_t(unsigned,
 590                                        ilog2(b->c->btree_pages),
 591                                        btree_order(k)),
 592                                  gfp)) {
 593                b->c->btree_cache_used++;
 594                list_move(&b->list, &b->c->btree_cache);
 595        } else {
 596                list_move(&b->list, &b->c->btree_cache_freed);
 597        }
 598}
 599
 600static struct btree *mca_bucket_alloc(struct cache_set *c,
 601                                      struct bkey *k, gfp_t gfp)
 602{
 603        struct btree *b = kzalloc(sizeof(struct btree), gfp);
 604        if (!b)
 605                return NULL;
 606
 607        init_rwsem(&b->lock);
 608        lockdep_set_novalidate_class(&b->lock);
 609        mutex_init(&b->write_lock);
 610        lockdep_set_novalidate_class(&b->write_lock);
 611        INIT_LIST_HEAD(&b->list);
 612        INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 613        b->c = c;
 614        sema_init(&b->io_mutex, 1);
 615
 616        mca_data_alloc(b, k, gfp);
 617        return b;
 618}
 619
 620static int mca_reap(struct btree *b, unsigned min_order, bool flush)
 621{
 622        struct closure cl;
 623
 624        closure_init_stack(&cl);
 625        lockdep_assert_held(&b->c->bucket_lock);
 626
 627        if (!down_write_trylock(&b->lock))
 628                return -ENOMEM;
 629
 630        BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 631
 632        if (b->keys.page_order < min_order)
 633                goto out_unlock;
 634
 635        if (!flush) {
 636                if (btree_node_dirty(b))
 637                        goto out_unlock;
 638
 639                if (down_trylock(&b->io_mutex))
 640                        goto out_unlock;
 641                up(&b->io_mutex);
 642        }
 643
 644        mutex_lock(&b->write_lock);
 645        if (btree_node_dirty(b))
 646                __bch_btree_node_write(b, &cl);
 647        mutex_unlock(&b->write_lock);
 648
 649        closure_sync(&cl);
 650
 651        /* wait for any in flight btree write */
 652        down(&b->io_mutex);
 653        up(&b->io_mutex);
 654
 655        return 0;
 656out_unlock:
 657        rw_unlock(true, b);
 658        return -ENOMEM;
 659}
 660
 661static unsigned long bch_mca_scan(struct shrinker *shrink,
 662                                  struct shrink_control *sc)
 663{
 664        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 665        struct btree *b, *t;
 666        unsigned long i, nr = sc->nr_to_scan;
 667        unsigned long freed = 0;
 668
 669        if (c->shrinker_disabled)
 670                return SHRINK_STOP;
 671
 672        if (c->btree_cache_alloc_lock)
 673                return SHRINK_STOP;
 674
 675        /* Return -1 if we can't do anything right now */
 676        if (sc->gfp_mask & __GFP_IO)
 677                mutex_lock(&c->bucket_lock);
 678        else if (!mutex_trylock(&c->bucket_lock))
 679                return -1;
 680
 681        /*
 682         * It's _really_ critical that we don't free too many btree nodes - we
 683         * have to always leave ourselves a reserve. The reserve is how we
 684         * guarantee that allocating memory for a new btree node can always
 685         * succeed, so that inserting keys into the btree can always succeed and
 686         * IO can always make forward progress:
 687         */
 688        nr /= c->btree_pages;
 689        nr = min_t(unsigned long, nr, mca_can_free(c));
 690
 691        i = 0;
 692        list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
 693                if (freed >= nr)
 694                        break;
 695
 696                if (++i > 3 &&
 697                    !mca_reap(b, 0, false)) {
 698                        mca_data_free(b);
 699                        rw_unlock(true, b);
 700                        freed++;
 701                }
 702        }
 703
 704        for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
 705                if (list_empty(&c->btree_cache))
 706                        goto out;
 707
 708                b = list_first_entry(&c->btree_cache, struct btree, list);
 709                list_rotate_left(&c->btree_cache);
 710
 711                if (!b->accessed &&
 712                    !mca_reap(b, 0, false)) {
 713                        mca_bucket_free(b);
 714                        mca_data_free(b);
 715                        rw_unlock(true, b);
 716                        freed++;
 717                } else
 718                        b->accessed = 0;
 719        }
 720out:
 721        mutex_unlock(&c->bucket_lock);
 722        return freed;
 723}
 724
 725static unsigned long bch_mca_count(struct shrinker *shrink,
 726                                   struct shrink_control *sc)
 727{
 728        struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 729
 730        if (c->shrinker_disabled)
 731                return 0;
 732
 733        if (c->btree_cache_alloc_lock)
 734                return 0;
 735
 736        return mca_can_free(c) * c->btree_pages;
 737}
 738
 739void bch_btree_cache_free(struct cache_set *c)
 740{
 741        struct btree *b;
 742        struct closure cl;
 743        closure_init_stack(&cl);
 744
 745        if (c->shrink.list.next)
 746                unregister_shrinker(&c->shrink);
 747
 748        mutex_lock(&c->bucket_lock);
 749
 750#ifdef CONFIG_BCACHE_DEBUG
 751        if (c->verify_data)
 752                list_move(&c->verify_data->list, &c->btree_cache);
 753
 754        free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 755#endif
 756
 757        list_splice(&c->btree_cache_freeable,
 758                    &c->btree_cache);
 759
 760        while (!list_empty(&c->btree_cache)) {
 761                b = list_first_entry(&c->btree_cache, struct btree, list);
 762
 763                if (btree_node_dirty(b))
 764                        btree_complete_write(b, btree_current_write(b));
 765                clear_bit(BTREE_NODE_dirty, &b->flags);
 766
 767                mca_data_free(b);
 768        }
 769
 770        while (!list_empty(&c->btree_cache_freed)) {
 771                b = list_first_entry(&c->btree_cache_freed,
 772                                     struct btree, list);
 773                list_del(&b->list);
 774                cancel_delayed_work_sync(&b->work);
 775                kfree(b);
 776        }
 777
 778        mutex_unlock(&c->bucket_lock);
 779}
 780
 781int bch_btree_cache_alloc(struct cache_set *c)
 782{
 783        unsigned i;
 784
 785        for (i = 0; i < mca_reserve(c); i++)
 786                if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 787                        return -ENOMEM;
 788
 789        list_splice_init(&c->btree_cache,
 790                         &c->btree_cache_freeable);
 791
 792#ifdef CONFIG_BCACHE_DEBUG
 793        mutex_init(&c->verify_lock);
 794
 795        c->verify_ondisk = (void *)
 796                __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 797
 798        c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 799
 800        if (c->verify_data &&
 801            c->verify_data->keys.set->data)
 802                list_del_init(&c->verify_data->list);
 803        else
 804                c->verify_data = NULL;
 805#endif
 806
 807        c->shrink.count_objects = bch_mca_count;
 808        c->shrink.scan_objects = bch_mca_scan;
 809        c->shrink.seeks = 4;
 810        c->shrink.batch = c->btree_pages * 2;
 811
 812        if (register_shrinker(&c->shrink))
 813                pr_warn("bcache: %s: could not register shrinker",
 814                                __func__);
 815
 816        return 0;
 817}
 818
 819/* Btree in memory cache - hash table */
 820
 821static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 822{
 823        return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 824}
 825
 826static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 827{
 828        struct btree *b;
 829
 830        rcu_read_lock();
 831        hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 832                if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 833                        goto out;
 834        b = NULL;
 835out:
 836        rcu_read_unlock();
 837        return b;
 838}
 839
 840static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 841{
 842        struct task_struct *old;
 843
 844        old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
 845        if (old && old != current) {
 846                if (op)
 847                        prepare_to_wait(&c->btree_cache_wait, &op->wait,
 848                                        TASK_UNINTERRUPTIBLE);
 849                return -EINTR;
 850        }
 851
 852        return 0;
 853}
 854
 855static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 856                                     struct bkey *k)
 857{
 858        struct btree *b;
 859
 860        trace_bcache_btree_cache_cannibalize(c);
 861
 862        if (mca_cannibalize_lock(c, op))
 863                return ERR_PTR(-EINTR);
 864
 865        list_for_each_entry_reverse(b, &c->btree_cache, list)
 866                if (!mca_reap(b, btree_order(k), false))
 867                        return b;
 868
 869        list_for_each_entry_reverse(b, &c->btree_cache, list)
 870                if (!mca_reap(b, btree_order(k), true))
 871                        return b;
 872
 873        WARN(1, "btree cache cannibalize failed\n");
 874        return ERR_PTR(-ENOMEM);
 875}
 876
 877/*
 878 * We can only have one thread cannibalizing other cached btree nodes at a time,
 879 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 880 * cannibalize_bucket() will take. This means every time we unlock the root of
 881 * the btree, we need to release this lock if we have it held.
 882 */
 883static void bch_cannibalize_unlock(struct cache_set *c)
 884{
 885        if (c->btree_cache_alloc_lock == current) {
 886                c->btree_cache_alloc_lock = NULL;
 887                wake_up(&c->btree_cache_wait);
 888        }
 889}
 890
 891static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 892                               struct bkey *k, int level)
 893{
 894        struct btree *b;
 895
 896        BUG_ON(current->bio_list);
 897
 898        lockdep_assert_held(&c->bucket_lock);
 899
 900        if (mca_find(c, k))
 901                return NULL;
 902
 903        /* btree_free() doesn't free memory; it sticks the node on the end of
 904         * the list. Check if there's any freed nodes there:
 905         */
 906        list_for_each_entry(b, &c->btree_cache_freeable, list)
 907                if (!mca_reap(b, btree_order(k), false))
 908                        goto out;
 909
 910        /* We never free struct btree itself, just the memory that holds the on
 911         * disk node. Check the freed list before allocating a new one:
 912         */
 913        list_for_each_entry(b, &c->btree_cache_freed, list)
 914                if (!mca_reap(b, 0, false)) {
 915                        mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 916                        if (!b->keys.set[0].data)
 917                                goto err;
 918                        else
 919                                goto out;
 920                }
 921
 922        b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 923        if (!b)
 924                goto err;
 925
 926        BUG_ON(!down_write_trylock(&b->lock));
 927        if (!b->keys.set->data)
 928                goto err;
 929out:
 930        BUG_ON(b->io_mutex.count != 1);
 931
 932        bkey_copy(&b->key, k);
 933        list_move(&b->list, &c->btree_cache);
 934        hlist_del_init_rcu(&b->hash);
 935        hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 936
 937        lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 938        b->parent       = (void *) ~0UL;
 939        b->flags        = 0;
 940        b->written      = 0;
 941        b->level        = level;
 942
 943        if (!b->level)
 944                bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 945                                    &b->c->expensive_debug_checks);
 946        else
 947                bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 948                                    &b->c->expensive_debug_checks);
 949
 950        return b;
 951err:
 952        if (b)
 953                rw_unlock(true, b);
 954
 955        b = mca_cannibalize(c, op, k);
 956        if (!IS_ERR(b))
 957                goto out;
 958
 959        return b;
 960}
 961
 962/**
 963 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 964 * in from disk if necessary.
 965 *
 966 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
 967 *
 968 * The btree node will have either a read or a write lock held, depending on
 969 * level and op->lock.
 970 */
 971struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 972                                 struct bkey *k, int level, bool write,
 973                                 struct btree *parent)
 974{
 975        int i = 0;
 976        struct btree *b;
 977
 978        BUG_ON(level < 0);
 979retry:
 980        b = mca_find(c, k);
 981
 982        if (!b) {
 983                if (current->bio_list)
 984                        return ERR_PTR(-EAGAIN);
 985
 986                mutex_lock(&c->bucket_lock);
 987                b = mca_alloc(c, op, k, level);
 988                mutex_unlock(&c->bucket_lock);
 989
 990                if (!b)
 991                        goto retry;
 992                if (IS_ERR(b))
 993                        return b;
 994
 995                bch_btree_node_read(b);
 996
 997                if (!write)
 998                        downgrade_write(&b->lock);
 999        } else {
1000                rw_lock(write, b, level);
1001                if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1002                        rw_unlock(write, b);
1003                        goto retry;
1004                }
1005                BUG_ON(b->level != level);
1006        }
1007
1008        b->parent = parent;
1009        b->accessed = 1;
1010
1011        for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1012                prefetch(b->keys.set[i].tree);
1013                prefetch(b->keys.set[i].data);
1014        }
1015
1016        for (; i <= b->keys.nsets; i++)
1017                prefetch(b->keys.set[i].data);
1018
1019        if (btree_node_io_error(b)) {
1020                rw_unlock(write, b);
1021                return ERR_PTR(-EIO);
1022        }
1023
1024        BUG_ON(!b->written);
1025
1026        return b;
1027}
1028
1029static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1030{
1031        struct btree *b;
1032
1033        mutex_lock(&parent->c->bucket_lock);
1034        b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1035        mutex_unlock(&parent->c->bucket_lock);
1036
1037        if (!IS_ERR_OR_NULL(b)) {
1038                b->parent = parent;
1039                bch_btree_node_read(b);
1040                rw_unlock(true, b);
1041        }
1042}
1043
1044/* Btree alloc */
1045
1046static void btree_node_free(struct btree *b)
1047{
1048        trace_bcache_btree_node_free(b);
1049
1050        BUG_ON(b == b->c->root);
1051
1052        mutex_lock(&b->write_lock);
1053
1054        if (btree_node_dirty(b))
1055                btree_complete_write(b, btree_current_write(b));
1056        clear_bit(BTREE_NODE_dirty, &b->flags);
1057
1058        mutex_unlock(&b->write_lock);
1059
1060        cancel_delayed_work(&b->work);
1061
1062        mutex_lock(&b->c->bucket_lock);
1063        bch_bucket_free(b->c, &b->key);
1064        mca_bucket_free(b);
1065        mutex_unlock(&b->c->bucket_lock);
1066}
1067
1068struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1069                                     int level, bool wait,
1070                                     struct btree *parent)
1071{
1072        BKEY_PADDED(key) k;
1073        struct btree *b = ERR_PTR(-EAGAIN);
1074
1075        mutex_lock(&c->bucket_lock);
1076retry:
1077        if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1078                goto err;
1079
1080        bkey_put(c, &k.key);
1081        SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1082
1083        b = mca_alloc(c, op, &k.key, level);
1084        if (IS_ERR(b))
1085                goto err_free;
1086
1087        if (!b) {
1088                cache_bug(c,
1089                        "Tried to allocate bucket that was in btree cache");
1090                goto retry;
1091        }
1092
1093        b->accessed = 1;
1094        b->parent = parent;
1095        bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1096
1097        mutex_unlock(&c->bucket_lock);
1098
1099        trace_bcache_btree_node_alloc(b);
1100        return b;
1101err_free:
1102        bch_bucket_free(c, &k.key);
1103err:
1104        mutex_unlock(&c->bucket_lock);
1105
1106        trace_bcache_btree_node_alloc_fail(c);
1107        return b;
1108}
1109
1110static struct btree *bch_btree_node_alloc(struct cache_set *c,
1111                                          struct btree_op *op, int level,
1112                                          struct btree *parent)
1113{
1114        return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1115}
1116
1117static struct btree *btree_node_alloc_replacement(struct btree *b,
1118                                                  struct btree_op *op)
1119{
1120        struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1121        if (!IS_ERR_OR_NULL(n)) {
1122                mutex_lock(&n->write_lock);
1123                bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1124                bkey_copy_key(&n->key, &b->key);
1125                mutex_unlock(&n->write_lock);
1126        }
1127
1128        return n;
1129}
1130
1131static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1132{
1133        unsigned i;
1134
1135        mutex_lock(&b->c->bucket_lock);
1136
1137        atomic_inc(&b->c->prio_blocked);
1138
1139        bkey_copy(k, &b->key);
1140        bkey_copy_key(k, &ZERO_KEY);
1141
1142        for (i = 0; i < KEY_PTRS(k); i++)
1143                SET_PTR_GEN(k, i,
1144                            bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1145                                        PTR_BUCKET(b->c, &b->key, i)));
1146
1147        mutex_unlock(&b->c->bucket_lock);
1148}
1149
1150static int btree_check_reserve(struct btree *b, struct btree_op *op)
1151{
1152        struct cache_set *c = b->c;
1153        struct cache *ca;
1154        unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1155
1156        mutex_lock(&c->bucket_lock);
1157
1158        for_each_cache(ca, c, i)
1159                if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1160                        if (op)
1161                                prepare_to_wait(&c->btree_cache_wait, &op->wait,
1162                                                TASK_UNINTERRUPTIBLE);
1163                        mutex_unlock(&c->bucket_lock);
1164                        return -EINTR;
1165                }
1166
1167        mutex_unlock(&c->bucket_lock);
1168
1169        return mca_cannibalize_lock(b->c, op);
1170}
1171
1172/* Garbage collection */
1173
1174static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1175                                    struct bkey *k)
1176{
1177        uint8_t stale = 0;
1178        unsigned i;
1179        struct bucket *g;
1180
1181        /*
1182         * ptr_invalid() can't return true for the keys that mark btree nodes as
1183         * freed, but since ptr_bad() returns true we'll never actually use them
1184         * for anything and thus we don't want mark their pointers here
1185         */
1186        if (!bkey_cmp(k, &ZERO_KEY))
1187                return stale;
1188
1189        for (i = 0; i < KEY_PTRS(k); i++) {
1190                if (!ptr_available(c, k, i))
1191                        continue;
1192
1193                g = PTR_BUCKET(c, k, i);
1194
1195                if (gen_after(g->last_gc, PTR_GEN(k, i)))
1196                        g->last_gc = PTR_GEN(k, i);
1197
1198                if (ptr_stale(c, k, i)) {
1199                        stale = max(stale, ptr_stale(c, k, i));
1200                        continue;
1201                }
1202
1203                cache_bug_on(GC_MARK(g) &&
1204                             (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1205                             c, "inconsistent ptrs: mark = %llu, level = %i",
1206                             GC_MARK(g), level);
1207
1208                if (level)
1209                        SET_GC_MARK(g, GC_MARK_METADATA);
1210                else if (KEY_DIRTY(k))
1211                        SET_GC_MARK(g, GC_MARK_DIRTY);
1212                else if (!GC_MARK(g))
1213                        SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1214
1215                /* guard against overflow */
1216                SET_GC_SECTORS_USED(g, min_t(unsigned,
1217                                             GC_SECTORS_USED(g) + KEY_SIZE(k),
1218                                             MAX_GC_SECTORS_USED));
1219
1220                BUG_ON(!GC_SECTORS_USED(g));
1221        }
1222
1223        return stale;
1224}
1225
1226#define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1227
1228void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1229{
1230        unsigned i;
1231
1232        for (i = 0; i < KEY_PTRS(k); i++)
1233                if (ptr_available(c, k, i) &&
1234                    !ptr_stale(c, k, i)) {
1235                        struct bucket *b = PTR_BUCKET(c, k, i);
1236
1237                        b->gen = PTR_GEN(k, i);
1238
1239                        if (level && bkey_cmp(k, &ZERO_KEY))
1240                                b->prio = BTREE_PRIO;
1241                        else if (!level && b->prio == BTREE_PRIO)
1242                                b->prio = INITIAL_PRIO;
1243                }
1244
1245        __bch_btree_mark_key(c, level, k);
1246}
1247
1248void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1249{
1250        stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1251}
1252
1253static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1254{
1255        uint8_t stale = 0;
1256        unsigned keys = 0, good_keys = 0;
1257        struct bkey *k;
1258        struct btree_iter iter;
1259        struct bset_tree *t;
1260
1261        gc->nodes++;
1262
1263        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1264                stale = max(stale, btree_mark_key(b, k));
1265                keys++;
1266
1267                if (bch_ptr_bad(&b->keys, k))
1268                        continue;
1269
1270                gc->key_bytes += bkey_u64s(k);
1271                gc->nkeys++;
1272                good_keys++;
1273
1274                gc->data += KEY_SIZE(k);
1275        }
1276
1277        for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1278                btree_bug_on(t->size &&
1279                             bset_written(&b->keys, t) &&
1280                             bkey_cmp(&b->key, &t->end) < 0,
1281                             b, "found short btree key in gc");
1282
1283        if (b->c->gc_always_rewrite)
1284                return true;
1285
1286        if (stale > 10)
1287                return true;
1288
1289        if ((keys - good_keys) * 2 > keys)
1290                return true;
1291
1292        return false;
1293}
1294
1295#define GC_MERGE_NODES  4U
1296
1297struct gc_merge_info {
1298        struct btree    *b;
1299        unsigned        keys;
1300};
1301
1302static int bch_btree_insert_node(struct btree *, struct btree_op *,
1303                                 struct keylist *, atomic_t *, struct bkey *);
1304
1305static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1306                             struct gc_stat *gc, struct gc_merge_info *r)
1307{
1308        unsigned i, nodes = 0, keys = 0, blocks;
1309        struct btree *new_nodes[GC_MERGE_NODES];
1310        struct keylist keylist;
1311        struct closure cl;
1312        struct bkey *k;
1313
1314        bch_keylist_init(&keylist);
1315
1316        if (btree_check_reserve(b, NULL))
1317                return 0;
1318
1319        memset(new_nodes, 0, sizeof(new_nodes));
1320        closure_init_stack(&cl);
1321
1322        while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1323                keys += r[nodes++].keys;
1324
1325        blocks = btree_default_blocks(b->c) * 2 / 3;
1326
1327        if (nodes < 2 ||
1328            __set_blocks(b->keys.set[0].data, keys,
1329                         block_bytes(b->c)) > blocks * (nodes - 1))
1330                return 0;
1331
1332        for (i = 0; i < nodes; i++) {
1333                new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1334                if (IS_ERR_OR_NULL(new_nodes[i]))
1335                        goto out_nocoalesce;
1336        }
1337
1338        /*
1339         * We have to check the reserve here, after we've allocated our new
1340         * nodes, to make sure the insert below will succeed - we also check
1341         * before as an optimization to potentially avoid a bunch of expensive
1342         * allocs/sorts
1343         */
1344        if (btree_check_reserve(b, NULL))
1345                goto out_nocoalesce;
1346
1347        for (i = 0; i < nodes; i++)
1348                mutex_lock(&new_nodes[i]->write_lock);
1349
1350        for (i = nodes - 1; i > 0; --i) {
1351                struct bset *n1 = btree_bset_first(new_nodes[i]);
1352                struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1353                struct bkey *k, *last = NULL;
1354
1355                keys = 0;
1356
1357                if (i > 1) {
1358                        for (k = n2->start;
1359                             k < bset_bkey_last(n2);
1360                             k = bkey_next(k)) {
1361                                if (__set_blocks(n1, n1->keys + keys +
1362                                                 bkey_u64s(k),
1363                                                 block_bytes(b->c)) > blocks)
1364                                        break;
1365
1366                                last = k;
1367                                keys += bkey_u64s(k);
1368                        }
1369                } else {
1370                        /*
1371                         * Last node we're not getting rid of - we're getting
1372                         * rid of the node at r[0]. Have to try and fit all of
1373                         * the remaining keys into this node; we can't ensure
1374                         * they will always fit due to rounding and variable
1375                         * length keys (shouldn't be possible in practice,
1376                         * though)
1377                         */
1378                        if (__set_blocks(n1, n1->keys + n2->keys,
1379                                         block_bytes(b->c)) >
1380                            btree_blocks(new_nodes[i]))
1381                                goto out_nocoalesce;
1382
1383                        keys = n2->keys;
1384                        /* Take the key of the node we're getting rid of */
1385                        last = &r->b->key;
1386                }
1387
1388                BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1389                       btree_blocks(new_nodes[i]));
1390
1391                if (last)
1392                        bkey_copy_key(&new_nodes[i]->key, last);
1393
1394                memcpy(bset_bkey_last(n1),
1395                       n2->start,
1396                       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1397
1398                n1->keys += keys;
1399                r[i].keys = n1->keys;
1400
1401                memmove(n2->start,
1402                        bset_bkey_idx(n2, keys),
1403                        (void *) bset_bkey_last(n2) -
1404                        (void *) bset_bkey_idx(n2, keys));
1405
1406                n2->keys -= keys;
1407
1408                if (__bch_keylist_realloc(&keylist,
1409                                          bkey_u64s(&new_nodes[i]->key)))
1410                        goto out_nocoalesce;
1411
1412                bch_btree_node_write(new_nodes[i], &cl);
1413                bch_keylist_add(&keylist, &new_nodes[i]->key);
1414        }
1415
1416        for (i = 0; i < nodes; i++)
1417                mutex_unlock(&new_nodes[i]->write_lock);
1418
1419        closure_sync(&cl);
1420
1421        /* We emptied out this node */
1422        BUG_ON(btree_bset_first(new_nodes[0])->keys);
1423        btree_node_free(new_nodes[0]);
1424        rw_unlock(true, new_nodes[0]);
1425        new_nodes[0] = NULL;
1426
1427        for (i = 0; i < nodes; i++) {
1428                if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1429                        goto out_nocoalesce;
1430
1431                make_btree_freeing_key(r[i].b, keylist.top);
1432                bch_keylist_push(&keylist);
1433        }
1434
1435        bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1436        BUG_ON(!bch_keylist_empty(&keylist));
1437
1438        for (i = 0; i < nodes; i++) {
1439                btree_node_free(r[i].b);
1440                rw_unlock(true, r[i].b);
1441
1442                r[i].b = new_nodes[i];
1443        }
1444
1445        memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1446        r[nodes - 1].b = ERR_PTR(-EINTR);
1447
1448        trace_bcache_btree_gc_coalesce(nodes);
1449        gc->nodes--;
1450
1451        bch_keylist_free(&keylist);
1452
1453        /* Invalidated our iterator */
1454        return -EINTR;
1455
1456out_nocoalesce:
1457        closure_sync(&cl);
1458        bch_keylist_free(&keylist);
1459
1460        while ((k = bch_keylist_pop(&keylist)))
1461                if (!bkey_cmp(k, &ZERO_KEY))
1462                        atomic_dec(&b->c->prio_blocked);
1463
1464        for (i = 0; i < nodes; i++)
1465                if (!IS_ERR_OR_NULL(new_nodes[i])) {
1466                        btree_node_free(new_nodes[i]);
1467                        rw_unlock(true, new_nodes[i]);
1468                }
1469        return 0;
1470}
1471
1472static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1473                                 struct btree *replace)
1474{
1475        struct keylist keys;
1476        struct btree *n;
1477
1478        if (btree_check_reserve(b, NULL))
1479                return 0;
1480
1481        n = btree_node_alloc_replacement(replace, NULL);
1482
1483        /* recheck reserve after allocating replacement node */
1484        if (btree_check_reserve(b, NULL)) {
1485                btree_node_free(n);
1486                rw_unlock(true, n);
1487                return 0;
1488        }
1489
1490        bch_btree_node_write_sync(n);
1491
1492        bch_keylist_init(&keys);
1493        bch_keylist_add(&keys, &n->key);
1494
1495        make_btree_freeing_key(replace, keys.top);
1496        bch_keylist_push(&keys);
1497
1498        bch_btree_insert_node(b, op, &keys, NULL, NULL);
1499        BUG_ON(!bch_keylist_empty(&keys));
1500
1501        btree_node_free(replace);
1502        rw_unlock(true, n);
1503
1504        /* Invalidated our iterator */
1505        return -EINTR;
1506}
1507
1508static unsigned btree_gc_count_keys(struct btree *b)
1509{
1510        struct bkey *k;
1511        struct btree_iter iter;
1512        unsigned ret = 0;
1513
1514        for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1515                ret += bkey_u64s(k);
1516
1517        return ret;
1518}
1519
1520static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1521                            struct closure *writes, struct gc_stat *gc)
1522{
1523        int ret = 0;
1524        bool should_rewrite;
1525        struct bkey *k;
1526        struct btree_iter iter;
1527        struct gc_merge_info r[GC_MERGE_NODES];
1528        struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1529
1530        bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1531
1532        for (i = r; i < r + ARRAY_SIZE(r); i++)
1533                i->b = ERR_PTR(-EINTR);
1534
1535        while (1) {
1536                k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1537                if (k) {
1538                        r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1539                                                  true, b);
1540                        if (IS_ERR(r->b)) {
1541                                ret = PTR_ERR(r->b);
1542                                break;
1543                        }
1544
1545                        r->keys = btree_gc_count_keys(r->b);
1546
1547                        ret = btree_gc_coalesce(b, op, gc, r);
1548                        if (ret)
1549                                break;
1550                }
1551
1552                if (!last->b)
1553                        break;
1554
1555                if (!IS_ERR(last->b)) {
1556                        should_rewrite = btree_gc_mark_node(last->b, gc);
1557                        if (should_rewrite) {
1558                                ret = btree_gc_rewrite_node(b, op, last->b);
1559                                if (ret)
1560                                        break;
1561                        }
1562
1563                        if (last->b->level) {
1564                                ret = btree_gc_recurse(last->b, op, writes, gc);
1565                                if (ret)
1566                                        break;
1567                        }
1568
1569                        bkey_copy_key(&b->c->gc_done, &last->b->key);
1570
1571                        /*
1572                         * Must flush leaf nodes before gc ends, since replace
1573                         * operations aren't journalled
1574                         */
1575                        mutex_lock(&last->b->write_lock);
1576                        if (btree_node_dirty(last->b))
1577                                bch_btree_node_write(last->b, writes);
1578                        mutex_unlock(&last->b->write_lock);
1579                        rw_unlock(true, last->b);
1580                }
1581
1582                memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1583                r->b = NULL;
1584
1585                if (need_resched()) {
1586                        ret = -EAGAIN;
1587                        break;
1588                }
1589        }
1590
1591        for (i = r; i < r + ARRAY_SIZE(r); i++)
1592                if (!IS_ERR_OR_NULL(i->b)) {
1593                        mutex_lock(&i->b->write_lock);
1594                        if (btree_node_dirty(i->b))
1595                                bch_btree_node_write(i->b, writes);
1596                        mutex_unlock(&i->b->write_lock);
1597                        rw_unlock(true, i->b);
1598                }
1599
1600        return ret;
1601}
1602
1603static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1604                             struct closure *writes, struct gc_stat *gc)
1605{
1606        struct btree *n = NULL;
1607        int ret = 0;
1608        bool should_rewrite;
1609
1610        should_rewrite = btree_gc_mark_node(b, gc);
1611        if (should_rewrite) {
1612                n = btree_node_alloc_replacement(b, NULL);
1613
1614                if (!IS_ERR_OR_NULL(n)) {
1615                        bch_btree_node_write_sync(n);
1616
1617                        bch_btree_set_root(n);
1618                        btree_node_free(b);
1619                        rw_unlock(true, n);
1620
1621                        return -EINTR;
1622                }
1623        }
1624
1625        __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1626
1627        if (b->level) {
1628                ret = btree_gc_recurse(b, op, writes, gc);
1629                if (ret)
1630                        return ret;
1631        }
1632
1633        bkey_copy_key(&b->c->gc_done, &b->key);
1634
1635        return ret;
1636}
1637
1638static void btree_gc_start(struct cache_set *c)
1639{
1640        struct cache *ca;
1641        struct bucket *b;
1642        unsigned i;
1643
1644        if (!c->gc_mark_valid)
1645                return;
1646
1647        mutex_lock(&c->bucket_lock);
1648
1649        c->gc_mark_valid = 0;
1650        c->gc_done = ZERO_KEY;
1651
1652        for_each_cache(ca, c, i)
1653                for_each_bucket(b, ca) {
1654                        b->last_gc = b->gen;
1655                        if (!atomic_read(&b->pin)) {
1656                                SET_GC_MARK(b, 0);
1657                                SET_GC_SECTORS_USED(b, 0);
1658                        }
1659                }
1660
1661        mutex_unlock(&c->bucket_lock);
1662}
1663
1664static void bch_btree_gc_finish(struct cache_set *c)
1665{
1666        struct bucket *b;
1667        struct cache *ca;
1668        unsigned i;
1669
1670        mutex_lock(&c->bucket_lock);
1671
1672        set_gc_sectors(c);
1673        c->gc_mark_valid = 1;
1674        c->need_gc      = 0;
1675
1676        for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1677                SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1678                            GC_MARK_METADATA);
1679
1680        /* don't reclaim buckets to which writeback keys point */
1681        rcu_read_lock();
1682        for (i = 0; i < c->devices_max_used; i++) {
1683                struct bcache_device *d = c->devices[i];
1684                struct cached_dev *dc;
1685                struct keybuf_key *w, *n;
1686                unsigned j;
1687
1688                if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1689                        continue;
1690                dc = container_of(d, struct cached_dev, disk);
1691
1692                spin_lock(&dc->writeback_keys.lock);
1693                rbtree_postorder_for_each_entry_safe(w, n,
1694                                        &dc->writeback_keys.keys, node)
1695                        for (j = 0; j < KEY_PTRS(&w->key); j++)
1696                                SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1697                                            GC_MARK_DIRTY);
1698                spin_unlock(&dc->writeback_keys.lock);
1699        }
1700        rcu_read_unlock();
1701
1702        c->avail_nbuckets = 0;
1703        for_each_cache(ca, c, i) {
1704                uint64_t *i;
1705
1706                ca->invalidate_needs_gc = 0;
1707
1708                for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1709                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1710
1711                for (i = ca->prio_buckets;
1712                     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1713                        SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1714
1715                for_each_bucket(b, ca) {
1716                        c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1717
1718                        if (atomic_read(&b->pin))
1719                                continue;
1720
1721                        BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1722
1723                        if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1724                                c->avail_nbuckets++;
1725                }
1726        }
1727
1728        mutex_unlock(&c->bucket_lock);
1729}
1730
1731static void bch_btree_gc(struct cache_set *c)
1732{
1733        int ret;
1734        struct gc_stat stats;
1735        struct closure writes;
1736        struct btree_op op;
1737        uint64_t start_time = local_clock();
1738
1739        trace_bcache_gc_start(c);
1740
1741        memset(&stats, 0, sizeof(struct gc_stat));
1742        closure_init_stack(&writes);
1743        bch_btree_op_init(&op, SHRT_MAX);
1744
1745        btree_gc_start(c);
1746
1747        do {
1748                ret = btree_root(gc_root, c, &op, &writes, &stats);
1749                closure_sync(&writes);
1750                cond_resched();
1751
1752                if (ret && ret != -EAGAIN)
1753                        pr_warn("gc failed!");
1754        } while (ret);
1755
1756        bch_btree_gc_finish(c);
1757        wake_up_allocators(c);
1758
1759        bch_time_stats_update(&c->btree_gc_time, start_time);
1760
1761        stats.key_bytes *= sizeof(uint64_t);
1762        stats.data      <<= 9;
1763        bch_update_bucket_in_use(c, &stats);
1764        memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1765
1766        trace_bcache_gc_end(c);
1767
1768        bch_moving_gc(c);
1769}
1770
1771static bool gc_should_run(struct cache_set *c)
1772{
1773        struct cache *ca;
1774        unsigned i;
1775
1776        for_each_cache(ca, c, i)
1777                if (ca->invalidate_needs_gc)
1778                        return true;
1779
1780        if (atomic_read(&c->sectors_to_gc) < 0)
1781                return true;
1782
1783        return false;
1784}
1785
1786static int bch_gc_thread(void *arg)
1787{
1788        struct cache_set *c = arg;
1789
1790        while (1) {
1791                wait_event_interruptible(c->gc_wait,
1792                           kthread_should_stop() || gc_should_run(c));
1793
1794                if (kthread_should_stop())
1795                        break;
1796
1797                set_gc_sectors(c);
1798                bch_btree_gc(c);
1799        }
1800
1801        return 0;
1802}
1803
1804int bch_gc_thread_start(struct cache_set *c)
1805{
1806        c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1807        return PTR_ERR_OR_ZERO(c->gc_thread);
1808}
1809
1810/* Initial partial gc */
1811
1812static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1813{
1814        int ret = 0;
1815        struct bkey *k, *p = NULL;
1816        struct btree_iter iter;
1817
1818        for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1819                bch_initial_mark_key(b->c, b->level, k);
1820
1821        bch_initial_mark_key(b->c, b->level + 1, &b->key);
1822
1823        if (b->level) {
1824                bch_btree_iter_init(&b->keys, &iter, NULL);
1825
1826                do {
1827                        k = bch_btree_iter_next_filter(&iter, &b->keys,
1828                                                       bch_ptr_bad);
1829                        if (k)
1830                                btree_node_prefetch(b, k);
1831
1832                        if (p)
1833                                ret = btree(check_recurse, p, b, op);
1834
1835                        p = k;
1836                } while (p && !ret);
1837        }
1838
1839        return ret;
1840}
1841
1842int bch_btree_check(struct cache_set *c)
1843{
1844        struct btree_op op;
1845
1846        bch_btree_op_init(&op, SHRT_MAX);
1847
1848        return btree_root(check_recurse, c, &op);
1849}
1850
1851void bch_initial_gc_finish(struct cache_set *c)
1852{
1853        struct cache *ca;
1854        struct bucket *b;
1855        unsigned i;
1856
1857        bch_btree_gc_finish(c);
1858
1859        mutex_lock(&c->bucket_lock);
1860
1861        /*
1862         * We need to put some unused buckets directly on the prio freelist in
1863         * order to get the allocator thread started - it needs freed buckets in
1864         * order to rewrite the prios and gens, and it needs to rewrite prios
1865         * and gens in order to free buckets.
1866         *
1867         * This is only safe for buckets that have no live data in them, which
1868         * there should always be some of.
1869         */
1870        for_each_cache(ca, c, i) {
1871                for_each_bucket(b, ca) {
1872                        if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1873                            fifo_full(&ca->free[RESERVE_BTREE]))
1874                                break;
1875
1876                        if (bch_can_invalidate_bucket(ca, b) &&
1877                            !GC_MARK(b)) {
1878                                __bch_invalidate_one_bucket(ca, b);
1879                                if (!fifo_push(&ca->free[RESERVE_PRIO],
1880                                   b - ca->buckets))
1881                                        fifo_push(&ca->free[RESERVE_BTREE],
1882                                                  b - ca->buckets);
1883                        }
1884                }
1885        }
1886
1887        mutex_unlock(&c->bucket_lock);
1888}
1889
1890/* Btree insertion */
1891
1892static bool btree_insert_key(struct btree *b, struct bkey *k,
1893                             struct bkey *replace_key)
1894{
1895        unsigned status;
1896
1897        BUG_ON(bkey_cmp(k, &b->key) > 0);
1898
1899        status = bch_btree_insert_key(&b->keys, k, replace_key);
1900        if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1901                bch_check_keys(&b->keys, "%u for %s", status,
1902                               replace_key ? "replace" : "insert");
1903
1904                trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1905                                              status);
1906                return true;
1907        } else
1908                return false;
1909}
1910
1911static size_t insert_u64s_remaining(struct btree *b)
1912{
1913        long ret = bch_btree_keys_u64s_remaining(&b->keys);
1914
1915        /*
1916         * Might land in the middle of an existing extent and have to split it
1917         */
1918        if (b->keys.ops->is_extents)
1919                ret -= KEY_MAX_U64S;
1920
1921        return max(ret, 0L);
1922}
1923
1924static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1925                                  struct keylist *insert_keys,
1926                                  struct bkey *replace_key)
1927{
1928        bool ret = false;
1929        int oldsize = bch_count_data(&b->keys);
1930
1931        while (!bch_keylist_empty(insert_keys)) {
1932                struct bkey *k = insert_keys->keys;
1933
1934                if (bkey_u64s(k) > insert_u64s_remaining(b))
1935                        break;
1936
1937                if (bkey_cmp(k, &b->key) <= 0) {
1938                        if (!b->level)
1939                                bkey_put(b->c, k);
1940
1941                        ret |= btree_insert_key(b, k, replace_key);
1942                        bch_keylist_pop_front(insert_keys);
1943                } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1944                        BKEY_PADDED(key) temp;
1945                        bkey_copy(&temp.key, insert_keys->keys);
1946
1947                        bch_cut_back(&b->key, &temp.key);
1948                        bch_cut_front(&b->key, insert_keys->keys);
1949
1950                        ret |= btree_insert_key(b, &temp.key, replace_key);
1951                        break;
1952                } else {
1953                        break;
1954                }
1955        }
1956
1957        if (!ret)
1958                op->insert_collision = true;
1959
1960        BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1961
1962        BUG_ON(bch_count_data(&b->keys) < oldsize);
1963        return ret;
1964}
1965
1966static int btree_split(struct btree *b, struct btree_op *op,
1967                       struct keylist *insert_keys,
1968                       struct bkey *replace_key)
1969{
1970        bool split;
1971        struct btree *n1, *n2 = NULL, *n3 = NULL;
1972        uint64_t start_time = local_clock();
1973        struct closure cl;
1974        struct keylist parent_keys;
1975
1976        closure_init_stack(&cl);
1977        bch_keylist_init(&parent_keys);
1978
1979        if (btree_check_reserve(b, op)) {
1980                if (!b->level)
1981                        return -EINTR;
1982                else
1983                        WARN(1, "insufficient reserve for split\n");
1984        }
1985
1986        n1 = btree_node_alloc_replacement(b, op);
1987        if (IS_ERR(n1))
1988                goto err;
1989
1990        split = set_blocks(btree_bset_first(n1),
1991                           block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1992
1993        if (split) {
1994                unsigned keys = 0;
1995
1996                trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1997
1998                n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1999                if (IS_ERR(n2))
2000                        goto err_free1;
2001
2002                if (!b->parent) {
2003                        n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2004                        if (IS_ERR(n3))
2005                                goto err_free2;
2006                }
2007
2008                mutex_lock(&n1->write_lock);
2009                mutex_lock(&n2->write_lock);
2010
2011                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2012
2013                /*
2014                 * Has to be a linear search because we don't have an auxiliary
2015                 * search tree yet
2016                 */
2017
2018                while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2019                        keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2020                                                        keys));
2021
2022                bkey_copy_key(&n1->key,
2023                              bset_bkey_idx(btree_bset_first(n1), keys));
2024                keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2025
2026                btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2027                btree_bset_first(n1)->keys = keys;
2028
2029                memcpy(btree_bset_first(n2)->start,
2030                       bset_bkey_last(btree_bset_first(n1)),
2031                       btree_bset_first(n2)->keys * sizeof(uint64_t));
2032
2033                bkey_copy_key(&n2->key, &b->key);
2034
2035                bch_keylist_add(&parent_keys, &n2->key);
2036                bch_btree_node_write(n2, &cl);
2037                mutex_unlock(&n2->write_lock);
2038                rw_unlock(true, n2);
2039        } else {
2040                trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2041
2042                mutex_lock(&n1->write_lock);
2043                bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2044        }
2045
2046        bch_keylist_add(&parent_keys, &n1->key);
2047        bch_btree_node_write(n1, &cl);
2048        mutex_unlock(&n1->write_lock);
2049
2050        if (n3) {
2051                /* Depth increases, make a new root */
2052                mutex_lock(&n3->write_lock);
2053                bkey_copy_key(&n3->key, &MAX_KEY);
2054                bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2055                bch_btree_node_write(n3, &cl);
2056                mutex_unlock(&n3->write_lock);
2057
2058                closure_sync(&cl);
2059                bch_btree_set_root(n3);
2060                rw_unlock(true, n3);
2061        } else if (!b->parent) {
2062                /* Root filled up but didn't need to be split */
2063                closure_sync(&cl);
2064                bch_btree_set_root(n1);
2065        } else {
2066                /* Split a non root node */
2067                closure_sync(&cl);
2068                make_btree_freeing_key(b, parent_keys.top);
2069                bch_keylist_push(&parent_keys);
2070
2071                bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2072                BUG_ON(!bch_keylist_empty(&parent_keys));
2073        }
2074
2075        btree_node_free(b);
2076        rw_unlock(true, n1);
2077
2078        bch_time_stats_update(&b->c->btree_split_time, start_time);
2079
2080        return 0;
2081err_free2:
2082        bkey_put(b->c, &n2->key);
2083        btree_node_free(n2);
2084        rw_unlock(true, n2);
2085err_free1:
2086        bkey_put(b->c, &n1->key);
2087        btree_node_free(n1);
2088        rw_unlock(true, n1);
2089err:
2090        WARN(1, "bcache: btree split failed (level %u)", b->level);
2091
2092        if (n3 == ERR_PTR(-EAGAIN) ||
2093            n2 == ERR_PTR(-EAGAIN) ||
2094            n1 == ERR_PTR(-EAGAIN))
2095                return -EAGAIN;
2096
2097        return -ENOMEM;
2098}
2099
2100static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2101                                 struct keylist *insert_keys,
2102                                 atomic_t *journal_ref,
2103                                 struct bkey *replace_key)
2104{
2105        struct closure cl;
2106
2107        BUG_ON(b->level && replace_key);
2108
2109        closure_init_stack(&cl);
2110
2111        mutex_lock(&b->write_lock);
2112
2113        if (write_block(b) != btree_bset_last(b) &&
2114            b->keys.last_set_unwritten)
2115                bch_btree_init_next(b); /* just wrote a set */
2116
2117        if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2118                mutex_unlock(&b->write_lock);
2119                goto split;
2120        }
2121
2122        BUG_ON(write_block(b) != btree_bset_last(b));
2123
2124        if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2125                if (!b->level)
2126                        bch_btree_leaf_dirty(b, journal_ref);
2127                else
2128                        bch_btree_node_write(b, &cl);
2129        }
2130
2131        mutex_unlock(&b->write_lock);
2132
2133        /* wait for btree node write if necessary, after unlock */
2134        closure_sync(&cl);
2135
2136        return 0;
2137split:
2138        if (current->bio_list) {
2139                op->lock = b->c->root->level + 1;
2140                return -EAGAIN;
2141        } else if (op->lock <= b->c->root->level) {
2142                op->lock = b->c->root->level + 1;
2143                return -EINTR;
2144        } else {
2145                /* Invalidated all iterators */
2146                int ret = btree_split(b, op, insert_keys, replace_key);
2147
2148                if (bch_keylist_empty(insert_keys))
2149                        return 0;
2150                else if (!ret)
2151                        return -EINTR;
2152                return ret;
2153        }
2154}
2155
2156int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2157                               struct bkey *check_key)
2158{
2159        int ret = -EINTR;
2160        uint64_t btree_ptr = b->key.ptr[0];
2161        unsigned long seq = b->seq;
2162        struct keylist insert;
2163        bool upgrade = op->lock == -1;
2164
2165        bch_keylist_init(&insert);
2166
2167        if (upgrade) {
2168                rw_unlock(false, b);
2169                rw_lock(true, b, b->level);
2170
2171                if (b->key.ptr[0] != btree_ptr ||
2172                   b->seq != seq + 1) {
2173                       op->lock = b->level;
2174                        goto out;
2175               }
2176        }
2177
2178        SET_KEY_PTRS(check_key, 1);
2179        get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2180
2181        SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2182
2183        bch_keylist_add(&insert, check_key);
2184
2185        ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2186
2187        BUG_ON(!ret && !bch_keylist_empty(&insert));
2188out:
2189        if (upgrade)
2190                downgrade_write(&b->lock);
2191        return ret;
2192}
2193
2194struct btree_insert_op {
2195        struct btree_op op;
2196        struct keylist  *keys;
2197        atomic_t        *journal_ref;
2198        struct bkey     *replace_key;
2199};
2200
2201static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2202{
2203        struct btree_insert_op *op = container_of(b_op,
2204                                        struct btree_insert_op, op);
2205
2206        int ret = bch_btree_insert_node(b, &op->op, op->keys,
2207                                        op->journal_ref, op->replace_key);
2208        if (ret && !bch_keylist_empty(op->keys))
2209                return ret;
2210        else
2211                return MAP_DONE;
2212}
2213
2214int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2215                     atomic_t *journal_ref, struct bkey *replace_key)
2216{
2217        struct btree_insert_op op;
2218        int ret = 0;
2219
2220        BUG_ON(current->bio_list);
2221        BUG_ON(bch_keylist_empty(keys));
2222
2223        bch_btree_op_init(&op.op, 0);
2224        op.keys         = keys;
2225        op.journal_ref  = journal_ref;
2226        op.replace_key  = replace_key;
2227
2228        while (!ret && !bch_keylist_empty(keys)) {
2229                op.op.lock = 0;
2230                ret = bch_btree_map_leaf_nodes(&op.op, c,
2231                                               &START_KEY(keys->keys),
2232                                               btree_insert_fn);
2233        }
2234
2235        if (ret) {
2236                struct bkey *k;
2237
2238                pr_err("error %i", ret);
2239
2240                while ((k = bch_keylist_pop(keys)))
2241                        bkey_put(c, k);
2242        } else if (op.op.insert_collision)
2243                ret = -ESRCH;
2244
2245        return ret;
2246}
2247
2248void bch_btree_set_root(struct btree *b)
2249{
2250        unsigned i;
2251        struct closure cl;
2252
2253        closure_init_stack(&cl);
2254
2255        trace_bcache_btree_set_root(b);
2256
2257        BUG_ON(!b->written);
2258
2259        for (i = 0; i < KEY_PTRS(&b->key); i++)
2260                BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2261
2262        mutex_lock(&b->c->bucket_lock);
2263        list_del_init(&b->list);
2264        mutex_unlock(&b->c->bucket_lock);
2265
2266        b->c->root = b;
2267
2268        bch_journal_meta(b->c, &cl);
2269        closure_sync(&cl);
2270}
2271
2272/* Map across nodes or keys */
2273
2274static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2275                                       struct bkey *from,
2276                                       btree_map_nodes_fn *fn, int flags)
2277{
2278        int ret = MAP_CONTINUE;
2279
2280        if (b->level) {
2281                struct bkey *k;
2282                struct btree_iter iter;
2283
2284                bch_btree_iter_init(&b->keys, &iter, from);
2285
2286                while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2287                                                       bch_ptr_bad))) {
2288                        ret = btree(map_nodes_recurse, k, b,
2289                                    op, from, fn, flags);
2290                        from = NULL;
2291
2292                        if (ret != MAP_CONTINUE)
2293                                return ret;
2294                }
2295        }
2296
2297        if (!b->level || flags == MAP_ALL_NODES)
2298                ret = fn(op, b);
2299
2300        return ret;
2301}
2302
2303int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2304                          struct bkey *from, btree_map_nodes_fn *fn, int flags)
2305{
2306        return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2307}
2308
2309static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2310                                      struct bkey *from, btree_map_keys_fn *fn,
2311                                      int flags)
2312{
2313        int ret = MAP_CONTINUE;
2314        struct bkey *k;
2315        struct btree_iter iter;
2316
2317        bch_btree_iter_init(&b->keys, &iter, from);
2318
2319        while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2320                ret = !b->level
2321                        ? fn(op, b, k)
2322                        : btree(map_keys_recurse, k, b, op, from, fn, flags);
2323                from = NULL;
2324
2325                if (ret != MAP_CONTINUE)
2326                        return ret;
2327        }
2328
2329        if (!b->level && (flags & MAP_END_KEY))
2330                ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2331                                     KEY_OFFSET(&b->key), 0));
2332
2333        return ret;
2334}
2335
2336int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2337                       struct bkey *from, btree_map_keys_fn *fn, int flags)
2338{
2339        return btree_root(map_keys_recurse, c, op, from, fn, flags);
2340}
2341
2342/* Keybuf code */
2343
2344static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2345{
2346        /* Overlapping keys compare equal */
2347        if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2348                return -1;
2349        if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2350                return 1;
2351        return 0;
2352}
2353
2354static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2355                                            struct keybuf_key *r)
2356{
2357        return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2358}
2359
2360struct refill {
2361        struct btree_op op;
2362        unsigned        nr_found;
2363        struct keybuf   *buf;
2364        struct bkey     *end;
2365        keybuf_pred_fn  *pred;
2366};
2367
2368static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2369                            struct bkey *k)
2370{
2371        struct refill *refill = container_of(op, struct refill, op);
2372        struct keybuf *buf = refill->buf;
2373        int ret = MAP_CONTINUE;
2374
2375        if (bkey_cmp(k, refill->end) >= 0) {
2376                ret = MAP_DONE;
2377                goto out;
2378        }
2379
2380        if (!KEY_SIZE(k)) /* end key */
2381                goto out;
2382
2383        if (refill->pred(buf, k)) {
2384                struct keybuf_key *w;
2385
2386                spin_lock(&buf->lock);
2387
2388                w = array_alloc(&buf->freelist);
2389                if (!w) {
2390                        spin_unlock(&buf->lock);
2391                        return MAP_DONE;
2392                }
2393
2394                w->private = NULL;
2395                bkey_copy(&w->key, k);
2396
2397                if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2398                        array_free(&buf->freelist, w);
2399                else
2400                        refill->nr_found++;
2401
2402                if (array_freelist_empty(&buf->freelist))
2403                        ret = MAP_DONE;
2404
2405                spin_unlock(&buf->lock);
2406        }
2407out:
2408        buf->last_scanned = *k;
2409        return ret;
2410}
2411
2412void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2413                       struct bkey *end, keybuf_pred_fn *pred)
2414{
2415        struct bkey start = buf->last_scanned;
2416        struct refill refill;
2417
2418        cond_resched();
2419
2420        bch_btree_op_init(&refill.op, -1);
2421        refill.nr_found = 0;
2422        refill.buf      = buf;
2423        refill.end      = end;
2424        refill.pred     = pred;
2425
2426        bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2427                           refill_keybuf_fn, MAP_END_KEY);
2428
2429        trace_bcache_keyscan(refill.nr_found,
2430                             KEY_INODE(&start), KEY_OFFSET(&start),
2431                             KEY_INODE(&buf->last_scanned),
2432                             KEY_OFFSET(&buf->last_scanned));
2433
2434        spin_lock(&buf->lock);
2435
2436        if (!RB_EMPTY_ROOT(&buf->keys)) {
2437                struct keybuf_key *w;
2438                w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2439                buf->start      = START_KEY(&w->key);
2440
2441                w = RB_LAST(&buf->keys, struct keybuf_key, node);
2442                buf->end        = w->key;
2443        } else {
2444                buf->start      = MAX_KEY;
2445                buf->end        = MAX_KEY;
2446        }
2447
2448        spin_unlock(&buf->lock);
2449}
2450
2451static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2452{
2453        rb_erase(&w->node, &buf->keys);
2454        array_free(&buf->freelist, w);
2455}
2456
2457void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2458{
2459        spin_lock(&buf->lock);
2460        __bch_keybuf_del(buf, w);
2461        spin_unlock(&buf->lock);
2462}
2463
2464bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2465                                  struct bkey *end)
2466{
2467        bool ret = false;
2468        struct keybuf_key *p, *w, s;
2469        s.key = *start;
2470
2471        if (bkey_cmp(end, &buf->start) <= 0 ||
2472            bkey_cmp(start, &buf->end) >= 0)
2473                return false;
2474
2475        spin_lock(&buf->lock);
2476        w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2477
2478        while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2479                p = w;
2480                w = RB_NEXT(w, node);
2481
2482                if (p->private)
2483                        ret = true;
2484                else
2485                        __bch_keybuf_del(buf, p);
2486        }
2487
2488        spin_unlock(&buf->lock);
2489        return ret;
2490}
2491
2492struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2493{
2494        struct keybuf_key *w;
2495        spin_lock(&buf->lock);
2496
2497        w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2498
2499        while (w && w->private)
2500                w = RB_NEXT(w, node);
2501
2502        if (w)
2503                w->private = ERR_PTR(-EINTR);
2504
2505        spin_unlock(&buf->lock);
2506        return w;
2507}
2508
2509struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2510                                          struct keybuf *buf,
2511                                          struct bkey *end,
2512                                          keybuf_pred_fn *pred)
2513{
2514        struct keybuf_key *ret;
2515
2516        while (1) {
2517                ret = bch_keybuf_next(buf);
2518                if (ret)
2519                        break;
2520
2521                if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2522                        pr_debug("scan finished");
2523                        break;
2524                }
2525
2526                bch_refill_keybuf(c, buf, end, pred);
2527        }
2528
2529        return ret;
2530}
2531
2532void bch_keybuf_init(struct keybuf *buf)
2533{
2534        buf->last_scanned       = MAX_KEY;
2535        buf->keys               = RB_ROOT;
2536
2537        spin_lock_init(&buf->lock);
2538        array_allocator_init(&buf->freelist);
2539}
2540